
Soltani et al. Cybersecurity (2024) 7:9
https://doi.org/10.1186/s42400-023-00199-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Cybersecurity

A multi‑agent adaptive deep learning
framework for online intrusion detection
Mahdi Soltani1   , Khashayar Khajavi1   , Mahdi Jafari Siavoshani1    and Amir Hossein Jahangir1*    

Abstract 

The network security analyzers use intrusion detection systems (IDSes) to distinguish malicious traffic from benign
ones. The deep learning-based (DL-based) IDSes are proposed to auto-extract high-level features and eliminate
the time-consuming and costly signature extraction process. However, this new generation of IDSes still needs
to overcome a number of challenges to be employed in practical environments. One of the main issues of an applica-
ble IDS is facing traffic concept drift, which manifests itself as new (i.e. , zero-day) attacks, in addition to the changing
behavior of benign users/applications. Furthermore, a practical DL-based IDS needs to be conformed to a distributed
(i.e. , multi-sensor) architecture in order to yield more accurate detections, create a collective attack knowledge based
on the observations of different sensors, and also handle big data challenges for supporting high throughput net-
works. This paper proposes a novel multi-agent network intrusion detection framework to address the above short-
comings, considering a more practical scenario (i.e., online adaptable IDSes). This framework employs continual deep
anomaly detectors for adapting each agent to the changing attack/benign patterns in its local traffic. In addition,
a federated learning approach is proposed for sharing and exchanging local knowledge between different agents.
Furthermore, the proposed framework implements sequential packet labeling for each flow, which provides an attack
probability score for the flow by gradually observing each flow packet and updating its estimation. We evaluate
the proposed framework by employing different deep models (including CNN-based and LSTM-based) over the CIC-
IDS2017 and CSE-CIC-IDS2018 datasets. Through extensive evaluations and experiments, we show that the proposed
distributed framework is well adapted to the traffic concept drift. More precisely, our results indicate that the CNN-
based models are well suited for continually adapting to the traffic concept drift (i.e. , achieving an average detection
rate of above 95% while needing just 128 new flows for the updating phase), and the LSTM-based models are a good
candidate for sequential packet labeling in practical online IDSes (i.e. , detecting intrusions by just observing their first
15 packets).

Keywords  Deep learning, Intrusion detection, Continual learning, Online IDS, Federated learning, Adaptable IDS,
Zero-day attacks, Machine learning

Introduction
Nowadays, the growth of cyber threats highlights the
importance of security devices such as intrusion detec-
tion systems (IDSes). The network security analyzers

use IDSes to monitor the network data, analyze them,
and detect any kind of intrusions. There are mainly two
categories of intrusion detectors: signature-based and
machine learning-based (ML-based) (Labonne 2020).

The main advantage of ML-based IDSes over signa-
ture-based ones is the absence of the costly and time-
consuming signature extraction process in the former.
Consequently, ML-based IDSes, especially deep learning
ones, are considered the new generation of IDS devices.
The ability of deep learning-based (DL-based) IDSes to

*Correspondence:
Amir Hossein Jahangir
jahangir@sharif.ir
1 Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00199-0&domain=pdf
http://orcid.org/0000-0003-3492-2049
http://orcid.org/0000-0001-8270-9707
http://orcid.org/0000-0003-3860-5999
http://orcid.org/0000-0002-8837-0668

Page 2 of 25Soltani et al. Cybersecurity (2024) 7:9

auto-extract high-level features and classify different
attack/benign traffic flows is their main advantage com-
pared to the traditional ML-based IDSes. Moreover, due
to the high-dimensional processing ability of DL models,
the DL-based IDSes are good candidates for inspect-
ing traffic content, as suggested in the recently proposed
Deep Intrusion Detection (DID) framework (Soltani et al.
2022).

Many studies in the literature have applied deep learn-
ing methods to offline IDSes (Thakkar and Lohiya 2021;
Soltani et al. 2023). Nevertheless, in this paper, we focus
on simultaneously adapting DL-based IDSes for the fol-
lowing three practical challenges of online intrusion
detection.

The first challenge is related to the continuous adapt-
ability of a DL-based IDS to an organization’s traffic since
both attack and benign traffic patterns might encoun-
ter concept drift with the passage of time. For example,
switching between semester and vacation times in the
universities, adding new services to the web servers, and
the emergence of new popular applications and proto-
cols are examples of the content and behavior changes of
benign user/traffic over time. Moreover, the characteris-
tics and content of attack traffic also change continuously.
This is due to the fact that the number of revealed vulner-
abilities is increasing (NIST 2021), and additionally, novel
attacks are devised on the existing vulnerabilities.

The second challenge in this scope stems from the dis-
tributed nature of anomaly detection. While DL-based
IDSes have proved themselves to be accurate, there is still
a need to suit them to a distributed architecture from two
practical points of view:

1.	 It has been well discussed that relying solely on a
single instance or sensor of an IDS will often yield
inaccurate intrusion detection (Bhargavi and Vai-
dehi 2013). Large and complex network architec-
tures require an ensemble of IDSes, each strategi-
cally placed in a specific location, ensuring optimal
security and robustness (Iyengar 2020; Seresht and
Azmi 2014). Furthermore, the collective knowledge
of these scattered IDSes can be shared with a cen-
tral unit to produce more comprehensive informa-
tion and awareness regarding the network (Chai et al.
2021).

2.	 While relying on DL models, handling concurrent
flows is not trivial. In most large networks, online
traffic consists of many concurrent and interleaving
flows. Each flow has a different start, end, and dura-
tion time. Consequently, considering a specific time
window, the traffic consists of packets belonging to
different flows. On the other hand, DL models need
the sequence of a particular flow’s packets to deter-

mine the flow label. As a result, these interleaving
packets cannot be fed into a single DL model, and the
flows should be separated beforehand.

The third and last challenge is that the performance of an
online IDS depends on its ability to determine the correct
flow label by inspecting fewer packets (i.e. , early attack
detection). A reliable and fast attack detection can stop
the attack earlier and mitigate its full impact on the target
organization. Similar to the applicable traditional online
IDSes, the aim is to determine the flow’s label with some
confidence per each packet arrival. When the IDS ana-
lyzes more flow packets, it increases its confidence score
of the flow label. Security administrators can determine
the thresholds of acceptable confidence scores according
to the sensibility of the organization’s assets.

To summarize, the contributions of this paper to make
the DL-based IDSes more practical are as follows:

•	 We design a practical method for adapting DL-based
IDSes to the network concept drift and new traffic
patterns. A multi-stage deep continual learning algo-
rithm is devised for this manner.

•	 We propose a novel multi-agent framework suitable
for a distributed intrusion detection environment.
The different agents can detect intrusions simulta-
neously (i.e. , in a multi-sensor environment) and
also continuously adapt themselves to the traffic
changes in their local sub-network. Furthermore, the
agents can share and exchange their local knowledge
through a proposed federated learning approach.

•	 We also take into account the requirements for a
practical online IDS by analyzing the incoming traffic
on the packet level while considering the flow con-
cept (i.e. , determining the attack probability of a flow
by observing each incoming packet)

	 We conduct extensive experiments and analyses to
demonstrate the effectiveness of the proposed frame-
work from different perspectives. We show that by
exploiting deep continual learning methods, the
proposed framework can adapt the IDS to new pat-
terns in the network with a relatively small number of
new flows (i.e. , 128). Additionally, by utilizing LSTM
models, the proposed framework is able to detect
the intrusions of the state-of-the-art datasets CIC-
IDS2017 and CSE-CIC-IDS2018 by just observing
their first 15 packets. Furthermore, we show that the
proposed framework performs well in a multi-agent
environment, and different IDSes are able to effec-
tively share their obtained attack knowledge, result-
ing in more reliable and robust intrusion detection.

The rest of this paper is organized as follows. In the next
section, we first review the related works in DL-based

Page 3 of 25Soltani et al. Cybersecurity (2024) 7:9	

intrusion detectors, deep continual learning methods,
packet labeling, and deep federated learning. In sec-
tion "Framework", we describe the proposed framework
for online intrusion detectors. "Experimental evaluation"
Section presents details of experiments, dataset preproc-
essing, and evaluation results of the framework imple-
mentations. "Discussion and future directions" Section
discusses and analyzes the results of the experiments and
explores some possible future directions. Finally, "Con-
clusion" Section concludes the paper.

Related works
In this section, we briefly review both the previous
approaches that have exploited deep learning for intru-
sion detection systems and also concepts that will aid us
in designing our proposed online anomaly-based IDS
(i.e. , sequence labeling, continual learning, and federated
learning).

Deep learning‑based intrusion detection
Due to the capabilities of deep learning algorithms,
including auto-extraction of suitable features, process-
ing high dimensional data (e.g., content bytes of a flow),
and supporting the time-series nature of the data, many
studies have applied them in the scope of network intru-
sion detection. In the following, we review some of these
research studies.

In Yin et al. (2017), the authors employ recurrent neu-
ral networks (RNN) for intrusion detection and evaluate
binary and multi-class classification performance over
the NSL-KDD dataset. In Vinayakumar et al. (2017),
the intrusion detection application of different architec-
tures of CNN-based DL models (e.g. , CNN, CNN-RNN,
CNN-LSTM, and CNN-GRU) are evaluated using the
KDDCup 99 dataset. Similarly, in Saba et al. (2022), the
authors have exploited CNN models to design an Anom-
aly-Based IDS for IoT networks.

In Alghamdi and Bellaiche (2023), the authors use an
ensemble-based deep learning technique to design intru-
sion detection systems for IoT networks. Their approach
consists of an initial binary LSTM model that indicates
whether the input traffic is normal or an attack. In the
latter’s case, a voting mechanism is conducted between
three classifiers, i.e. LSTM, CNN, and artificial neural
network (ANN) to perform multi-class classification on
the input traffic and infer its corresponding attack type.
Moreover, their proposed system processes the data
in two modes: batch mode for training the models and
stream mode to deal with the traffic stream in real-time.

Distributed intrusion detection using mobile agents is
discussed in Riyad et al. (2019). Each mobile agent analy-
ses the traffic and detects the threats independently. Con-
sequently, this distribution operation evades the single

point of failure problem. Additionally, they propose algo-
rithms for reducing false positives by using inter-agent
communications. They use the principal component
analysis (PCA) algorithm to select the traffic features.
Then, an ensemble of support vector machines (SVM),
ANN, and RF algorithms classify the input traffic. The
evaluation has been done on the KDD99 dataset.

In Abou El Houda et al. (2022), The authors propose
an explainable IDS for IoT. Using Explainable Artifi-
cial Intelligence (XAI) techniques, they aim to design a
framework in which the decisions of the Dl-based IDS
are interpretable.

Employing reinforcement learning (RL), particularly
deep Q-learning, in network intrusion detection sys-
tems is the main contribution of the proposed frame-
work in Kim and Park (2019). The authors use two deep
auto-encoder in their RL framework. One is for training
the Q-learning model, and the other is for updating the
model. The framework periodically applies mini-batch
updates or Q-learning updates to make the model more
adaptable to the continual evolution of cyber-attacks.

A deep learning self-adaptive approach is presented
in Papamartzivanos et al. (2019). This approach consists
of a transformation layer (the encoder) and a supervised
learning deep model. It depends highly on the change
signals from the network mapper modules. Such enti-
ties should determine any network changes, such as run-
ning services, available hosts, the operating system, and
potential vulnerabilities. The approach learns a new auto-
encoder model based on the stored traffic related to the
signal period time and an archived initial labeled data-
set. Then, it uses the encoder part as the new transfor-
mation layer by receiving the change signal. As a result,
the model adapts itself to the new traffic distributions.
A weakness of the mentioned approach is that, in many
cases, receiving change signals from a network mapper is
not a reasonable assumption for changing the model. For
example, sensing a change in the network load may result
from a DDoS/DoS attack. More generally, the model
should not adapt its transformation layer according to
the change signals triggered by attacks.

CSE-IDS (Gupta et al. 2022) focuses on the imbal-
anced nature of classes in the network security scope.
It proposes a three-layer deep learning-based IDS and
assumes three traffic categories: benign traffic, major-
ity attacks with frequent samples, and minority attacks
that represent infrequent ones. A cost-sensitive deep
neural network (DNN) separates the benign traffic from
the malicious ones in the first layer. The cost-sensitive
loss function handles the imbalanced number of attacks
and benign traffic. Then, a boosting ensemble, namely
eXtreme Gradient Boosting, separates the suspicious
samples into the benign class, different majority attack

Page 4 of 25Soltani et al. Cybersecurity (2024) 7:9

classes, and a single class representing all minority
classes. Finally, an RF classifies the minority attacks into
their respective classes. Besides, layer 2 and layer 3 use
two oversampling techniques, namely, random oversam-
pling and SVM-SMOTE. Their evaluation is based on the
pre-extracted features of the NSL-KDD, CIDDS-001, and
CIC-IDS2017 datasets.

In Wang et al. (2021), the authors integrate the stacked
denoising auto-encoder (SDAE) (for reducing the noise of
network traffic) and the extreme learning machine (ELM)
(for increasing the IDS speed) as the SDAE-ELM model.
This model is presented for a network intrusion detec-
tion system (NIDS). Besides, they propose to integrate
the deep belief networks (DBN) (for extracting features
from the log files of each host) and the softmax classifier
(for determining the attack types) as the DBN-Softmax
for the host-based intrusion detection system (HIDS).
Their models use unsupervised data for the pretraining
phase (learning the DAE and DBN layers of the NIDS
and HIDS, respectively). Then, the fine-tuning phase
uses supervised learning for training the SDAE-ELM and
DBN-Softmax. The authors evaluate the NIDS based on
the pre-extracted features of KDD99, NSL-KDD, UNSW-
NB15, and CIDDS-001 datasets. Additionally, the AFDA-
LD dataset is used to evaluate the HIDS model.

Cretu-Ciocarlie et al. (2009) propose an ensemble of
n-gram based anomaly detectors (i.e. , micro-models).
The voting scheme determines the predicted label of the
evaluation traffic. They use time-delimited slices of the
dataset for training the disjoint micro-models. Addition-
ally, the model updates itself by generating new models
according to the recently received traffic. The new micro-
models take the place of the oldest ones. Accordingly, the
intrusion detector can be adaptable to the traffic concept
drift.

In Soltani et al. (2023), the authors propose DOC++ as
a deep novelty-based classifier to detect not-seen traffic
(both the zero-day attacks and new benign behaviors). In
addition, using a joint deep clustering algorithm, enough
pieces of each new novel class evidence are gathered and
used in the supervised labeling process and correspond-
ing updating phase. The update process that is respon-
sible for learning the newly labeled concepts uses an
active-passive strategy as the following steps:

1.	 Clone the existing active model to a passive model.
2.	 Run the cloned model’s training, clustering, and post-

training phases.
3.	 Migrate the traffic to the new model.

Even though the above-mentioned and many other simi-
lar research studies use terms like deep learning-based
online/real-time NIDS, most of them solely focus on

improving the detection speed and accuracy (i.e. , detec-
tion rate) of their models in comparison with the other
approaches. Speed and accuracy are critical parameters
in a real-world NIDS, but there are many other practical
challenges in online NIDSes. For example, packet inter-
leaving is an issue in real network traffic: packets of dif-
ferent flows are interleaved, and the proposed system
should consider this challenge. Furthermore, network
traffic concept drift is a prevalent phenomenon, and a
practical IDS should adapt itself to these continuous
changes. Additionally, a practical NIDS should determine
the flow label upon receiving each packet and declare a
confidence score for its decision. Measuring the perfor-
mance of an online IDS is based on its capability to deter-
mine the true flow label with acceptable confidence by
observing fewer packets of a flow.

However, to the best of our knowledge, the above
challenges have not been investigated yet in most of the
research studies related to online deep learning-based
NIDSes.

Sequence labeling
As mentioned before, an ideal characteristic that an IDS
should possess is the ability to determine whether a flow
is categorized as a possible threat in a gradual manner.

To be more precise, since the packets corresponding
to a flow do not arrive simultaneously with the arrival of
the first packet of a flow, the IDS presents an initial prob-
ability regarding the possibility of whether that flow is an
attack. As time progresses, with the emergence of further
packets, the IDS should produce a more accurate likeli-
hood regarding that flow.

One should bear in mind that in conjunction with
adjusting more to real-world scenarios, this scheme tends
to be more efficient since there is no need to allocate time
and computational resources to accumulate all packets
of a flow (Hwang et al. 2019). For this purpose, the IDS
needs to perform two essential tasks:

1.	 Produce labels for each packet individually, rather
than yielding a single label for the flow.

2.	 Use temporal features for estimating the probability.
In other words, the IDS should also consider the pre-
vious packets of a flow in the inference process for a
new packet.

Due to their ability to preserve memory over sequential
inputs, RNN networks, specifically LSTMs, have been
widely exploited in several domains (since they excel in
circumventing the vanishing gradient problem (Hochre-
iter and Schmidhuber 1997)). For instance, in the field of
natural language processing (NLP), the research studies

Page 5 of 25Soltani et al. Cybersecurity (2024) 7:9	

(e.g. , Ma and Hovy (2016) and Huang et al. (2015)) have
used LSTMs to tackle sequence labeling tasks like part of
speech tagging and chunking.

Similarly, some researchers have utilized LSTMs for
network traffic classification. In Hwang et al. (2019), net-
work traffic classification is done at the packet level by
mapping this task to a sentence classification problem
in NLP. This approach considers packets and their head-
ers as sentences and words, respectively. The headers of
a packet are used to construct a 64-dimensional word
vector, which is used as the input for an LSTM model to
perform the classification. In Lopez-Martin et al. (2017),
although several networks comprising LSTM segments
have been designed to classify packets sequentially, they
require the entire flow for classification.

In Ansari et al. (2022), the authors employ deep models
with gated recurrent units (GRU) to generate alerts for
malicious sources. In their approach, a model is trained
to learn the dependencies between previously generated
alerts and predict future alerts for a malicious source.

In Gao et al. (2019), both a many-to-many and a many-
to-one LSTM are designed to address intrusion detection
systems for the supervisory control and data acquisition
(SCADA) protocol, and their results are compared.

Since a many-to-many LSTM model can classify pack-
ets individually and sequentially, our approach utilizes
this technique as one of the base DL models inside the
proposed adaptive framework. Furthermore, LSTMs can
work with variable length input sequences (i.e. , flows)
(Lee et al. 2021), thus making them more efficient and
practical.

Deep continual learning
In the proposed framework, our primary attention has
been devoted to a specific family of online learning algo-
rithms named Continual learning (CL), defined as the
ability to learn new tasks that arrive sequentially by effi-
ciently exploiting the knowledge acquired in previous
tasks (Van de Ven and Tolias 2019). The main dilemma
in CL is a phenomenon called catastrophic forgetting,
characterized by the model performing poorly on the old
tasks when trained on the new ones.

In recent years, valuable methods have been proposed
to mitigate the problem of catastrophic forgetting for
continual learning. In the following, we will review the
two main categories related to our research.

Continual learning based on regularization
A prevalent technique for continual learning is to exploit
different regularization terms and constraints to avoid
detrimental weight changes when training on new tasks.
One naive solution would be to use an L2-Regularization

term, but this approach will prevent the model from effi-
ciently learning new tasks.

A ground-breaking technique known as elastic weight
consolidation (EWC) is proposed in Kirkpatrick et al.
(2017), which uses a regularization term based on the
diagonals of a set of Fisher information matrices to
reduce the plasticity of the weights of greater impor-
tance to the previous tasks. The values on the diagonal
of the Fisher information matrix measure the amount of
information that the training samples provide for each
parameter (i.e. , weight) of the trained DL model, thus
representing an importance factor for each weight. To
be more precise, based on the definitions in Martens
(2020); Van de Ven and Tolias (2019), the ith element of
the Fisher information matrix diagonal is proportional to
the expected value (i.e. , based on the training data distri-
bution) regarding the Hessian of the model’s output with
respect to the ith weight. Consequently, a high Hessian
for a weight signifies the plasticity of the gradient of the
model output based on that weight. Note that in a given
task, the weights obtained from the training (i.e. , opti-
mization) procedure often represent a local minimum for
the desired loss function. As a result, changes made to
parameters with a high hessian would result in a substan-
tial drift from that minima, resulting in a performance
decline of the model on the mentioned task.

Since in EWC, the number of quadratic terms would
increase linearly with the advent of new tasks, online
EWC is proposed in Schwarz et al. (2018), which uses
a single Fisher information matrix and updates it each
time it learns a new task. Another method named syn-
aptic intelligence (SI) is proposed in Zenke et al. (2017).
Instead of the Fisher information matrix, it tries to com-
pute an online importance factor for each weight, which
describes its importance across all previously learned
tasks.

Continual learning based on expansion
A number of approaches focus on the main idea to
expand the network capacity by adding new layers or
extending the previous layers to accommodate the
knowledge associated with the new task (Rusu et al. 2016;
Yoon et al. 2017; Jain and Kasaei 2021).

Progressive neural networks (PNN), as described in
Rusu et al. (2016), are models comprised of columns that
each preserve a connection with all of their predecessors.
Each column can be considered an individual network
with a fixed architecture that includes blocks repre-
senting a network layer. A new column is added to the
model with the arrival of new data, and training is done
via freezing the previous columns. The main drawback of

Page 6 of 25Soltani et al. Cybersecurity (2024) 7:9

this approach is the constant, substantial increase of the
network size for every new task, thus making it infeasible
to maintain in the long run. Several methods have been
proposed to circumvent this flaw by expanding the net-
work as efficiently as possible.

As described in Yoon et al. (2017), dynamically expand-
able networks (DEN) try to design an architecture that
dynamically increases the network capacity when faced
with new training data. At its core, a DEN first aims to
modify the current network to perform well on the new
data. In case of failure, each layer will be augmented by
adding a fixed number of nodes, and the whole expanded
network will be trained on the new data with the group
sparse regularization (Scardapane et al. 2017). Due to
this regularization term, some added nodes will be con-
sidered redundant after training and be pruned, thus
preventing the network from becoming too large. In the
end, if the weights of some previous nodes experience
significant alteration during training, a duplicate of those
nodes will be added to the network, and the network will
be trained again.

One recent variation of DEN named 3d_DEN is pro-
posed in Jain and Kasaei (2021) for continual multi-class
classification. Each task represents a new class, and a cor-
responding output node will be added to the network. In
this approach, when training the network after expan-
sion, only the added segments are trained, and the previ-
ous parts of the network are frozen, thus protecting them
from catastrophic forgetting.

Since DEN and its variations rely on multiple sparse
regularization terms, the high number of hyperparam-
eters will make tuning the ideal network arduous. For this
means, reinforced continual learning (RCL) is introduced
in Xu and Zhu (2018). In this method, for expanding the
network, an LSTM network is used via reinforcement
learning and policy gradient to predict the optimal num-
ber of nodes that should be added to each layer, with
respect to both the detection rate and size of the network.

Although the approaches mentioned above try to
expand the network as efficiently as possible, the net-
work’s size will still grow after each task, which is con-
sidered a drawback in the long run. An approach for fully
compressing the network after the expansion is proposed
in the “regularize, expand, and compress” (REC) frame-
work (Zhang et al. 2020). Similar to RCL, REC exploits
reinforcement learning (AutoML Sutton et al. (2000)) to
expand the network. The whole network is trained on
the new task with regularizations based on multi-task
learning and the Fisher information matrix. After that,
the compression is done using the knowledge distillation
approach (Hinton et al. 2015) and soft labels; thus, the
network ia reshaped to its original architecture.

Deep federated learning
Federated learning (FL) is an ML approach for training
a model by utilizing distributed devices that contribute
to the training process based on their local data. Both
synchronous and asynchronous methods have been pro-
posed to this end, but since the nature of our problem
requires an asynchronous setting, we will mainly focus
on the latter.

In Gimpel et al. (2010), an asynchronous distributed
optimization algorithm is designed, which despite a
minor error in the training procedure, performs well
when evaluated on NLP tasks. In Xie et al. (2019), an
asynchronous federated learning scheme is proposed in
which each worker independently trains a model with a
regularization term that prevents any significant drift
from the main-model. Also, the main-model is updated
via weighted averaging with the worker model.

In Chai et al. (2021), a federated learning system is
designed based on dividing the clients into different
groups called tiers. In this approach, a tiering module
partitions the clients into tiers based on their perfor-
mance (e.g., response latency). In each tier, the updating
process is synchronously performed by the tier members
via gradient computation and optimization. Furthermore,
The main-model gets updated asynchronously based on
the weighted averaging of the models obtained from the
tiers.

In Diro and Chilamkurti (2018), the authors propose a
distributed attack detection mechanism for IoT based on
fog computing (Yi et al. 2015). In their approach, the fog
nodes are responsible for locally training DL models that
act as intrusion detectors at the network edge. Furthermore,
a coordinator master is used to propagate the local updates
and parameters between the fog nodes, and this optimiza-
tion procedure is conducted via distributed SGD.

These proposed schemes and designs provide a solid
foundation for designing our multi-agent framework as
described in "Framework" Section.

Framework
In this section, our proposed online anomaly-based
intrusion detector is described. This framework aims to
address three of the current main challenges for an appli-
cable and realistic intrusion detection system:

•	 Continuos adaptation to new traffic The first challenge
relates to the emergence of new attacks and benign
user/traffic behavior changing over time. To address
this continuous adaption challenge, we use deep con-
tinual learning methods, as discussed in "Continuous
adaption to network concept drift" Section.

Page 7 of 25Soltani et al. Cybersecurity (2024) 7:9	

•	 Online intrusion detection As mentioned before,
another challenge of an online IDS is making a pro-
gressive decision about a flow by observing the
stream of its packets. The reason is that the best
online IDSes are the ones that can detect an attack
with fewer packets. In other words, threat detection
should be done before the attacker completes the
attack.

•	 Multi-agent architecture The third challenge of an
online IDS corresponds to the interleaving nature of
the packets of different flows in the network traffic.
In particular, to address this issue and to consider a
high throughput network, we propose to use a dis-
tributed architecture for handling all packets of each
flow in an agent. Each agent implements a sub-model
of the main DL model in this architecture. Then, to
update the model, the distributed sub-models are
aggregated in the main deep anomaly-based model.

Our proposed framework aims to collectively address the
mentioned practical challenges, as mentioned in the fol-
lowing sections.

Overview
The proposed framework is a multi-agent IDS depicted
in Fig. 1. Each agent can be strategically placed in a dif-
ferent section of a network (or, as discussed in "Multi-
agent IDS" Section , these agents can be dispersed in a
geo-distributed manner on a global scale), and individu-
ally perform intrusion detection on their associated area
using their deep IDSes. Each agent independently detects

intrusion within its assigned area using deep IDS capa-
bilities. This distributed setup ensures scalability for high
throughput and facilitates knowledge sharing. Detec-
tion methods can operate at both flow and packet levels,
depending on the chosen deep model architecture for the
IDS.

Furthermore, each agent continuously adapts itself to
the new flows and patterns in its local sub-network to
update its local benign/attack knowledge. In "Continuous
adaption to network concept drift" Section , we analyze
and propose an optimal strategy for updating a single
deep IDS. The subsequent description of the proposed
multi-agent architecture (see "Multi-agent IDS" Section)
outlines a system where agents exchange local knowledge
through a central coordinator. This coordinator accumu-
lates shared knowledge from all agents and updates them
regularly. To be more precise, each agent can receive
an update from the central coordinator and update its
knowledge accordingly. Conversely, the central coordina-
tor can also receive an update from each agent and share
it with other agents. The details of these procedures will
be provided in detail in "Multi-agent IDS" Section.

Continuous adaption to network concept drift
With the advent of a new attack, we expect our IDS to
conform itself to the new data, and while preserving its
ability to detect previously learned abnormalities, it
should extend its knowledge to recognize the new one.
To achieve this goal, in this section, we propose a contin-
ual learning-based algorithm that best satisfies the needs
and constraints of an IDS.

Fig. 1  An overview of the proposed multi-agent IDS framework

Page 8 of 25Soltani et al. Cybersecurity (2024) 7:9

General IDS model architecture
The proposed framework assumes that the DL models
used in an IDS are comprised of the base and dense parts.
The base part usually consists of either LSTM or convolu-
tional (CNN) layers and is followed by the dense part that
comprises multiple fully-connected (FC) layers. Ensuing
from the deductions made in Jain and Kasaei (2021) and
Yosinski et al. (2014), the base parts serve as a pre-trained
and frozen section of our network, whereas the FC layers
will change and train continually on new anomalies. This
approach has two main benefits:

1.	 The base part will determine the general features of
our inputs (may it be flows or individual packets, as
described in "Experimental evaluation" Section) and
learn useful representations that facilitate the classifi-
cation procedure, which is an integral phase in many
DL-based IDSes (Choi et al. 2020). On the other
hand, the FC layers will both learn new specific fea-
tures and better classify the general features by train-
ing on new data.

2.	 Each continual training will require less computation
since the pre-trained network will not be involved.

Proposed continual learning approach
The proposed continual learning algorithm, similar to
those mentioned in "Deep continual learning" Section,
is based on the expansion approach, i.e. , each FC layer
is augmented with a set of nodes. More specifically, each
added node will have inputs from all nodes in the previ-
ous layer (including the augmented ones), but its outputs
will only be connected to the new nodes in the next layer,
thus allowing it to capture new features while not alter-
ing the nodes from older tasks (i.e., attacks in the security
scope) (Jain and Kasaei 2021). In this expansion phase,
based on prior work, there are two options:

•	 Adding a fixed number of nodes to each layer
(denoted as k) (Yoon et al. 2017; Jain and Kasaei
2021).

•	 Designing a controller for configuring the opti-
mal numbers of nodes for each layer based on RL
approaches (which have been used prevalently in
the network anomaly detection scope (Adawadkar
and Kulkarni 2022)). To be more precise, each time
the controller generates the number of nodes cor-
responding to each layer, it receives a reward and
updates itself via policy gradient techniques. This
process is repeated several times until the best result
is achieved (Xu and Zhu 2018; Zhang et al. 2020).

Although the latter approach tends to discover a more
efficient expanded network, our analysis indicated that
the former would better suit our domain, as explained
below.

First, the latter approach requires a substantial amount
of time to find the optimal network, which is a significant
flaw since the IDS is expected to perform on a real-time
basis. Each time the controller predicts the number of
added nodes, training has to be conducted on the cor-
responding child network to yield a reward for the con-
troller. This process might be carried out several times
to yield the best result. On the other hand, using a fixed
number of nodes will require training the expanded net-
work only once.

Second, as the expansion procedure is ensured by com-
pression (as described in "Multi-agent IDS" Section),
finding the minimum number of nodes in each layer is
not necessary. Also, in contrast to Yoon et al. (2017) and
Jain and Kasaei (2021), there is no need to perform l1
-norm or group sparsity regularization and tuning their
corresponding hyperparameters for training on the new
task since compressing the network will not rely on this
technique, as explained in the next section.

After adding k nodes to each FC layer, the training
phase consists of two sections:

1.	 The nodes pertaining to the previous tasks are fro-
zen, and while only the added nodes are kept train-
able, training is done on the data of the new task (i.e. ,
new attack). As mentioned above, there will be no
need for any kind of regularization. Hence, the train-
ing can be described as optimizing a single loss func-
tion, i.e. ,

 where L is our desired loss function (e.g. , binary
cross-entropy), WAdd describes the weights of the
newly added nodes to the network, WPrv represents
the (frozen) weights of previous nodes, and Dtrain is
the dataset comprising the new traffic for training.

2.	 After the first step, the expanded model’s perfor-
mance is measured on a validation set Dval , and in
the case its detection rate is below a preset thresh-
old τ , instead of solely training the added nodes, the
whole network is trained under the following equa-
tion (Zhang et al. 2020)

(1)min
WAdd

L WAdd WPrv,Dtrain ,

(2)

min
WExp











L(WExp|Dtrain)+ �1

Nparams
�

i=1

F
Prv
ii (θ

Exp
i

− θPrvi)+

�2

�

�

�
[WExp;WPrv]

�

�

�

2,1
+ �3

�

�

�
W

Add
�

�

�

1











,

Page 9 of 25Soltani et al. Cybersecurity (2024) 7:9	

where Nparams is the number of weights in the
model prior to expansion, WPrv = {θPrvi }

Nparams

i=1  ,
as introduced above, are the weights of the model
before expansion, WAdd are the weights of the
newly added nodes, and WExp are all the weights of
the expanded model. In the expanded model, using
the Fisher information matrix diagonal, the term
∑Nparams

i=1 FPrv
ii (θ

Exp
i − θPrvi) , is enforced on the

weights corresponding to the previous task to avoid
catastrophic forgetting (as discussed in Setion 2.3.1).
The term

∥

∥[WExp;WPrv]
∥

∥ is an l2,1-norm regulariza-
tion (Zhang et al. 2020) (i.e. ,

∥

∥

∥

∥WExp
∥

∥

2
,
∥

∥WPrv
∥

∥

2

∥

∥

1
 )

term derived from multi-task learning, aiming to
learn the shared representations between the weights
of the model prior to and after expansion, and
∥

∥WAdd
∥

∥

1
 is a sparsity-inducing regularization term

(Gong et al. 2012) imposed solely on the new nodes
for efficient learning of the features specific to the
new traffic.

	 Furthermore, for practically computing the diago-
nal of the Fisher information matrix, we employ the
method proposed in Van de Ven and Tolias (2019).
Namely, for the ith element of the diagonal we have:

 where Fii is the ith element of the Fisher informa-
tion matrix diagonal (i.e. , corresponding to the ith
weight of the model) and S is the data set used for
training the model. Furthermore, θ are the weights of
the model after training, (x, y) represents any labeled
sample from S, and p(Y = y|x, θ) is the produced
probability by the model for the correct class label.
Moreover, a proposed strategy is discussed for updat-
ing the Fisher information diagonal throughout the
continual learning procedure in "Multi-Agent IDS"
Section.

Algorithm 1 describes the proposed continual learning
procedure.

Algorithm 1  Continual Learning Algorithm.

Input :
Dtrain : New dataset to train on
Dval : Validation dataset

Output :
W Exp : The weights of the expanded network

1: Add k units to all layers
2: Obtain W Exp by training the network based on (1)
3: if detection rate of W Exp model on Dval < τ then
4: Obtain W Exp by training the network based on (2)
5: end if

(3)Fii =
1

|S|

∑

(x,y)∈S

δ log p(Y = y|x, θ)

δθi
,

Data sampling
In some cases, incrementally training solely on a new
set of data samples from unknown traffic might make
our model biased towards new traffic, which will be an
instance of catastrophic forgetting. As suggested in Jain
and Kasaei (2021); Soltani et al. (2023), with the advent of
new data, we will constitute a training set that possesses
the new data in conjunction with samples corresponding
to the previous attacks and benign flows that the model
has been previously trained on.

To implement this approach, the collective number of
data samples belonging to the previous attacks should be
equal to the number of the new attack samples. Since our
model is a binary classifier between benign and attack
flows, the number of benign samples should be equal to
the total number of attacks (i.e. , including the old and
new attacks). Algorithm 2 describes this procedure in
detail.

One should bear in mind that sustaining all the previ-
ous instances is evidently unfeasible for practical sce-
narios. However, as discussed in "Discussion and future
directions" Section, the proposed updating strategy is
able to adapt the model to new traffic with a small num-
ber of instances. Consequently, it suffices to preserve a
limited number of instances from previous flows to pre-
vent bias (i.e. , set a threshold for the maximum num-
ber of previous benign/attack samples). Furthermore,
another practical approach for reproducing previous
samples would be using Generative Adversarial Networks
(GAN) that can support continuous updating to new data
(Andresini et al. 2021; Liang et al. 2018; Seff et al. 2017;
Varshney et al. 2021).

Algorithm 2  Data Sampling Algorithm.

Input :
R : raw samples of the new traffic

Output :
Dt : augmented dataset for the new traffic (i.e., new

task)

1: B = dataset containing benign samples
2: A = (A1,A2, . . . ,At−1): datasets of previous attacks
3: Dt = R
4: Split R to At (new attack samples) and Bt (new benign

samples)
5: sA = len(At)
6: for i = 1, 2, . . . , t− 1 do
7: Choose sA samples from Ai and add to Dt

8: end for
9: sB = len(Dt)− len(Bt)
10: Choose sB samples from B and add to Dt

Page 10 of 25Soltani et al. Cybersecurity (2024) 7:9

Multi‑agent IDS
To address the distributed requirements of an IDS (as
discussed in "Introduction" Section), we have proposed
to employ a multi-agent federated learning architecture.
Each agent is assigned a part of the traffic flows, captures
the new abnormalities and benign traffic concept drift
based on the assigned traffic, and then updates itself.

To be more precise, each agent consists of a sub-model
that continually learns new traffic behavior. Once an
agent has finished its continual learning procedure, it
asynchronously updates the main-model through knowl-
edge distillation (Hinton et al. 2015). Thus, the collective
knowledge obtained and shared by all the agents will be
incrementally integrated into the main-model.

An overview of the proposed federated learning
architecture is shown in Fig. 2. The main-model acts
as the central coordinator (as mentioned in "Feder-
ated learning" Section), which gathers the collective
knowlege of the agents and updates the agents accord-
ingly. Each agent initializes its sub-model weights with
the main-model’s latest weights prior to its continual
learning procedure. After the learning phase, in order
to update the main-model, each agent engages in an
asynchronous optimization with the loss function using
a combination of the logits (i.e. , the input vector of
the final softmax layer as the soft labels) and the actual
labels (i.e. , hard labels). In addition, in order to prevent
catastrophic forgetting, a regularization term based on
the diagonal of the Fisher information matrix of the
main-model is exploited. Thus, in order to update the
main-model through knowledge distillation, we pro-
pose the ℓ th agent computes and sends to the main-
model the gradients of the following loss function

where again, Nparams is the total number of parameters
in the main-model, Wmain = {θ imain}

Nparams

i=1 is the new

weights of the main-model, Winit = {θ iinit}
Nparams

i=1 and
F are the weights and the Fisher information diagonal
of the main-model prior to distillation, Dℓ is the train-
ing data observed by the ℓ th agent, and Zℓ are the logits
received through the expanded model.

In order to asynchronously update the main-model,
an agent first acquires the latest version of Winit and F
from the main-model. Then, the main-models’ param-
eters are updated through the following update rule
(Gimpel et al. 2010)

where ∇ℓ(fdist(Wmain)) is the gradient of fdist(Wmain)
computed by the ℓth agent on its own batch. Also, M is
the set of agents that have sent a gradient in the time
interval between the last two updates.

Once an agent’s federated distillation procedure comes
to an end, it also computes the Fisher information matrix
diagonal based on the latest version of Wmain and its own
data, using Eq. 2. This matrix is sent to the main-model,
updating the main Fisher information matrix diagonal
based on the following equation

where F ′
main is the new Fisher information matrix diago-

nal of the main-model, Fmain is the diagonal of the previ-
ous Fisher information matrix of the main-model, Fagent
is the Fisher information matrix diagonal sent by the
agent, and α is an aggregation weight.

Based on the proposed federated learning architec-
ture, the procedure that an agent undertakes to update
the main-model is described in Algorithm 3. Note that
the proposed approach has the practical benefit of not
expanding the main-model; thus, the main-model will
not grow infinitely and can be practically applied in the
long term without needing additional memory. Further-
more, the federated distillation procedure also functions
as a compression mechanism for the agents. As a result,
an agent’s expanded model can be replaced with the
updated main-model at the end of this process.

(4)

fdist(Wmain) = L(Wmain;Dℓ)+ Lkd(Wmain;Zℓ)+

�

Nparams
∑

i=1

Fii(θ
i
main − θ iinit),

(5)W ′
main = Wmain − µ

∑

ℓ∈M

∇ℓ(fdist(Wmain)),

(6)F ′
main = αFmain + (1− α)Fagent,

Fig. 2  An overview of how different agents function in the proposed
architecture. Agent1, . . . , Agentn (e.g. , different IDSes) contain each
a sub-model which is initialized with the weights of the main-model.
After learning a new anomaly based on Algorithm 1, the main-model
is updated via knowledge sharing (i.e. , federated distillation)

Page 11 of 25Soltani et al. Cybersecurity (2024) 7:9	

Algorithm 3  Agent Learning Procedure.

Input :
R : Flows pertaining to the new traffic

1: Obtain Dt by using R as input to Algorithm 2.
2: Split Dt to Dtrain and Dval for training and validation.
3: Get Wmain and F from the main-model.
4: Obtain WExp from Algorithm 1 using Dtrain, Dval, Wmain,

and F .
5: Update Wmain and F from the main-model (in case that

other agents have updated the main-model).
6: Set Winit = Wmain
7: for each training step do
8: Get mini-batch and labels from Dtrain and the logits

from W Exp.
9: Compute the gradient of (4) and send it to the main-

model.
10: Wait for the main-model to send Wmain
11: end for
12: Compute Fagent based on Dtrain and sent to the main-

model in order to compute (3.3).

In the end, in Table 1, we summarize the parameters
used in our architecture to further clarify the design of
the proposed online anomaly-based deep IDS.

Experimental evaluation
This section describes the evaluation details of the pro-
posed framework to reproduce the experiments. First,
the Experimental details, including evaluation infrastruc-
ture, the preprocessing phase, evaluated datasets, and
hardware specifications, are described ("Experimental
details" Section). These are the common infrastructure
for all the following experiments. Then, different deep
online anomaly detectors’ implementations are evaluated
(“Deep Adaptive Anomaly Detectors” Section). Next the
proposed distributed architecture for implementing a
DL-based NIDS is evaluated ("Federated learning" Sec-
tion). Finally, in "Early attack detection through packet
assessment" Section we evaluate the the online IDS chal-
lenge of progressively determining the flow label upon
each packet’s arrival.1

Experimental details
Evaluation infrastructure
In this work, the deep intrusion detection (DID) frame-
work, introduced in Soltani et al. (2022), is used in
the preprocessing phase of all experiments. The DID
approach is selected for its ability to self-extract appro-
priate features and the capability of detecting a wide
range of attacks, including content-based ones like SQL
injection and Heartbleed attacks. The content-based
attacks are the main segment of the threats with high
malicious impacts on the targeted organizations. Conse-
quently, this preprocessing phase can significantly affect
the applicability of the proposed framework.

Datasets
As the DID approach is designed for the applicable IDSes,
it requires the pure content of traffic flows (e.g. , in PCAP
format). Consequently, the scope of applicable datasets
for evaluating deep IDSes is constrained to those includ-
ing the labeled traffic content. The privacy issues restrict
the dataset developers from publishing the details of
the real network traffic. As a result, datasets with entire
traffic content such as DARPA 1999 (Lippmann et al.
2000) (which is the base of the KDD99 (KDD 2021) and
NSL-KDD (Tavallaee et al. 2009) dataset), CIC-IDS2017
(Sharafaldin et al. 2018), and CSE-CIC-IDS2018 (CSE-
CIC 2021) are all generated in an emulated network.

In this work, to properly evaluate the proposed
framework, we have used the more up-to-date data-
sets (CIC-IDS2017 and CSE-CIC-IDS2018), which have

Table 1  Summary of the parameters used in desinging the proposed architecture and their influence

Parameter Influence

�1 Preventing catastrophic forgetting during update in Eq. 2

�2 Amount of learned shared representations prior and after update in Eq. 2

�3 Regularization of expanded parts of the network in 2

� Preventing catastrophic forgetting during update of main-model in Eq. 4

µ Amount of change applied to the main-model during update in Eq. 5

α Amount of change applied to the Fisher diagonal after update in Eq. 6

Table 2  The system specification of the experimental
environment

OS Ubuntu Version
20.04.3 LTS with Ker-
nel 5.4.0-81-generic

CPU Intel(R) Core(TM)
i7-6900K 3.20GHz
with 16 virtual cores

RAM 32 GB

GPU GeForce GTX 1080 Ti

GPU frame buffer 8 GB
1  The implementations of all evaluated models are available at https://​
github.​com/​INL-​Labor​atory/​Conti​nual-​Feder​ated-​IDS.

https://github.com/INL-Laboratory/Continual-Federated-IDS
https://github.com/INL-Laboratory/Continual-Federated-IDS

Page 12 of 25Soltani et al. Cybersecurity (2024) 7:9

implemented the more recent attack types like SSH brute
force botnet, DoS, DDoS, web, and infiltration attacks.
Most importantly, they contain content-based attacks like
SQL injection, XSS attacks, and Heartbleed. Additionally,
benign profiles are extracted based on the abstract behav-
ior of 25 users over the HTTP, HTTPS, FTP, SSH, and
email protocols. Besides detecting the anomalies with a
high detection rate, an IDS should also produce low false-
negative rates. As a result, in addition to anomaly flows,
we use benign traffic in our experiments.

In order to prepare the data to feed into the DL models,
we use a packet size of 200 bytes and a flow size of 100
packets, resulting in a 20,000-dimensional input vector
(which we will refer to as the flow matrix). This selection
is based on the analysis of the correspondent datasets
investigated in Soltani et al. (2022). To implement the
proposed framework, we employ the Keras library (Chol-
let 2017) with Tensorflow (Abadi et al. 2015) as its back-
end. The characteristics of our experimental environment
are shown in Table 2.

Throughout the experiments, we have exploited the
labeled flows of the CIC-IDS2017 and CSE-CIC-IDS2018
datasets. These datasets have been split so that 64% of
the overall flows are used for training the models in the
experiments, 16% for validating the best hyperparam-
eters, and 20% for testing and evaluating the different
approaches in the proposed framework.

Model architectures
We evaluate our proposed framework with two differ-
ent architectures (i.e., CNN and LSTM). In the following,
we describe each architecture’s base and dense parts, as
discussed in "Continuous adaption to network concept
drift" Section.

In the first architecture (CNN-based), the base part
comprises two consecutive 2D convolution layers with 8
and 16 filters, a 3× 3 kernel size, a stride of 1× 1 , and no
padding. The dense part comprises four layers with 256,
128, 64, and 2 neurons, respectively.

The second architecture (LSTM-based) consists of a
single, many-to-many LSTM layer with 1024 cells as the
base part. Many-to-many LSTMs can generate separate
outputs for each of the corresponding sequential inputs.
The dense part has five layers with 512, 256, 128, 64, and
2 neurons.

Note that the above-mentioned architectures use dif-
ferent input vectors. The first architecture uses the entire
flow matrix as the input (i.e. , the input is a matrix of size
200× 100 ). In contrast, the second architecture takes
individual packets as the input (i.e. , the input is a vec-
tor of size 200, however, a sequence of 100 such vectors
are fed into the model) and estimates a probability for the
flow label after processing each packet. Consequently,

the second architecture is more applicable to early attack
detection in IDSes. Figure 3 illustrates these two different
architectures.

The ReLU activation function and a dropout of 0.2 are
used in both architectures for all but the last layer. In
the last layer of both architectures, a softmax function is
implemented to compute the benign/anomaly probabili-
ties. Finally, the Adam optimizer is used for training the
different DL models.

Fig. 3  The CNN-Based and LSTM-Based model architectures used
in our experiments. The CNN-based models take an entire flow
as an input, whereas the LSTM-based models work on the packet
level and process the packets of a flow one by one

Table 3  The hyperparameters used in the evaluations

Parameter Usage Search space Chosen value

�1 Equation 2 [10−6, 10−3, 1, 10] 1

�2 Equation 2 [10−6, 10−3, 1, 10] 10−3

�3 Equation 2 [10−6, 10−3, 1, 10] 10−3

� Equation 4 [10−6, 10−3, 1, 10] 1

α Equation 3.3 [0.4, 0.6, 0.8, 0.9] 0.9

µ Equation 3.3 [0.1, 0.5, 1] 1

Batch size Initial Training [8, 16, 32, 64, 128] 32

Epochs Initial Training [30, 50, 80] 50

Batch size Continual Learning [8, 16, 32] 16

Epochs Continual Learning [10, 20 , 30, 40] 20

k Continual Learning [5, 10 , 12, 15] 10

Batch size Federated Learning [8, 16, 32] 16

Epochs Federated Learning [10, 20, 30 , 40] 20

Page 13 of 25Soltani et al. Cybersecurity (2024) 7:9	

Hyperparameter settings
We employ a grid search procedure to obtain the best
values of hyperparameters, including training batch
size, epochs, and coefficients of the regularization
terms. Moreover, for the continual learning algorithm,
we adhere to the method used in Jain and Kasaei (2021)
for determining the number of added nodes (i.e. ,
increasing the value of k to the point where no improve-
ment in the overall detection rate is witnessed). Table 3
presents the chosen values of all hyperparameters
used throughout the experiments, in addition to their
searched space.

Deep adaptive anomaly detectors
In this section, we devise two scenarios for evaluating the
ability of models to learn new anomalies. Note that in the
following experiments, we use the term known attack for
an attack class if a DL model has previously been adapted
(i.e. , trained or updated) to that attack. Furthermore, the
zero-day attack term is used for an attack class that the
model has not been adapted to. In the first scenario, we
use a pairwise evaluation: one known attack alongside
one zero-day (i.e. , new) attack. In the second scenario, we
aim to evaluate a model’s ability to learn consecutive new
anomalies over time, i.e. , some anomalies learned continu-
ally over time (as known attacks) and one zero-day attack.

In the first scenario’s experiments, a model is initially
trained with a sufficient number of flows (i.e. , about
3000–5000) from benign and one known attack (i.e. ,
anomaly). Afterward, for each of the remaining attacks
(as the new anomalies), a set of 128 flows is used to train
the expanded initial model (see Algorithm 1). Then, the
expanded model is compressed back to its initial archi-
tecture (see Eq. 4). Note that to resemble a more practi-
cal circumstance, in the above, the number of unknown
attack flows is selected as relatively small for evaluating
the adaptive IDS.

In the evaluation phase, we report the models’ detec-
tion rate for known and unknown attacks according to
two separate datasets created from the original data, i.e. ,
known and zero-day datasets. The first one contains 500
known attack flows, and the second one includes 500
zero-day attack flows. Additionally, 500 benign flows are
added to both datasets.

The results of the above-mentioned scenario’s experi-
ments are shown in Tables 4 and 5. The first column indi-
cates the experiment’s known attack, which will be used
to train the initial model besides the model detection
rate on the corresponding known attack. As mentioned
above, the goal of this scenario is to adapt (i.e. , expand,
train, and compress) the initial model to new anomalies
separately and report the detection rate at different steps

(called evaluation states). The second column repre-
sents the state of the reported detection rate and the rest
of the columns indicate the detection rate of the model
over new (i.e. , zero-day) anomalies for three evaluation
states2: Before Update (zero-day), After Update (zero-
day), and After Update (initial known).

Prior to adapting the model to a new anomaly, the
initial model detection rate is measured on the corre-
sponding zero-day dataset and reported as Before Update
(zero-day). The compressed model detection rate on the
same set is reported as After Update (zero-day) to indi-
cate the model’s improvement after continual learning.
In addition, the After Update (initial) state represents
how the updating procedure affects the model’s previous
knowledge (i.e. , catastrophic forgetting) by measuring
the compressed model’s detection rate on the anomaly on
which the model was initially trained.

The results of Table 4 highlight the notable perfor-
mance of CNN-based models in the adaptation process.
Before being updated, most models exhibit low accuracy
in detecting zero-day attacks (the “Before Update (zero-
day)” accuracy for each attack is mostly below 0.45, indi-
cating a lack of knowledge in distinguishing zero-day
flows from benign ones). However, the detection rate
after the update rises to an average of above 95% for all
types of attacks. Additionally, CNN models demonstrate
exceptional accuracy in detecting their initial attacks
(i.e. , an average detection accuracy above 98%) both
before and after being updated with the new zero-day
attack.

Besides, based on the results in Table 5, it can be
derived that LSTM-based models generally achieve
acceptable detection performance during updates to
new zero-day attacks. To be more precise, in most of
the scenarios, the LSTM model detects its initial attack
with an average rate above 90% after the updating phase.
Moreover, the detection rate on the zero-day attack rises
to above 80% after the update, except in cases where the
model was initially trained on certain attacks like Ports-
can, FTP Patator, and Bruteforce Web. This implies that
LSTM models rely more on their initial attack knowledge
during the updating phase to extract the required fea-
tures for detecting the new zero-day attacks.

In the second scenario, similar to the first one, an initial
model is trained on a known anomaly. Then, considering
the rest of the anomalies as zero-day attacks, the model
is sequentially expanded, trained, and compressed on 128
flows of each of the remaining new attacks. The main dif-
ference between the first and second scenarios is that the

2  Note that the goal of this evaluation is to investigate the effectiveness of
the updating procedure when the model is faced with new (i.e. , zero-day)
attacks (i.e. , different from its initial known attack). Hence, the experiments
where the initial and zero-day attacks are the same are not reported.

Page 14 of 25Soltani et al. Cybersecurity (2024) 7:9

Ta
bl

e 
4 

C
N

N
-b

as
ed

 m
od

el

Kn
ow

n
at

ta
ck

(a

cc
ur

ac
y)

Ze
ro

-d
ay

 a
tt

ac
k

St
at

e
Bo

tn
et

D
D

O
S

Po
rt

sc
an

D
O

S
Sl

ow
H

tt
pT

es
t

D
O

S
Sl

ow
Lo

ri
s

D
O

S
H

ul
k

D
O

S
G

ol
de

nE
ye

FT
P

Pa
ta

to
r

SS
H

 P
at

at
or

W
eb

 B
ru

te
Fo

rc
e

W
eb

 X
SS

Bo
tn

et
 (0

.9
6)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

–
0.

32
0.

33
0.

32
0.

56
0.

32
0.

42
0.

32
0.

32
0.

40
0.

57

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

–
0.

99
0.

99
0.

98
0.

98
0.

99
0.

94
1.

00
0.

97
0.

99
0.

98

A
ft

er
 U

pd
at

e
(in

iti
al

)
–

0.
97

0.
97

0.
95

0.
96

0.
96

0.
95

0.
97

0.
95

0.
96

0.
96

D
D

oS
 (0

.9
9)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

0.
45

–
0.

33
0.

34
0.

33
0.

45
0.

39
0.

33
0.

33
0.

42
0.

59

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
98

–
1.

00
0.

99
0.

97
0.

90
0.

95
1.

00
0.

99
0.

99
0.

99

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

99
–

0.
99

0.
99

0.
99

0.
99

0.
98

0.
99

0.
99

0.
98

0.
99

Po
rt

sc
an

 (0
.9

9)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

44
0.

33
–

0.
33

0.
58

0.
33

0.
33

0.
33

0.
33

0.
41

0.
58

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
95

0.
98

–
0.

99
0.

93
0.

97
0.

95
1.

00
0.

98
0.

98
0.

98

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

98
0.

99
–

1.
00

1.
00

1.
00

0.
99

1.
00

0.
99

0.
98

1.
00

D
oS

 S
lo

w
H

tt
pT

es
t

(0
.9

8)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

44
0.

49
0.

34
–

0.
91

0.
81

0.
63

0.
33

0.
33

0.
43

0.
60

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
97

0.
98

1.
00

–
0.

99
0.

99
0.

97
1.

00
0.

99
0.

99
0.

98

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

97
0.

99
0.

99
–

0.
99

0.
97

0.
99

0.
99

0.
99

0.
98

0.
98

D
oS

 S
lo

w
Lo

ris
 (0

.9
9)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

0.
44

0.
33

1.
00

0.
35

–
0.

33
0.

35
0.

33
0.

33
0.

41
0.

58

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
97

0.
98

1.
00

0.
96

–
0.

99
0.

92
1.

00
0.

98
0.

99
0.

99

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

98
0.

98
0.

99
0.

98
–

0.
97

0.
93

0.
98

0.
96

0.
97

0.
96

D
oS

 H
ul

k
(0

.9
7)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

0.
44

0.
72

0.
33

0.
45

0.
34

–
0.

84
0.

33
0.

33
0.

42
0.

59

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
96

0.
99

1.
00

0.
98

0.
98

–
0.

97
1.

00
0.

99
0.

99
0.

99

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

98
0.

99
0.

98
0.

99
0.

99
–

0.
98

0.
99

0.
99

0.
98

0.
99

D
oS

 G
ol

de
nE

ye
 (0

.9
8)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

0.
72

0.
77

0.
33

0.
42

0.
65

0.
99

–
0.

33
0.

33
0.

44
0.

59

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
97

0.
98

1.
00

0.
98

0.
97

0.
99

–
1.

00
0.

99
1.

00
0.

99

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

99
0.

98
0.

97
0.

99
0.

97
0.

98
–

0.
99

0.
99

0.
98

0.
99

Page 15 of 25Soltani et al. Cybersecurity (2024) 7:9	

Ta
bl

e 
4 

(c
on

tin
ue

d)

Kn
ow

n
at

ta
ck

(a

cc
ur

ac
y)

Ze
ro

-d
ay

 a
tt

ac
k

St
at

e
Bo

tn
et

D
D

O
S

Po
rt

sc
an

D
O

S
Sl

ow
H

tt
pT

es
t

D
O

S
Sl

ow
Lo

ri
s

D
O

S
H

ul
k

D
O

S
G

ol
de

nE
ye

FT
P

Pa
ta

to
r

SS
H

 P
at

at
or

W
eb

 B
ru

te
Fo

rc
e

W
eb

 X
SS

FT
P

Pa
ta

to
r (

0.
99

)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

45
0.

33
0.

33
0.

33
0.

33
0.

33
0.

33
–

0.
33

0.
42

0.
59

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
76

0.
82

1.
00

0.
97

0.
97

0.
91

0.
95

–
0.

99
0.

98
0.

98

A
ft

er
 U

pd
at

e
(in

iti
al

)
1.

00
1.

00
1.

00
1.

00
0.

98
1.

00
0.

98
–

1.
00

0.
99

0.
99

SS
H

 P
at

at
or

 (0
.9

9)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

45
0.

33
0.

33
0.

33
0.

33
0.

33
0.

33
0.

33
–

0.
42

0.
59

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
97

0.
99

0.
99

0.
98

0.
97

0.
98

0.
95

1.
00

–
1.

00
0.

98

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

99
0.

99
0.

99
1.

00
0.

99
0.

98
0.

99
1.

00
–

0.
99

0.
99

Br
ut

eF
or

ce
 W

eb

(0
.9

7)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

44
0.

33
0.

33
0.

33
0.

33
0.

33
0.

33
0.

33
0.

33
–

0.
98

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
96

0.
98

1.
00

0.
97

0.
93

0.
97

0.
94

1.
00

0.
99

–
0.

99

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

95
0.

99
0.

99
0.

99
0.

99
0.

99
0.

98
0.

99
0.

99
-

0.
99

XS
S

W
eb

 (0
.9

4)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

66
0.

32
0.

32
0.

76
0.

33
0.

32
0.

32
0.

32
0.

32
0.

92
–

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
91

0.
98

0.
98

0.
99

0.
90

0.
98

0.
97

0.
99

0.
99

0.
98

–

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

98
0.

99
0.

97
0.

99
0.

96
0.

98
0.

98
0.

98
0.

99
0.

97
–

Th
e

de
te

ct
io

n
ra

te
 o

f c
on

tin
ua

l l
ea

rn
in

g
fo

r e
ac

h
pa

ir
of

 a
no

m
al

ie
s

is
 e

va
lu

at
ed

 o
n

th
e

CI
C-

ID
S2

01
7

da
ta

se
t

Page 16 of 25Soltani et al. Cybersecurity (2024) 7:9

Ta
bl

e 
5 

LS
TM

-b
as

ed
 m

od
el

Kn
ow

n
at

ta
ck

(a

cc
ur

ac
y)

Ze
ro

-d
ay

 a
tt

ac
k

St
at

e
Bo

tn
et

D
D

oS
Po

rt
sc

an
D

oS

Sl
ow

H
tt

pT
es

t
D

oS
 S

lo
w

Lo
ri

s
D

oS
 H

ul
k

D
oS

 G
ol

de
nE

ye
FT

P
Pa

ta
to

r
SS

H
 P

at
at

or
Br

ut
eF

or
ce

 W
eb

XS
S

W
eb

Bo
tn

et
 (0

.9
3)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

–
0.

31
0.

31
0.

31
0.

31
0.

32
0.

45
0.

31
0.

31
0.

43
0.

57

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

–
0.

93
0.

95
0.

94
0.

92
0.

92
0.

93
0.

93
0.

95
0.

91
0.

87

A
ft

er
 U

pd
at

e
(in

iti
al

)
–

0.
91

0.
90

0.
92

0.
90

0.
90

0.
91

0.
91

0.
94

0.
91

0.
90

D
D

oS
 (0

.9
2)

Be
fo

re
 U

pd
at

e
(z

er
o–

da
y)

0.
69

–
0.

29
0.

44
0.

30
0.

77
0.

83
0.

29
0.

95
0.

40
0.

52

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
90

–
0.

95
0.

78
0.

81
0.

91
0.

89
0.

90
0.

96
0.

87
0.

87

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

93
–

0.
91

0.
92

0.
89

0.
93

0.
93

0.
88

0.
93

0.
90

0.
90

Po
rt

sc
an

 (0
.9

8)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

63
0.

50
–

0.
50

0.
50

0.
49

0.
50

0.
50

0.
49

0.
59

0.
74

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
64

0.
50

–
0.

62
0.

55
0.

50
0.

50
0.

50
0.

50
0.

90
0.

93

A
ft

er
 U

pd
at

e
(in

iti
al

)
1.

00
1.

00
–

0.
97

1.
00

1.
00

1.
00

1.
00

1.
00

0.
96

0.
97

D
oS

 s
lo

w
H

tt
pT

es
t

(0
.9

8)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

51
0.

57
0.

34
–

0.
75

0.
43

0.
40

0.
78

0.
33

0.
79

0.
82

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
80

0.
94

0.
98

–
0.

75
0.

43
0.

77
0.

99
0.

92
0.

92
0.

96

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

86
0.

97
0.

98
–

0.
99

0.
99

0.
87

0.
99

0.
98

0.
99

0.
99

D
oS

 s
lo

w
Lo

ris
 (0

.9
7)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

0.
45

0.
33

0.
38

0.
84

–
0.

44
0.

40
0.

34
0.

33
0.

42
0.

59

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
73

0.
66

0.
82

0.
93

–
0.

94
0.

84
0.

77
0.

63
0.

77
0.

60

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

95
0.

93
0.

97
0.

98
–

0.
97

0.
98

0.
97

0.
93

0.
96

0.
99

D
oS

 h
ul

k
(0

.9
9)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

0.
45

0.
34

0.
33

0.
36

0.
43

–
0.

60
0.

36
0.

33
0.

43
0.

59

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
92

0.
92

0.
97

0.
97

0.
97

–
0.

95
0.

99
0.

98
0.

92
0.

92

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

97
0.

96
0.

96
0.

97
0.

99
–

0.
98

0.
99

0.
97

0.
96

0.
97

D
oS

 G
ol

de
nE

ye
 (0

.9
9)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

0.
48

0.
97

0.
33

0.
40

0.
67

0.
99

–
0.

33
0.

33
0.

42
0.

60

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
74

1.
00

0.
98

0.
95

0.
91

0.
99

–
1.

00
0.

93
0.

94
0.

96

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

99
0.

99
0.

98
0.

99
0.

98
0.

99
–

0.
99

0.
93

0.
95

0.
98

Page 17 of 25Soltani et al. Cybersecurity (2024) 7:9	

Ta
bl

e 
5 

(c
on

tin
ue

d)

Kn
ow

n
at

ta
ck

(a

cc
ur

ac
y)

Ze
ro

-d
ay

 a
tt

ac
k

St
at

e
Bo

tn
et

D
D

oS
Po

rt
sc

an
D

oS

Sl
ow

H
tt

pT
es

t
D

oS
 S

lo
w

Lo
ri

s
D

oS
 H

ul
k

D
oS

 G
ol

de
nE

ye
FT

P
Pa

ta
to

r
SS

H
 P

at
at

or
Br

ut
eF

or
ce

 W
eb

XS
S

W
eb

FT
P

pa
ta

to
r (

0.
99

)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

45
0.

33
0.

45
0.

33
0.

34
0.

33
0.

33
–

0.
33

0.
42

0.
60

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
81

0.
39

0.
99

0.
75

0.
54

0.
33

0.
33

–
0.

98
0.

91
0.

93

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

96
0.

98
1.

00
0.

99
1.

00
1.

00
1.

00
–

1.
00

0.
98

0.
98

SS
H

 p
at

at
or

 (0
.9

2)
)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

0.
49

0.
80

0.
87

0.
55

0.
37

0.
29

0.
29

0.
92

–
0.

81
0.

83

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
59

0.
92

0.
92

0.
77

0.
68

0.
37

0.
33

0.
92

–
0.

81
0.

83

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

91
0.

91
0.

91
0.

91
0.

91
0.

91
0.

91
0.

92
–

0.
92

0.
92

Br
ut

eF
or

ce
 w

eb
 (0

.9
5)

Be
fo

re
 U

pd
at

e
(z

er
o-

da
y)

0.
48

0.
32

0.
36

0.
41

0.
57

0.
31

0.
31

0.
33

0.
31

–
0.

96

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
92

0.
81

0.
98

0.
85

0.
65

0.
72

0.
71

0.
97

0.
81

–
0.

95

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

95
0.

89
0.

97
0.

93
0.

93
0.

90
0.

93
0.

96
0.

94
–

0.
97

XS
S

w
eb

 (0
.9

5)
Be

fo
re

 U
pd

at
e

(z
er

o-
da

y)
0.

65
0.

62
0.

98
0.

88
0.

63
0.

33
0.

36
0.

98
0.

31
0.

94
–

A
ft

er
 U

pd
at

e
(z

er
o-

da
y)

0.
89

0.
92

0.
99

0.
91

0.
91

0.
89

0.
85

0.
99

0.
98

0.
95

–

A
ft

er
 U

pd
at

e
(in

iti
al

)
0.

94
0.

94
0.

97
0.

97
0.

87
0.

89
0.

91
0.

97
0.

96
0.

97
–

Th
e

de
te

ct
io

n
ra

te
 o

f c
on

tin
ua

l l
ea

rn
in

g
fo

r e
ac

h
pa

ir
of

 a
no

m
al

ie
s

is
 e

va
lu

at
ed

 o
n

th
e

CI
C-

ID
S2

01
7

da
ta

se
t

Page 18 of 25Soltani et al. Cybersecurity (2024) 7:9

latter uses the previous step’s compressed model as the
initial model for the current training step. In other words,
during the continual learning procedure, the model
acquires knowledge about all the previous anomalies and
considers them as known attacks.

Similar to the previous scenario, we perform different
evaluation experiments. In each experiment, we use a dif-
ferent permutation for the attack sequence. Finally, the

detection rate of each step is reported according to the
average detection rate of all experiments’ corresponding
steps. As a result, this scenario does not rely on a particu-
lar attack sequence and yields more reliable results for
real-world situations.

In order to evaluate the second scenario in the test
phase, we prepare two datasets for each experiment’s
step. The first one, called zero-day dataset, includes 500
new attack flows and 500 benign flows. The second one,
named the known dataset, consists of 500 attack flows
for each previously known attack in addition to an equal
number of benign flows for making the dataset balanced.
Notice that the known dataset expands as the evaluation
steps progress over the attack sequence.

Figures 4 and 5 depict the results of this experiment
with CNN-based models over the CIC-IDS2017 and
CSE-CIC-IDS2018 datasets, respectively. Similarly,
Figs. 6 and 7 report the results on the same datasets
with LSTM-based models. The results indicate that
while the proposed adaptive deep IDS can continu-
ally adapt itself to the new zero-day attacks, it also
preserves its ability to detect the previously observed
attacks. Furthermore, the CNN-based models have a
better average detection rate than LSTM-based mod-
els for detecting new anomalies (we will discuss more
about the reasons for the different results produced
by CNN and LSTM models in "Discussion and Future
Directions" Section). To be more precise, the CNN-
based models have an average detection rate above 95%
both on new and previously known attacks (i.e. , after
the updating procedure). On the other hand, based on
Figs. 6 and 7, LSTM-based models tend to have a lower
detection rate when updated on new attacks (78% at
the end of the updating phase). However, it is worth
mentioning that their previous knowledge is preserved
during the updating procedure (i.e. , the detection rate
on known anomalies does not decrease after learning a
new attack).

Fig. 4  CNN-Based model detection rate after each step of learning
a new anomaly on the CIC-IDS2017 dataset

Fig. 5  CNN-Based model detection rate after each step of learning
a new anomaly on the CSE-CIC-IDS2018 dataset

Fig. 6  LSTM-Based model detection rate after each step of learning
a new anomaly on the CIC-IDS2017 dataset

Fig. 7  LSTM-Based model detection rate after each step of learning
a new anomaly on the CSE-CIC-IDS2018 dataset

Page 19 of 25Soltani et al. Cybersecurity (2024) 7:9	

Federated learning
As discussed in “Multi-Agent IDS” Section, the federated
learning technique is essential to a distributed DL-based

IDS. In this section, we aim to evaluate the performance
of the federated learning implementation of our pro-
posed framework.

Although agents often may have encountered benign or
known attacks in practice, we consider a more challeng-
ing case in which each agent analyzes a completely new
zero-day attack for evaluating the proposed multi-agent
architecture. In this scenario, the main-model is ini-
tially trained on an anomaly as the known attack. Then,
a process thread is designated as an agent for each of the
remaining anomalies. Each agent is responsible for learn-
ing a new anomaly and updating the main-model. When
this (simultaneous) learning and (asynchronous) updat-
ing process is done, the performance of the final version
of the main-model is evaluated and reported in Tables 6
and 7. Also, in our experiments, we set α in (6) as the
ratio between the number of samples used in training the
main-model and each sub-model, which was approxi-
mately 0.9.

The evaluation procedure is similar to Sect. 4.2. The
main difference is that the zero-day dataset comprises a
collective set consisting of 500 flows from each zero-day
anomaly and a proportionate amount of benign flows.
Consequently, the Unknowns-After state represents the
model detection rate on all the unknown attacks after the
federated updating phase.

Based on Table 6, the CNN-based models prove to
function well in adapting to new attack knowledge.
With an average detection rate of 95% for the CIC-
IDS2017 and 99% on the CSE-CIC-IDS2018 datasets,
the CNN-based main-models learn to detect the new
zero-day attack with the knowledge obtained through the
sub-models.

Moreover, Table 7 indicate that the LSTM-based main-
models tend to detect most zero-day attacks acceptably
(i.e. , with a detection rate above 75%) except for attacks
such as Portscan, DoS SlowHttpTest, and SSH Patator.

Early attack detection through packet assessment
This section evaluates an LSTM model’s ability to gradu-
ally assign a probability to each packet of an incoming
flow. We consider a many-to-many LSTM-based model
with the same architecture described in “Model Archi-
tectures” Section and train it on a collection of all the
anomalies in the CIC-IDS2017 dataset. The model yields
an anomaly probability per input packet. Finally, we have
an output vector whose size equals the number of pack-
ets in the incoming flow.

The average probability the model assigns to a flow’s
true (actual) label, as a function of each incoming packet,
is depicted in Fig. 8. The results demonstrate that with
only 15 packets, the model can predict a flow’s label with
more than 80% detection rate.

Table 6  CNN-based model detection rate in the federated
learning approach on the CIC-IDS2017 and CSE-CIC-IDS2018
datasets

Known attack State

Unknowns-
before

Unknowns-
after

Known-after

Botnet 0.49 0.96 0.95

DDos 0.49 0.96 0.95

Portscan 0.51 0.92 0.92

DoS SlowHttpTest 0.65 0.97 0.95

DoS SlowLoris 0.54 0.96 0.96

DoS Hulk 0.58 0.95 0.95

DoS GoldenEye 0.63 0.96 0.95

FTP Patator 0.49 0.92 0.91

SSH Patator 0.49 0.95 0.95

BruteForce Web 0.49 0.94 0.94

XSS Web 0.61 0.90 0.91

Botnet (2018) 0.49 0.97 0.99

DoS SlowLoris (2018) 0.48 0.99 1.00

DoS GoldenEye (2018) 0.58 0.99 0.99

FTP BruteForce (2018) 0.49 0.98 1.00

SSH BruteForce (2018) 0.49 0.98 1.00

Table 7  LSTM-based model detection rate in the federated
learning approach on the CIC-IDS2017 and CSE-CIC-IDS2018
datasets

Known attack State

Unknowns-
before

Unknowns-
after

Known-after

Botnet 0.69 0.78 0.87

DDos 0.64 0.83 0.90

Portscan 0.48 0.50 0.98

DoS slowHttpTest 0.61 0.61 0.87

DoS SlowLoris 0.54 0.90 0.90

DoS hulk 0.79 0.89 0.89

DoS goldenEye 0.64 0.90 0.92

FTP patator 0.74 0.74 0.89

SSH patator 0.40 0.62 0.78

BruteForce web 0.80 0.81 0.94

XSS web 0.64 0.72 0.91

Botnet (2018) 0.51 0.59 0.98

DoS slowLoris (2018) 0.70 0.80 0.98

DoS goldenEye (2018) 0.64 0.80 0.98

FTP bruteForce (2018) 0.52 0.62 0.99

SSH bruteForce (2018) 0.48 0.5 0.91

Page 20 of 25Soltani et al. Cybersecurity (2024) 7:9

Fig. 8  The average true label probability of each flow’s packet sequence in the CIC-IDS2017 dataset

Page 21 of 25Soltani et al. Cybersecurity (2024) 7:9	

Discussion and future directions
In this section, we discuss and analyze the experiments’
main results and mention possible directions for future
research. The evaluations in “Deep Adaptive Anomaly
Detectors” and “Federated Learning” Sections indicate
that in terms of adaptability, CNN models tend to learn
new traffic patterns better than LSTM models. This phe-
nomenon could be explained by the fact that CNN lay-
ers extract features at the flow level, which capture the
spatial characteristics of packets in a given flow. On the
other hand, while LSTM layers are well-suited for obtain-
ing the temporal relation between sequential packets, the
feature vector extracted by them is based on the trans-
ferred history of the previous packets. Consequently, the
direct data observation by CNN models can generate
better features for representing the flows. While the clas-
sification patterns based on these features might change
over time (according to the traffic concept drift), those
features themselves embody a suitable representation of a
flow. Thus, the dense layers in CNN-based models have a
more straightforward task for tuning their weights when
facing new traffic. The weakness of LSTM models in the
case of learning new attacks (Table 5) is especially aggra-
vated for attacks that use contents similar to benign flows
(e.g. , portscan and FTP Patator3).

Furthermore, in our experiments, we have investigated
the models’ performances for adaptation to new traffic
under strict constraints. To be more precise, the models
are provided with a low amount of knowledge both at the
initial training (i.e. , only one known anomaly is used in
the initial training phase) and updating phase (i.e. , only
128 flows are used as the new traffic samples). Accord-
ing to our evaluations, by relaxing the above constraints,
the results of LSTM-based models improve when trained
with more data. On the other hand, based on the results
of “Early Attack Detection Through Packet Assessment”
Section, LSTM models can detect an anomaly with fewer
packets, thus being more efficient and applicable to real-
world scenarios. More precisely, the early detection

capability of LSTM-based models can help mitigate the
intrusion’s impact on the target organization. Overall, the
initial training of the LSTM-based models needs more
effort, but they are more efficient in detecting with fewer
packets and the updating process (see Table 8).

Regarding the catastrophic forgetting issue, the results
in “Deep Adaptive Anomaly Detectors” Section indicate
that regardless of how well the model adapts itself to new
traffic, its performance on its previous knowledge will
not deteriorate. Figures 4, 5, 6 and 7 indicate that after
learning the new anomaly in each step, the model detec-
tion rate on previously learned anomalies is consistent
with the previous step’s detection rate on both new and
old anomalies.

The IDS performance and its required resources are
other determinative points in selecting the deep model
architecture. According to Table 8, LSTM-based mod-
els are more well-suited for practical IDSes. Although
they need more time for the initial training of the model,
they update themselves faster in continual updating pro-
cedures and consume less memory for their models. As
mentioned, the reported initial training time (in Table 8)
is based on the average elapsed time for each of our dif-
ferent experiments with about 3000–5000 flows. The
updating and validation times are reported according to
processing 128 and 1000 flows, respectively.

One should also consider the efficiency of the updating
procedure in an adaptive deep intrusion detection sys-
tem. An IDS should update itself with the traffic concept
drift as early as possible. Consequently, in this paper, we
evaluate the updating procedure (Deep Adaptive Anom-
aly Detectors” Section) with only 128 flows of the new
traffic, which is considered relatively low compared to the
number of flows used to train an initial model (i.e., about
3000~5000 flows for each attack).

Considering the distributed implementation of the
proposed framework (evaluated in “Federated Learn-
ing” Section), the federated distillation procedure yields
acceptable results on both known and new anoma-
lies while the agents learn novelty attacks and update
the model asynchronously. As a result, the proposed
multi-agent IDS framework can manage big data issues
in practical situations. Furthermore, as discussed in

Table 8  Resource and time consumption of CNN-based and LSTM-based architectures, where each number is averaged over different
attacks

Initial model size
(Memory) (MB)

Expanded model size
(Memory) (MB)

Initial training
(Time) (min)

Updating/
expansion (Time)
(s)

Updating/
compression (Time)
(min)

Validation
(Time) (s)

CNN-based 300 320 7 15 6 1.22

LSTM-based 20 23 13 2 2 2.97

3  Unlike FTP Patator, SSH Patator uses encrypted traffic. The randomness
of the flow bytes makes it different from the benign traffic. Similarly, other
attacks, such as web attacks and a variety of DOS attacks, use slightly differ-
ent contents.

Page 22 of 25Soltani et al. Cybersecurity (2024) 7:9

“Multi-Agent IDS” Section, the proposed framework can
also improve an agent’s data privacy.

Based on the obtained results, we discuss that the pro-
posed multi-agent architecture is advantageous in several
aspects:

1.	 In terms of privacy, since only gradients are
exchanged between an agent and the main-model,
the IDS can be shared between numerous organi-
zations. Each can contribute to updating the main
anomaly detection model while preserving their data
privacy. Even on a geo-distributed scale, different
IDSes and organizations scattered over various loca-
tions can all collaborate with the main-model (i.e. ,
sharing center) to securely adapt themself to new
traffic patterns. An overall schematic of this scenario
is depicted in Fig. 9.

2.	 With the emergence of Big Data, IDSes have to face
colossal and highly fast generated data streaming
into the network (Othman et al. 2018). A multi-agent
architecture allows the dispersion of data among the
sub-models in a parallel structure (i.e. , load balanc-
ing the traffic flows, as demonstrated in Fig. 10),
improving the efficiency in both detecting intrusions
and updating the IDS to new traffic behavior through
a distributed training process.

3.	 Interleaving traffic packets can be tackled by assign-
ing each flow’s packets to a specific agent (note that
each agent can be assigned multiple flows).

To extend this research, we mention possible direc-
tions for future studies. In the deep learning scope, it is
observed that adversarial attacks are a critical challenge

for DL models (Khamis et al. 2020; Madry et al. 2018;
Akhtar and Mian 2018). In these types of attacks, the
model is misled with deceptive data. Consequently, in
future studies, one can evaluate the proposed framework
against adversarial attacks and devise defense solutions
for reducing this threat.

Moreover, the different traffic classes passed to agents
are also an important issue. As discussed in Sect. 3.3,
the multi-agent architecture approach proposed in this
paper provides a practical resolution for IDSes from
two aspects: (1) scalability in distributed IDSes for han-
dling concurrent and high-throughput volumes of traffic
and (2) knowledge sharing between differently-located
agents. For the latter, one should consider the following
challenge:

Generally, attack traffic can be divided into two main
categories: statistical and content-based. Statistical
attacks correlate highly with deployment circumstances
(e.g., the topology of the target network, server capac-
ity, geographic location, etc.). In contrast, content-based
attacks are independent of the environmental charac-
teristics of their target network. Although, according
to the importance and impact of content-based attacks
(Malware 2023), most traditional signature-based IDSes
pivot on these attacks, the proposed framework has some
challenges with statistical ones. For instance, based on
the different attributes of the targeted servers, the veloc-
ity of sent request rates (e.g., for DDoS or DoS attacks)
differ between different organization types. On the other
hand, content-based attacks such as XSS, CSRF, and SQL
injection tend to have the same signature regardless of
their target domain. So, future research could analyze the
aspects and challenges of sharing the attack knowledge
of different attack types (statistical or content-based)
between agents in inhomogeneous environments.

Fig. 9  An illustration of the geo-distributed IDSes that can share their
knowledge through a sharing center (i.e. , main-model)

Fig. 10  An illustration of load balancing in the proposed multi-agent
framework

Page 23 of 25Soltani et al. Cybersecurity (2024) 7:9	

A straightforward solution is to disperse the agents in
environments with the same characteristics. Another
possible solution is to use a local, initial, threshold-based
IDS for each agent to filter the statistical attacks, and
only benign and content-based attacks flow to the agent
model. Either way, to the best of our belief, this topic is
worth further research.

In the end, to complete our analysis, we compare the
proposed framework with previous related research
studies from different aspects. As demonstrated in
Table 9, the proposed framework simultaneously pro-
vides solutions for the three aforementioned challenges
of DL-based IDSes: continuous adaption, multi-agent
IDSes, and early attack detection. Furthermore, note
that most proposed DL-based IDS frameworks depend
on labeled datasets. However, for practical applications,
future studies can develop an unsupervised version of
our proposed online adaptive anomaly detection frame-
work. We believe that, in addition to the suggestions
provided in this work, accomplishing this last step will
result in a DL-based IDS more suitable for real-world
scenarios.

Conclusion
This paper presented a novel framework for DL-based
IDSes that mitigates three practical issues these systems
are currently facing. Namely, we provided solutions for
continuously adapting the IDS to network concept drift,
early attack detection, and efficiently functioning in a
multi-agent environment (e.g. , sharing the attack knowl-
edge from different located IDS sensors, load-balancing
the flows between different agents and managing inter-
leaving flows).

The proposed framework exploits continual learn-
ing algorithms to update DL-based models for adapting
to the concept drift in attack/benign traffic behaviors.
Additionally, it uses federated learning for designing
multi-agent IDSes and providing privacy and load bal-
ancing for big data traffic. Furthermore, the paper inves-
tigates the usage of Long Short-Term Memory networks
(LSTMs) for packet labeling and early anomaly detection
to design more practical IDSes. Finally, the framework is
implemented and evaluated with two architectures: con-
volutional neural networks (CNNs) and LSTM-based
models. The results indicate that while both architectures
perform well, CNN models prevail in terms of detection
rate, and LSTM models are more suitable for early anom-
aly detection with just a few packets.

Table 9  Comparison between the previous related studies and the proposed framework

DL-based Unsupervised Continuous
Adaptation

Multi-Agent Early Attack
Detection

Dataset

 Yin et al. (2017) � NSL-KDD

 Vinayakumar et al. (2017) � KDDCup 99

 Thakur et al. (2021) � CIC-IDS2017

 Riyad et al. (2019) � � KDD99

 Kim and Park (2019) � � KDD99, NSL-KDD

 Papamartzivanos et al. (2019) � � � KDD99, NSL-KDD

 Gupta et al. (2022) � NSL-KDD, CIDDS-001, CIC-IDS2017

 Wang et al. (2021) � KDD99, NSL-KDD,
UNSW-NB15, CIDDS-001, ADFA-LD

 Wang et al. (2022) � UNSW NS2019, ISCX IDS 2012,
CIC-IDS2017, CIC-ANDMAL2017

 Cretu-Ciocarlie et al. (2009) � � Network Traffic of Columbia
University’s Computer Science
Department

 Folino et al. (2021) � Semi-supervised � CIC-IDS2017, ISCXIDS2012

 Soltani et al. (2023) � CIC-IDS2017, CSE-CIC-IDS2018

 Mirza and Cosan (2018) � � ISCXIDS2012

 Gao et al. (2019) � � SCADA simulated testbed

Proposed Framework � � � � CIC-IDS2017, CSE-CIC-IDS2018

Page 24 of 25Soltani et al. Cybersecurity (2024) 7:9

Author contributions
MS: Conceptualization, methodology, software, implementation, validation.
KK: Conceptualization, methodology, software, implementation, validation.
MJS: Conceptualization, methodology, supervision. AHJ: Conceptualization,
supervision.

Funding
No funding was received to assist with the preparation of this manuscript.

Availability of data and materials
The datasets that have been used in this research are all publicly available. The
two datasets CIC-IDS2017 and CSE-CIC-IDS2018 have been used for all the
experiments in this research; they are publicly available.

Code availability
The implementations of all evaluations and experiments are available here at
Github repository.

Declarations

Ethical approval and consent to participate
This article does not contain any studies with human participants or animals
performed by any of the authors.

Competing interests
The authors have no conflicts of interest to declare that are relevant to the
content of this article.

Received: 5 April 2023 Accepted: 10 December 2023
Published: 1 May 2024

References
Abadi M et al (2015) TensorFlow: large-scale machine learning on heterogene-

ous systems. http://​tenso​rflow.​org/. Software available from tensorflow.
org

Abou El Houda Z, Brik B, Khoukhi L (2022) “why should i trust your ids?’’: an
explainable deep learning framework for intrusion detection systems in
internet of things networks. IEEE Open J Commun Soc 3:1164–1176

Adawadkar AMK, Kulkarni N (2022) Cyber-security and reinforcement learning-a
brief survey. Eng Appl Artif Intell 114(105):116

Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in
computer vision: a survey. IEEE Access 6:14410–14430

Alghamdi R, Bellaiche M (2023) An ensemble deep learning based ids for IoT
using lambda architecture. Cybersecurity 6(1):5

Andresini G, Appice A, De Rose L, Malerba D (2021) Gan augmentation to deal
with imbalance in imaging-based intrusion detection. Fut Gener Comput
Syst 123:108–127

Ansari MS, Bartoš V, Lee B (2022) Gru-based deep learning approach for net-
work intrusion alert prediction. Fut Gener Comput Syst 128:235–247

Bhargavi R, Vaidehi V (2013) Semantic intrusion detection with multisensor
data fusion using complex event processing. Sadhana 38(2):169–185

CSE-CIC-IDS2018 (2021) https://​www.​unb.​ca/​cic/​datas​ets/​ids-​2018.​html
Chai Z, Chen Y, Anwar A, Zhao L, Cheng Y, Rangwala H (2021) Fedat: a high-

performance and communication-efficient federated learning system
with asynchronous tiers. In: Proceedings of the international conference
for high performance computing, networking, storage and analysis, pp
1–16

Choi YH, Liu P, Shang Z, Wang H, Wang Z, Zhang L, Zhou J, Zou Q (2020) Using
deep learning to solve computer security challenges: a survey. Cyberse-
curity 3(1):1–32

Chollet F (2017) keras. https://​github.​com/​fchol​let/​keras
Cretu-Ciocarlie GF, Stavrou A, Locasto ME, Stolfo SJ (2009) Adaptive anomaly

detection via self-calibration and dynamic updating. In: International
workshop on recent advances in intrusion detection, pp 41–60

Diro AA, Chilamkurti N (2018) Distributed attack detection scheme using
deep learning approach for internet of things. Fut Gener Comput Syst
82:761–768

Folino F, Folino G, Guarascio M, Pisani F, Pontieri L (2021) On learning effec-
tive ensembles of deep neural networks for intrusion detection. Inf Fus
72:48–69

Gao J, Gan L, Buschendorf F, Zhang L, Liu H, Li P, Dong X, Lu T (2019) Lstm for
SCADA intrusion detection. In: 2019 IEEE pacific rim conference on com-
munications, computers and signal processing (PACRIM), IEEE, pp 1–5

Gimpel K, Das D, Smith NA (2010) Distributed asynchronous online learning
for natural language processing. In: Proceedings of the fourteenth confer-
ence on computational natural language learning, pp 213–222

Gong P, Ye J, Cs Zhang (2012) Multi-stage multi-task feature learning. Adv
Neural Inf Process Syst 25:1997–2005

Gupta N, Jindal V, Bedi P (2022) CSE-IDS: using cost-sensitive deep learning
and ensemble algorithms to handle class imbalance in network-based
intrusion detection systems. Comput Secur 112(102):499

Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:​1503.​02531

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput
9(8):1735–1780

Huang Z, Xu W, Yu K (2015) Bidirectional LSTM-CRF models for sequence tag-
ging. arXiv preprint arXiv:​1508.​01991

Hwang RH, Peng MC, Nguyen VL, Chang YL (2019) An LSTM-based deep learn-
ing approach for classifying malicious traffic at the packet level. Appl Sci
9(16):3414

Iyengar N (2020) Evaluation of network based IDS and deployment of multi-
sensor IDS. arXiv preprint arXiv:​2007.​11654

Jain S, Kasaei H (2021) 3D_DEN: open-ended 3D object recognition using
dynamically expandable networks. IEEE Trans Cognit Dev Sys. https://​doi.​
org/​10.​1109/​TCDS.​2021.​30751​43

KDD Cup 1999 (2021) http://​kdd.​ics.​uci.​edu/​datab​ases/​kddcu​p 99/​kddcu​p99.​
html

Khamis RA, Shafiq MO, Matrawy A (2020) Investigating resistance of deep
learning-based ids against adversaries using min-max optimization. In:
ICC 2020—2020 IEEE international conference on communications (ICC),
pp 1–7. https://​doi.​org/​10.​1109/​ICC40​277.​2020.​91491​17

Kim C, Park J (2019) Designing online network intrusion detection using deep
auto-encoder q-learning. Comput. Electr. Eng. 79:106460

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA,
Milan K, Quan J, Ramalho T, Grabska-Barwinska A et al (2017) Over-
coming catastrophic forgetting in neural networks. Proc Natl Acad Sci
114(13):3521–3526

Labonne M (2020) Anomaly-based network intrusion detection using
machine learning. Ph.D. thesis, Institut Polytechnique de Paris

Lee SW, Mohammadi M, Rashidi S, Rahmani AM, Masdari M, Hosseinzadeh
M et al (2021) Towards secure intrusion detection systems using deep
learning techniques: comprehensive analysis and review. J Netw Comput
Appl 187(103):111

Liang KJ, Li C, Wang G, Carin L (2018) Generative adversarial network training is
a continual learning problem. arXiv preprint arXiv:​1811.​11083

Lippmann R, Haines JW, Fried DJ, Korba J, Das K (2000) The 1999 DARPA off-line
intrusion detection evaluation. Comput Netw 34(4):579–595. https://​doi.​
org/​10.​1016/​S1389-​1286(00)​00139-0

Lopez-Martin M, Carro B, Sanchez-Esguevillas A, Lloret J (2017) Network traffic
classifier with convolutional and recurrent neural networks for internet of
things. IEEE Access 5:18042–18050

Malware Statistics in (2023) Frequency, impact, cost & more: comparitech.
com. https://​www.​compa​ritech.​com/​antiv​irus/​malwa​re-​stati​stics-​facts/.
Accessed 12 Sept 2023

Ma X, Hovy E (2016) End-to-end sequence labeling via bi-directional LSTM-
CNNs-CRF. arXiv preprint arXiv:​1603.​01354

Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2018) Towards deep learn-
ing models resistant to adversarial attacks. In: 6th international confer-
ence on learning representations, ICLR 2018, Vancouver, BC, Canada, April
30 –May 3, 2018, Conference Track Proceedings. OpenReview.net. https://​
openr​eview.​net/​forum?​id=​rJzIB​fZAb

Martens J (2020) New insights and perspectives on the natural gradient
method. J Mach Learn Res 21(1):5776–5851

Mirza AH, Cosan S (2018) Computer network intrusion detection using
sequential lstm neural networks autoencoders. In: 2018 26th signal pro-
cessing and communications applications conference (SIU), IEEE, pp 1–4

NIST security vulnerability trends in 2020 (2021) an analysis. https://​www.​redsc​
an.​com/​media/​Redsc​an_​NIST-​Vulne​rabil​ity-​Analy​sis-​2020_​v1.0.​pdf

http://tensorflow.org/
https://www.unb.ca/cic/datasets/ids-2018.html
https://github.com/fchollet/keras
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/2007.11654
https://doi.org/10.1109/TCDS.2021.3075143
https://doi.org/10.1109/TCDS.2021.3075143
http://kdd.ics.uci.edu/databases/kddcup%2099/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup%2099/kddcup99.html
https://doi.org/10.1109/ICC40277.2020.9149117
http://arxiv.org/abs/1811.11083
https://doi.org/10.1016/S1389-1286(00)00139-0
https://doi.org/10.1016/S1389-1286(00)00139-0
https://www.comparitech.com/antivirus/malware-statistics-facts/
http://arxiv.org/abs/1603.01354
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://www.redscan.com/media/Redscan_NIST-Vulnerability-Analysis-2020_v1.0.pdf
https://www.redscan.com/media/Redscan_NIST-Vulnerability-Analysis-2020_v1.0.pdf

Page 25 of 25Soltani et al. Cybersecurity (2024) 7:9	

Othman SM, Ba-Alwi FM, Alsohybe NT, Al-Hashida AY (2018) Intrusion detec-
tion model using machine learning algorithm on Big Data environment.
J Big Data 5(1):1–12

Papamartzivanos D, Mármol FG, Kambourakis G (2019) Introducing deep
learning self-adaptive misuse network intrusion detection systems. IEEE
Access 7:13546–13560

Riyad A, Ahmed MI, Khan RR (2019) An adaptive distributed intrusion detec-
tion system architecture using multi agents. Int J Electr Comput Eng
9(6):4951

Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K,
Pascanu R, Hadsell R (2016) Progressive neural networks. arXiv preprint
arXiv:​1606.​04671

Saba T, Rehman A, Sadad T, Kolivand H, Bahaj SA (2022) Anomaly-based intru-
sion detection system for IoT networks through deep learning model.
Comput Electr Eng 99(107):810

Scardapane S, Comminiello D, Hussain A, Uncini A (2017) Group sparse regu-
larization for deep neural networks. Neurocomputing 241:81–89

Schwarz J, Czarnecki W, Luketina J, Grabska-Barwinska A, Teh YW, Pascanu R,
Hadsell R (2018) Progress & compress: A scalable framework for continual
learning. In: International conference on machine learning, PMLR, pp
4528–4537

Seff A, Beatson A, Suo D, Liu H (2017) Continual learning in generative adver-
sarial nets. arXiv preprint arXiv:​1705.​08395

Seresht NA, Azmi R (2014) Mais-ids: a distributed intrusion detection system
using multi-agent ais approach. Eng Appl Artif Intell 35:286–298

Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In: Mori
P, Furnell S, Camp O (eds) Proceedings of the 4th international confer-
ence on information systems security and privacy, ICISSP 2018, Funchal,
Madeira - Portugal, January 22–24, 2018, pp 108–116. SciTePress. https://​
doi.​org/​10.​5220/​00066​39801​080116

Soltani M, Ousat B, Siavoshani MJ, Jahangir AH (2023) An adaptable deep
learning-based intrusion detection system to zero-day attacks. J Inf Secur
Appl 76(103):516

Soltani M, Siavoshani MJ, Jahangir AH (2022) A content-based deep
intrusion detection system. Int J Inf Secur. https://​doi.​org/​10.​1007/​
s10207-​021-​00567-2

Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods
for reinforcement learning with function approximation. In: Advances in
neural information processing systems, pp 1057–1063

Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the
KDD CUP 99 data set. In: 2009 ieee symposium on computational intel-
ligence for security and defense applications, CISDA 2009, Ottawa, July
8–10, 2009, IEEE, pp 1–6. https://​doi.​org/​10.​1109/​CISDA.​2009.​53565​28

Thakkar A, Lohiya R (2021) A review on machine learning and deep learning
perspectives of ids for IoT: recent updates, security issues, and challenges.
Arch Comput Methods Eng 28(4):3211–3243

Thakur S, Chakraborty A, De R, Kumar N, Sarkar R (2021) Intrusion detection
in cyber-physical systems using a generic and domain specific deep
autoencoder model. Comput Electr Eng 91(107):044

Varshney S, Verma VK, Srijith P, Carin L, Rai P (2021) Cam-gan: continual adapta-
tion modules for generative adversarial networks. Adv Neural Inf Process
Syst 34:15175–15187

Van de Ven GM, Tolias AS (2019) Three scenarios for continual learning. arXiv
preprint arXiv:​1904.​07734

Vinayakumar R, Soman K, Poornachandran P (2017) Applying convolutional
neural network for network intrusion detection. In: 2017 International
conference on advances in computing, communications and informatics
(ICACCI), IEEE, pp 1222–1228

Wang Z, Fok KW, Thing VL (2022) Machine learning for encrypted malicious
traffic detection: approaches, datasets and comparative study. Comput
Secur 113(102):542

Wang Z, Liu Y, He D, Chan S (2021) Intrusion detection methods based on
integrated deep learning model. Comput Secur 103:102177

Xie C, Koyejo S, Gupta I (2019) Asynchronous federated optimization. arXiv
preprint arXiv:​1903.​03934

Xu J, Zhu Z (2018) Reinforced continual learning. arXiv preprint arXiv:​1805.​
12369

Yi S, Li C, Li Q (2015) A survey of fog computing: concepts, applications and
issues. In: Proceedings of the 2015 workshop on mobile big data, pp
37–42

Yin C, Zhu Y, Fei J, He X (2017) A deep learning approach for intrusion detec-
tion using recurrent neural networks. IEEE Access 5:21954–21961

Yoon J, Yang E, Lee J, Hwang SJ (2017) Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:​1708.​01547

Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in
deep neural networks? arXiv preprint arXiv:​1411.​1792

Zenke F, Poole B, Ganguli S (2017) Continual learning through synaptic intel-
ligence. In: International conference on machine learning, PMLR, pp
3987–3995

Zhang J, Zhang J, Ghosh S, Li D, Zhu J, Zhang H, Wang Y (2020) Regularize,
expand and compress: Nonexpansive continual learning. In: Proceedings
of the IEEE/CVF winter conference on applications of computer vision,
pp 854–862

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1705.08395
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1007/s10207-021-00567-2
https://doi.org/10.1007/s10207-021-00567-2
https://doi.org/10.1109/CISDA.2009.5356528
http://arxiv.org/abs/1904.07734
http://arxiv.org/abs/1903.03934
http://arxiv.org/abs/1805.12369
http://arxiv.org/abs/1805.12369
http://arxiv.org/abs/1708.01547
http://arxiv.org/abs/1411.1792

	A multi-agent adaptive deep learning framework for online intrusion detection
	Abstract
	Introduction
	Related works
	Deep learning-based intrusion detection
	Sequence labeling
	Deep continual learning
	Continual learning based on regularization
	Continual learning based on expansion

	Deep federated learning

	Framework
	Overview
	Continuous adaption to network concept drift
	General IDS model architecture
	Proposed continual learning approach
	Data sampling

	Multi-agent IDS

	Experimental evaluation
	Experimental details
	Evaluation infrastructure
	Datasets
	Model architectures
	Hyperparameter settings

	Deep adaptive anomaly detectors
	Federated learning
	Early attack detection through packet assessment

	Discussion and future directions
	Conclusion
	References

