
CybersecurityEspinha Gasiba et al. Cybersecurity (2020) 3:24
https://doi.org/10.1186/s42400-020-00064-4

RESEARCH Open Access

Sifu - a cybersecurity awareness
platform with challenge assessment and
intelligent coach
Tiago Espinha Gasiba1* , Ulrike Lechner2 and Maria Pinto-Albuquerque3

Abstract

Software vulnerabilities, when actively exploited by malicious parties, can lead to catastrophic consequences. Proper
handling of software vulnerabilities is essential in the industrial context, particularly when the software is deployed in
critical infrastructures. Therefore, several industrial standards mandate secure coding guidelines and industrial
software developers’ training, as software quality is a significant contributor to secure software. CyberSecurity
Challenges (CSC) form a method that combines serious game techniques with cybersecurity and secure coding
guidelines to raise secure coding awareness of software developers in the industry. These cybersecurity awareness
events have been used with success in industrial environments. However, until now, these coached events took place
on-site. In the present work, we briefly introduce cybersecurity challenges and propose a novel platform that allows
these events to take place online. The introduced cybersecurity awareness platform, which the authors call Sifu,
performs automatic assessment of challenges in compliance to secure coding guidelines, and uses an artificial
intelligence method to provide players with solution-guiding hints. Furthermore, due to its characteristics, the Sifu
platform allows for remote (online) learning, in times of social distancing. The CyberSecurity Challenges events based
on the Sifu platform were evaluated during four online real-life CSC events. We report on three surveys showing that
the Sifu platform’s CSC events are adequate to raise industry software developers awareness on secure coding.

Keywords: Cybersecurity, Awareness, Training, Artificial intelligence, Serious games, Secure coding, Static application
security testing, Capture-the-flag, Software development in industry

Introduction
Over the last years, several attacks that target indus-
trial control systems and cyberphysical systems have been
identified. In 2010 Stuxnet, which attacks Programmable
Logic Controllers, was uncovered; in 2014, the Havexmal-
ware, a Remote Access Trojan that contains code targeting
industrial devices communicating over Open Platform
Communications, was discovered. In the same year, Black-
Energy V3 attacked the Ukrainian power grid and energy
distribution. More recently, in 2017, the Triton malware,
which was coined “the world’s most murderous malware”,

*Correspondence: tiago.gasiba@siemens.com
1Siemens AG Corporate Technology, Otto-Hahn-Rin 6, 81379 Munich, Bavaria,
Germany
Full list of author information is available at the end of the article

was uncovered attacking the petrochemical industry in
Saudi Arabia. The industry’s financial impact due to these
and other forms of malware has already exceeded 10
billion USD and affected more than 140 countries (Apex-
techservices 2017).
The Industrial Control System - Computer Emergency

Response Team (ICS-CERT (Department of Homeland
Security 2020a)) has been tasked with issuing ICS-specific
alerts and advisories. Industrial Control Systems (ICS)
alerts are information put out by the ICS-CERT with
the intention to provide timely notification to critical
infrastructure owners and operators concerning threats or
activity with the potential to impact critical infrastructure
computing networks. Figure 1) shows the number of ICS
alerts and advisories issued per year by the ICS-CERT.

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00064-4&domain=pdf
http://orcid.org/0000-0003-1462-6701
mailto: tiago.gasiba@siemens.com
http://creativecommons.org/licenses/by/4.0/

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 2 of 23

Fig. 1 ICS-CERT

Over the last decade, the number of security advisories
issued per year has been steadily growing. Before 2014
less than 100 advisories per year have been issued, while
from 2017 to 2019 more than 200 advisories per year
have been issued. These numbers of security advisories
correlate well with the observed increase in the number
and sophistication of cyber-attacks to industrial control
systems.
According to an estimation by the United States Depart-

ment of Homeland Security (DHS), about 90% of the
reported security incidents result from exploits against
defects in the design or code of software (Department of
Homeland Security 2020b). Related to this, a recent large-
scale study by Patel el al. 2020 has shown that more than
50% of software developers cannot spot vulnerabilities in
source code (Schneier 2020). These two factors consid-
ered together mean that: 1) special care must be exer-
cised during software development, software developers,
and 2) software developers lack awareness about secure
coding.
Exploitation of low quality software can result in severe

consequences for both customers, companies that pro-
duce the software (or product), and even unrelated third
parties. The negative consequences are especially acute
when the vulnerable software is deployed in critical infras-
tructures. In this scenario, the negative consequences can
range from monetary losses to loss-of-life.
The work present aims to improve the current situ-

ation utilizing a serious game -that we coined Cyber-
Security Challenges (CSC)- designed to raise awareness
on secure coding, secure coding guidelines, and software
development best practices of software developers in the
industry. This work also presents the Sifu platform, a
software tool developed to implement the CSC serious
game.

Addressing code defects during software development
According to Mead et al. (2004), addressing security
vulnerabilities in source code early in the software
development life-cycle can save many costs. Their work
presents an empirical model that shows the incurred
costs of fixing software vulnerabilities at the following
phases: requirements engineering, architecture, design,
implementation, testing, deployment, and operations.
The validity of this model is corroborated by Black (2004),
which describes how addressing software defects early in
the software development stages (in particular, by early
involvement of the software testing team) can also lead to
cost savings.
In an industrial setting, due to the requirements

imposed by standards (e.g. ISO27k 2013, IEC 62443 2018,
PCI/DSS 2015, BSI5.21 2014), the requirements engineer-
ing, architecture and design phases are typically well cov-
ered. The compliance to these standards is checked during
industry audits. Recent data (Department of Homeland
Security 2020b; Patel 2020), however, suggests that soft-
ware defects (and vulnerabilities) are being introduced
when the software is being developed - by software devel-
opers - in the implementation stage. In this early software
development stage, we would like to address the software
implementation stage in our work.
One possible method that can be used to reduce the

number of introduced software vulnerabilities is Static
Application Security Testing Tools (SAST) at the software
implementation stage. However, these have been shown to
not perform well in detecting security vulnerabilities in the
source code (Goseva-Popstojanova and Perhinschi 2015),
and consequently, additional mechanisms must be used.
In our work, we concentrate on the human factor, the soft-
ware developer, since the software developer ultimately
writes the software by hand.

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 3 of 23

For the implementation, there is a vast number of pos-
sible programming languages. We have decided to focus
our work on the C and C++ programming languages.
Our motivation to choose this programming language is
twofold: 1) because this programming language is being
actively (and highly) used in the industry where the first
author works as a consultant and 2) a recent study by
WhiteSource (2019) shown that C and C++ are among
the most vulnerable programming languages in terms of
cybersecurity vulnerabilities.

Industrial standards and guidelines
In recognition of the importance of secure products and
a consequence of the current move towards digitalization
and higher connectivity, several large industrial players
have joined together and committed to a document called
the charter of trust (Siemens 2020). The Charter of Trust
outlines ten fundamental principles that the partners vow
to obey to address the issues inherent with cybersecu-
rity. ICS relevant standards such as IEC 62443-4-1 2018 or
ISO 27001 2013 mandate not only the implementation of
secure software development life-cycle processes but also
awareness training.
These standards (IEC 62.443 and ISO 27k) address secu-

rity from a high-level perspective and are not specific
enough about recommendations and policies to be fol-
lowed in software development. Towards this goal, an
industry-led effort was created, the Software Assurance
Forum for Excellence in Code (SAFECode 2018), with the
aim of identifying and promoting best practices for devel-
oping and delivering more secure and reliable software,
hardware, and services.
In terms of the programming languages C and C++, due

to its popularity in the industry, there exist several secure
coding standards. Carnegie Mellon provides a popular
secure coding standard - the SEI CERT Secure Coding
Standard (Carnegie Mellon University 2019), which aims
at safety, reliability, and security of software systems. Other
popular (secure) coding standards include AUTOSAR
2017 for the automotive industry and the MISRA coding
standard (Misra 2012; 2012) for embedded devices.
Another reason to focus on the software developer is

that these standards contain undecidable rules, i.e., rules
that cannot be automatically checked by an automaton
(Kässtner et al. 2020). In this case, it requires human
intervention to understand the software and decide the
appropriate measure. This intervention is possible if the
software developer is aware and knows the appropriate
secure coding guidelines.

Serious games
A serious game (Dörner et al. 2016) is a game that is
designed with a primary goal and purpose other than
pure entertainment. Typically these games are developed

to address a specific need such as learning or improv-
ing a given skill. Serious games are a well-established
instrument in information security. They are discussed
in de-facto standards as in the German Federal Office
for Information Security - IT Baseline Protection (BSI
Grundschutzkatalog) (Bundesamt für Sicherheit in der
Informationstechnik 2019; Bundesamt für Sicherheit in
der Informationstechnik 2020) as a mean to raise IT
security awareness and increase the overall level of IT
security.
A Capture-the-Flag (CTF) game is one possible instance

of a serious game. CTF games were initially developed in
the penetration testing community and are mostly used by
pentesters, security professionals, academics, and hobby-
ists to improve their offensive skills. Votipka et al. 2018b
argue in their work that CTF events can also be used as
a means to improve security software development. In
particular, they show that the participants to such events
experience positive effects in improving their security
mindset (i.e., defensive mindset). Davis et al., in 2014a,
also discuss the benefits of CTF for software developers,
and they argue that CTFs can be used to teach com-
puter security and conclude that playing CTFs is a fun and
engaging activity.
Playing cybersecurity (serious) games is gaining more

andmore attention in the research community (Rieb 2018;
Rieb et al. 2017). In Frey et al. (2019), show both the
potential impact of playing cybersecurity games on the
participants and the importance of playing games as a
means of cybersecurity awareness. They conclude that
cybersecurity games can be useful to build a common
understanding of security issues.
In their work, Simões et. al 2020 present several pro-

gramming exercises for teaching software programming
in academia. Their design includes nine exercises that
can be presented to students to foster student motivation
and engagement in academic classes and increase learn-
ing outcomes. Their approach uses gamification and tools
to perform automatic assessment of submitted solutions
to exercises. However, their work focus on the correct
(functional) solution of the programming exercise and
not on secure programming and security best practices
aspects.
In a closer approach to a solution suitable to the

industry, Gasiba et al., in 2019 perform requirements
elicitation employing systematic literature review, inter-
view of security experts, and elicit requirements from
CTF participants and games performed in the indus-
try. Their work focuses on identifying the require-
ments necessary for serious games events based on CTF
to raise secure coding awareness of software develop-
ers in the industry. The newly derived type of event
is called the CyberSecurity Challenges (CSC). Among
other requirements, they conclude that CSC events

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 4 of 23

should focus on the defensive perspective instead of
offensive.
In a further work (Gasiba et al. 2020b), the authors

provide six concrete and different challenge types to be
used in this kind of CSC event. One of these is the code-
entry-challenge type. In this type of challenge, the player
interacts through a web interface with a back-end bymod-
ifying vulnerable code until all the coding guidelines are
fulfilled, thus solving the challenge.

Automatic challenge evaluation and intelligent coach
In Gasiba et al. (2020b), the concept of a code-entry-
challenge is derived empirically, and no implementation
hints are provided, only the core idea. The present work
extends this previous work by providing a real-world
implementation of a code-entry-challenge. In the fol-
lowing, we will present and discuss the CyberSecurity
Challenges and introduce the Sifu Platform that is a code-
entry-challenge for CSC events.
The goal of the Sifu Platform is to: 1) automatically

analyze the solution submitted by the participant to the
back-end, 2) determine if this solution contains vulnera-
bilities and fulfills the required functionality, 3) generate
hints to the player if the solution does not achieve a
pre-determined goal and finally 4) provide a flag (i.e., a
unique code) which the player can use to gather points
in the game. The correctness of the provided solution
depends on the code following established, secure coding
guidelines and secure programming best practices.
The generated hints are provided by an intelligent

coach, which assists the player in solving the chal-
lenge. These hints are created using a simple artificial
intelligence (AI) engine that provides automatic pre-
programmed interactions with the player when the sub-
mitted solution fails to meet the secure coding criteria.
These hints generated by the AI Engine (i.e., the intelligent
coach) help the player solve the challenge playfully and
help lower the frustration, increase the fun, and improve
the gameplay’s learning effect.
The core of the present work is to describe the intel-

ligent coach platform and provide an evaluation of the
Sifu Platform in terms of suitability to raise secure cod-
ing awareness. Three small surveys were developed and
deployed with real players during four instances of the
game to validate its suitability. The evaluation results show
that the participants have fun using the platform and
find it adequate to secure coding guidelines and secure
software development best practices.

Previous work
The present work would not have been possible without
the previous work of many colleagues and researchers.
Figure 2 shows the seven main areas which have, in com-
bination, influenced the current work: emerging needs,

CTF, challenges, artificial intelligence, survey methodol-
ogy, related theories, and IT security standards. The previ-
ous academic work on emerging needs gives motivational
reasoning behind the current work. Non-academic work
on emerging needs is related to an increasing company-
internal demand and support by management in the
development of novel awareness training methodologies.
The rich literature on capture the flag (CTF), e.g. (Chung
and Cohen 2014; Chung 2017; Bakan and Bakan 2018;
Djaouti et al. 2011; Davis et al. 2014b; Cullinane et al.
2015; Hendrix et al. 2016; Sorace et al. 2018; Rieb et al.
2017; Rieb 2018; Votipka et al. 2018a), which is a seri-
ous game genre, discusses the recent scientific studies that
have been performed on the usage of Capture-the-flag for
IT security awareness training. Our work is also based
on previous studies on challenges/exercises for teach-
ing computer science, in particular related to IT security
(Švábenskỳ et al. 2018; Hulin et al. 2017; Chapman et al.
2014; Mirkovic and Peterson 2014; Leune and Petrilli Jr
2017; Tabassum et al. 2018). The present work also makes
use of artificial intelligence (AI) methods; in particular,
it makes use of the lettering interview technique (Rietz
and Maedche 2019). To evaluate our approach in terms
of research questions, we follow best practices on survey
design and follow standard existing analysis methodolo-
gies (Groves et al. 2009; Drever 1995; Harrell and Bradley
2009;Wagner et al. 2020). The main fundamental theories
in which our work is based are on IT Security Awareness
by Hänsch et al. and on Software Developer Happiness by
Graziotin et al.
In their work, Graziotin et al. 2018 argue that happy

developers are better coders. They show that developers
that are happy at work tend to be more focused, adher-
ing to software development processes, and following
best practices. This improvement in software develop-
ment concludes that happy developers can produce higher
quality and more secure code than unhappy developers.
Since they are experienced as fun events, the authors
believe that CTF events can foster higher code quality and
adherence to secure development principles.
Vasconcelos et. al 2020 have recently shown amethod to

evaluate programming challenges automatically. In their
work, the authors use Haskell and the QuickCheck library
to perform automated functional unit tests of students’
challenges. Their goal is to evaluate if the students’ solu-
tions comply with the programming challenge in terms of
desired functionality. One of the main limitations of this
work is that the code to be tested should be free from
side effects. The authors also focus on functional test-
ing of single functions and do not address the topic of
cybersecurity.
In Dobrovsky et al. (2016) and Brisson et al. (2012)

describe an interactive reinforcement learning framework
for serious games with complex environments, where a

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 5 of 23

Fig. 2 Related Work

non-player character is modeled using human guidance.
They argue that interactive reinforcement learning can be
used to improve learning and the quality of learning. How-
ever, their work aims to train an algorithm to recreate
human behavior employing machine learning techniques.
In our work, we aim at training humans to write better
and more secure code. Due to this fact, machine learning
techniques are not applicable. Nonetheless, we draw inspi-
ration from the conceptual framework, which we adapt to
our scenario.
Rietz et al. 2019, show how to apply the laddering inter-

view technique’s principles to requirements elicitation.
The laddering technique consists of issuing a series of
questions based on previous system states (i.e., previous
answers and previous questions). The questions gener-
ated are refined versions of previously issued questions
as if the participant is climbing up a ladder contain-
ing more specific questions. Although this previous work
applies in the field of requirements elicitation and does
not focus on cybersecurity, the laddering technique prin-
ciple can be adapted to a step-wise hint system, such
as ours.
In the present work, we also use the concept of aware-

ness or IT-security awareness as defined by Häensch et
al. in 2014, in order to evaluate our artifact. In their
work, they define awareness as having the following
three dimensions: perception, protection, and behavior.
The perception dimension is related to the knowledge of
existing software vulnerabilities. The protection dimen-
sion is related to knowing the existing mechanisms (best
practices) that avoid software vulnerabilities. Finally, the
behavior dimension relates to the knowledge and inten-
tion to write secure code. We collect data from par-
ticipants based on the three dimensions of awareness
through a small survey. We use best practices in the

design, collection, and processing of survey informa-
tion given by Groves et al. 2009. Best practices from
Crawley 2012 guide statistical analysis of the obtained
results.

Contributions of this work
This work seeks to provide the following impact in the
research community:

• introduces a novel method to automatically analyze
player code submission in terms of secure coding
guidelines and software development best practices,

• introduces an intelligent coach based on the
laddering interview AI technique, and

• provides a preliminary analysis of the proposed
architecture’s suitability in terms of adequacy to raise
secure coding awareness of software developers.

Although we intend to use the Sifu platform in a CSC
event, this platform can also be used stand-alone, in
remote and offline training scenarios. This offline sce-
nario can be especially important if the players are spread
over a large geographic area or have inherent restrictions
on a face-to-face workshop, such as travel restrictions.

CyberSecurity challenges - a serious game for the
industry
A CyberSecurity Challenge Event is a one-day event in
which 10 to 30 software developers from industry partic-
ipate. There are two types of events, suited for the soft-
ware developers’ different backgrounds: web-application
and C/C++. In this work, we focus on challenges for the
C/C++ programming language. These programming lan-
guages are widely used in the industry (IEEE Spectrum
2019), but are also among the most vulnerable in terms of
cybersecurity vulnerability (WhiteSource 2019).

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 6 of 23

Fig. 3 Architecture of CyberSecurity Challenges infrastructure

During the workshop, the players form different teams
that compete against eachother in solving the CSC chal-
lenges. These challenges address different topics related to
secure coding and focus on secure coding guidelines (SEI-
CERT (Carnegie Mellon University 2019), MISRA 2012
and AUTOSAR 2017).
Upon solving a challenge, the team is awarded a flag

- i.e., a random-like code that is redeemed for points
upon submitting to a dashboard. During the workshop,
the players accumulate points by solving challenges. At
the end of the event, the team with the most points wins
the CSC game. However, the game intends that every par-
ticipant profits from the game and that by concentrating
on solving the challenges (Nakamura and Csikszentmiha-
lyi 2014), the awareness of secure coding guidelines and
secure coding best practices is exercised.
Figure 3 depicts the architecture, based on Gasiba

et al. (2019), that we have conceptualized, designed, and
deployed to implement the CSC game. It comprises a
wireless access point that connects the players’ comput-
ers, runs a local virtual machine, to a local server, and

(optionally) connects to the internet. The server runs a
dashboard (Chung 2020), a countdownwebsite, and it also
hosts the challenges. The players’ local virtual machine
can also host local challenges. The advantage of plac-
ing the different challenges in the participant’s virtual
machines is that they can be accessed after the game is
finished.
Figure 4 shows the structure of a CyberSecurity Chal-

lenge, which consists of three phases: Phase 1 - introduc-
tion, Phase 2 - challenge and Phase 3 - conclusion. In Phase
1, an optional phase, the challenge, environment, and sce-
nario are introduced. Furthermore, it is discussed the
references to the secure coding guideline(s) about which
the challenge is. In Phase 2, the player is presented with
the challenge described in Phase 1, in the form of a project
that needs to be solved by interacting with the Sifu plat-
form. To solve the challenge, the player needs to adapt the
code in the project in such a way as to be compliant with
secure coding guidelines. While solving the challenge, the
player is given several hints, depending on his progress in
solving the challenge. These hints aid the player in solving

Fig. 4 Structure of a CyberSecurity Challenge

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 7 of 23

the challenge and serve to lower the frustration while play-
ing the game. The players submit the proposed solution,
for the challenge, to the back-end, where it is determined
if the solution is acceptable or not. The player, option-
ally, might be awarded points or penalties at this stage,
depending on the proposed solution. A detailed overview
of this stage will be given in the following.
The processing in the last phase - Phase 3 - depends

on the result of the previous phase. If the solution
was wrong, the challenge is finished with an optional
explanation of why the solution was not acceptable. If
the solution was correct, the challenge is finished with
an optional conclusion stage. This conclusion stage can
include either additional questions (single or multiple-
choice) or a debriefing. The debriefing contains a descrip-
tion of aspects related to the challenge, such as previous
incidents, possible consequences of exploiting the vulner-
ability, the importance of the industry context’s challenge,
additional explanation of the secure coding guidelines
related to the challenge. A player might or might not
be able to have another attempt at solving the challenge,
i.e., go to Phase 1 again, depending on the challenge
configuration. If the player submits an acceptable solu-
tion, a flag is presented in Phase 3 (according to the
CTF rules).

Sifu platform
In the following subsections, we present the research
problem in terms of research questions, and our approach
to solve them. In particular we describe the architecture
of the proposed Code-Entry Challenge, which forms the
Sifu Platform. We give details on how the Platform per-
forms automatic assessment of solutions submitted by
players and how an intelligent coach generates feedback
messages, based on the results of the challenge assess-
ment step. Furthermore, we provide a description of a
real-world artifact and give a concrete example of a secure
coding challenge. Finally, we also describe the surveys that
we use to evaluate the approach.

Problem statement
In Gasiba et al. (2020b), the authors present a type of Chal-
lenge for CTFs in the industry called Code-Entry Chal-
lenge (CEC). The main idea, of this type of Challenge, is
for the Player to be given a software development project,
that contains code that does not follow secure coding
guidelines (SCG), and secure software development best
practices (BP), and contains security vulnerabilities. In
this work, we target specifically ICS by using SCG and BP,
which are specific to this field. The task of the Player is
to fix the vulnerabilities and to follow SCG and BP. The
Player should do this so that the original intended func-
tionality is still fulfilled, in the new version of the code.
The current work aims to solve these requirements using

a platform that performs an automatic evaluation of the
participant’s code and guides the participant towards the
final solution. The following research are then raised by
considering these requirements:

RQ1: how to automatically assess the cybersecurity chal-
lenges, in terms of SCG and BP?

RQ2: how to aid the software developer, while solving the
cybersecurity challenges?

RQ3: to which extent are cybersecurity challenges
events, based on the Sifu platform, suitable as a
means to raise secure coding awareness of software
developers in the industry?

This work proposes to address RQ1, through a special-
ized architecture, to automatically assess the level of com-
pliance to SCG and BP, by combining several state-of-the-
art security testing frameworks, namely Static Application
Security Testing (SAST), Dynamic Application Security
Testing (DAST), and Runtime Application Security Pro-
tection (RASP). The functional correctness of the solution
provided by the Player is evaluated using state-of-the-
art Unit Testing (UT). We implemented this architec-
ture, to automatically assess the cybersecurity challenges,
through the Sifu platform; thus proposing an answer to
RQ1.
To address RQ2, the authors propose to combine the

output of the security testing tools, with an AI algorithm,
to generate hints based on the laddering technique, thus
implementing an intelligent virtual coach. The intelligent
coach’s task is to lower the participant’s frustration dur-
ing gameplay, and help the participant improve the code.
This intelligent coach is embedded in our proposed Sifu
platform. In this way, the Sifu platform with the intelligent
coach contributes to answer RQ2.
Our proposed solution to address RQ1 and RQ2 is eval-

uated through two surveys: Survey 1 (S1) and Survey 2
(S2). Survey 1 (S1) is composed of three quick questions
asked to the participants, upon solving a challenge at the
end of each game, but before obtaining the correspond-
ing flag. Survey 2 (S2) is composed of nine questions asked
to the participants at end of the CyberSecurity Challenge
event. To address RQ3, the authors have conducted an
additional survey (Survey 3 - S3) to evaluate the overall
CyberSecurity Challenges event. Survey 3 (S3) is com-
posed of eleven questions asked to the participants at the
end of the CSC event (in conjunction with S2). The main
difference, between S2 and S3, is that S2 addresses spe-
cific questions related exclusively to the Sifu platform,
while the questions in S3 address the whole CyberSe-
curity Challenges event (including Challenges with Sifu
platform).
The proposed solution, architecture, and design, herein

described, contribute to answer research questions RQ1
and RQ2. The results of S1 and S2 contribute to evaluate

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 8 of 23

the Sifu Platform as a stand-alone platform for defensive
challenges, i.e. contibute to RQ1 and RQ2. The results
of S3 contribute to evaluate the Sifu Platform as an inte-
gral part of CyberSecurity Challenges, in terms of the
events’ suitability to raise secure coding awareness of soft-
ware developers in the industry, i.e. to address RQ3. Note
that participation in S1, S2 and S3 is voluntary, and there-
fore not all participants have decided to provide their
answers.

Code-entry challenge platform architecture
Figure 5 shows the top-level view of the Sifu architecture.
In this figure, the “Player” represents the game partic-

ipant (a human), and the “Project” represents a software
project that contains vulnerabilities to be fixed by the
Player. The “Analysis & Hints” (AH) component performs
the core functionality:

• evaluates the submitted code (Project) in terms of
SCG and BP

• indicates if the Challenge is solved or not and, if not
solved

• generates hints to send back to the participant.

Previous interactions and generated hints are stored in
the “State” component. During gameplay, the Player reads
the Project and modifies it by interacting with a web
editor interface. When the Player concludes the desired
code changes, the Player submits it to the AH component
(backend) for analysis.
A possible realization of the conceptual architecture is

shown in Fig. 6. Interaction takes place between the Player
and a web interface (web frontend), which connects to a
web backend. The web backend is responsible for trig-
gering the automated security assessment, collecting the
AI engine’s answer, and sending the answer back to the
participant. Next, the Project submitted by the partici-
pant is saved into a temporary folder. Before the next
step, the pre-processing of these Project files takes place.
The goal of this pre-processing step is to inject the code
necessary for unit tests. After adding auxiliary files (e.g.,
C/C++ include files) to the temporary project directory,

the Project is compiled. If the compilation is successful, a
functional test and security assessment is performed in a
sandbox. All these results are then made available to an
AI engine that determines if the Challenge is solved (i.e.,
if the solution is acceptable) and generates hints for player
feedback otherwise. This feedback is collected by the web
backend, stored in an internal database, and forwarded as
the answer back to the participant’s web browser.

Automatic security assessment
The security assessment performed on the Project is com-
posed of the following steps: 1) Compilation, 2) Static
Application Security Testing (SAST), 3) Unit Testing, 4)
Dynamic Application Security Testing (DAST), and 5)
Runtime Application Security Protection (RASP). In step
1, the Project is compiled; if there are compilation errors,
these are reported to the AI component, and no further
analysis takes place. Step 2 performs static code analy-
sis. Note that in this step, the code does not need to be
executed. Since the steps 3, 4, and 5 involve executing
untrusted (and potentially dangerous) code, these are per-
formed in a time-limited sandbox. The sandbox is very
restrictive, e.g., it only contains the project executable and
drops security-relevant capabilities (e.g., debugging and
network connections are not allowed). Additionally, the
executable is only allowed to run for a certain amount of
time inside the sandbox. If this time is exceeded, the pro-
cess will be automatically terminated. This avoids denial-
of-service attacks by means of high CPU usage. Two types
of Unit tests are executed: 1) functional testing - in order
to guarantee that the provided code is working as intended
(e.g., in the challenge description), and 2) security test-
ing - in order to guarantee that typical vulnerabilities are
not present in the code (e.g., buffer overflow). Security
testing is done using self-developed tests and also using
state-of-the-art fuzzing tools. Steps 4 and 5 perform sev-
eral dynamic security tests. Table 1 lists the tools used in
each of these components (in italic). The same table also
lists additional potential tools that the authors are consid-
ering integrating into the Sifu Platform in a future work,
and are given here for reader reference and completeness.

Fig. 5 Conceptual game overview: interaction and components

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 9 of 23

Fig. 6 Detailed architecture: the Sifu Platform

In this table, the open-source components used in the Sifu
platform are marked with “OS”.

Intelligent coach with AI technique
The AI component, shown in Fig. 6, collects the results of
the previous analysis steps, runs an AI engine based on the
laddering technique, and generates the feedback to be sent
back to the participant. Figure 7 shows the implementa-
tion of the AI engine using the laddering technique (Rietz
and Maedche 2019).
As previously detailed, the automated assessment tools

perform several tests to determine the existing software
vulnerabilities present in the Project. These are collected
in textual form (e.g., JSON and XML), and normalized
before being processed by the AI engine. The two most
essential tests, resulting from the security assessment, are
related to compilation errors (e.g., syntax errors), and
functional unit testing. The participant’s solution will be

rejected if the code does not compile, or is not working
(functioning) as intended. When both these tests pass, the
artificial engine uses the security tests, SAST, DAST, and
RASP tools to generate hints to send to the participant.
A combination of findings from these tools forms a vul-

nerability. These findings and vulnerabilities are mapped
to SCG and BP. In Fig. 7, each horizontal path (ith row)
corresponds to a ladder, and a specific combination of
vulnerabilities or static events found in the source code.
Each path is also assigned a priority p(i), based on the
criticality of the SCG and vulnerabilities. These priorities
are assigned according to the ranking of secure cod-
ing guidelines, as presented in Gasiba et al. (see Gasiba
et al. (2020a)). Higher-ranked secure coding guidelines are
given higher priorities, and lower-ranked secure coding
guidelines are given lower priorities. The AI engine then
selects a path (corresponding to one ladder) based on the
highest rank finding.

Table 1 Security assessment tools

Component Tools

Compiler GCC v10.1 (Stallman 2002) (OS), Clang 9.0.0 (OS) (Lattner 2018)

SAST

AbsInt RuleChecker (AbsInt 2020a), SonarQube (SonarSource 2020), Pc Lint (Gimpel 2020)

cppcheck (OS) (Marjamäki 2017), fbinfer (OS) (FaceBook 2020), semgrep (OS) (R2C 2020)

Clang-Tidy (OS) (The Clang Team 2020), FlawFinder (OS) (Wheeler 2013), Frama-C (OS) (Baudin et al. 2020)

Graudit (OS) (Wireghoul 2020), CMetrics (OS) (MetricsGrimoire 2020), ESBMC (OS) (ESBMC 2020; Gadelha et al. 2018)

TScanCode (OS) (Tecent 2020), Ikos (OS) (NASA-SW-VnV 2020)

DAST AbsInt Astrée (AbsInt 2020b), Valgrind (OS) (Valgrind Developers 2010), Helgrind (OS) (Valgrind Developers 2020)

RASP
Address Sanitizer (OS) (Google 2020b), Leak Sanitizer (OS) (Google 2020c),

Thread Sanitizer (OS) (Google 2020d)

Unit Test ATF (OS) (JMMV 2020a), Kyua (OS) (JMMV 2020b), AFL (OS) (Google 2020a)

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 10 of 23

Fig. 7 Laddering technique to generate hints

The chosen hintHn+1 depends on the ladder and on the
previous hint level sent to the participant on the ladder, as
given by the system state. If there are no more hints in the
ladder, no additional hint is sent to the Player.
Table 2 shows an example of hints, provided by the intel-

ligent coach’s AI engine, corresponding to an “undefined
behavior” path. The lower level hints are generic and give
background information for the participant. The highest
level hint contains exact information on how to solve the
problem, thus revealing the solution.
Finally, the Feedback component (part of the AI com-

ponent in Fig. 6) formats and enriches the AI Engine’s
selected hint with project-specific information, and sends
it to the Web Back-End component to be presented to the
Player. To foster critical thinking, the authors have also
implemented a hint back-off. This back-off system imple-
ments the following rule: 1) no hint is provided to the
Player during 4 minutes after the backend has sent a hint
to the Player, and 2) no hint is given until the number
of code submissions, since the previous hint sent by the
backend to the Player, is equal to 3 submissions (i.e., no

Table 2 Example of hint ladder with six levels

Level Hint text

1 Maybe you could have a look at the following link: < link >

2 The following link < link > contains additional information

3 You can either use a secure function or locally disable compiler
optimization

4 Have a look at Annex K of the C standard here: < link >

5 You can also consider turning on/off optimization: < link >

6 Note that memset_s is optional in the standard...

7 We provide you with memset_s if you include memset_s.h in
your code.

8 Have a look at a possible solution to the challenge: < link >

hint will be given to the Player who is brute-forcing the
hint system).
Note that the feedback component, not only fosters crit-

ical thinking by the Player, but can also be used to train the
Player with the usage of static code analysis tools. How-
ever, further investigation of this aspect is needed in the
future.

Real-World artifact
Figure 8 shows the web interface of a real-world imple-
mentation of the Sifu platform. The machine where the
Sifu platform was deployed was an AWS instance of type
T3.Medium (2 CPUs with 4Gb RAM and network con-
nection up to 5Gb/s). In order to install the required tools,
a hard-disk of 40Gb was selected. The Sifu platform itself
is developed in Python 3.8 using Flask.
On the left, the Player can browse the Project and select

a file to edit; the file editor is in the center, and on the
right are the hints that the Player receives from the back-
end. The upper part contains buttons which include the
following functionalities: Submit - to submit the Project
for analysis, Reload - to reload the Project from scratch,
and Report Challenge - to report problems with the Chal-
lenge to the developers. Note that, when a player finishes
a challenge successfully, it is taken to an additional page
with discussions on the impact of the vulnerability and
additional closing questions (e.g., on which secure coding
guidelines have not been taken into consideration).

Example of a secure coding challenge
Figure 9 (left) shows the first phase of a Sifu Challenge
related to CWE-14 (MITRE 2020a). This vulnerability and
the corresponding secure coding guideline (MSC06-C)
is about dead-store removal. Table 3 contains informa-
tion about CWE-14, as well as the other six Common
Weakness Enumerations used in Sifu Challenges.

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 11 of 23

Fig. 8 Sifu Web Interface

When C-code is compiled with optimization turned on,
a compiler can eliminate parts of the original code dur-
ing compilation. In particular, a compiler can eliminate
memory clearing functions (memset) of stack variables,
if a function does not use the memory locations any-
more until returning from the function. When the func-
tion returns, the stack’s allocated memory must not be
accessed anymore by any other function; otherwise, this
would result in undefined behavior. As such, assuming
that the memory cannot be used, the compiler is free to
remove any memory clearing functions, since this cannot
have any more side-effects, according to the C-Standard.
In the introduction to the CWE-14 Challenge, a short

background information is given to the Player. Also, the
Player’s task is clearly explained: to re-write the code, fol-
lowing secure coding guidelines, and tomake sure that the
sensitive memory locations are cleared, before returning
from the C-function.
The second phase of the Challenge consists of the Player

interacting with the Sifu platform. Figure 10 shows the C-

code that is presented to the user. This code contains the
vulnerable function, as discussed in the introduction to
the Challenge. To solve this Challenge, the Player needs
to either: 1) replace the call to memset with a call to
memset_s, or 2) disable compiler optimization for the
ConnectToServer function with a compiler #pragma. In
order to assist the Player with this task, the Sifu platform
provides hints to the Player, which aid towards the cor-
rect solution (see Table 2). Upon solving the Challenge,
the Player is given information about the vulnerability
and possible consequences thereof. Figure 9 (right) shows
the information provided to the player upon completion
of the challenge. The Player is also given links to fur-
ther company-internal or company-external references,
related to the Challenge.

Evaluation of real-world artifact
The Sifu platform, containing seven different challenges,
as shown in Table 3, was evaluated during four different
CSC events. Table 4 shows a summary of all these events,

Fig. 9 CWE-14 Challenge: Introduction and Conclusion Phases

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 12 of 23

Table 3 Common weakness enumeration used in Sifu challenges

CWE Ref. Related SCG Description

CWE-14 (MITRE 2020a) MSC06-C Compiler Removal of Code to Clear Buffers

CWE-77 (MITRE 2020b) ENV33-C Improper Neutralization of Special Elements used in a Command

CWE-121 (MITRE 2020c) ARR38-C STR31-C Stack-based Buffer Overflow

CWE-242 (MITRE 2020d) POS33-C Use of Inherently Dangerous Function

CWE-338 (MITRE 2020e) MSC30-C Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

CWE-676 (MITRE 2020f) CON33-C ENV33-C

ERR07-C ERR34-C Use of Potentially Dangerous Function

FIO01-C MSC30-C

STR31-C

CWE-758 (MITRE 2020g) ARR32-C ERR34-C

EXP30-C EXP33-C

FIO46-C INT34-C Reliance on Undefined, Unspecified, or Implementation-Defined Behavior

INT36-C MEM30-C

MSC14-C MSC15-C

MSC37-C

CWE: Common Weakness Enumeration, SCG.: SEI-CERT Secure Coding Guideline

which took place in an online format in June 2020 and July
2020. The ages of the participants’ ranged between 20 and
50 years old. In the first event, from the 15 participants
fromGermany, 8 were from academia (7 computer science
students and one assistant professor), and 7 were software
developers from the industry. In the remaining events, all
participants were software developers from the industry.

During the first event, the participants were allowed to
experiment with the platform for as long as they liked.
The total time it took the participants to experiment was
from 15 min to 45 min. The last three events were embed-
ded in a CSC event, which lasted one entire working day
(8 h). These last CSC events consisted of a) a one-hour
introduction to the event and explanation of the game

Fig. 10 Project Code for CWE-14 Challenge

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 13 of 23

Table 4 Overview of CSC Events with Sifu Platform

No. Date Participants NP Where Dur. C A I Survey

1 16 Jun 2020 15: Germany 15 Online 1h 2 8 7 S1, S2

2 8 Jul 2020
2: China, 15: Germany,

21 Online 8h 2 0 21 S1, S2, S3
3: India, 1: UK

3 22 Jul 2020 20: Germany 20 Online 8h 2 0 20 S1, S2, S3

4 31 Jul 2020
2: China, 8: Germany,

15 Online 8h 2 0 15 S1, S2, S3
3: India, 2: UK

NP: nr. of players, Dur.: Duration, C.: No. Coaches, A.: No. Academia, I: No. Industry

mechanics, b) the main CSC event where the competition
took place, c) announcement of the winner and collection
of survey feedback, and finally d) walk-through of selected
challenges together with all the participants.
The first part of the CSC event was to ensure that all the

participants have access to the required virtual machines,
that the individual teams are formed, that the partici-
pants are informed about how the game is played, and
that they know how to use the Sifu platform. Since the
events extended over an entire day, the individual teams
had to decide on their lunch break strategy. Some teams
decided to have a split-strategy (lunch-break is split into
two, where in the first part, half of the teammembers take
time off while other continues playing and vice-versa),
while other teams decided to have a complete break (all
team members stopped playing during lunch-break) and,
finally one team decided to take no lunch-break. After
the main event, a small ceremony announcing the win-
ning team takes place with a small feedback round. In the
feedback round, the coaches interact with the players to
determine which challenges were more complicated and
need to be further discussed. In the last part of the CSC
event, the coaches performed a walk-through of selected
challenges. This walkthrough is based on the collected
feedback from the participants in the previous step.
During the gameplay, when successfully solving a chal-

lenge, the participants were asked (through the Sifu web
interface) to rate the Challenge based on three questions,
which we call Survey 1: S1. During the first event, upon
completing the experiment, the participants were asked to
fill out another survey, which we call Survey 2: S2. Finally,
for the last three events, during the feedback phase, the
participants were asked to fill out a survey that was an
extended version of S2. At the end of the CSC event, the
participants were also asked to rate the overall event with
Survey 3 - S3. The questions asked to the participants are
shown in Table 5.
The goal of S1 is to get immediate and short 3-question

feedback on the challenges contained in the Sifu plat-
form. In particular, the participants were asked to rate the
Challenge, and rate how well they can recognize and fix
the vulnerability in production code. Survey S2 contains a

question that evaluates the Sifu platform itself. This sur-
vey, together with S1, is used to evaluate the suitability
of the Sifu platform, as a means to automatically assess
the cybersecurity challenges (RQ1); as well as a means
to help software developers, while solving cybersecurity
challenges (RQ2).
We use the definition of IT Security Awareness from

Hänsch et al. 2014, with its three dimensions (Behaviour,
Protection, and Perception) as the theoretical framework
to develop the questions. Finally, the survey S3 was devel-
oped to evaluate the Sifu platform, and the entire CSC
event. The survey questions in S3 are based on the indus-
try’s teaching experience, in secure coding, by the first
author and on the experience gathered from previous
CSC events. This survey’s primary goal is to determine
if the participants agree that the CSC event helps them
be more prepared to deal with secure coding issues
at work.
Although all participants were kindly asked to answer

the surveys S1, S2, and S3, not everyone has decided to
participate, since taking part in this study was not manda-
tory. Answers to the survey questions were based on a
5-point Likert (Joshi et al. 2015) scale: SD - Strongly Dis-
agree, D - Disagree, N - Neutral, A - Agree, and SA -
Strongly Agree.

Results
This section presents the individual results of the different
surveys S1, S2, and S3. Additionally, we perform a closer
analysis of the results of S2 and S3 and finally relate the
overall results to the research questions. We conclude this
section with a brief discussion on the threats to valid-
ity. All the data presented was processed using RStudio
version 1.2.5019 (R Core Team 2019).

Challenge feedback - survey S1
Figure 11 shows the aggregated results of the challenge
rating questions of survey S1. These results were collected
through 44 solved challenges during the four CSC events,
as shown in Table 4. These four events counted with
the participation of 71 players with an average team size
of 4 players per team. Note that the data collected only

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 14 of 23

Table 5 Questions for surveys S1, S2 and S3

Survey QID T TC Question

S1

Q1 - - Please give an overall rating to the challenge

Q2 - - How well could you recognize the vulnerability in the code?

Q3 - - How well can you fix this problem in production code?

S2

F1 (Graziotin et al. 2018) HP My overall experience with the platform was positive

F2 (Hänsch and Benenson 2014) BE The Sifu platform helps me to improve my secure coding skills

F3 (Hänsch and Benenson 2014) PE
Solving challenges in the Sifu platform helps me in recognizing

vulnerable code

F4 (Hänsch and Benenson 2014) PR
Solving challenges in the Sifu platform helps me in understanding

consequences of exploiting vulnerable code

F5 (Graziotin et al. 2018) HP Solving challenges in the Sifu platform makes me overall happy

F6 (Hänsch and Benenson 2014) BE
Challenges in the Sifu platform help me to practice secure coding

guidelines

F7 (Graziotin et al. 2018) HP
I find the Sifu platform adequate as a means to raise awareness

on secure coding

F8 (Graziotin et al. 2018) HP The examples in the Sifu platform are clearly presented

F9 (Graziotin et al. 2018) HP It is fun to solve challenges in the Sifu platform

S3

X1 (Hänsch and Benenson 2014) PE
I have learned new techniques and principles related to secure

software development

X2 (Hänsch and Benenson 2014) PR
The challenges help me to understand possible consequences of

security breaches

X3 (Hänsch and Benenson 2014) BE
I feel I am better prepared to handle secure coding-related issues

at work

X4 (Hänsch and Benenson 2014) BE
The challenges help me to understand the need to have a well

defined secure software development lifecycle activities

X5 (Hänsch and Benenson 2014) PE
I’ve learned about new issues related to security that can occur

during software development through playing the challenges

X6 (Graziotin et al. 2018) HP The help from the coaches was adequate

X7 - WK
I feel more prepared to understand the output of static

application security testing tools

X8 - WK
Through playing the challenges, I know where I can find

information about secure coding guidelines

X9 (Hänsch and Benenson 2014) PR
Through playing the challenges I understand the importance of

using secure coding guidelines

X10 (Hänsch and Benenson 2014) BE
Through playing the challenges I feel my practical secure coding

skills have improved

X11 (Graziotin et al. 2018) HP The challenges are related with my daily work in my company

T: Theory, TC: Theory Construct, PR: Protection, PE: Perception, BE: Behavior, HP: Happiness,WK: Work

contains answers directly given by the teams as not
everyone has decided to take part in the current
study.
The average values and standard deviation are the fol-

lowing: Q3 3.86 (σ = 1.11), Q1 3.82 (σ = 1.13), Q2
3.80 (σ = 1.19). In general, the participants have agreed

with all the asked questions, namely that the challenges
are good (Q1), that they were able to recognize the vul-
nerability in the code (Q2) and that the participants can
fix this problem in production code (Q3). Note that all
the questions show a similar average agreement rating and
standard deviation.

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 15 of 23

Fig. 11 Evaluation of Challenges in Sifu Platform - Survey S1 - Overview

A break-down of these numbers towards the different
challenges (see Table 3) is shown in Figs. 12, 13, and 14,
for Q1, Q2 and Q3 respectively.
Except for the challenge CWE-676 (Use of potentially

dangerous function), all the challenges clearly show posi-
tive feedback in Q1 - overall challenge rating (see Fig. 12).
We note that, although the average agreement results for
challenges CWE-14 (Compiler removal of code to clear
buffers) and CWE-758 (Reliance of undefined, unspeci-
fied, or implementation-defined behavior) have a positive
rating, they also have a low number of answers, in com-
parison to the other CWEs.
Figure 13 shows the results for Survey S1, question Q2.

Except for CWE-676, all collected results show a positive
agreement. Also, for CWE-14 and CWE-758, although
only four answers are considered, these show an average
agreement, which is positive.
Finally, Fig. 14 shows the results for Survey S1, question

Q3. Again, for CWE-676, we observe a low rating and a
low number of answers. Except for this challenge, the next
challenge with lower agreement on Q3 is CWE-77, but
still with a positive rating.
Table 6 shows a summary of the weighted average agree-

ment for Survey S1, Q1, Q2, and Q3. In general, we can
observe that the weighted average agreement for Q2 and

Q3 is correlated with the challenge rating in Q1. The
higher the rating in Q1, the higher the values in Q2 and
Q3 and vice-versa. Therefore, question Q1 can give a good
indication, for practitioners, on which challenges need to
be improved (e.g., better introduction and better hints).

Survey for Sifu platform - survey S2
Figure 15 shows the results of the survey S2 with a total
of 25 answers from 71 participants, i.e., the participation
rate was 35.2%. We observe that most of the collected
results (i.e., more than 50% of the answers) for all the ques-
tions (F1 to F9) are either Agree or Strongly Agree. These
results give a good indication that the Sifu platform aids
developers to solve the cybersecurity challenges, helping
to improve their awareness of secure coding, and presents
a positive experience overall. The average weighted agree-
ment values and standard deviation, sorted from the high-
est to the lowest ranking, are the following: F6 4.24 (σ =
0.44), F9 4.24 (σ = 0.93), F8 4.12 (σ = 0.88), F1 4.08
(σ = 0.76), F5 4.08 (σ = 1.19), F2 4.04 (σ = 0.35), F3 3.84
(σ = 0.55), F7 3.84 (σ = 0.80), and F4 3.68 (σ = 0.80).
We observe that 6 out of 9 questions have an aver-

age weighted agreement of more than 4 Likert points.
The results also show that the highest-ranked question
is F6 - the Sifu platform helps to practice secure coding

Fig. 12 Evaluation of Challenges in Sifu Platform - Survey S1, Q1

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 16 of 23

Fig. 13 Evaluation of Challenges in Sifu Platform - Survey S1, Q2

guidelines. The next highest-ranked question is F9, which
indicates that the participants find that solving the Sifu
platform’s challenges is a fun activity. The next highest-
ranked question is F8, which is related to the usability
of the platform. From this, we can conclude that the
Sifu platform’s challenges are well presented and intu-
itive for the participants. However, further research on the
usability of the platform is required.
Although still ranked positive, the lowest positive result

was for F4 - Sifu platform helps understand the con-
sequences of exploiting vulnerable code. This result is
expected as the challenges are presented from the defen-
sive perspective, and the players never get to see an exploit
in action. However, the authors think that this value is still
high due to the Phase 3 of the CSC challenges - the con-
clusion - where the consequences of exploits, and previous
real-world cases, are presented and discussed.

Survey for CSC event with Sifu platform - survey S3
Figure 16 shows the results of the last survey, adminis-
tered to the participants of the CSC events two, three, and
four, as shown in Table 4. A total of 10 survey answers
were collected, out of the 71 participants, i.e., the partici-
pation rate for Survey S3 was 14.1%. The lower number of

participants concerning S1 and S2 has to do with survey S3
being completed, by the participants, after the end of the
CSC event, and the fact that participation in the survey is
not mandatory.
The average weighted agreement values and standard

deviation, sorted from the highest to the lowest ranking,
are the following: X6 4.90 (σ = 0.32), X9 4.60 (σ = 0.52),
X4 4.40 (σ = 0.70), X8 4.40 (σ = 0.70), X1 4.30 (σ =
0.67), X2 4.30 (σ = 0.67), X5 4.30 (σ = 0.48), X10 4.10
(σ = 0.57), X3 4.00 (σ = 0.67), X7 3.90 (σ = 0.74)and
X11 3.70 (σ = 0.95). Nine, out of the eleven questions,
have obtained an average weighted agreement score of 4
ormore Likert points. The highest-ranked question is X6 -
help from the coaches was adequate. This result shows the
importance that real (human) coaches have in making the
CSC event a successful event. This contribution to success
includes the coaching provided, during the introduction
and conclusion phases. The next highest-ranked question
is X9 - understanding the importance of secure coding
guidelines. Since the entire event is directed towards exer-
cising awareness on secure coding guidelines, it is also not
surprising that this question is ranked with a high positive
value. Finally, in the top three is X4 - understand secure
software development lifecycle activities. This question’s

Fig. 14 Evaluation of Challenges in Sifu Platform - Survey S1, Q3

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 17 of 23

Table 6 Sifu Challenge vs Survey S1 - Average Agreement

CWE Q1 Q2 Q3

CWE-14 4.00 4.00 4.00

CWE-77 3.78 3.67 3.44

CWE-121 4.00 4.14 4.14

CWE-242 3.92 3.58 3.92

CWE-338 4.00 4.17 3.83

CWE-676 2.50 3.00 2.50

CWE-758 4.00 4.00 4.00

high ranking gives a good indication that the overall event,
contributes positively to raise software developers aware-
ness about secure coding and secure coding guidelines.
The two lowest-ranked questions (although still ranked
positive) are X7 - understand the output of static applica-
tion security testing tools, and X11 - challenges related to
daily work in the company. It is also an expected result that
X7 is not as high ranked as the other questions, since the
Sifu platform is currently not designed to train software
developers to use static code analysis tools. Nonethe-
less, the participants still conclude that the platform helps
them to understand these tools better. Further research is
needed in this direction. Lastly, among the eleven ques-
tions, X11 obtained the lowest agreement rank. This result
is unexpected, as the challenges have been adapted to the
participants’ daily work. The authors think that this lower
ranking might be related to either the introduction (Phase
1) or conclusion (Phase 3) of the challenge. Nevertheless,
the agreement rate is still very positive.

Detailed analysis of survey S2 and S3
Figure 17 shows an analysis of Survey S2 and S3 in light
of the different theories that were used to formulate the
survey questions, namely: 1) Definition of Awareness by
Hänsch and Benenson (2014), 2) Happy Developers by

Graziotin et al. (2018) and 3) Work-related factors by the
experience of the first author. The two work-related fac-
tors X7 and X8) that can contribute to the development of
high quality software, according to the experience of the
first author, are the following: the readiness of the soft-
ware developer to understand the output of SAST tools,
and knowing where to find further information about
secure coding in the company. In the figure, the Aware-
ness component is broken down into its three dimensions
(cf. Hänsch and Benenson (2014)): Behaviour, Protection,
and Perception. Also noted in the figure are the mappings
of all the survey questions to each of the components
(and each of Awareness dimensions). Finally, the numbers
inside the ellipses represent the average agreement rate for
the questions belonging to each component.
As we can observe from this figure, all the components

have an average agreement with 4.13 points or higher, in
a 5 point Likert scale. In terms of Awareness the rank-
ing of the different dimensions is as follows: Protection
(4.19), Behaviour (4.16), and Perception (4.15). Compar-
ing between the three components, Awareness is first
(with an overall average rating of 4.17, followed by Work-
Related Factors (4.15) and Happiness (4.13). The fact that
Work-related has a rank higher than Happiness is surpris-
ing. The authors’ understanding is that the overall CSC
event contributes to this result since the CSC event is pri-
marily prepared to address the company’s environment
and needs.

Interpretation of the results in relation to research
questions
All the results presented in this work indicate the suitabil-
ity of the Sifu platform to raise the awareness of software
developers in industry, about secure coding and secure
coding guidelines.
The presented Sifu platform addresses RQ1, and RQ2

- automatic assessment of challenges is done using a

Fig. 15 Survey Results (Survey S2)

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 18 of 23

Fig. 16 Survey Results (Survey S3)

combination of tools and methodologies, and software
developers are aided in solving the challenges using an AI
component based on laddering technique - the Intelligent
Coach. Survey S1 and S2 were used to evaluate the Sifu
platform and its suitability to raise secure coding aware-
ness. All the results are encouraging towards validating
the suitability statement.
Furthermore, after the initial event (Event nr. 1), we

conducted further research (with Survey S3) on the Sifu
platform usage in real-world workshops held in the indus-
try. Here, the last three CSC events’ overall results using
the Sifu platform (with 56 participants from the industry)
show encouraging results towards RQ3.
Table 7 shows the top 10 quotes from the CSC partic-

ipants, which was collected during the feedback phase,
where all the participants were asked if they would like
to share something about the event. The participants’
qualitative feedback also confirms RQ3, in particular, that

the CSC event with the Sifu Platform is fun and informa-
tive.
Additionally to this feedback, one participant (a profes-

sional software developer having a Bachelor in Computer
Science) contacted the first author, after the event, with
a request for information about further university studies
on the topic of IT Security. The event caused such a good
impression that the participant has decided to continue
his studies, and pursue a Masters Degree in Computer
Science in parallel to his work.

Threats to validity
In this work, we present a serious game called CyberSecu-
rity Challenges and a code-entry challenge implemented
in a platform that we call Sifu. The serious game and
the Sifu platform are geared towards improving software
developers’ secure coding skills in the industry. To validate
the Sifu platform’s usefulness, the authors have gathered

Fig. 17 Analysis of Survey S2 and S3

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 19 of 23

Table 7 Quotes from CSC Participants

Quote from Participant

I really enjoyed participating in the challenges. I amwell excited in trying
to crack the answers to the challenges

Enjoyed the challenges, the different topics and how competitive we
got at the end

It was lots of fun. Questions inbetween were nice.

Enjoyed and lots of fun. I’ve learned many interesting things

Quite fun and nice to work, especially work in team

Enjoyed and learned very much

It was really funny and I leaned a lot

Funny and interesting day; learned a lot - hope I can remember and use
in practice

Really liked and enjoyed the exercises

Enjoyable to try everything and very fun

feedback, in the form of two Surveys (S1 and S2), from
participants of a trial experiment (Event nr. 1). The par-
ticipants in this survey were composed of eight persons
from academia and seven persons from the industry. Fur-
thermore, three CSC events using the Sifu platform were
performed with professional software developers from the
industry. The total number of participants that took part
in the three events was 56. In addition to the two surveys
administered during the trial experiment (Event 1), an
additional survey (S3) was designed to capture the whole
CSC event’s usefulness when using the Sifu platform. Dur-
ing these last three events (Event 2, 3 and 4), all the surveys
(S1, S2 and S3) were administered to the participants. All
the results give a good indication of the suitability of the
Sifu platform, and the CSC event, as a means to raise
awareness on secure coding and secure coding guidelines
for software developers in the industry.
Possible sources of threat to the validity of the results,

and conclusions presented are the following:

• participant bias: the participation in the different
surveys was not mandatory; as such, we might
consider that some possible negative answers have
not been captured,

• cultural differences: participants in the survey
included participants from different countries. We
cannot exclude that differences in interpretation and
language might affect the own experience in the CSC
events, and

• background and experience: each participant has a
different background and experience in the industry.
These factors can lead to different perceptions of the
proposed artifact.

To address the first concern, the feedback round in the
CSC event was introduced - here, all the participants were

individually asked if they would like to share anything.
Although some participants have given suggestions to
improve the Sifu platform further, there was a consensus
that the platform is good among software developers. To
address the second concern, during the CSC events, the
two individual coaches monitor how the game is played,
and help individual teams if there is any understand-
ing problem, either with the goal, with the challenge, or
about using the Sifu platform. Both coaches did not detect
any problem, neither due to language barriers nor with
cultural differences. Also, software developers are used
to read, write, and program using the English language.
Finally, with relation to the third concern, the CSC game
is geared towards, and used by, software developers in
the industry. Furthermore, the artifact is used in-house
with success, where it is expected to have different groups
of software developers, with different levels of expertise.
What we have observed in practice was that the more
advanced developers helped the other developers during
the competition. The competition format gives the par-
ticipants incentives to engage in discussions actively and
search for a common solution. As such, the authors think
that this can be a strength and not a CSC game’s weakness.
The authors think that the presented data has a high

degree of validity due to the reasons discussed. This con-
clusion matches the offline discussions that the coaches
have had with the participants after the events.

Conclusions
Over the last years, the number of cybersecurity inci-
dents on industrial control systems and cybersystems has
been increasing. The root cause of some of these inci-
dents can be traced back to poor software development
practices. These poor software development practices are
likely linked to software developers lack of awareness
about secure coding. This is strongly supported by Patel et
al. recent study (Patel 2020), which shows that more than
50% of software developers cannot spot vulnerabilities in
source code. The lack of awareness is especially a problem
for critical infrastructures, as the consequences of exploit-
ing vulnerable code can range from simple interruption of
service up to loss-of-life.
The industry sector is well regulated through IT stan-

dards, such as IEC 62.443 and ISO 27k. These standards
mandate the implementation of a secure software devel-
opment life cycle, as well as that software developers
be adequately trained (and made aware) in developing
secure code. Furthermore, these standards also instruct
the industry’s adoption of secure coding guidelines and
secure coding policies.
One possible way to raise awareness of software devel-

opers, on secure coding and secure coding guidelines,
is employing serious games. This game genre is a well-
recognized means to achieve this goal, according to the

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 20 of 23

BSI-Grundschutz-Kompendium from the German Fed-
eral Office for Information Security. One such game, the
CyberSecurity Challenges, which is based and adapted
from the serious game genre of Capture-the-Flag, has
been developed in the industry to address this issue -
raising secure coding awareness of industrial software
developers.
The present work extends the CyberSecurity Challenges

utilizing a CyberSecurity Awareness Platform that the
authors have named: Sifu. Previously existing CyberSecu-
rity Challenges have focused on adapting existing open-
source components to the industry, particularly in shifting
the Challenges’ focus to the defensive perspective. How-
ever, these challenges, due to their conception, lack inter
action with the user. The Sifu platform, proposed in this
work, breaks this limitation by providing a high degree of
interactivity with the players, while still focusing on the
defensive perspective. This platform’s implementation is
accomplished using two key ideas: automatic challenge
assessment and intelligent hint generation.
When solving a challenge in the Sifu platform, the goal

of the player is to fix or rewrite parts of the source code of
a simple project, in such a way as to eliminate one or more
known vulnerabilities, maintain the intended functional-
ity, and follow secure coding guidelines. The automatic
challenge assessment component makes use of existing
open-source components to perform unit-testing, static,
dynamic, and run-time security analyses of the project
code, to determine if the player’s solution is acceptable
or not. One main advantage is that, due to the way the
code submitted by the player is tested in the back-end,
several solutions can be acceptable, i.e., the back-end does
not compare the player’s solution with a desired and fixed
solution. Since the back-end needs to perform checks on
untrusted code, it implements mechanisms that prevent
cheating by the players, andmechanisms that do not allow
them to attack the system back-end.
The proposed Sifu platform was evaluated through

three surveys that targeted different aspects: 1) quality of
the challenges, 2) Sifu platform, and 3) CSC event with
Sifu platform. Our results show that the participants have
fun using the platform, and find it an adequate means
to raise awareness on secure coding best practices. Also,
the Sifu platform’s challenges have generally high ratings,
indicating that software developers agree on the quality of
the challenges. In terms of awareness, the Sifu platform
has high feedback ratings. High feedback ratings were also
consistently obtained for the work-related factors, as well
as, for the contribution to developers happiness and good
user experience.
With this work, we hope to positively impact both the

industry and academia by laying out a novel methodology
to raise secure coding awareness of software developers,

that focus on defensive challenges, and is proving suc-
cessful in the industry. The authors intend to make the
Sifu platform available, in the future, after completing a
necessary software clearing process.
In future work, the authors would like to perform a

usability study of the platform and investigate ways to
improve it. In particular, the authors have collected many
ideas and suggestions on future improvements from the
participants. We would also like to investigate which
factors lead software developers to understand the con-
sequences of exploiting vulnerable code, while partici-
pating in a CyberSecurity Challenges event. This inves-
tigation will allow us to further improve the challenge
presentation. The authors would like to investigate addi-
tional ways to implement a more mature artificial engine
for the intelligent coach, through systematic literature
research. Finally, the intelligent coach engine’s quality
depends heavily on the quality and number of input
sources. Towards this, the authors intend to investigate
other sources of information that can be used to expand
challenge assessment.

Abbreviations
AH: Analysis and hints; AI: Artificial intelligence; AUTOSAR: Automotive open
system architecture; AVG: Average; BE: Behavior; BP: Best practices; BSI:
Bundesamt für Sicherheit in der Informationstechnik; CERT: Computer
emergency response team; CEC: Code-entry-challenge; CSC: Cybersecurity
challenges; CPU: Central processing unit; CTF: Capture-the-flag; CWE:
Common weakness enumeration; DAST: Dynamic application security testing;
DHS: Department of homeland security; Gb: Gigabyte; HP: Happiness; ICS:
Industrial control systems; IEC: International electrotechnical commission; ISO:
International standard organization; IT: Information technology; JSON:
Javascript object notation; MISRA: Motor industry software reliability
association; NP: Number of players; OS: Open source; PCI/DSS: Payment card
industry data security standard; PE: Perception; PR: Protection; RAM: Random
access memory; RASP: Runtime application security testing; RQ: Research
question; SAFECode: Software assurance forum for excellence in code; SAST:
Static application security testing; SCG: Secure coding guideline; SEI-CERT:
Software engineering institute - computer emergency response team; UK:
United Kingdom; UT: Unit test; WK: Work; XML: Extensible markup language;

Acknowledgements
The authors would like to thank the survey participants for their useful and
insightful discussions and for their participation in the survey. The authors
would like thank Dr. Kristian Beckers and Thomas Diefenbach for their helpful,
insightful, and constructive comments, discussions and suggestions. The
authors would also like to thank Anmoal Porwal for his help in implementing
part of the Sifu challenges during his working student position at Siemens AG.

Authors’ contributions
This work was done by Tiago Gasiba under the supervision of Prof. Dr. Ulrike
Lechner and Prof. Dr. Maria Pinto-Albuquerque. The main idea,
implementation and evaluation in an industrial context was carried out by the
first author. All the authors have actively contributed in steering the work and,
in particular, in discussing adequate forms of evaluation of the platform, in
terms of survey and their questions. All the authors made a significant
contribution in the preparation, review and writing of this manuscript. All
authors read and approved the final manuscript.

Availability of data andmaterials
The Sifu platform is available as an open source project, under the MIT license,
and can be downloaded under the following link: https://gitlab.com/tgasiba/
sifu.

https://gitlab.com/tgasiba/sifu
https://gitlab.com/tgasiba/sifu

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 21 of 23

Competing interests
The authors declare that they have no competing interests.

Author details
1Siemens AG Corporate Technology, Otto-Hahn-Rin 6, 81379 Munich, Bavaria,
Germany. 2Universität der Bundeswehr München, Munich, Germany. 3Instituto
Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Lisbon, Portugal.

Received: 2 October 2020 Accepted: 20 October 2020

References
AbsInt (2020) RuleChecker. https://www.absint.com/rulechecker/. Accessed

June 2020
AbsInt (2020) Astrée. https://www.absint.com/astree/index.htm. Accessed

June 2020
Apextechservices (2017) NotPetya: World’s First <DOLLAR/>10 Billion Malware.

https://www.apextechservices.com/topics/articles/435235-notpetya-
worlds-first-10-billion-malware.htm#. Accessed June 2020

AUTOSAR Consortium (2017) AUTOSAR:2017, Guidelines for the use of the
C++14 language in critical and safety-related systems, Munich. https://
www.autosar.org/

Bakan U, Bakan U (2018) Game-based learning studies in education journals: A
systematic review of recent trends. Actualidades Pedagógicas 72:119–145.
https://doi.org/10.19052/ap.5245

Baudin P, Bobot F, Bonichon R, et al (2020) Frama-C. https://frama-c.com/.
Accessed June 2020

Black R (2004) Critical Testing Processes: Plan, Prepare, Perform, Perfect.
Addison-Wesley Professional, Boston

Brisson A, Pereira G, Prada R, Paiva A, Louchart S, Suttie N, Lim T, Lopes RA,
Bidarra R, Bellotti F, et al (2012) Artificial intelligence and personalization
opportunities for serious games. In: Eighth Artificial Intelligence and
Interactive Digital Entertainment Conference. Association for the
Advancement of Artificial Intelligence, Worcester. pp 51–57. https://www.
aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/viewFile/5527/5764.
Accessed Oct 2020

Bundesamt für Sicherheit in der Informationstechnik (2014) Baustein B 5.21 -
Webanwendungen, Bonn, Germany. https://tinyurl.com/y25m2kxl.
Accessed Feb 2020

Bundesamt für Sicherheit in der Informationstechnik (2019) BSI
IT-Grundschutz-Kompendium - Umsetzungshinweise zum
IT-Grundschutz-Kompendium 2019. https://tinyurl.com/BSI-Grundschutz-
Kompendium-Ums. Accessed Feb 2020

Bundesamt für Sicherheit in der Informationstechnik (2020) BSI
IT-Grundschutz-Kompendium. https://tinyurl.com/BSI-Grundschutz-
Kompendium. Accessed Feb 2020

Carnegie Mellon University (2019) Secure Coding Standards. https://tinyurl.
com/y29mwsyj. Accessed June 2020

Chapman P, Burket J, Brumley D (2014) Picoctf: A game-based computer
security competition for high school students. In: 2014 USENIX Summit on
Gaming, Games, and Gamification in Security Education (3GSE 14). USENIX
Association, San Diego

Chung K (2020) CTFd : The Easiest Capture The Flag Framework. https://ctfd.
io/. Accessed Mar 2019

Chung K (2017) Live lesson: Lowering the barriers to capture the flag
administration and participation. In: 2017 USENIX Workshop on Advances
in Security Education (ASE 17). USENIX Association, Vancouver. https://
www.usenix.org/conference/ase17/workshop-program/presentation/
chung. Accessed Mar 2019

Chung K, Cohen J (2014) Learning obstacles in the capture the flag model.
In: 2014 USENIX Summit on Gaming, Games, and Gamification in Security
Education (3GSE 14). USENIX Association, San Diego. https://www.usenix.
org/conference/3gse14/summit-program/presentation/chung. Accessed
Mar 2019

Crawley MJ (2012) The R Book. Wiley, United Kindom
Cullinane I, Huang C, Sharkey T, Moussavi S (2015) Cyber Security Education

Through Gaming Cybersecurity Games Can Be Interactive, Fun,
Educational and Engaging. J Comput Sci Coll 30(6):75–81

Davis A, Leek T, Zhivich M, Gwinnup K, Leonard W (2014a) The Fun and Future
of CTF. In: 2014 USENIX Summit on Gaming, Games, and Gamification in
Security Education (3GSE 14). USENIX Association, San Diego. pp 1–9

Davis A, Leek T, Zhivich M, Gwinnup K, Leonard W (2014b) The fun and future
of CTF. In: 2014 USENIX Summit on Gaming, Games, and Gamification in
Security Education (3GSE 14). USENIX Association, San Diego. https://www.
usenix.org/conference/3gse14/summit-program/presentation/davis.
Accessed Sep 2018

Department of Homeland Security (2020) ICS-CERT: Industrial Control Systems
- Computer Emergency Response Team. https://us-cert.cisa.gov/ics.
Accessed Jul 2020

Department of Homeland Security US-CERT (2020) Software Assurance.
https://tinyurl.com/y6pr9v42. Accessed Jul 2020

Djaouti D, Alvarez J, Jessel J (2011) Classifying Serious Games: the G/P/S model.
In: Handbook of Research on Improving Learning and Motivation through
Educational Games: Multidisciplinary Approaches. IGI Global, Hershey,
Pennsylvania. pp 118–136. https://doi.org/10.4018/978-1-60960-495-0.
ch006

Dobrovsky A, Borghoff UM, Hofmann M (2016) An approach to interactive
deep reinforcement learning for serious games. In: 2016 7th IEEE
International Conference on Cognitive Infocommunications
(CogInfoCom). IEEE, Wroclaw. pp 85–90

Dörner R, Göbel S, Effelsberg W, Wiemeyer J (2016) Serious Games:
Foundations, Concepts and Practice. 1st edn.. Springer, Switzerland.
https://doi.org/10.1007/978-3-319-40612-1

Drever E (1995) Using Semi-Structured Interviews in Small-Scale Research. A
Teacher’s Guide. Scottish Council For Research In Education, Edinburgh

ESBMC (2020) Efficient SMT-based Bounded Model Checker. http://www.
esbmc.org/. Accessed June 2020

FaceBook (2020) FbInfer. https://fbinfer.com/. Accessed June 2020
Frey S, Rashid A, Anthonysamy P, Pinto-Albuquerque M, Naqvi SA (2019) The

Good, the Bad and the Ugly: A Study of Security Decisions in a
Cyber-Physical Systems Game. IEEE Trans Softw Eng 45(5):521–536

Gadelha MR, Monteiro FR, Morse J, Cordeiro LC, Fischer B, Nicole DA (2018)
ESBMC 5.0: An industrial-strength C model checker. In: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, New York. pp 888–891. https://doi.org/10.1145/
3238147.3240481

Gasiba T, Beckers K, Suppan S, Rezabek F (2019) On the Requirements for
Serious Games geared towards Software Developers in the Industry. In:
Damian DE, Perini A, Lee S (eds). 2019 IEEE 27th International
Requirements Engineering Conference (RE). IEEE, Jeju Island. https://
ieeexplore.ieee.org/xpl/conhome/8910334/proceeding

Gasiba T, Lechner U, Cuellar J, Zouitni A (2020a) Ranking Secure Coding
Guidelines for Software Developer Awareness Training in the Industry. In:
First International Computer Programming Education Conference (ICPEC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Vila do Conde,
Porto, Portugal. Virtual Conference

Gasiba T, Lechner U, Pinto-Albuquerque M, Zouitni A (2020b) Design of Secure
Coding Challenges for Cybersecurity Education in the Industry. In:
International Conference on the Quality of Information and
Communications Technology. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, Vila do Conde, Porto, Portugal. pp 223–237

Gimpel (2020) PcLint. https://www.gimpel.com/. Accessed June 2020
Google (2020a) American Fuzzy Lop. https://github.com/google/AFL.

Accessed June 2020
Google (2020b) Address Sanitizer. https://github.com/google/sanitizers.

Accessed June 2020
Google (2020c) Leak Sanitizer. https://github.com/google/sanitizers/wiki/

AddressSanitizerLeakSanitizer. Accessed June 2020
Google (2020d) Thread Sanitizer. https://github.com/google/sanitizers.

Accessed June 2020
Goseva-Popstojanova K, Perhinschi A (2015) On the capability of static code

analysis to detect security vulnerabilities. Inf Softw Technol 68:18–33
Graziotin D, Fagerholm F, Wang X, Abrahamsson P (2018) What happens when

software developers are (un)happy. J Syst Softw 140:32–47
Groves RM, Fowler F, Couper M, Lepkowski J, Singer E (2009) Survey

Methodology. 2nd edn. Wiley, New Jersey
Hänsch N, Benenson Z (2014) Specifying IT security awareness. In: 25th

International Workshop on Database and Expert Systems Applications,
Munich, Germany. pp 326–330. https://doi.org/10.1109/DEXA.2014.71

Harrell MC, Bradley MA (2009) Data collection methods: semi-structured
interviews and focus groups. annotated. RAND, 2009. https://www.rand.
org/pubs/technical_reports/TR718.html

https://www.absint.com/rulechecker/
https://www.absint.com/astree/index.htm
https://www.apextechservices.com/topics/articles/435235-notpetya-worlds-first-10-billion-malware.htm#
https://www.apextechservices.com/topics/articles/435235-notpetya-worlds-first-10-billion-malware.htm#
https://www.autosar.org/
https://www.autosar.org/
https://doi.org/10.19052/ap.5245
https://frama-c.com/
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE12/pape r/viewFile/5527/5764
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE12/pape r/viewFile/5527/5764
https://tinyurl.com/y25m2kxl
https://tinyurl.com/BSI-Grundschutz-Kompendium-Ums
https://tinyurl.com/BSI-Grundschutz-Kompendium-Ums
https://tinyurl.com/BSI-Grundschutz-Kompendium
https://tinyurl.com/BSI-Grundschutz-Kompendium
https://tinyurl.com/y29mwsyj
https://tinyurl.com/y29mwsyj
https://ctfd.io/
https://ctfd.io/
https://www.usenix.org/conference/ase17/workshop-program/presentation/chung
https://www.usenix.org/conference/ase17/workshop-program/presentation/chung
https://www.usenix.org/conference/ase17/workshop-program/presentation/chung
https://www.usenix.org/conference/3gse14/summit-program/presentation/chung
https://www.usenix.org/conference/3gse14/summit-program/presentation/chung
https://www.usenix.org/conference/3gse14/summit-program/presentation/davis
https://www.usenix.org/conference/3gse14/summit-program/presentation/davis
https://us-cert.cisa.gov/ics
https://tinyurl.com/y6pr9v42
https://doi.org/10.4018/978-1-60960-495-0.ch006
https://doi.org/10.4018/978-1-60960-495-0.ch006
https://doi.org/10.1007/978-3-319-40612-1
http://www.esbmc.org/
http://www.esbmc.org/
https://fbinfer.com/
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://ieeexplore.ieee.org/xpl/conhome/8910334/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8910334/proceeding
https://www.gimpel.com/
https://github.com/google/AFL
https://github.com/google/sanitizers
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers
https://doi.org/10.1109/DEXA.2014.71
https://www.rand.org/pubs/technical_reports/TR718.html
https://www.rand.org/pubs/technical_reports/TR718.html

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 22 of 23

Hendrix M, Al-Sherbaz A, Bloom V (2016) Game based cyber security training:
are serious games suitable for cyber security training? Int J Serious Games
3. https://doi.org/10.17083/ijsg.v3i1.107

Hulin P, Davis A, Sridhar R, Fasano A, Gallagher C, Sedlacek A, Leek T,
Dolan-Gavitt B (2017) Autoctf: Creating diverse pwnables via automated
bug injection. In: 11th USENIX Workshop on Offensive Technologies
(WOOT 17). USENIX Association, Vancouver

IEC 62443-4-1 (2018) Security for industrial automation and control systems -
part 4-1: Secure product development lifecycle requirements. Standard,
International Electrotechnical Commission, Geneva. https://webstore.iec.
ch/publication/33615. Accessed Jun 2020

IEEE Spectrum (2019) The Top Programming Languages 2018. https://tinyurl.
com/y75qj2ea. Accessed June 2020

ISO 27001 (2013) Information technology – Security techniques – Information
security management systems – Requirements Standard, International
Standard Organization, Geneva, CH, Geneva. https://www.iso.org/
standard/54534.html. Accessed Jun 2020

JMMV (2020) Automated Test Framework. https://github.com/jmmv/atf.
Accessed June 2020

JMMV (2020) Kyua - A Testing Framework for Infrastructure Software. https://
github.com/jmmv/kyua. Accessed June 2020

Joshi A, Kale S, Chandel S, Pal D (2015) Likert scale: Explored and explained. Br J
Appl Sci Technol 7:396–403. https://doi.org/10.9734/BJAST/2015/14975

Kässtner D, Hahn S, Herter J, Karos T (2020) Undecidable rules and how to live
with them. https://www.embedded-world.de/en/events/vortrag/
undecidable-rules-and-how-to-live-withthem/742776. Accessed Jun 2020

Lattner C (2018) clang: a C language family frontend for LLVM. https://clang.
llvm.org/index.html. Accessed June 2020

Leune K, Petrilli Jr S (2017) Using capture-the-flag to enhance the effectiveness
of cybersecurity education. In: Proceedings of the 18th Annual Conference
on Information Technology Education. Association for Computing
Machinery, Rochester. pp 47–52

Marjamäki D (2017) CppCheck. http://cppcheck.sourceforge.net/. Accessed
June 2020

Mead N, Allen J, Barnum S, Ellison R, McGraw G (2004) Software Security
Engineering: a Guide for Project Managers. Addison-Wesley Professional,
Boston

MetricsGrimoire (2020) CMetrics. https://github.com/MetricsGrimoire/
CMetrics. Accessed June 2020

Mirkovic J, Peterson PA (2014) Class capture-the-flag exercises. In: 2014 USENIX
Summit on Gaming, Games, and Gamification in Security Education (3GSE
14). USENIX Association, San Diego

Misra C (2012) Guidelines for the use of the C language in critical systems,
Nuneaton, Warwickshire, UK. https://www.misra.org.uk/MISRAHome/
MISRAC2012/tabid/196/Default.aspx. Accessed Jun 2020

MITRE (2020) CWE 14: Compiler Removal of Code to Clear Buffers. https://cwe.
mitre.org/data/definitions/14.html. Accessed Jun 2020

MITRE (2020) CWE 77: Improper Neutralization of Special Elements used in a
Command (‘Command Injection’). https://cwe.mitre.org/data/definitions/
77.html. Accessed Jun 2020

MITRE (2020) CWE-121: Stack-based Buffer Overflow. https://cwe.mitre.org/
data/definitions/121.html. Accessed Jun 2020

MITRE (2020) CWE-242: Use of Inherently Dangerous Function. https://cwe.
mitre.org/data/definitions/242.html. Accessed Jun 2020

MITRE (2020) CWE 338: Use of Cryptographically Weak Pseudo-Random
Number Generator (PRNG). https://cwe.mitre.org/data/definitions/338.
html. Accessed Jun 2020

MITRE (2020) CWE 676: Use of Potentially Dangerous Function. https://cwe.
mitre.org/data/definitions/676.html. Accessed Jun 2020

MITRE (2020) CWE 758: Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior). https://cwe.mitre.org/data/
definitions/758.html. Accessed Jun 2020

Misra (2012) MISRA-C:2012 Amendment 1, Additional security guidelines for
MISRA C:2012, Nuneaton, Warwickshire, UK. https://www.misra.org.uk/
MISRAHome/MISRAC2012/tabid/196/Default.aspx, Accessed June 2020

Nakamura J, Csikszentmihalyi M (2014) The concept of flow. In: Flow and the
Foundations of Positive Psychology. Springer, Dordrecht. pp 239–263

NASA-SW-VnV (2020) Ikos. https://github.com/nasa-sw-vnv/ikos. Accessed
June 2020

Patel S (2020) 2019 Global Developer Report: DevSecOps finds security
roadblocks divide teams. https://about.gitlab.com/blog/2019/07/15/
global-developer-report/. Accessed Aug 2020

PCI DSS (2015) Requirements and security assessment procedures. https://
www.pcisecuritystandards.org/. Accessed Jun 2020

R Core Team (2019) R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna. https://www.R-project.
org/. Accessed Jan 2020

R2C (2020) SemGrep. https://semgrep.dev/. Accessed June 2020
Rieb A (2018) IT-Sicherheit: Cyberabwehr mit hohem Spaßfaktor. In: Kma - Das

Gesundheitswirtschaftsmagazin, vol. 23. Georg Thieme Verlag KG,
Stuttgart. pp 66–69. https://www.thieme-connect.com/products/
ejournals/abstract/10.1055/s-0036-1595355. Accessed June 2020

Rieb A, Gurschler T, Lechner U (2017) A gamified approach to explore
techniques of neutralization of threat actors in cybercrime. In: GDPR &
ePrivacy: APF 2017 - Proceedings of the 5th ENISA Annual Privacy Forum.
Springer, Cham. pp 87–103

Rietz T, Maedche A (2019) LadderBot: A Requirements Self-Elicitation System.
In: 2019 IEEE 27th International Requirements Engineering Conference
(RE). IEEE Computer Society, Jeju Island. pp 357–362

Schneier B (2020) Software Developers and Security. https://www.schneier.
com/blog/archives/2019/07/software_develo.html. Accessed Aug 2020

Siemens AG (2020) Siemens Charter of Trust. https://www.charteroftrust.com/.
Accessed Feb 2019

Simões A, Queirós R (2020) On the nature of programming exercises. In: ICPEC
- First International Computer Programming Education Conference, ICPEC,
vol. 81. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Vila do Conde.
pp 251–259. Virtual Conference

Software Assurance Forum for Excellence in Code (2018) SAFECode -
Fundamental Practices for Secure Software Development - Essential
Elements of a Secure Development Life-cycle Program, 3rd Ed. https://
tinyurl.com/y44etrs7. Accessed Sep 2019

SonarSource (2020) SonarQube. https://www.sonarqube.org/. Accessed June
2020

Sorace S, Quercia E, La Mattina E, Patrikakis CZ, Bacon L, Loukas G, Mackinnon L
(2018) Serious Games: An Attractive Approach to Improve
Awareness(Leventakis G, Haberfeld MR, eds.). Springer, Cham

Stallman RM (2002) GNU compiler collection internals. Free Softw Found
Švábenskỳ V, Vykopal J, Cermak M, Laštovička M (2018) Enhancing

cybersecurity skills by creating serious games. In: Proceedings of the 23rd
Annual ACM Conference on Innovation and Technology in Computer
Science Education. pp 194–199. https://wsiw2018.l3s.uni-hannover.de/
papers/wsiw2018-Votipka.pdf. Accessed Oct 2020

Tabassum M, Watson S, Chu B, Lipford HR (2018) Evaluating two methods for
integrating secure programming education. In: Proceedings of the 49th
ACM Technical Symposium on Computer Science Education. Association
for Computing Machinery, Baltimore. pp 390–395. https://doi.org/10.1145/
3159450.3159511

Tecent (2020) TScanCode. https://github.com/Tencent/TscanCode. Accessed
June 2020

The Clang Team (2020) Clang-Tidy. https://clang.llvm.org/extra/clang-tidy/.
Accessed June 2020

Valgrind Developers (2020) Helgrind. https://www.valgrind.org/docs/manual/
hg-manual.html. Accessed June 2020

Valgrind Developers (2010) Valgrind. https://valgrind.org/. Accessed June 2020
Vasconcelos P, Ribeiro RP (2020) Using property-based testing to generate

feedback for C programming exercises. In: ICPEC - First International
Computer Programming Education Conference, ICPEC, vol. 81. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Vila do Conde, Porto, Portugal.
pp 285–294. Virtual Conference

Votipka D, Eastes B, Mazurek M (2018a) Toward a field study on the impact of
hacking competitions on secure development. In: The 4th Workshop on
Security Information Workers Baltimore Marriott Waterfront, Baltimore

Votipka D, Mazurek ML, Hu H, Eastes B (2018b) Toward a Field Study on the
Impact of Hacking Competitions on Secure Development. In: Workshop on
Security Information Workers (WSIW). Online, Baltimore. Marriott
Waterfront. https://wsiw2018.l3s.unihannover.de/papers/wsiw2018-
Votipka.pdf. Accessed Oct 2020

Wagner S, Mendez D, Felderer M, Graziotin D, Kalinowski M (2020) Challenges
in survey research. In: Michael Felderer GHT (ed). Contemporary Empirical
Methods in Software Engineering. Springer, ArXiv. pp 1–34

Wheeler D (2013) FlawFinder. https://dwheeler.com/flawfinder/. Accessed
June 2020

https://doi.org/10.17083/ijsg.v3i1.107
https://webstore.iec.ch/publication/33615
https://webstore.iec.ch/publication/33615
https://tinyurl.com/y75qj2ea
https://tinyurl.com/y75qj2ea
https://www.iso.org/standard/54534.html
https://www.iso.org/standard/54534.html
https://github.com/jmmv/atf
https://github.com/jmmv/kyua
https://github.com/jmmv/kyua
https://doi.org/10.9734/BJAST/2015/14975
https://www.embedded-world.de/en/events/vortrag/undecidable-rules-and-how-to-live-withthem/742776
https://www.embedded-world.de/en/events/vortrag/undecidable-rules-and-how-to-live-withthem/742776
https://clang.llvm.org/index.html
https://clang.llvm.org/index.html
http://cppcheck.sourceforge.net/
https://github.com/MetricsGrimoire/CMetrics
https://github.com/MetricsGrimoire/CMetrics
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/ 196/Default.aspx
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/ 196/Default.aspx
https://cwe.mitre.org/data/definitions/14.html
https://cwe.mitre.org/data/definitions/14.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/338.html
https://cwe.mitre.org/data/definitions/338.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/758.html
https://cwe.mitre.org/data/definitions/758.html
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://github.com/nasa-sw-vnv/ikos
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.R-project.org/
https://www.R-project.org/
https://semgrep.dev/
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0036-1595355
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0036-1595355
https://www.schneier.com/blog/archives/2019/07/software_develo.html
https://www.schneier.com/blog/archives/2019/07/software_develo.html
https://www.charteroftrust.com/
https://tinyurl.com/y44etrs7
https://tinyurl.com/y44etrs7
https://www.sonarqube.org/
https://wsiw2018.l3s.uni-hannover.de/papers/wsiw2018-Votipka.pdf
https://wsiw2018.l3s.uni-hannover.de/papers/wsiw2018-Votipka.pdf
https://doi.org/10.1145/3159450.3159511
https://doi.org/10.1145/3159450.3159511
https://github.com/Tencent/TscanCode
https://clang.llvm.org/extra/clang-tidy/
https://www.valgrind.org/docs/manual/hg-manual.html
https://www.valgrind.org/docs/manual/hg-manual.html
https://valgrind.org/
https://wsiw2018.l3s.unihannover.de/papers/wsiw2018-Votipka.pdf
https://wsiw2018.l3s.unihannover.de/papers/wsiw2018-Votipka.pdf
https://dwheeler.com/flawfinder/

Espinha Gasiba et al. Cybersecurity (2020) 3:24 Page 23 of 23

WhiteSource (2019) What are the Most Secure Programming Languages?
https://www.whitesourcesoftware.com/most-secure-programming-
languages/. Accessed June 2020

Wireghoul (2020) Graudit. https://github.com/wireghoul/graudit. Accessed
June 2020

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://github.com/wireghoul/graudit

	Abstract
	Keywords

	Introduction
	Addressing code defects during software development
	Industrial standards and guidelines
	Serious games
	Automatic challenge evaluation and intelligent coach
	Previous work
	Contributions of this work

	CyberSecurity challenges - a serious game for the industry
	Sifu platform
	Problem statement
	Code-entry challenge platform architecture
	Automatic security assessment
	Intelligent coach with AI technique
	Real-World artifact
	Example of a secure coding challenge
	Evaluation of real-world artifact

	Results
	Challenge feedback - survey S1
	Survey for Sifu platform - survey S2
	Survey for CSC event with Sifu platform - survey S3
	Detailed analysis of survey S2 and S3
	Interpretation of the results in relation to research questions
	Threats to validity

	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

