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Abstract 

The network security analyzers use intrusion detection systems (IDSes) to distinguish malicious traffic from benign 
ones. The deep learning-based (DL-based) IDSes are proposed to auto-extract high-level features and eliminate 
the time-consuming and costly signature extraction process. However, this new generation of IDSes still needs 
to overcome a number of challenges to be employed in practical environments. One of the main issues of an applica-
ble IDS is facing traffic concept drift, which manifests itself as new (i.e. , zero-day) attacks, in addition to the changing 
behavior of benign users/applications. Furthermore, a practical DL-based IDS needs to be conformed to a distributed 
(i.e. , multi-sensor) architecture in order to yield more accurate detections, create a collective attack knowledge based 
on the observations of different sensors, and also handle big data challenges for supporting high throughput net-
works. This paper proposes a novel multi-agent network intrusion detection framework to address the above short-
comings, considering a more practical scenario (i.e., online adaptable IDSes). This framework employs continual deep 
anomaly detectors for adapting each agent to the changing attack/benign patterns in its local traffic. In addition, 
a federated learning approach is proposed for sharing and exchanging local knowledge between different agents. 
Furthermore, the proposed framework implements sequential packet labeling for each flow, which provides an attack 
probability score for the flow by gradually observing each flow packet and updating its estimation. We evaluate 
the proposed framework by employing different deep models (including CNN-based and LSTM-based) over the CIC-
IDS2017 and CSE-CIC-IDS2018 datasets. Through extensive evaluations and experiments, we show that the proposed 
distributed framework is well adapted to the traffic concept drift. More precisely, our results indicate that the CNN-
based models are well suited for continually adapting to the traffic concept drift (i.e. , achieving an average detection 
rate of above 95% while needing just 128 new flows for the updating phase), and the LSTM-based models are a good 
candidate for sequential packet labeling in practical online IDSes (i.e. , detecting intrusions by just observing their first 
15 packets).

Keywords  Deep learning, Intrusion detection, Continual learning, Online IDS, Federated learning, Adaptable IDS, 
Zero-day attacks, Machine learning

Introduction
Nowadays, the growth of cyber threats highlights the 
importance of security devices such as intrusion detec-
tion systems (IDSes). The network security analyzers 

use IDSes to monitor the network data, analyze them, 
and detect any kind of intrusions. There are mainly two 
categories of intrusion detectors: signature-based and 
machine learning-based (ML-based) (Labonne 2020).

The main advantage of ML-based IDSes over signa-
ture-based ones is the absence of the costly and time-
consuming signature extraction process in the former. 
Consequently, ML-based IDSes, especially deep learning 
ones, are considered the new generation of IDS devices. 
The ability of deep learning-based (DL-based) IDSes to 
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auto-extract high-level features and classify different 
attack/benign traffic flows is their main advantage com-
pared to the traditional ML-based IDSes. Moreover, due 
to the high-dimensional processing ability of DL models, 
the DL-based IDSes are good candidates for inspect-
ing traffic content, as suggested in the recently proposed 
Deep Intrusion Detection (DID) framework (Soltani et al. 
2022).

Many studies in the literature have applied deep learn-
ing methods to offline IDSes (Thakkar and Lohiya 2021; 
Soltani et al. 2023). Nevertheless, in this paper, we focus 
on simultaneously adapting DL-based IDSes for the fol-
lowing three practical challenges of online intrusion 
detection.

The first challenge is related to the continuous adapt-
ability of a DL-based IDS to an organization’s traffic since 
both attack and benign traffic patterns might encoun-
ter concept drift with the passage of time. For example, 
switching between semester and vacation times in the 
universities, adding new services to the web servers, and 
the emergence of new popular applications and proto-
cols are examples of the content and behavior changes of 
benign user/traffic over time. Moreover, the characteris-
tics and content of attack traffic also change continuously. 
This is due to the fact that the number of revealed vulner-
abilities is increasing (NIST 2021), and additionally, novel 
attacks are devised on the existing vulnerabilities.

The second challenge in this scope stems from the dis-
tributed nature of anomaly detection. While DL-based 
IDSes have proved themselves to be accurate, there is still 
a need to suit them to a distributed architecture from two 
practical points of view: 

1.	 It has been well discussed that relying solely on a 
single instance or sensor of an IDS will often yield 
inaccurate intrusion detection (Bhargavi and Vai-
dehi 2013). Large and complex network architec-
tures require an ensemble of IDSes, each strategi-
cally placed in a specific location, ensuring optimal 
security and robustness (Iyengar 2020; Seresht and 
Azmi 2014). Furthermore, the collective knowledge 
of these scattered IDSes can be shared with a cen-
tral unit to produce more comprehensive informa-
tion and awareness regarding the network (Chai et al. 
2021).

2.	 While relying on DL models, handling concurrent 
flows is not trivial. In most large networks, online 
traffic consists of many concurrent and interleaving 
flows. Each flow has a different start, end, and dura-
tion time. Consequently, considering a specific time 
window, the traffic consists of packets belonging to 
different flows. On the other hand, DL models need 
the sequence of a particular flow’s packets to deter-

mine the flow label. As a result, these interleaving 
packets cannot be fed into a single DL model, and the 
flows should be separated beforehand.

The third and last challenge is that the performance of an 
online IDS depends on its ability to determine the correct 
flow label by inspecting fewer packets (i.e.  , early attack 
detection). A reliable and fast attack detection can stop 
the attack earlier and mitigate its full impact on the target 
organization. Similar to the applicable traditional online 
IDSes, the aim is to determine the flow’s label with some 
confidence per each packet arrival. When the IDS ana-
lyzes more flow packets, it increases its confidence score 
of the flow label. Security administrators can determine 
the thresholds of acceptable confidence scores according 
to the sensibility of the organization’s assets.

To summarize, the contributions of this paper to make 
the DL-based IDSes more practical are as follows:

•	 We design a practical method for adapting DL-based 
IDSes to the network concept drift and new traffic 
patterns. A multi-stage deep continual learning algo-
rithm is devised for this manner.

•	 We propose a novel multi-agent framework suitable 
for a distributed intrusion detection environment. 
The different agents can detect intrusions simulta-
neously (i.e.  , in a multi-sensor environment) and 
also continuously adapt themselves to the traffic 
changes in their local sub-network. Furthermore, the 
agents can share and exchange their local knowledge 
through a proposed federated learning approach.

•	 We also take into account the requirements for a 
practical online IDS by analyzing the incoming traffic 
on the packet level while considering the flow con-
cept (i.e. , determining the attack probability of a flow 
by observing each incoming packet)

	 We conduct extensive experiments and analyses to 
demonstrate the effectiveness of the proposed frame-
work from different perspectives. We show that by 
exploiting deep continual learning methods, the 
proposed framework can adapt the IDS to new pat-
terns in the network with a relatively small number of 
new flows (i.e. , 128). Additionally, by utilizing LSTM 
models, the proposed framework is able to detect 
the intrusions of the state-of-the-art datasets CIC-
IDS2017 and CSE-CIC-IDS2018 by just observing 
their first 15 packets. Furthermore, we show that the 
proposed framework performs well in a multi-agent 
environment, and different IDSes are able to effec-
tively share their obtained attack knowledge, result-
ing in more reliable and robust intrusion detection.

The rest of this paper is organized as follows. In the next 
section, we first review the related works in DL-based 
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intrusion detectors, deep continual learning methods, 
packet labeling, and deep federated learning. In sec-
tion "Framework", we describe the proposed framework 
for online intrusion detectors. "Experimental evaluation" 
Section presents details of experiments, dataset preproc-
essing, and evaluation results of the framework imple-
mentations. "Discussion and future directions" Section 
discusses and analyzes the results of the experiments and 
explores some possible future directions. Finally, "Con-
clusion" Section concludes the paper.

Related works
In this section, we briefly review both the previous 
approaches that have exploited deep learning for intru-
sion detection systems and also concepts that will aid us 
in designing our proposed online anomaly-based IDS 
(i.e. , sequence labeling, continual learning, and federated 
learning).

Deep learning‑based intrusion detection
Due to the capabilities of deep learning algorithms, 
including auto-extraction of suitable features, process-
ing high dimensional data (e.g., content bytes of a flow), 
and supporting the time-series nature of the data, many 
studies have applied them in the scope of network intru-
sion detection. In the following, we review some of these 
research studies.

In Yin et al. (2017), the authors employ recurrent neu-
ral networks (RNN) for intrusion detection and evaluate 
binary and multi-class classification performance over 
the NSL-KDD dataset. In Vinayakumar et  al. (2017), 
the intrusion detection application of different architec-
tures of CNN-based DL models (e.g. , CNN, CNN-RNN, 
CNN-LSTM, and CNN-GRU) are evaluated using the 
KDDCup 99 dataset. Similarly, in Saba et al. (2022), the 
authors have exploited CNN models to design an Anom-
aly-Based IDS for IoT networks.

In Alghamdi and Bellaiche (2023), the authors use an 
ensemble-based deep learning technique to design intru-
sion detection systems for IoT networks. Their approach 
consists of an initial binary LSTM model that indicates 
whether the input traffic is normal or an attack. In the 
latter’s case, a voting mechanism is conducted between 
three classifiers, i.e.   LSTM, CNN, and artificial neural 
network (ANN) to perform multi-class classification on 
the input traffic and infer its corresponding attack type. 
Moreover, their proposed system processes the data 
in two modes: batch mode for training the models and 
stream mode to deal with the traffic stream in real-time.

Distributed intrusion detection using mobile agents is 
discussed in Riyad et al. (2019). Each mobile agent analy-
ses the traffic and detects the threats independently. Con-
sequently, this distribution operation evades the single 

point of failure problem. Additionally, they propose algo-
rithms for reducing false positives by using inter-agent 
communications. They use the principal component 
analysis (PCA) algorithm to select the traffic features. 
Then, an ensemble of support vector machines (SVM), 
ANN, and RF algorithms classify the input traffic. The 
evaluation has been done on the KDD99 dataset.

In Abou El  Houda et  al. (2022), The authors propose 
an explainable IDS for IoT. Using Explainable Artifi-
cial Intelligence (XAI) techniques, they aim to design a 
framework in which the decisions of the Dl-based IDS 
are interpretable.

Employing reinforcement learning (RL), particularly 
deep Q-learning, in network intrusion detection sys-
tems is the main contribution of the proposed frame-
work in Kim and Park (2019). The authors use two deep 
auto-encoder in their RL framework. One is for training 
the Q-learning model, and the other is for updating the 
model. The framework periodically applies mini-batch 
updates or Q-learning updates to make the model more 
adaptable to the continual evolution of cyber-attacks.

A deep learning self-adaptive approach is presented 
in Papamartzivanos et al. (2019). This approach consists 
of a transformation layer (the encoder) and a supervised 
learning deep model. It depends highly on the change 
signals from the network mapper modules. Such enti-
ties should determine any network changes, such as run-
ning services, available hosts, the operating system, and 
potential vulnerabilities. The approach learns a new auto-
encoder model based on the stored traffic related to the 
signal period time and an archived initial labeled data-
set. Then, it uses the encoder part as the new transfor-
mation layer by receiving the change signal. As a result, 
the model adapts itself to the new traffic distributions. 
A weakness of the mentioned approach is that, in many 
cases, receiving change signals from a network mapper is 
not a reasonable assumption for changing the model. For 
example, sensing a change in the network load may result 
from a DDoS/DoS attack. More generally, the model 
should not adapt its transformation layer according to 
the change signals triggered by attacks.

CSE-IDS (Gupta et  al. 2022) focuses on the imbal-
anced nature of classes in the network security scope. 
It proposes a three-layer deep learning-based IDS and 
assumes three traffic categories: benign traffic, major-
ity attacks with frequent samples, and minority attacks 
that represent infrequent ones. A cost-sensitive deep 
neural network (DNN) separates the benign traffic from 
the malicious ones in the first layer. The cost-sensitive 
loss function handles the imbalanced number of attacks 
and benign traffic. Then, a boosting ensemble, namely 
eXtreme Gradient Boosting, separates the suspicious 
samples into the benign class, different majority attack 
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classes, and a single class representing all minority 
classes. Finally, an RF classifies the minority attacks into 
their respective classes. Besides, layer 2 and layer 3 use 
two oversampling techniques, namely, random oversam-
pling and SVM-SMOTE. Their evaluation is based on the 
pre-extracted features of the NSL-KDD, CIDDS-001, and 
CIC-IDS2017 datasets.

In Wang et al. (2021), the authors integrate the stacked 
denoising auto-encoder (SDAE) (for reducing the noise of 
network traffic) and the extreme learning machine (ELM) 
(for increasing the IDS speed) as the SDAE-ELM model. 
This model is presented for a network intrusion detec-
tion system (NIDS). Besides, they propose to integrate 
the deep belief networks (DBN) (for extracting features 
from the log files of each host) and the softmax classifier 
(for determining the attack types) as the DBN-Softmax 
for the host-based intrusion detection system (HIDS). 
Their models use unsupervised data for the pretraining 
phase (learning the DAE and DBN layers of the NIDS 
and HIDS, respectively). Then, the fine-tuning phase 
uses supervised learning for training the SDAE-ELM and 
DBN-Softmax. The authors evaluate the NIDS based on 
the pre-extracted features of KDD99, NSL-KDD, UNSW-
NB15, and CIDDS-001 datasets. Additionally, the AFDA-
LD dataset is used to evaluate the HIDS model.

Cretu-Ciocarlie et  al. (2009) propose an ensemble of 
n-gram based anomaly detectors (i.e.  , micro-models). 
The voting scheme determines the predicted label of the 
evaluation traffic. They use time-delimited slices of the 
dataset for training the disjoint micro-models. Addition-
ally, the model updates itself by generating new models 
according to the recently received traffic. The new micro-
models take the place of the oldest ones. Accordingly, the 
intrusion detector can be adaptable to the traffic concept 
drift.

In Soltani et al. (2023), the authors propose DOC++ as 
a deep novelty-based classifier to detect not-seen traffic 
(both the zero-day attacks and new benign behaviors). In 
addition, using a joint deep clustering algorithm, enough 
pieces of each new novel class evidence are gathered and 
used in the supervised labeling process and correspond-
ing updating phase. The update process that is respon-
sible for learning the newly labeled concepts uses an 
active-passive strategy as the following steps: 

1.	 Clone the existing active model to a passive model.
2.	 Run the cloned model’s training, clustering, and post-

training phases.
3.	 Migrate the traffic to the new model.

Even though the above-mentioned and many other simi-
lar research studies use terms like deep learning-based 
online/real-time NIDS, most of them solely focus on 

improving the detection speed and accuracy (i.e. , detec-
tion rate) of their models in comparison with the other 
approaches. Speed and accuracy are critical parameters 
in a real-world NIDS, but there are many other practical 
challenges in online NIDSes. For example, packet inter-
leaving is an issue in real network traffic: packets of dif-
ferent flows are interleaved, and the proposed system 
should consider this challenge. Furthermore, network 
traffic concept drift is a prevalent phenomenon, and a 
practical IDS should adapt itself to these continuous 
changes. Additionally, a practical NIDS should determine 
the flow label upon receiving each packet and declare a 
confidence score for its decision. Measuring the perfor-
mance of an online IDS is based on its capability to deter-
mine the true flow label with acceptable confidence by 
observing fewer packets of a flow.

However, to the best of our knowledge, the above 
challenges have not been investigated yet in most of the 
research studies related to online deep learning-based 
NIDSes.

Sequence labeling
As mentioned before, an ideal characteristic that an IDS 
should possess is the ability to determine whether a flow 
is categorized as a possible threat in a gradual manner.

To be more precise, since the packets corresponding 
to a flow do not arrive simultaneously with the arrival of 
the first packet of a flow, the IDS presents an initial prob-
ability regarding the possibility of whether that flow is an 
attack. As time progresses, with the emergence of further 
packets, the IDS should produce a more accurate likeli-
hood regarding that flow.

One should bear in mind that in conjunction with 
adjusting more to real-world scenarios, this scheme tends 
to be more efficient since there is no need to allocate time 
and computational resources to accumulate all packets 
of a flow (Hwang et al. 2019). For this purpose, the IDS 
needs to perform two essential tasks: 

1.	 Produce labels for each packet individually, rather 
than yielding a single label for the flow.

2.	 Use temporal features for estimating the probability. 
In other words, the IDS should also consider the pre-
vious packets of a flow in the inference process for a 
new packet.

Due to their ability to preserve memory over sequential 
inputs, RNN networks, specifically LSTMs, have been 
widely exploited in several domains (since they excel in 
circumventing the vanishing gradient problem (Hochre-
iter and Schmidhuber 1997)). For instance, in the field of 
natural language processing (NLP), the research studies 
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(e.g. , Ma and Hovy (2016) and Huang et al. (2015)) have 
used LSTMs to tackle sequence labeling tasks like part of 
speech tagging and chunking.

Similarly, some researchers have utilized LSTMs for 
network traffic classification. In Hwang et al. (2019), net-
work traffic classification is done at the packet level by 
mapping this task to a sentence classification problem 
in NLP. This approach considers packets and their head-
ers as sentences and words, respectively. The headers of 
a packet are used to construct a 64-dimensional word 
vector, which is used as the input for an LSTM model to 
perform the classification. In Lopez-Martin et al. (2017), 
although several networks comprising LSTM segments 
have been designed to classify packets sequentially, they 
require the entire flow for classification.

In Ansari et al. (2022), the authors employ deep models 
with gated recurrent units (GRU) to generate alerts for 
malicious sources. In their approach, a model is trained 
to learn the dependencies between previously generated 
alerts and predict future alerts for a malicious source.

In Gao et al. (2019), both a many-to-many and a many-
to-one LSTM are designed to address intrusion detection 
systems for the supervisory control and data acquisition 
(SCADA) protocol, and their results are compared.

Since a many-to-many LSTM model can classify pack-
ets individually and sequentially, our approach utilizes 
this technique as one of the base DL models inside the 
proposed adaptive framework. Furthermore, LSTMs can 
work with variable length input sequences (i.e.  , flows) 
(Lee et  al. 2021), thus making them more efficient and 
practical.

Deep continual learning
In the proposed framework, our primary attention has 
been devoted to a specific family of online learning algo-
rithms named Continual learning (CL), defined as the 
ability to learn new tasks that arrive sequentially by effi-
ciently exploiting the knowledge acquired in previous 
tasks (Van  de Ven and Tolias 2019). The main dilemma 
in CL is a phenomenon called catastrophic forgetting, 
characterized by the model performing poorly on the old 
tasks when trained on the new ones.

In recent years, valuable methods have been proposed 
to mitigate the problem of catastrophic forgetting for 
continual learning. In the following, we will review the 
two main categories related to our research.

Continual learning based on regularization
A prevalent technique for continual learning is to exploit 
different regularization terms and constraints to avoid 
detrimental weight changes when training on new tasks. 
One naive solution would be to use an L2-Regularization 

term, but this approach will prevent the model from effi-
ciently learning new tasks.

A ground-breaking technique known as elastic weight 
consolidation (EWC) is proposed in Kirkpatrick et  al. 
(2017), which uses a regularization term based on the 
diagonals of a set of Fisher information matrices to 
reduce the plasticity of the weights of greater impor-
tance to the previous tasks. The values on the diagonal 
of the Fisher information matrix measure the amount of 
information that the training samples provide for each 
parameter (i.e.  , weight) of the trained DL model, thus 
representing an importance factor for each weight. To 
be more precise, based on the definitions in Martens 
(2020); Van de Ven and Tolias (2019), the ith element of 
the Fisher information matrix diagonal is proportional to 
the expected value (i.e. , based on the training data distri-
bution) regarding the Hessian of the model’s output with 
respect to the ith weight. Consequently, a high Hessian 
for a weight signifies the plasticity of the gradient of the 
model output based on that weight. Note that in a given 
task, the weights obtained from the training (i.e.  , opti-
mization) procedure often represent a local minimum for 
the desired loss function. As a result, changes made to 
parameters with a high hessian would result in a substan-
tial drift from that minima, resulting in a performance 
decline of the model on the mentioned task.

Since in EWC, the number of quadratic terms would 
increase linearly with the advent of new tasks, online 
EWC is proposed in Schwarz et  al. (2018), which uses 
a single Fisher information matrix and updates it each 
time it learns a new task. Another method named syn-
aptic intelligence (SI) is proposed in Zenke et al. (2017). 
Instead of the Fisher information matrix, it tries to com-
pute an online importance factor for each weight, which 
describes its importance across all previously learned 
tasks.

Continual learning based on expansion
A number of approaches focus on the main idea to 
expand the network capacity by adding new layers or 
extending the previous layers to accommodate the 
knowledge associated with the new task (Rusu et al. 2016; 
Yoon et al. 2017; Jain and Kasaei 2021).

Progressive neural networks (PNN), as described in 
Rusu et al. (2016), are models comprised of columns that 
each preserve a connection with all of their predecessors. 
Each column can be considered an individual network 
with a fixed architecture that includes blocks repre-
senting a network layer. A new column is added to the 
model with the arrival of new data, and training is done 
via freezing the previous columns. The main drawback of 
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this approach is the constant, substantial increase of the 
network size for every new task, thus making it infeasible 
to maintain in the long run. Several methods have been 
proposed to circumvent this flaw by expanding the net-
work as efficiently as possible.

As described in Yoon et al. (2017), dynamically expand-
able networks (DEN) try to design an architecture that 
dynamically increases the network capacity when faced 
with new training data. At its core, a DEN first aims to 
modify the current network to perform well on the new 
data. In case of failure, each layer will be augmented by 
adding a fixed number of nodes, and the whole expanded 
network will be trained on the new data with the group 
sparse regularization (Scardapane et  al. 2017). Due to 
this regularization term, some added nodes will be con-
sidered redundant after training and be pruned, thus 
preventing the network from becoming too large. In the 
end, if the weights of some previous nodes experience 
significant alteration during training, a duplicate of those 
nodes will be added to the network, and the network will 
be trained again.

One recent variation of DEN named 3d_DEN is pro-
posed in Jain and Kasaei (2021) for continual multi-class 
classification. Each task represents a new class, and a cor-
responding output node will be added to the network. In 
this approach, when training the network after expan-
sion, only the added segments are trained, and the previ-
ous parts of the network are frozen, thus protecting them 
from catastrophic forgetting.

Since DEN and its variations rely on multiple sparse 
regularization terms, the high number of hyperparam-
eters will make tuning the ideal network arduous. For this 
means, reinforced continual learning (RCL) is introduced 
in Xu and Zhu (2018). In this method, for expanding the 
network, an LSTM network is used via reinforcement 
learning and policy gradient to predict the optimal num-
ber of nodes that should be added to each layer, with 
respect to both the detection rate and size of the network.

Although the approaches mentioned above try to 
expand the network as efficiently as possible, the net-
work’s size will still grow after each task, which is con-
sidered a drawback in the long run. An approach for fully 
compressing the network after the expansion is proposed 
in the “regularize, expand, and compress” (REC) frame-
work (Zhang et  al. 2020). Similar to RCL, REC exploits 
reinforcement learning (AutoML Sutton et al. (2000)) to 
expand the network. The whole network is trained on 
the new task with regularizations based on multi-task 
learning and the Fisher information matrix. After that, 
the compression is done using the knowledge distillation 
approach (Hinton et  al. 2015) and soft labels; thus, the 
network ia reshaped to its original architecture.

Deep federated learning
Federated learning (FL) is an ML approach for training 
a model by utilizing distributed devices that contribute 
to the training process based on their local data. Both 
synchronous and asynchronous methods have been pro-
posed to this end, but since the nature of our problem 
requires an asynchronous setting, we will mainly focus 
on the latter.

In Gimpel et  al. (2010), an asynchronous distributed 
optimization algorithm is designed, which despite a 
minor error in the training procedure, performs well 
when evaluated on NLP tasks. In Xie et  al. (2019), an 
asynchronous federated learning scheme is proposed in 
which each worker independently trains a model with a 
regularization term that prevents any significant drift 
from the main-model. Also, the main-model is updated 
via weighted averaging with the worker model.

In Chai et  al. (2021), a federated learning system is 
designed based on dividing the clients into different 
groups called tiers. In this approach, a tiering module 
partitions the clients into tiers based on their perfor-
mance (e.g., response latency). In each tier, the updating 
process is synchronously performed by the tier members 
via gradient computation and optimization. Furthermore, 
The main-model gets updated asynchronously based on 
the weighted averaging of the models obtained from the 
tiers.

In Diro and Chilamkurti (2018), the authors propose a 
distributed attack detection mechanism for IoT based on 
fog computing (Yi et  al. 2015). In their approach, the fog 
nodes are responsible for locally training DL models that 
act as intrusion detectors at the network edge. Furthermore, 
a coordinator master is used to propagate the local updates 
and parameters between the fog nodes, and this optimiza-
tion procedure is conducted via distributed SGD.

These proposed schemes and designs provide a solid 
foundation for designing our multi-agent framework as 
described in "Framework" Section.

Framework
In this section, our proposed online anomaly-based 
intrusion detector is described. This framework aims to 
address three of the current main challenges for an appli-
cable and realistic intrusion detection system:

•	 Continuos adaptation to new traffic The first challenge 
relates to the emergence of new attacks and benign 
user/traffic behavior changing over time. To address 
this continuous adaption challenge, we use deep con-
tinual learning methods, as discussed in "Continuous 
adaption to network concept drift" Section.
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•	 Online intrusion detection As mentioned before, 
another challenge of an online IDS is making a pro-
gressive decision about a flow by observing the 
stream of its packets. The reason is that the best 
online IDSes are the ones that can detect an attack 
with fewer packets. In other words, threat detection 
should be done before the attacker completes the 
attack.

•	 Multi-agent architecture The third challenge of an 
online IDS corresponds to the interleaving nature of 
the packets of different flows in the network traffic. 
In particular, to address this issue and to consider a 
high throughput network, we propose to use a dis-
tributed architecture for handling all packets of each 
flow in an agent. Each agent implements a sub-model 
of the main DL model in this architecture. Then, to 
update the model, the distributed sub-models are 
aggregated in the main deep anomaly-based model.

Our proposed framework aims to collectively address the 
mentioned practical challenges, as mentioned in the fol-
lowing sections.

Overview
The proposed framework is a multi-agent IDS depicted 
in Fig. 1. Each agent can be strategically placed in a dif-
ferent section of a network (or, as discussed in "Multi-
agent IDS" Section  , these agents can be dispersed in a 
geo-distributed manner on a global scale), and individu-
ally perform intrusion detection on their associated area 
using their deep IDSes. Each agent independently detects 

intrusion within its assigned area using deep IDS capa-
bilities. This distributed setup ensures scalability for high 
throughput and facilitates knowledge sharing. Detec-
tion methods can operate at both flow and packet levels, 
depending on the chosen deep model architecture for the 
IDS.

Furthermore, each agent continuously adapts itself to 
the new flows and patterns in its local sub-network to 
update its local benign/attack knowledge. In "Continuous 
adaption to network concept drift" Section  , we analyze 
and propose an optimal strategy for updating a single 
deep IDS. The subsequent description of the proposed 
multi-agent architecture (see "Multi-agent IDS" Section) 
outlines a system where agents exchange local knowledge 
through a central coordinator. This coordinator accumu-
lates shared knowledge from all agents and updates them 
regularly. To be more precise, each agent can receive 
an update from the central coordinator and update its 
knowledge accordingly. Conversely, the central coordina-
tor can also receive an update from each agent and share 
it with other agents. The details of these procedures will 
be provided in detail in "Multi-agent IDS" Section.

Continuous adaption to network concept drift
With the advent of a new attack, we expect our IDS to 
conform itself to the new data, and while preserving its 
ability to detect previously learned abnormalities, it 
should extend its knowledge to recognize the new one. 
To achieve this goal, in this section, we propose a contin-
ual learning-based algorithm that best satisfies the needs 
and constraints of an IDS.

Fig. 1  An overview of the proposed multi-agent IDS framework
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General IDS model architecture
The proposed framework assumes that the DL models 
used in an IDS are comprised of the base and dense parts. 
The base part usually consists of either LSTM or convolu-
tional (CNN) layers and is followed by the dense part that 
comprises multiple fully-connected (FC) layers. Ensuing 
from the deductions made in Jain and Kasaei (2021) and 
Yosinski et al. (2014), the base parts serve as a pre-trained 
and frozen section of our network, whereas the FC layers 
will change and train continually on new anomalies. This 
approach has two main benefits: 

1.	 The base part will determine the general features of 
our inputs (may it be flows or individual packets, as 
described in "Experimental evaluation" Section) and 
learn useful representations that facilitate the classifi-
cation procedure, which is an integral phase in many 
DL-based IDSes (Choi et  al. 2020). On the other 
hand, the FC layers will both learn new specific fea-
tures and better classify the general features by train-
ing on new data.

2.	 Each continual training will require less computation 
since the pre-trained network will not be involved.

Proposed continual learning approach
The proposed continual learning algorithm, similar to 
those mentioned in "Deep continual learning" Section, 
is based on the expansion approach, i.e.  , each FC layer 
is augmented with a set of nodes. More specifically, each 
added node will have inputs from all nodes in the previ-
ous layer (including the augmented ones), but its outputs 
will only be connected to the new nodes in the next layer, 
thus allowing it to capture new features while not alter-
ing the nodes from older tasks (i.e., attacks in the security 
scope) (Jain and Kasaei 2021). In this expansion phase, 
based on prior work, there are two options:

•	 Adding a fixed number of nodes to each layer 
(denoted as k) (Yoon et  al. 2017; Jain and Kasaei 
2021).

•	 Designing a controller for configuring the opti-
mal numbers of nodes for each layer based on RL 
approaches (which have been used prevalently in 
the network anomaly detection scope (Adawadkar 
and Kulkarni 2022)). To be more precise, each time 
the controller generates the number of nodes cor-
responding to each layer, it receives a reward and 
updates itself via policy gradient techniques. This 
process is repeated several times until the best result 
is achieved (Xu and Zhu 2018; Zhang et al. 2020).

Although the latter approach tends to discover a more 
efficient expanded network, our analysis indicated that 
the former would better suit our domain, as explained 
below.

First, the latter approach requires a substantial amount 
of time to find the optimal network, which is a significant 
flaw since the IDS is expected to perform on a real-time 
basis. Each time the controller predicts the number of 
added nodes, training has to be conducted on the cor-
responding child network to yield a reward for the con-
troller. This process might be carried out several times 
to yield the best result. On the other hand, using a fixed 
number of nodes will require training the expanded net-
work only once.

Second, as the expansion procedure is ensured by com-
pression (as described in "Multi-agent IDS" Section), 
finding the minimum number of nodes in each layer is 
not necessary. Also, in contrast to Yoon et al. (2017) and 
Jain and Kasaei (2021), there is no need to perform l1
-norm or group sparsity regularization and tuning their 
corresponding hyperparameters for training on the new 
task since compressing the network will not rely on this 
technique, as explained in the next section.

After adding k nodes to each FC layer, the training 
phase consists of two sections: 

1.	 The nodes pertaining to the previous tasks are fro-
zen, and while only the added nodes are kept train-
able, training is done on the data of the new task (i.e. , 
new attack). As mentioned above, there will be no 
need for any kind of regularization. Hence, the train-
ing can be described as optimizing a single loss func-
tion, i.e. , 

 where L is our desired loss function (e.g.  , binary 
cross-entropy), WAdd describes the weights of the 
newly added nodes to the network, WPrv represents 
the (frozen) weights of previous nodes, and Dtrain is 
the dataset comprising the new traffic for training.

2.	 After the first step, the expanded model’s perfor-
mance is measured on a validation set Dval , and in 
the case its detection rate is below a preset thresh-
old τ , instead of solely training the added nodes, the 
whole network is trained under the following equa-
tion (Zhang et al. 2020) 

(1)min
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where Nparams is the number of weights in the 
model prior to expansion, WPrv = {θPrvi }

Nparams

i=1  , 
as introduced above, are the weights of the model 
before expansion, WAdd are the weights of the 
newly added nodes, and WExp are all the weights of 
the expanded model. In the expanded model, using 
the Fisher information matrix diagonal, the term 
∑Nparams

i=1 FPrv
ii (θ

Exp
i − θPrvi ) , is enforced on the 

weights corresponding to the previous task to avoid 
catastrophic forgetting (as discussed in Setion 2.3.1). 
The term 

∥

∥[WExp;WPrv]
∥

∥ is an l2,1-norm regulariza-
tion (Zhang et al. 2020) (i.e. , 

∥

∥

∥

∥WExp
∥

∥

2
,
∥

∥WPrv
∥

∥

2

∥

∥

1
 ) 

term derived from multi-task learning, aiming to 
learn the shared representations between the weights 
of the model prior to and after expansion, and 
∥

∥WAdd
∥

∥

1
 is a sparsity-inducing regularization term 

(Gong et al. 2012) imposed solely on the new nodes 
for efficient learning of the features specific to the 
new traffic.

	 Furthermore, for practically computing the diago-
nal of the Fisher information matrix, we employ the 
method proposed in Van  de Ven and Tolias (2019). 
Namely, for the ith element of the diagonal we have: 

 where Fii is the ith element of the Fisher informa-
tion matrix diagonal (i.e.  , corresponding to the ith 
weight of the model) and S is the data set used for 
training the model. Furthermore, θ are the weights of 
the model after training, (x, y) represents any labeled 
sample from S, and p(Y = y|x, θ) is the produced 
probability by the model for the correct class label. 
Moreover, a proposed strategy is discussed for updat-
ing the Fisher information diagonal throughout the 
continual learning procedure in  "Multi-Agent IDS" 
Section.

Algorithm  1 describes the proposed continual learning 
procedure.

Algorithm 1  Continual Learning Algorithm.

Input :
Dtrain : New dataset to train on
Dval : Validation dataset

Output :
W Exp : The weights of the expanded network

1: Add k units to all layers
2: Obtain W Exp by training the network based on (1)
3: if detection rate of W Exp model on Dval < τ then
4: Obtain W Exp by training the network based on (2)
5: end if

(3)Fii =
1

|S|

∑

(x,y)∈S

δ log p(Y = y|x, θ)

δθi
,

Data sampling
In some cases, incrementally training solely on a new 
set of data samples from unknown traffic might make 
our model biased towards new traffic, which will be an 
instance of catastrophic forgetting. As suggested in Jain 
and Kasaei (2021); Soltani et al. (2023), with the advent of 
new data, we will constitute a training set that possesses 
the new data in conjunction with samples corresponding 
to the previous attacks and benign flows that the model 
has been previously trained on.

To implement this approach, the collective number of 
data samples belonging to the previous attacks should be 
equal to the number of the new attack samples. Since our 
model is a binary classifier between benign and attack 
flows, the number of benign samples should be equal to 
the total number of attacks (i.e.  , including the old and 
new attacks). Algorithm  2 describes this procedure in 
detail.

One should bear in mind that sustaining all the previ-
ous instances is evidently unfeasible for practical sce-
narios. However, as discussed in "Discussion and future 
directions" Section, the proposed updating strategy is 
able to adapt the model to new traffic with a small num-
ber of instances. Consequently, it suffices to preserve a 
limited number of instances from previous flows to pre-
vent bias (i.e.  , set a threshold for the maximum num-
ber of previous benign/attack samples). Furthermore, 
another practical approach for reproducing previous 
samples would be using Generative Adversarial Networks 
(GAN) that can support continuous updating to new data 
(Andresini et al. 2021; Liang et al. 2018; Seff et al. 2017; 
Varshney et al. 2021).

Algorithm 2  Data Sampling Algorithm.

Input :
R : raw samples of the new traffic

Output :
Dt : augmented dataset for the new traffic (i.e., new

task)

1: B = dataset containing benign samples
2: A = (A1,A2, . . . ,At−1): datasets of previous attacks
3: Dt = R
4: Split R to At (new attack samples) and Bt (new benign

samples)
5: sA = len(At)
6: for i = 1, 2, . . . , t− 1 do
7: Choose sA samples from Ai and add to Dt

8: end for
9: sB = len(Dt)− len(Bt)
10: Choose sB samples from B and add to Dt
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Multi‑agent IDS
To address the distributed requirements of an IDS (as 
discussed in "Introduction" Section), we have proposed 
to employ a multi-agent federated learning architecture. 
Each agent is assigned a part of the traffic flows, captures 
the new abnormalities and benign traffic concept drift 
based on the assigned traffic, and then updates itself.

To be more precise, each agent consists of a sub-model 
that continually learns new traffic behavior. Once an 
agent has finished its continual learning procedure, it 
asynchronously updates the main-model through knowl-
edge distillation (Hinton et al. 2015). Thus, the collective 
knowledge obtained and shared by all the agents will be 
incrementally integrated into the main-model.

An overview of the proposed federated learning 
architecture is shown in Fig.  2. The main-model acts 
as the central coordinator (as mentioned in "Feder-
ated learning" Section), which gathers the collective 
knowlege of the agents and updates the agents accord-
ingly. Each agent initializes its sub-model weights with 
the main-model’s latest weights prior to its continual 
learning procedure. After the learning phase, in order 
to update the main-model, each agent engages in an 
asynchronous optimization with the loss function using 
a combination of the logits (i.e.  , the input vector of 
the final softmax layer as the soft labels) and the actual 
labels (i.e. , hard labels). In addition, in order to prevent 
catastrophic forgetting, a regularization term based on 
the diagonal of the Fisher information matrix of the 
main-model is exploited. Thus, in order to update the 
main-model through knowledge distillation, we pro-
pose the ℓ th agent computes and sends to the main-
model the gradients of the following loss function

where again, Nparams is the total number of parameters 
in the main-model, Wmain = {θ imain}

Nparams

i=1  is the new 

weights of the main-model, Winit = {θ iinit}
Nparams

i=1  and 
F  are the weights and the Fisher information diagonal 
of the main-model prior to distillation, Dℓ is the train-
ing data observed by the ℓ th agent, and Zℓ are the logits 
received through the expanded model.

In order to asynchronously update the main-model, 
an agent first acquires the latest version of Winit and F  
from the main-model. Then, the main-models’ param-
eters are updated through the following update rule 
(Gimpel et al. 2010)

where ∇ℓ(fdist(Wmain)) is the gradient of fdist(Wmain) 
computed by the ℓth agent on its own batch. Also, M is 
the set of agents that have sent a gradient in the time 
interval between the last two updates.

Once an agent’s federated distillation procedure comes 
to an end, it also computes the Fisher information matrix 
diagonal based on the latest version of Wmain and its own 
data, using Eq. 2. This matrix is sent to the main-model, 
updating the main Fisher information matrix diagonal 
based on the following equation

where F ′
main is the new Fisher information matrix diago-

nal of the main-model, Fmain is the diagonal of the previ-
ous Fisher information matrix of the main-model, Fagent 
is the Fisher information matrix diagonal sent by the 
agent, and α is an aggregation weight.

Based on the proposed federated learning architec-
ture, the procedure that an agent undertakes to update 
the main-model is described in Algorithm  3. Note that 
the proposed approach has the practical benefit of not 
expanding the main-model; thus, the main-model will 
not grow infinitely and can be practically applied in the 
long term without needing additional memory. Further-
more, the federated distillation procedure also functions 
as a compression mechanism for the agents. As a result, 
an agent’s expanded model can be replaced with the 
updated main-model at the end of this process.

(4)

fdist(Wmain) = L(Wmain;Dℓ)+ Lkd(Wmain;Zℓ)+

�

Nparams
∑

i=1

Fii(θ
i
main − θ iinit),

(5)W ′
main = Wmain − µ

∑

ℓ∈M

∇ℓ(fdist(Wmain)),

(6)F ′
main = αFmain + (1− α)Fagent,

Fig. 2  An overview of how different agents function in the proposed 
architecture. Agent1, . . . , Agentn (e.g. , different IDSes) contain each 
a sub-model which is initialized with the weights of the main-model. 
After learning a new anomaly based on Algorithm 1, the main-model 
is updated via knowledge sharing (i.e. , federated distillation)
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Algorithm 3  Agent Learning Procedure.

Input :
R : Flows pertaining to the new traffic

1: Obtain Dt by using R as input to Algorithm 2.
2: Split Dt to Dtrain and Dval for training and validation.
3: Get Wmain and F from the main-model.
4: Obtain WExp from Algorithm 1 using Dtrain, Dval, Wmain,

and F .
5: Update Wmain and F from the main-model (in case that

other agents have updated the main-model).
6: Set Winit = Wmain
7: for each training step do
8: Get mini-batch and labels from Dtrain and the logits

from W Exp.
9: Compute the gradient of (4) and send it to the main-

model.
10: Wait for the main-model to send Wmain
11: end for
12: Compute Fagent based on Dtrain and sent to the main-

model in order to compute (3.3).

In the end, in Table  1, we summarize the parameters 
used in our architecture to further clarify the design of 
the proposed online anomaly-based deep IDS.

Experimental evaluation
This section describes the evaluation details of the pro-
posed framework to reproduce the experiments. First, 
the Experimental details, including evaluation infrastruc-
ture, the preprocessing phase, evaluated datasets, and 
hardware specifications, are described ("Experimental 
details" Section). These are the common infrastructure 
for all the following experiments. Then, different deep 
online anomaly detectors’ implementations are evaluated 
(“Deep Adaptive Anomaly Detectors” Section). Next the 
proposed distributed architecture for implementing a 
DL-based NIDS is evaluated ("Federated learning" Sec-
tion). Finally, in "Early attack detection through packet 
assessment" Section we evaluate the the online IDS chal-
lenge of progressively determining the flow label upon 
each packet’s arrival.1

Experimental details
Evaluation infrastructure
In this work, the deep intrusion detection (DID) frame-
work, introduced in Soltani et  al. (2022), is used in 
the preprocessing phase of all experiments. The DID 
approach is selected for its ability to self-extract appro-
priate features and the capability of detecting a wide 
range of attacks, including content-based ones like SQL 
injection and Heartbleed attacks. The content-based 
attacks are the main segment of the threats with high 
malicious impacts on the targeted organizations. Conse-
quently, this preprocessing phase can significantly affect 
the applicability of the proposed framework.

Datasets
As the DID approach is designed for the applicable IDSes, 
it requires the pure content of traffic flows (e.g. , in PCAP 
format). Consequently, the scope of applicable datasets 
for evaluating deep IDSes is constrained to those includ-
ing the labeled traffic content. The privacy issues restrict 
the dataset developers from publishing the details of 
the real network traffic. As a result, datasets with entire 
traffic content such as DARPA 1999 (Lippmann et  al. 
2000) (which is the base of the KDD99 (KDD 2021) and 
NSL-KDD (Tavallaee et al. 2009) dataset), CIC-IDS2017 
(Sharafaldin et  al. 2018), and CSE-CIC-IDS2018 (CSE-
CIC 2021) are all generated in an emulated network.

In this work, to properly evaluate the proposed 
framework, we have used the more up-to-date data-
sets (CIC-IDS2017 and CSE-CIC-IDS2018), which have 

Table 1  Summary of the parameters used in desinging the proposed architecture and their influence

Parameter Influence

�1 Preventing catastrophic forgetting during update in Eq. 2

�2 Amount of learned shared representations prior and after update in Eq. 2

�3 Regularization of expanded parts of the network in 2

� Preventing catastrophic forgetting during update of main-model in Eq. 4

µ Amount of change applied to the main-model during update in Eq. 5

α Amount of change applied to the Fisher diagonal after update in Eq. 6

Table 2  The system specification of the experimental 
environment

OS Ubuntu Version 
20.04.3 LTS with Ker-
nel 5.4.0-81-generic

CPU Intel(R) Core(TM) 
i7-6900K 3.20GHz 
with 16 virtual cores

RAM 32 GB

GPU GeForce GTX 1080 Ti

GPU frame buffer 8 GB
1  The implementations of all evaluated models are available at https://​
github.​com/​INL-​Labor​atory/​Conti​nual-​Feder​ated-​IDS.

https://github.com/INL-Laboratory/Continual-Federated-IDS
https://github.com/INL-Laboratory/Continual-Federated-IDS
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implemented the more recent attack types like SSH brute 
force botnet, DoS, DDoS, web, and infiltration attacks. 
Most importantly, they contain content-based attacks like 
SQL injection, XSS attacks, and Heartbleed. Additionally, 
benign profiles are extracted based on the abstract behav-
ior of 25 users over the HTTP, HTTPS, FTP, SSH, and 
email protocols. Besides detecting the anomalies with a 
high detection rate, an IDS should also produce low false-
negative rates. As a result, in addition to anomaly flows, 
we use benign traffic in our experiments.

In order to prepare the data to feed into the DL models, 
we use a packet size of 200 bytes and a flow size of 100 
packets, resulting in a 20,000-dimensional input vector 
(which we will refer to as the flow matrix). This selection 
is based on the analysis of the correspondent datasets 
investigated in Soltani et  al. (2022). To implement the 
proposed framework, we employ the Keras library (Chol-
let 2017) with Tensorflow (Abadi et al. 2015) as its back-
end. The characteristics of our experimental environment 
are shown in Table 2.

Throughout the experiments, we have exploited the 
labeled flows of the CIC-IDS2017 and CSE-CIC-IDS2018 
datasets. These datasets have been split so that 64% of 
the overall flows are used for training the models in the 
experiments, 16% for validating the best hyperparam-
eters, and 20% for testing and evaluating the different 
approaches in the proposed framework.

Model architectures
We evaluate our proposed framework with two differ-
ent architectures (i.e., CNN and LSTM). In the following, 
we describe each architecture’s base and dense parts, as 
discussed in "Continuous adaption to network concept 
drift" Section.

In the first architecture (CNN-based), the base part 
comprises two consecutive 2D convolution layers with 8 
and 16 filters, a 3× 3 kernel size, a stride of 1× 1 , and no 
padding. The dense part comprises four layers with 256, 
128, 64, and 2 neurons, respectively.

The second architecture (LSTM-based) consists of a 
single, many-to-many LSTM layer with 1024 cells as the 
base part. Many-to-many LSTMs can generate separate 
outputs for each of the corresponding sequential inputs. 
The dense part has five layers with 512, 256, 128, 64, and 
2 neurons.

Note that the above-mentioned architectures use dif-
ferent input vectors. The first architecture uses the entire 
flow matrix as the input (i.e. , the input is a matrix of size 
200× 100 ). In contrast, the second architecture takes 
individual packets as the input (i.e.  , the input is a vec-
tor of size 200, however, a sequence of 100 such vectors 
are fed into the model) and estimates a probability for the 
flow label after processing each packet. Consequently, 

the second architecture is more applicable to early attack 
detection in IDSes. Figure 3 illustrates these two different 
architectures.

The ReLU activation function and a dropout of 0.2 are 
used in both architectures for all but the last layer. In 
the last layer of both architectures, a softmax function is 
implemented to compute the benign/anomaly probabili-
ties. Finally, the Adam optimizer is used for training the 
different DL models.

Fig. 3  The CNN-Based and LSTM-Based model architectures used 
in our experiments. The CNN-based models take an entire flow 
as an input, whereas the LSTM-based models work on the packet 
level and process the packets of a flow one by one

Table 3  The hyperparameters used in the evaluations

Parameter Usage Search space Chosen value

�1 Equation 2 [10−6, 10−3, 1, 10] 1

�2 Equation 2 [10−6, 10−3, 1, 10] 10−3

�3 Equation 2 [10−6, 10−3, 1, 10] 10−3

� Equation 4 [10−6, 10−3, 1, 10] 1

α Equation 3.3 [0.4, 0.6, 0.8, 0.9] 0.9

µ Equation 3.3 [0.1, 0.5, 1] 1

Batch size Initial Training [8, 16, 32, 64, 128] 32

Epochs Initial Training [30, 50, 80] 50

Batch size Continual Learning [8, 16, 32] 16

Epochs Continual Learning [10, 20 , 30, 40] 20

k Continual Learning [5, 10 , 12, 15] 10

Batch size Federated Learning [8, 16, 32] 16

Epochs Federated Learning [10, 20, 30 , 40] 20
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Hyperparameter settings
We employ a grid search procedure to obtain the best 
values of hyperparameters, including training batch 
size, epochs, and coefficients of the regularization 
terms. Moreover, for the continual learning algorithm, 
we adhere to the method used in Jain and Kasaei (2021) 
for determining the number of added nodes (i.e.  , 
increasing the value of k to the point where no improve-
ment in the overall detection rate is witnessed). Table 3 
presents the chosen values of all hyperparameters 
used throughout the experiments, in addition to their 
searched space.

Deep adaptive anomaly detectors
In this section, we devise two scenarios for evaluating the 
ability of models to learn new anomalies. Note that in the 
following experiments, we use the term known attack for 
an attack class if a DL model has previously been adapted 
(i.e.  , trained or updated) to that attack. Furthermore, the 
zero-day attack term is used for an attack class that the 
model has not been adapted to. In the first scenario, we 
use a pairwise evaluation: one known attack alongside 
one zero-day (i.e. , new) attack. In the second scenario, we 
aim to evaluate a model’s ability to learn consecutive new 
anomalies over time, i.e. , some anomalies learned continu-
ally over time (as known attacks) and one zero-day attack.

In the first scenario’s experiments, a model is initially 
trained with a sufficient number of flows (i.e.  , about 
3000–5000) from benign and one known attack (i.e.  , 
anomaly). Afterward, for each of the remaining attacks 
(as the new anomalies), a set of 128 flows is used to train 
the expanded initial model (see Algorithm 1). Then, the 
expanded model is compressed back to its initial archi-
tecture (see Eq. 4). Note that to resemble a more practi-
cal circumstance, in the above, the number of unknown 
attack flows is selected as relatively small for evaluating 
the adaptive IDS.

In the evaluation phase, we report the models’ detec-
tion rate for known and unknown attacks according to 
two separate datasets created from the original data, i.e. , 
known and zero-day datasets. The first one contains 500 
known attack flows, and the second one includes 500 
zero-day attack flows. Additionally, 500 benign flows are 
added to both datasets.

The results of the above-mentioned scenario’s experi-
ments are shown in Tables 4 and 5. The first column indi-
cates the experiment’s known attack, which will be used 
to train the initial model besides the model detection 
rate on the corresponding known attack. As mentioned 
above, the goal of this scenario is to adapt (i.e.  , expand, 
train, and compress) the initial model to new anomalies 
separately and report the detection rate at different steps 

(called evaluation states). The second column repre-
sents the state of the reported detection rate and the rest 
of the columns indicate the detection rate of the model 
over new (i.e.  , zero-day) anomalies for three evaluation 
states2: Before Update (zero-day), After Update (zero-
day), and After Update (initial known).

Prior to adapting the model to a new anomaly, the 
initial model detection rate is measured on the corre-
sponding zero-day dataset and reported as Before Update 
(zero-day). The compressed model detection rate on the 
same set is reported as After Update (zero-day) to indi-
cate the model’s improvement after continual learning. 
In addition, the After Update (initial) state represents 
how the updating procedure affects the model’s previous 
knowledge (i.e.  , catastrophic forgetting) by measuring 
the compressed model’s detection rate on the anomaly on 
which the model was initially trained.

The results of Table  4 highlight the notable perfor-
mance of CNN-based models in the adaptation process. 
Before being updated, most models exhibit low accuracy 
in detecting zero-day attacks (the “Before Update (zero-
day)” accuracy for each attack is mostly below 0.45, indi-
cating a lack of knowledge in distinguishing zero-day 
flows from benign ones). However, the detection rate 
after the update rises to an average of above 95% for all 
types of attacks. Additionally, CNN models demonstrate 
exceptional accuracy in detecting their initial attacks 
(i.e.  , an average detection accuracy above 98%) both 
before and after being updated with the new zero-day 
attack.

Besides, based on the results in Table  5, it can be 
derived that LSTM-based models generally achieve 
acceptable detection performance during updates to 
new zero-day attacks. To be more precise, in most of 
the scenarios, the LSTM model detects its initial attack 
with an average rate above 90% after the updating phase. 
Moreover, the detection rate on the zero-day attack rises 
to above 80% after the update, except in cases where the 
model was initially trained on certain attacks like Ports-
can, FTP Patator, and Bruteforce Web. This implies that 
LSTM models rely more on their initial attack knowledge 
during the updating phase to extract the required fea-
tures for detecting the new zero-day attacks.

In the second scenario, similar to the first one, an initial 
model is trained on a known anomaly. Then, considering 
the rest of the anomalies as zero-day attacks, the model 
is sequentially expanded, trained, and compressed on 128 
flows of each of the remaining new attacks. The main dif-
ference between the first and second scenarios is that the 

2  Note that the goal of this evaluation is to investigate the effectiveness of 
the updating procedure when the model is faced with new (i.e.  , zero-day) 
attacks (i.e. , different from its initial known attack). Hence, the experiments 
where the initial and zero-day attacks are the same are not reported.
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latter uses the previous step’s compressed model as the 
initial model for the current training step. In other words, 
during the continual learning procedure, the model 
acquires knowledge about all the previous anomalies and 
considers them as known attacks.

Similar to the previous scenario, we perform different 
evaluation experiments. In each experiment, we use a dif-
ferent permutation for the attack sequence. Finally, the 

detection rate of each step is reported according to the 
average detection rate of all experiments’ corresponding 
steps. As a result, this scenario does not rely on a particu-
lar attack sequence and yields more reliable results for 
real-world situations.

In order to evaluate the second scenario in the test 
phase, we prepare two datasets for each experiment’s 
step. The first one, called zero-day dataset, includes 500 
new attack flows and 500 benign flows. The second one, 
named the known dataset, consists of 500 attack flows 
for each previously known attack in addition to an equal 
number of benign flows for making the dataset balanced. 
Notice that the known dataset expands as the evaluation 
steps progress over the attack sequence.

Figures 4 and 5 depict the results of this experiment 
with CNN-based models over the CIC-IDS2017 and 
CSE-CIC-IDS2018 datasets, respectively. Similarly, 
Figs.  6 and  7 report the results on the same datasets 
with LSTM-based models. The results indicate that 
while the proposed adaptive deep IDS can continu-
ally adapt itself to the new zero-day attacks, it also 
preserves its ability to detect the previously observed 
attacks. Furthermore, the CNN-based models have a 
better average detection rate than LSTM-based mod-
els for detecting new anomalies (we will discuss more 
about the reasons for the different results produced 
by CNN and LSTM models in "Discussion and Future 
Directions" Section). To be more precise, the CNN-
based models have an average detection rate above 95% 
both on new and previously known attacks (i.e.  , after 
the updating procedure). On the other hand, based on 
Figs. 6 and 7, LSTM-based models tend to have a lower 
detection rate when updated on new attacks (78% at 
the end of the updating phase). However, it is worth 
mentioning that their previous knowledge is preserved 
during the updating procedure (i.e. , the detection rate 
on known anomalies does not decrease after learning a 
new attack).

Fig. 4  CNN-Based model detection rate after each step of learning 
a new anomaly on the CIC-IDS2017 dataset

Fig. 5  CNN-Based model detection rate after each step of learning 
a new anomaly on the CSE-CIC-IDS2018 dataset

Fig. 6  LSTM-Based model detection rate after each step of learning 
a new anomaly on the CIC-IDS2017 dataset

Fig. 7  LSTM-Based model detection rate after each step of learning 
a new anomaly on the CSE-CIC-IDS2018 dataset
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Federated learning
As discussed in “Multi-Agent IDS” Section, the federated 
learning technique is essential to a distributed DL-based 

IDS. In this section, we aim to evaluate the performance 
of the federated learning implementation of our pro-
posed framework.

Although agents often may have encountered benign or 
known attacks in practice, we consider a more challeng-
ing case in which each agent analyzes a completely new 
zero-day attack for evaluating the proposed multi-agent 
architecture. In this scenario, the main-model is ini-
tially trained on an anomaly as the known attack. Then, 
a process thread is designated as an agent for each of the 
remaining anomalies. Each agent is responsible for learn-
ing a new anomaly and updating the main-model. When 
this (simultaneous) learning and (asynchronous) updat-
ing process is done, the performance of the final version 
of the main-model is evaluated and reported in Tables 6 
and  7. Also, in our experiments, we set α in (6) as the 
ratio between the number of samples used in training the 
main-model and each sub-model, which was approxi-
mately 0.9.

The evaluation procedure is similar to Sect.  4.2. The 
main difference is that the zero-day dataset comprises a 
collective set consisting of 500 flows from each zero-day 
anomaly and a proportionate amount of benign flows. 
Consequently, the Unknowns-After state represents the 
model detection rate on all the unknown attacks after the 
federated updating phase.

Based on Table  6, the CNN-based models prove to 
function well in adapting to new attack knowledge. 
With an average detection rate of 95% for the CIC-
IDS2017 and 99% on the CSE-CIC-IDS2018 datasets, 
the CNN-based main-models learn to detect the new 
zero-day attack with the knowledge obtained through the 
sub-models.

Moreover, Table 7 indicate that the LSTM-based main-
models tend to detect most zero-day attacks acceptably 
(i.e. , with a detection rate above 75%) except for attacks 
such as Portscan, DoS SlowHttpTest, and SSH Patator.

Early attack detection through packet assessment
This section evaluates an LSTM model’s ability to gradu-
ally assign a probability to each packet of an incoming 
flow. We consider a many-to-many LSTM-based model 
with the same architecture described in “Model Archi-
tectures” Section and train it on a collection of all the 
anomalies in the CIC-IDS2017 dataset. The model yields 
an anomaly probability per input packet. Finally, we have 
an output vector whose size equals the number of pack-
ets in the incoming flow.

The average probability the model assigns to a flow’s 
true (actual) label, as a function of each incoming packet, 
is depicted in Fig.  8. The results demonstrate that with 
only 15 packets, the model can predict a flow’s label with 
more than 80% detection rate.

Table 6  CNN-based model detection rate in the federated 
learning approach on the CIC-IDS2017 and CSE-CIC-IDS2018 
datasets

Known attack State

Unknowns-
before

Unknowns-
after

Known-after

Botnet 0.49 0.96 0.95

DDos 0.49 0.96 0.95

Portscan 0.51 0.92 0.92

DoS SlowHttpTest 0.65 0.97 0.95

DoS SlowLoris 0.54 0.96 0.96

DoS Hulk 0.58 0.95 0.95

DoS GoldenEye 0.63 0.96 0.95

FTP Patator 0.49 0.92 0.91

SSH Patator 0.49 0.95 0.95

BruteForce Web 0.49 0.94 0.94

XSS Web 0.61 0.90 0.91

Botnet (2018) 0.49 0.97 0.99

DoS SlowLoris (2018) 0.48 0.99 1.00

DoS GoldenEye (2018) 0.58 0.99 0.99

FTP BruteForce (2018) 0.49 0.98 1.00

SSH BruteForce (2018) 0.49 0.98 1.00

Table 7  LSTM-based model detection rate in the federated 
learning approach on the CIC-IDS2017 and CSE-CIC-IDS2018 
datasets

Known attack State

Unknowns-
before

Unknowns-
after

Known-after

Botnet 0.69 0.78 0.87

DDos 0.64 0.83 0.90

Portscan 0.48 0.50 0.98

DoS slowHttpTest 0.61 0.61 0.87

DoS SlowLoris 0.54 0.90 0.90

DoS hulk 0.79 0.89 0.89

DoS goldenEye 0.64 0.90 0.92

FTP patator 0.74 0.74 0.89

SSH patator 0.40 0.62 0.78

BruteForce web 0.80 0.81 0.94

XSS web 0.64 0.72 0.91

Botnet (2018) 0.51 0.59 0.98

DoS slowLoris (2018) 0.70 0.80 0.98

DoS goldenEye (2018) 0.64 0.80 0.98

FTP bruteForce (2018) 0.52 0.62 0.99

SSH bruteForce (2018) 0.48 0.5 0.91
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Fig. 8  The average true label probability of each flow’s packet sequence in the CIC-IDS2017 dataset
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Discussion and future directions
In this section, we discuss and analyze the experiments’ 
main results and mention possible directions for future 
research. The evaluations in “Deep Adaptive Anomaly 
Detectors” and  “Federated Learning” Sections indicate 
that in terms of adaptability, CNN models tend to learn 
new traffic patterns better than LSTM models. This phe-
nomenon could be explained by the fact that CNN lay-
ers extract features at the flow level, which capture the 
spatial characteristics of packets in a given flow. On the 
other hand, while LSTM layers are well-suited for obtain-
ing the temporal relation between sequential packets, the 
feature vector extracted by them is based on the trans-
ferred history of the previous packets. Consequently, the 
direct data observation by CNN models can generate 
better features for representing the flows. While the clas-
sification patterns based on these features might change 
over time (according to the traffic concept drift), those 
features themselves embody a suitable representation of a 
flow. Thus, the dense layers in CNN-based models have a 
more straightforward task for tuning their weights when 
facing new traffic. The weakness of LSTM models in the 
case of learning new attacks (Table 5) is especially aggra-
vated for attacks that use contents similar to benign flows 
(e.g. , portscan and FTP Patator3).

Furthermore, in our experiments, we have investigated 
the models’ performances for adaptation to new traffic 
under strict constraints. To be more precise, the models 
are provided with a low amount of knowledge both at the 
initial training (i.e.  , only one known anomaly is used in 
the initial training phase) and updating phase (i.e.  , only 
128 flows are used as the new traffic samples). Accord-
ing to our evaluations, by relaxing the above constraints, 
the results of LSTM-based models improve when trained 
with more data. On the other hand, based on the results 
of “Early Attack Detection Through Packet Assessment” 
Section, LSTM models can detect an anomaly with fewer 
packets, thus being more efficient and applicable to real-
world scenarios. More precisely, the early detection 

capability of LSTM-based models can help mitigate the 
intrusion’s impact on the target organization. Overall, the 
initial training of the LSTM-based models needs more 
effort, but they are more efficient in detecting with fewer 
packets and the updating process (see Table 8).

Regarding the catastrophic forgetting issue, the results 
in “Deep Adaptive Anomaly Detectors” Section indicate 
that regardless of how well the model adapts itself to new 
traffic, its performance on its previous knowledge will 
not deteriorate. Figures  4,  5,  6 and  7 indicate that after 
learning the new anomaly in each step, the model detec-
tion rate on previously learned anomalies is consistent 
with the previous step’s detection rate on both new and 
old anomalies.

The IDS performance and its required resources are 
other determinative points in selecting the deep model 
architecture. According to Table  8, LSTM-based mod-
els are more well-suited for practical IDSes. Although 
they need more time for the initial training of the model, 
they update themselves faster in continual updating pro-
cedures and consume less memory for their models. As 
mentioned, the reported initial training time (in Table 8) 
is based on the average elapsed time for each of our dif-
ferent experiments with about 3000–5000 flows. The 
updating and validation times are reported according to 
processing 128 and 1000 flows, respectively.

One should also consider the efficiency of the updating 
procedure in an adaptive deep intrusion detection sys-
tem. An IDS should update itself with the traffic concept 
drift as early as possible. Consequently, in this paper, we 
evaluate the updating procedure (Deep Adaptive Anom-
aly Detectors” Section) with only 128 flows of the new 
traffic, which is considered relatively low compared to the 
number of flows used to train an initial model (i.e., about 
3000~5000 flows for each attack).

Considering the distributed implementation of the 
proposed framework (evaluated in “Federated Learn-
ing” Section), the federated distillation procedure yields 
acceptable results on both known and new anoma-
lies while the agents learn novelty attacks and update 
the model asynchronously. As a result, the proposed 
multi-agent IDS framework can manage big data issues 
in practical situations. Furthermore, as discussed in 

Table 8  Resource and time consumption of CNN-based and LSTM-based architectures, where each number is averaged over different 
attacks

Initial model size 
(Memory) (MB)

Expanded model size 
(Memory) (MB)

Initial training 
(Time) (min)

Updating/
expansion (Time) 
(s)

Updating/
compression (Time) 
(min)

Validation 
(Time) (s)

CNN-based 300 320 7 15 6 1.22

LSTM-based 20 23 13 2 2 2.97

3  Unlike FTP Patator, SSH Patator uses encrypted traffic. The randomness 
of the flow bytes makes it different from the benign traffic. Similarly, other 
attacks, such as web attacks and a variety of DOS attacks, use slightly differ-
ent contents.
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“Multi-Agent IDS” Section, the proposed framework can 
also improve an agent’s data privacy.

Based on the obtained results, we discuss that the pro-
posed multi-agent architecture is advantageous in several 
aspects: 

1.	 In terms of privacy, since only gradients are 
exchanged between an agent and the main-model, 
the IDS can be shared between numerous organi-
zations. Each can contribute to updating the main 
anomaly detection model while preserving their data 
privacy. Even on a geo-distributed scale, different 
IDSes and organizations scattered over various loca-
tions can all collaborate with the main-model (i.e.  , 
sharing center) to securely adapt themself to new 
traffic patterns. An overall schematic of this scenario 
is depicted in Fig. 9.

2.	 With the emergence of Big Data, IDSes have to face 
colossal and highly fast generated data streaming 
into the network (Othman et al. 2018). A multi-agent 
architecture allows the dispersion of data among the 
sub-models in a parallel structure (i.e.  , load balanc-
ing the traffic flows, as demonstrated in Fig.  10), 
improving the efficiency in both detecting intrusions 
and updating the IDS to new traffic behavior through 
a distributed training process.

3.	 Interleaving traffic packets can be tackled by assign-
ing each flow’s packets to a specific agent (note that 
each agent can be assigned multiple flows).

To extend this research, we mention possible direc-
tions for future studies. In the deep learning scope, it is 
observed that adversarial attacks are a critical challenge 

for DL models (Khamis et  al. 2020; Madry et  al. 2018; 
Akhtar and Mian 2018). In these types of attacks, the 
model is misled with deceptive data. Consequently, in 
future studies, one can evaluate the proposed framework 
against adversarial attacks and devise defense solutions 
for reducing this threat.

Moreover, the different traffic classes passed to agents 
are also an important issue. As discussed in Sect.  3.3, 
the multi-agent architecture approach proposed in this 
paper provides a practical resolution for IDSes from 
two aspects: (1) scalability in distributed IDSes for han-
dling concurrent and high-throughput volumes of traffic 
and (2) knowledge sharing between differently-located 
agents. For the latter, one should consider the following 
challenge:

Generally, attack traffic can be divided into two main 
categories: statistical and content-based. Statistical 
attacks correlate highly with deployment circumstances 
(e.g., the topology of the target network, server capac-
ity, geographic location, etc.). In contrast, content-based 
attacks are independent of the environmental charac-
teristics of their target network. Although, according 
to the importance and impact of content-based attacks 
(Malware 2023), most traditional signature-based IDSes 
pivot on these attacks, the proposed framework has some 
challenges with statistical ones. For instance, based on 
the different attributes of the targeted servers, the veloc-
ity of sent request rates (e.g., for DDoS or DoS attacks) 
differ between different organization types. On the other 
hand, content-based attacks such as XSS, CSRF, and SQL 
injection tend to have the same signature regardless of 
their target domain. So, future research could analyze the 
aspects and challenges of sharing the attack knowledge 
of different attack types (statistical or content-based) 
between agents in inhomogeneous environments.

Fig. 9  An illustration of the geo-distributed IDSes that can share their 
knowledge through a sharing center (i.e. , main-model)

Fig. 10  An illustration of load balancing in the proposed multi-agent 
framework
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A straightforward solution is to disperse the agents in 
environments with the same characteristics. Another 
possible solution is to use a local, initial, threshold-based 
IDS for each agent to filter the statistical attacks, and 
only benign and content-based attacks flow to the agent 
model. Either way, to the best of our belief, this topic is 
worth further research.

In the end, to complete our analysis, we compare the 
proposed framework with previous related research 
studies from different aspects. As demonstrated in 
Table  9, the proposed framework simultaneously pro-
vides solutions for the three aforementioned challenges 
of DL-based IDSes: continuous adaption, multi-agent 
IDSes, and early attack detection. Furthermore, note 
that most proposed DL-based IDS frameworks depend 
on labeled datasets. However, for practical applications, 
future studies can develop an unsupervised version of 
our proposed online adaptive anomaly detection frame-
work. We believe that, in addition to the suggestions 
provided in this work, accomplishing this last step will 
result in a DL-based IDS more suitable for real-world 
scenarios.

Conclusion
This paper presented a novel framework for DL-based 
IDSes that mitigates three practical issues these systems 
are currently facing. Namely, we provided solutions for 
continuously adapting the IDS to network concept drift, 
early attack detection, and efficiently functioning in a 
multi-agent environment (e.g. , sharing the attack knowl-
edge from different located IDS sensors, load-balancing 
the flows between different agents and managing inter-
leaving flows).

The proposed framework exploits continual learn-
ing algorithms to update DL-based models for adapting 
to the concept drift in attack/benign traffic behaviors. 
Additionally, it uses federated learning for designing 
multi-agent IDSes and providing privacy and load bal-
ancing for big data traffic. Furthermore, the paper inves-
tigates the usage of Long Short-Term Memory networks 
(LSTMs) for packet labeling and early anomaly detection 
to design more practical IDSes. Finally, the framework is 
implemented and evaluated with two architectures: con-
volutional neural networks (CNNs) and LSTM-based 
models. The results indicate that while both architectures 
perform well, CNN models prevail in terms of detection 
rate, and LSTM models are more suitable for early anom-
aly detection with just a few packets.

Table 9  Comparison between the previous related studies and the proposed framework

DL-based Unsupervised Continuous
Adaptation

Multi-Agent Early Attack
Detection

Dataset

 Yin et al. (2017) � NSL-KDD

 Vinayakumar et al. (2017) � KDDCup 99

 Thakur et al. (2021) � CIC-IDS2017

 Riyad et al. (2019) � � KDD99

 Kim and Park (2019) � � KDD99, NSL-KDD

 Papamartzivanos et al. (2019) � � � KDD99, NSL-KDD

 Gupta et al. (2022) � NSL-KDD, CIDDS-001, CIC-IDS2017

 Wang et al. (2021) � KDD99, NSL-KDD,
UNSW-NB15, CIDDS-001, ADFA-LD

 Wang et al. (2022) � UNSW NS2019, ISCX IDS 2012, 
CIC-IDS2017, CIC-ANDMAL2017

 Cretu-Ciocarlie et al. (2009) � � Network Traffic of Columbia 
University’s Computer Science 
Department

 Folino et al. (2021) � Semi-supervised � CIC-IDS2017, ISCXIDS2012

 Soltani et al. (2023) � CIC-IDS2017, CSE-CIC-IDS2018

 Mirza and Cosan (2018) � � ISCXIDS2012

 Gao et al. (2019) � � SCADA simulated testbed

Proposed Framework � � � � CIC-IDS2017, CSE-CIC-IDS2018
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