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Abstract

Gradual increase in the number of successful attacks against Industrial Control Systems (ICS) has led to an urgent need
to create defense mechanisms for accurate and timely detection of the resulting process anomalies. Towards this end,
a class of anomaly detectors, created using data-centric approaches, are gaining attention. Using machine learning
algorithms such approaches can automatically learn the process dynamics and control strategies deployed in an ICS.
The use of these approaches leads to relatively easier and faster creation of anomaly detectors compared to the use of
design-centric approaches that are based on plant physics and design. Despite the advantages, there exist significant
challenges and implementation issues in the creation and deployment of detectors generated using machine
learning for city-scale plants. In this work, we enumerate and discuss such challenges. Also presented is a series of
lessons learned in our attempt to meet these challenges in an operational plant.
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Introduction
Industrial Control Systems (ICS) are part of modern Crit-
ical Infrastructures(CI) such as water treatment plants, oil
refineries, power grids, and nuclear and thermal power
plants. ICS refers to a system obtained by integrating
computing and communication components to control
a physical process. An ICS consists of devices and sub-
systems such as sensors, actuators, Programmable Logic
Controllers (PLCs), Human Machine Interfaces (HMIs),
and a Supervisory Control andData Acquisition (SCADA)
system.
An abstract view of an ICS is shown in Fig. 1. The field

devices, i.e., sensors and actuators in the physical layer,
monitor and regulate the underlying industrial process.
The current state of the process is sampled through sen-
sors and communicated to the PLCs in the distributed
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control layer. The PLCs generate control actions and
transfer the actions to the actuators such as pumps, valves,
generators, and circuit breakers. Other devices, such as
the SCADA and HMIs in the supervisory control layer,
enable communication between a plant operator and the
PLCs for implementing human-assisted control actions.
Recent studies indicate that a majority of ICS systems use
proprietary communication protocols (Drias et al. 2015;
Feng et al. 2016; Mirian et al. 2016).
The deployment of ICS in Critical Infrastructure (CI)

makes them an attractive target for the adversaries. A
skilled adversary could interfere with any of these systems
to manipulate over time the sensor readings or actua-
tor controls until their malicious intent is realized. Past
incidents, such as the Stuxnet worm (Langner 2011) and
Blackenergy (Case 2016), indicate that targeted attacks
are possible in practice and may remain undetected for
long (Ahmed and Zhou 2020). Such persistent threats
have led to research in the development of defense-in-
depthmechanisms for detection andmitigation. One class
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Fig. 1 An abstract view of an Industrial Control System

of such mechanisms is the anomaly detector that raises
an alert when the physical process controlled by an ICS
moves from its expected behavior to an undesirable state,
or anomalous, state. An anomalous state could be due to
faulty components, temporal glitches, misconfiguration,
cyber-attacks, or a combination thereof. In this work, we
assume that the existence of anomalies is due to cyber-
attacks.
Approaches used to build anomaly detectors can be

broadly categorized as design-centric and data-centric.
Design-centric approaches make use of physical relation-
ships, captured as invariants, among the ICS components
obtained from the plant design for anomaly detection
(Adepu and Mathur 2018; Ahmed et al. 2020). In data-
centric approaches such relationships are learned and
modeled through the application of machine learning and
computational intelligence techniques (Gauthama Raman
et al. 2017; Raman et al. 2017; Ahmed et al. 2020; Ahmed
et al. 2017). Both approaches come with their pros and
cons.
Data-centric approaches are attractive due to their auto-

mated feature learning ability through the application
of machine learning algorithms. Further, the increasing
availability of data and advanced computational resources
makes it practical to develop and deploy anomaly detec-
tors so created. Despite the advantages, one faces several
challenges while creating and testing such detectors in an
operational plant. It is useful to understand and address
such challenges before an anomaly detector, designed
using a data-centric approach, is deployed in large-scale
systems such as a 100 Million Gallons/Day water treat-
ment plant or a distributed power grid.
There exist surveys (Bhamare et al. 2020; Mitchell and

Chen 2014; Han et al. 2014) related to the data-centric

approaches in ICS security. However, to the best of our
knowledge, this paper is the first of its kind that discusses
the challenges one faces in the design and deployment
of real-time ML-based anomaly detectors in operational
city-scale plants. The learning approaches used in the
design of the anomaly detectors are characterized here
as data-based and behavioral-based. Data-based learning
deploys the direct application of machine learning algo-
rithms on the data collected from the operational plant
for anomaly detection. In addition to using the data,
a behavioral-based learning approach incorporates prior
knowledge of the plant to detect anomalies. The primary
focus of this article is to discuss the challenges related to
the applicability of both approaches for anomaly detection
in an ICS. Practical solutions are proposed to overcome
these challenges that might be useful for researchers and
practitioners. A related prior work (Ahmed et al. 2020)
presented preliminary data collected from a water treat-
ment testbed. This article examines a real-world city-scale
water system and highlights additional challenges offer-
ing insights into what is required to scale a data-centric
solution to a real critical infrastructure. Possible solutions
to meet such challenges are proposed and supported by
numerical results. A key contribution of this work is that
the experiments are carried out on live ICS, in contrast
to the existing studies, which are based on the historical
dataset.
Organization: The remainder of this article is orga-

nized as follows. In “Materials and methods” section we
discuss the difference between the characteristics of an
ICS and traditional IT infrastructure followed by a brief
introduction to the SWaT plant against which multiple
anomaly detectors have been tested. Challenges related
to the design of data-based and behavior-based learning
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approaches for an operational plant are enumerated and
explained in “Challenges in the design of anomaly detec-
tors” section. Research directions aimed at the develop-
ment of methods to overcome the challenges are summa-
rized in“Future outlook and recommendations” section.

Materials andmethods
Characteristics of an ICS
The term “cyber-attack” is not new and there exist plenty
of security solutions including firewalls, access control,
and encryption techniques, to thwart those. However,
these IT-centric solutions, while necessary, are not suf-
ficient to safeguard an ICS. IT-centric solutions are
designed to deal only with the security issues found in
typical IT systems where the protection of data against
theft and manipulation are some of the primary con-
cerns. Such solutions fail to address the vulnerabilities
that could be exploited during the interaction of IT sys-
tems with physical devices or the environment. A breach
of a firewall, for example, could remain undetected while
the attacker manipulates process data leading the PLCs to
issue undesirable commands and moving the plant into
an anomalous state. Therefore, it is necessary to under-
stand, and account for, the key characteristics of ICS while
designing an anomaly detector. Below we enumerate a
few unique characteristics of and requirements for ICS
(Stouffer et al. 2014; Wang et al. 2019).

1 An ICS is often required to operate uninterrupted for
long periods without any downtime for activities
such as code patching in the controllers.
Components in an ICS require deterministic
responses with an acceptable level of jitter or delay
whereas IT systems can tolerate a higher level of
delay in network traffic without noticeable impact on
the system performance.

2 The physical process controlled by an ICS is
continuous and hence unexpected outage of the
systems that monitor and control it is unacceptable.
In IT systems, rebooting or temporary shutdown of
the systems occurs much more often than it does in a
physical plant that provides continuous critical
services.

3 In a typical IT system, the CIA triad, i.e., data
confidentiality, integrity, and availability, includes the
primary concerns to ensure availability. On the
contrary, in ICS the CIA triad is instead perceived as
AIC wherein priority is accorded to the availability of
data followed by integrity and confidentiality. For
example, it might be desired to ensure the integrity of
sensor data while the confidentiality of data itself
might not be a major concern.

4 In an IT system, security focus is on safeguarding the
IT assets through which data transfer takes place. In

ICS, the primary focus safeguarding the edge clients
such as the PLCs, sensors, and actuators.

5 A successful attack on an ICS may have severer
impact than one on an IT system. The damage in the
physical components of an ICS could lead to service
disruption and may even impact human life. In
contrast, a successful attack on an IT system
generally leads to information loss.

6 The behavior of an IT system is highly uncertain and
varied whereas that of ICS components is much
more stable and predictive.

7 The payload of ICS data is shorter than IT data due
to delay-tolerance requirements. Unlike in an IT
system, the data generated in an ICS is highly
correlated and obeys the system design specifications.

8 A typical ICS operates in a significantly
resource-constrained environment and the usage of
third-party applications is restricted. On the contrary,
the computational efficiency of the IT system can be
frequently updated based on user requirements.

9 Communication protocols used for data transfer
among the ICS components are proprietary and
different from the well-known protocols used in
traditional IT environments (Drias et al. 2015; Feng
et al. 2016; Mirian et al. 2016).

SWaT: secure water treatment plant
Most of the experiments reported in this paper were per-
formed on a state of the art testbed referred to as Secure
Water Treatment (SWaT) plant (Mathur and Tippenhauer
2016). SWaT has been used extensively by researchers
to test defense mechanisms for CI (Goh et al. 2016). A
brief introduction is provided in the following to aid in
understanding the challenges described in this article.
SWaT is a scaled-down version of a modern water

treatment process. It produces 5 gallons/minute of water
purified using six stages in SWaT. Each stage is equipped
with a set of sensors and actuators. Sensors include level
meters, pressure guage, and those to measure water qual-
ity parameters such as pH, oxidation-reduction potential,
and conductivity. Examples of actuators include motor-
ized valves and electric pumps. A pictorial view of the
SWaT testbed is in Fig. 2. A more detailed explanation
of the testbed can be found in Mathur and Tippenhauer
(2016).
SWaT uses a layered architecture (Williams 1993). As

shown in Fig. 1, there are three levels of communications.
Level 0 is the field communication network and is com-
posed of field devices, e.g., remote I/O units and commu-
nication interfaces to send/receive information to/from
PLCs. Using the level 0 network, sensors send the phys-
ical process state to the PLCs and in turn, PLCs send
the control commands to the actuators. Level 1 is the
communication layer where PLCs communicate with each
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Fig. 2 SWaT testbed processes overview

other to exchange data to make control decisions. Level 2
is where PLCs communicate with the SCADA worksta-
tion, HMI, historian server; this is the supervisory control
network.
The communication protocols in an ICS have been pro-

prietary until recently when the focus shifted to using the
enterprise network technologies for ease of deployment
and scalability, such as the Ethernet and TCP/IP. A sur-
vey of communication protocols in an ICS can be found
in Gaj et al. (2013). In Fig. 1, a specific example of a
water treatment testbed used in this study is shown. Com-
mon Industrial Protocol (CIP) is used in SWaT. CIP is an
application layer protocol on top of Ethernet/IP (ENIP) to
exchange data at level 1 and level 2 (Schiffer et al. 2006;
Brook 2001). The messages between the devices can use
either wired media, i.e. IEEE 802.3, Ethernet, or wire-
less media i.e. IEEE 802.11 WiFi standard. There are two
generic types of messages in the CIP/ENIP standard,i.e.,
explicit messaging and implicit messaging (Schiffer et al.
2006). Explicit messages use CIP as an application layer
protocol and use TCP/IP service to establish a connection.
An example is a PLC sending a request message for the
exchange of data to another PLC. Implicit messaging, also
known as I/Omessaging, is used to communicate between
PLC and I/O devices.

Anomaly detector for ICS using data-centric approach
An anomaly detector created using a data-centric
approach is considered a black box wherein the underly-
ing model is generated using the data received from an
operational plant. Based on the characteristics of an ICS
as discussed in “Characteristics of an ICS” section, there
exist at least two possible ways for the construction of an
anomaly detector using data-centric approaches.

1 The physical process controlled by an ICS must
remain within the prescribed design limits (Adepu
and Mathur 2018). For example, the water level in a
tank should not fall below a predefined threshold
and, similarly, the ultrafiltration membranes must be
cleaned every 30-minutes to maintain the pressure
drop across the filtration unit to within safety limits.
Thus, a physical model can be created and trained by
applying one or more ML techniques to learn the
interactions among the feature vectors.

2 Several aspects of the physical process controlled by
an ICS are predictive (Wang et al. 2019), e.g., where
the sensor measurements are continuous-valued.
Thus, the prediction of such sub-processes can be
considered as a time series forecasting problem. For
such sub-processes, well known ML technique can
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be used to learn the behavior of one or more
components from historical data and predict their
future behavior with minimal forecasting error.
Further, using a statistical approach, the
discrepancies in the actual and predicted behavior
can be analyzed for alert generation.

In both the cases mentioned above, the development
of an anomaly detector cycles through three distinct
phases, namely, model creation, deployment, and tuning
or retraining. Figure 3 illustrates these activities in each
stage for the design of an effective anomaly detector. Addi-
tional information on these phases is found in Ahmed et
al. (2020).

Challenges in the design of anomaly detectors
Next, we enumerate and discuss the challenges faced
during the design and deployment of data-based and
behavior-based approaches for creating anomaly detec-
tors. The presentation below is organized into tuples
as (challenge, positions, lessons). Thus, a challenge is
described and the corresponding positions, taken by the
authors, discussed. Corresponding to each position the
lessons learned from experiments performed on SWaT
are enumerated. Note that several lessons here are known
to researchers in the machine learning community, and
hence not novel. However, the cited experiments offer evi-
dence that will likely enable researchers to decide whether
or not to use an approach.

Challenges in data-based learning approaches
Most intrusion detection systems for ICS use the data
based learning approaches. These techniques use histor-

ical data collected from the operational ICS. Without
prior design knowledge, these ML algorithms are trained
by fine-tuning the intrinsic parameters to learn the pro-
cess dynamics of the underlying ICS. Although these
approaches offer simplicity in the design and deployment
of detectors, they suffer from huge computational com-
plexity due to the existence of heterogeneous components
with variable operating ranges. Such complexity leads to
the following challenges.
Challenge : Type of machine learning algorithm:

Machine learning algorithms can be categorized into the
following three types, supervised, semi-supervised, and
unsupervised techniques. The type of algorithm utilized
to create an anomaly detector depends on, among other
factors, data characteristics. There exist several works that
cover the use of all the above-mentioned types. The chal-
lenges in deploying such techniques in an operational
plant are described next.
Position 1: In comparison with the unsupervised learn-

ing algorithms, the supervised learning algorithms return a
higher detection rate and a lower rate of false alarms.
A Probabilistic Neural Network (PNN) based anomaly

detector is presented in Gauthama Raman et al. (2019) for
detecting anomalies in SWaT. During the training process,
several parameters of PNN are fine-tuned using histori-
cal data collected from SWaT. This dataset represents the
behavior of the plant under normal and attack scenar-
ios. During testing, the overall detection rate for known
attacks was greater than 99.93% and no false alarms were
raised. However, the detector was unable to detect novel
attacks, i.e., for which signatures were not in the training
dataset.
Lessons learned:

Fig. 3 Stages in the development of an anomaly detector using methods from machine learning: model creation (training phase), model
deployment (testing phase), and retraining (update phase)
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1 Supervised learning algorithms are blind to zero-day
vulnerabilities.

2 The generation of attack signatures for many, if not
all, possible combinations of ICS components and
testing against them is practically infeasible.

Position 2: Unsupervised learning algorithms possess the
ability to detect attacks that exploit zero-day vulnerabili-
ties.
Continuously operational plants offer the luxury of large

amounts of process data. Such data capture the behavior
of, and interactions among, the ICS components dur-
ing normal operation. Thus, the design of an anomaly
detector can be considered as a “One-Class Classifica-
tion problem.” This aspect of ICS enables the effective
use of several unsupervised machine learning algorithms.
Hence, a boundary region, corresponding to the normal
operation of the plant, can be constructed through the
concept of feature learning and behavior that lies out-
side the boundary can be declared as an anomaly. We
have experimented with several unsupervised learning
algorithms including One-Class Support Vector Machine
(OCSVM), Isolation Forest (IF), K-Nearest Neighbour (K-
NN), and Principle Component Analysis (PCA) on data
collected from SWaT. Data in Table 1 indicates that these
algorithms suffer from an unacceptable number of false
positives due to the multi-variate nature of the training
data. For example, of all the alerts generated by the detec-
tor created using OCSVM, 56.32% were labeled as false
alarms. Furthermore, the voluminous data makes it chal-
lenging to fine-tune the hyper-parameters associated with
these algorithms (Narayanan and Bobba 2018). Moreover,
some of the related works also concluded that using sim-
ilar techniques as mentioned above, makes it harder to
localize the attack (Lin et al. 2018). Unsupervised learn-
ing is advocated from other works as well on the SWaT
dataset (Schneider and Böttinger 2018).
Lessons learned:

1 Detectors designed using unsupervised learning
algorithms can detect novel attacks but raise an
unacceptable number of false alarms.

2 It is challenging to localize the anomalies when using
such detectors.

Table 1 Performance analysis of anomaly detectors (Gauthama
Raman et al. 2019)

S.No Algorithm False alarms(%)

1 OCSVM 56.32

2 IF 48.71

3 K-NN 34.87

4 PCA 64.21

Position 3: Semi-supervised approaches raise the least
number of false positives and can localize the anomalies.
The physical process controlled by an ICS possesses

dynamic behavior. There exists a temporal dependency
among the sensor measurements collected at different
time instances. Such dependency can be learned effec-
tively using the application of regression models, i.e., a
semi-supervised approach. One such approach uses a
Multi-Layer Perceptron (MLP) based anomaly detector
(RamanMR et al. 2020). In this work, the sensor measure-
ments are predicted using their past values through MLP,
and the difference between the actual and predicted values
is analyzed using the well-known CUSUM approach for
anomaly detection. Using this approach individual mod-
els are created for each flow meter and water level sensors
of SWaT, and their behaviors are monitored for anomaly
detection. Using this approach, around 99.91% of anoma-
lies against these components were detected; no false
alarms were raised.
Similar observations are made by other studies on using

unsupervised or semi-supervised machine learning algo-
rithms to detect attacks in an ICS (Kravchik and Shabtai
2018; Ahmed et al. 2018; Goh et al. 2017; Inoue et al. 2017;
Huda et al. 2018; Filonov et al. 2017; Filonov et al. 2016).
In particular, some of them have used data from Secure
Water Treatment (SWaT) testbed (Mathur and Tippen-
hauer 2016). The design of an anomaly detector for ICS is
treated as a “one-class classification problem” and several
unsupervised learning methods are effectively employed
(Inoue et al. 2017). Unsupervised learning approaches
construct a baseline for normal behavior through fea-
ture learning and monitor whether the current behavior
is within the specified range or not. Although these tech-
niques can detect zero day vulnerabilities, they generate
high false alarms due to the existence of several hyper-
parameters and multivariate nature of ICS data. Simi-
larly, for one class SVM, authors in Inoue et al. (2017)
have fine-tuned the parameters, namely c and γ for bet-
ter performance on the SWaT dataset. Although there
exist several automated approaches, such as grid search,
randomized search, and metaheuristic optimization tech-
niques for fine tuning, a significant challenge we face is
overfitting. Generally, the error rate during the validation
process should be less for the trained model; higher vali-
dation error for the model trained with a large volume of
data implies that the model is over-fitted. In Shalyga et al.
(2018) the authors have investigated the performance of
several unsupervised neural network models for anomaly
detection in SWaT testbed and proposed various statisti-
cal anomaly scoring techniques to achieve minimal false
alarms.
Lessons learned:
1 As these approaches need to be developed for

individual state variables, they enable localization of
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anomalies, i.e., the identification of components that
may have resulted in the detected anomaly.

2 The detectors so created fails to detect stealthy
attacks due to a lack of knowledge regarding
interactions among the plant components.

3 The applicability of such detectors is limited to
continuous-valued state variables.

Challenges in behavioral-based learning approaches
The existence of the high dimensional nature of ICS
data, and heterogeneous components with different oper-
ating ranges, degrades the detection precision of data-
based learning approaches. Contrasted with the data-
based learning approach, the authors of Gauthama Raman
et al. (2020); Raman MR et al. (2020) focus in the devel-
opment of a behavioral-based learning approaches that
include DAE, I-DCNN, and AICrit1. These methods cap-
ture the spatio-temporal dependencies among the state
variables using the design knowledge of the plant and the
historical data. As the highly correlated state variables
are extracted from the plant design, modeling the func-
tional dependencies is simplified through the application
of ML techniques. Further, these approaches are found to
be computationally attractive with better detection rates
and can locate the area or component under threat to the
plant operator for forensics. Once such a detector is built,
tested, validated, and deployed in a live plant, its perfor-
mance may degrade over time. This observation leads to
the following challenges.
Challenge 2: Design knowledge: “Design knowledge” of a

plant refers to information such as its architecture, speci-
fication of components, computing devices, and commu-
nication infrastructure. Thus, the amount and nature of
design knowledge available and used impacts the perfor-
mance of a behavioral-based detector. In DAE (Gauthama
Raman et al. 2020), the authors designed and evaluated
three variants of deep autoencoders with varying amounts
of design knowledge. These are: (i) DAEIAD- six AE mod-
els monitoring each stage independently, (ii) DAECAD -
three AE models independently monitoring stage 1-2-3,
stage 3-4-5, and stage 5-6, and (iii) DAEOAD - one AE
model monitoring the entire SWaT plant. These mod-
els were implemented and tested against several attacks
launched during plant operation. Interestingly, DAEIAD
outperforms the other two variants since each AE model
captures the sensor dependencies within its host stage
more effectively. Further, its computational complexity is
low due to its deployment across the plant. Similar obser-
vations are reported in Kravchik and Shabtai (2018) when
using LSTM based autoencoders. A similar approach was
used in I-DCNN andAICrit where the interactions among
the components are extracted from the P&ID diagram

1https://itrust.sutd.edu.sg/research/technologies/

of SWaT and modeled through the application of deep
learning algorithms. I-DCNN and AICrit exhibited bet-
ter performance in terms of their respective detection
accuracy when compared against that of DAEIAD.
Lessons learned:

1 The improvement in accuracy is due to the focus on
the relationship across sensors and actuators,
operational within and across different process stages.

2 The computational complexity of the ML algorithms
reduces significantly due to the incorporation of
design knowledge.

Challenge 3: Operational drift: Although the physical
process controlled by an ICS must be kept within the
specified design limits, one can expect dynamic behav-
ior due to the time-varying operational characteristics
and requirements of plant components. Generally, a plant
can be operated in several modes and one such mode is
the manual mode. In the manual mode, a plant opera-
tor can modify the operating range of selected compo-
nents for reasons such as volatility in demand, availability
of resources, and maintenance. Such changes cause the
detectors to raise alerts although the affected behavior is
acceptable.
As an example of operational drift, we refer to an

instance where during the CISS2020-OL event2, the stor-
age capacity of tank T401 in SWaT was kept between
250mm to 1000mm. This was different from the actual
data available in Goh et al. (2016) since the operating
range indicated by the level sensor for T401, i.e., LIT401,
was between 800mm to 1000mm. In such a case, AICrit
raised alarms since the behavior of LIT401 did not con-
form to the expected. In Fig. 4, we have compared the
change in the behavior of LIT401 from the year 2015
to 2020 in terms of distribution wise. Since the P-Value
obtained from the K-S test is 0, implies both distribu-
tions are not identical. Thus AICrit trained with the
2015 dataset raises a false alarm while testing with the
2020 dataset. Due to the absence of training data corre-
sponding to the change in behavior, the reference mod-
els of such detector become redundant and need to be
updated. Another study (Zizzo et al. 2019a) independently
has shown similar operational drift in the SWaT data,
thus strengthening our argument. Moreover, it is impor-
tant to highlight that other model based studies would
suffer from the sensor drift (Kim et al. 2019; Ahmed
et al. 2017). Another independent study (Kravchik and
Shabtai 2021) conducted a statistical analysis using the
Kolmogorov-Smirnov test (K-S test) on SWaT,WADI, and
the BATADAL datasets to quantify the similarity between
the probability distributions of the training and testing
data. The outcome of this work has led to the avoidance

2https://itrust.sutd.edu.sg/ciss-2020-ol/

https://itrust.sutd.edu.sg/research/technologies/
https://itrust.sutd.edu.sg/ciss-2020-ol/
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Fig. 4 Comparison of feature statistics: a Behavior of LIT401 in 2015; b normal distribution plot of a with mean=0.42 and variance= 0.248; c
behaviour of LIT401 in CISS2020-OL event; d normal distribution plot of c with mean=0.53 and variance=0.37; P-value of K-S test (Karson 1968) is 0,
hence rejecting null hypothesis i.e., the distributions are not identical

of several features (ICS components) for model creation
since there exists a difference between the distribution in
training and testing samples. Further, the authors claim
that the absence of these features forms an important
reason for the reduced false alarm rate of the proposed
model.
Lessons learned:

1 Anomaly detectors should be capable of updating
their reference model at regular intervals through
online learning.

2 There should be an automated mechanism that
initiates the retraining process when there exists a
notable difference in the distribution of past data
from the current dataset.

Challenge 4: Component ageing: Processes controlled
by an ICS contain heterogeneous components (i.e., dis-
crete and continuous), e.g., an OPEN-CLOSE valve and
a variable speed generator. The performance of these
components degrades with time and use leading to a
direct impact on the detector performance. For example, a
motorized valve (MV101) in SWaT connected to the inlet
of tank (T101) does not close or open immediately when
a PLC issues a command to change its state.

From the data available in Goh et al. (2016), it was
found that the time delay for MV101 to close or open
completely was 7 to 9 seconds. Using this, AICrit mod-
eled the relationship between the MV101 and FIT101,
the sensor measuring inflow rate, through the applica-
tion of a decision tree. However, over five years, the delay
in the change of state of MV101 increased to 12-15 sec-
onds. Due to this change referred to as “sensor drift,”
AICrit generated false alarms during the CISS2020-OL
event.
Lessons learned:

1 We need to deploy an automated drift detection
mechanism similar to the one proposed in
Baena-Garcıa et al. (2006); Zenisek et al. (2019) based
on the predictive machine learning approaches.

2 Such a detection mechanism monitors the behavior
of the components in real-time and reports to the
plant operators when its performance degrades
below an acceptable level.

Challenge 5: Noisy data and temporal glitches: The cur-
rent state of the plant, i.e., sensor measurements and
actuator states, are saved in a data historian at regular
intervals in the supervisory control layer. This information
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serves to act as a source for the anomaly detectors. Due
to a variety of reasons such as human error, transmission
delay, and network packet loss, there might exist noisy
data or temporal glitches which lead to false alarms. It has
been demonstrated that an attacker can “hide” in the noise
distribution of the data (Ahmed et al. 2018). In Feng et
al. (2017) the authors conclude that often machine learn-
ing algorithms miss the attacks in the noisy process data.
For such a stealthy attacker it is important to consider the
process noise distribution to train the detector.
Lessons learned: To overcome such issues, we intro-

duced several parameters including a time slack variable,
time window, and window size (Gauthama Raman et al.
2020). These parameters act as a buffer and if the discrep-
ancy between the actual and prediction behavior exists for
more than a specified time limit, then the alerts are gen-
erated, otherwise, they are considered as noise or glitches.
We also developed an automatic packet validator that
exists between the data historian and the detector for
neglecting the packets with an invalid payload. By doing
this, the detectors are provided with correct data to ensure
the current system state is under control.
Challenge 6: Model based Learning: Taking all the pro-

cess data and using it as input to machine learning
algorithms is susceptible to adversarial attacks as demon-
strated in Zizzo et al. (2019b); Kravchik et al. (2021). It
is challenging to design the model based detectors given
the persistent threat of adversarial learning. A recent work
on SWaT data has deployed neural network based stealthy
attack generator (Feng et al. 2017). Synthetic data spoof-
ing is learnt for the popular process based attack detectors
(Erba and Tippenhauer 2020).
Lessons learned: It is important to test not only the

accuracy of model based machine learning techniques for
intrusion detection but it is also critical to test the robust-
ness against the adversarial manipulation of data input to
the detector itself. It is to say that the threat model shall
not only focus on the naive attacks, an attacker can exe-
cute but the more advanced stealthy attacks as highlighted
above. To raise the bar and defend against an advanced
attacker capable of learning the process, few solutions
are proposed inspired by the classical challenge-response
paradigm to ensure the non-deterministic behavior in the
data (Mujeeb Ahmed et al. 2021; Ahmed et al. 2020).

Future outlook and recommendations
The challenges mentioned above, and the lessons learned
from experiments on an operational plant, lead to new
research directions. In the following, wemake recommen-
dations for future work based on these challenges.
Recommendation 1: Improve the transparency of the

anomaly detectors: From a plant operator’s point of view,
most of the detectors created and deployed in operational
plants behave like a black-box that inputs the current

state of the plant and generate alerts indicating a process
anomaly. These approaches fail to explain the semantics
of the system state, i.e., “Why does the reported anomaly
exist” or “Where does it exist?” or “Is the anomaly due
to a cyber-attack or due to one or more faulty compo-
nents?”. As pointed out in Adepu andMathur (2016), there
exist several ways in which an adversary can compro-
mise the ICS components to realize a malicious intent.
As an ICS consists of several coordinated sub-processes
that are monitored and controlled by multiple compo-
nents, the transparency of the anomaly detector becomes
an important issue. The interpretation of the detection
results is crucial for plant engineers who need to make
decisions to protect the underlying process from entering
an undesirable state. Transparency also supports the dis-
covery of vulnerabilities in the plant and process and aids
in subsequent forensics.
Recommendation 2: Are the detection and false alarm

rates adequate for evaluating anomaly detectors for ICS?
Traditionally, the performance of machine learning algo-
rithms was evaluated using metrics such as classification
accuracy, precision, recall, and F1 score. Further, these
metrics are computed from the values of true positive,
true negative, false positive, and false negatives. In par-
ticular, in an anomaly detector, the two most significant
metrics that we utilized are rates of detection and false
alarms. Several works mentioned in this article aim to
have a higher detection rate with minimal false alarms.
However, these two metrics alone cannot comprehen-
sively evaluate the performance of the anomaly detector
designed for deployment in large continuously operational
plants.
A successful attack on an ICS may cause catastrophic

failures with a substantive impact on the national econ-
omy or even on human life. Thus, it is necessary to detect
the anomaly due to an attack as early as possible and
certainly, before the adversary’s intent is realized. Hence,
the detection latency should also be used as one of the
evaluation metrics (Athalye et al. 2020). We have com-
pared the performance of several statistical approaches
namely CUSUM, permutation entropy, residual skewness,
and Gaussian distribution integrated with the forecast-
ing model in terms of timely detection of stealthy attacks.
Several single and multi-point coordinated attacks were
launched against the operational SWaT and it was found
that the CUSUM approach, combined with other fore-
casting methods, possesses the least detection latency and
can detect attacks in less than 9 seconds from the time of
launch.
In Raman et al. (2019) a recommended metric, referred

to as Conflict index Factor (CiF), is proposed. CiF com-
putes the trade-off between the two conflict parameters,
i.e., detection rate and false alarm rate. This metric can
also be used as an evaluation metric for an anomaly



Raman M. R. et al. Cybersecurity            (2021) 4:27 Page 10 of 12

detector designed for ICS. Lower CiF values indicate bet-
ter detector performance in terms of higher detection
rates and the low rate of false alarms.
Recommendation 3: Base the design of an anomaly

detector on domain constraints: Research reported in
Priyanga et al. (2019); Krithivasan et al. (2020), focuses on
the design of a generic anomaly detection system for ICS
operating in different domains. Due to the similarity in the
nature of the data, the design of such detectors appears
feasible. However, one can argue about the generality of
theML-based detector after it is been deployed and tested
across several operational ICS. Evaluating the detectors
through a simulation-based environment, and validating
their accuracy, does not necessarily lead to generaliz-
able results. Further, the merits of utilizing the design
knowledge in an ML-based anomaly detector are briefly
discussed in Gauthama Raman et al. (2020). Thus, it is
better to design an application-specific anomaly detec-
tor, than a generic one, for specific ICS to achieve better
performance.
Recommendation 4: Anomaly detectors should be capa-

ble of distinguishing faults from the cyber-attacks: A
physical process could enter an anomalous state due to
one or more reasons. For example, it might be due to
a human error, component fault, misconfiguration, and
a cyber-attack. It is challenging to determine whether
the reported anomaly is due to a cyber-attack or some
other reason. Most ML-based anomaly detectors model
the behavior of the process dynamics and detect anoma-
lies based on the residual series generated by comparing
the actual and predicted behavior.We believe that through
the deep inspection of residual series, one may be able to
identify the cause of an anomaly.

Summary
We are witnessing a rise in use of machine learning
to design anomaly detectors for deployment in critical
infrastructure such as Industrial Control Systems. While
the use of machine learning enables the relatively rapid
creation of the detectors when compared to the design-
centric approaches, they also come with their own chal-
lenges. Several such challenges faced by the authors in
their research are summarized in this article. The chal-
lenges surfaced while the authors conducted experiments
with such detectors on an operational water treatment
plant. To solve each challenge, additional experiments
were conducted. Lessons learned from a multitude of
experiments are summarized. Lastly, wemake recommen-
dations that may be useful for researchers and practition-
ers in the design of secure critical infrastructure.
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