From: A framework for the extended evaluation of ABAC policies
τ⊥((a,v)) | = | \(\bigwedge \{\neg a_{v^{\prime }} \mid v^{\prime }\in \mathcal {V}_{\mathcal {A}}\}\) |
τ⊥(¬t1) | = | τ⊥(t1) |
\(\tau _{\bot }(\mathop {\sim } t_{1})\) | = | false |
τ⊥(E1(t1)) | = | τ1(t1) |
τ⊥(t1 | = | (τ⊥(t1)∧¬τ0(t2))∨(τ⊥(t2)∧¬τ0(t1)) |
τ⊥(t1⊓t2) | = | τ⊥(t1)∨τ⊥(t2) |
\(\tau _{\bot }(t_{1} \mathbin {\vartriangle } t_{2})\) | = | τ⊥(t1)∧τ⊥(t2) |
τ⊥(t1 | = | (τ⊥(t1)∧¬τ1(t2))∨(τ⊥(t2)∧¬τ1(t1)) |
τ⊥(t1⊔t2) | = | τ⊥(t1)∨τ⊥(t2) |
\(\tau _{\bot }(t_{1} \triangledown t_{2})\) | = | τ⊥(t1)∧τ⊥(t2) |
π⊥(1) | = | false |
π⊥(0) | = | false |
π⊥((t,p1)) | = | τ0(t)∨τ⊥(t)∨(τ1(t)∧π⊥(p1)) |
π⊥(¬p1) | = | π⊥(p1) |
\(\pi _{\bot }(\mathop {\sim } p_{1})\) | = | false |
π⊥(E1(p1)) | = | π1(p1) |
π⊥(p1 | = | (π⊥(p1)∧¬π0(p2))∨(π⊥(p2)∧¬π0(p1)) |
π⊥(p1⊓p2) | = | π⊥(p1)∨π⊥(p2) |
\(\pi _{\bot }(p_{1} \mathbin {\vartriangle } p_{2})\) | = | π⊥(p1)∧π⊥(p2) |
π⊥(p1 | = | (π⊥(p1)∧¬π1(p2))∨(π⊥(p2)∧¬π1(p1)) |
π⊥(p1⊔p2) | = | π⊥(p1)∨π⊥(p2) |
\(\pi _{\bot }(p_{1} \triangledown p_{2})\) | = | π⊥(p1)∧π⊥(p2) |