Skip to main content

Table 2 Performance comparison of our IPE scheme

From: Efficient functional encryption for inner product with simulation-based security

  BJK15(Bishop et al. 2015) DDM16(Datta et al. 2017) TAO16(Tomida et al2016) ZZL17(Zhao et al. 2018) ZZL18(Zhao et al. 2018) Ours
MSK \((8n^2+8)\ell _{\mathbb {Z}_q}\) \((8n^2+12n+28)\ell _{\mathbb {Z}_q}\) \((4n^2+18n+20)\ell _{\mathbb {Z}_q}\) \((6n^2+10n+24)\ell _{\mathbb {Z}_q}\) \((2n^2+18n+36)\ell _{\mathbb {Z}_q}\) \((2n^2+14n+20)\ell _{\mathbb {Z}_q}\)
CT \((2n+2)\ell _{\mathbb {G}_1}\) \((4n+8)\ell _{\mathbb {G}_1}\) \((2n+5)\ell _{\mathbb {G}_1}\) \((2n+4)\ell _{\mathbb {G}_1}\) \((n+6)\ell _{\mathbb {G}_1}\) \((n+5)\ell _{\mathbb {G}_1}\)
SK \((2n+2)\ell _{\mathbb {G}_2}\) \((4n+8)\ell _{\mathbb {G}_2}\) \((2n+5)\ell _{\mathbb {G}_2}\) \((2n+4)\ell _{\mathbb {G}_2}\) \((n+6)\ell _{\mathbb {G}_2}\) \((n+5)\ell _{\mathbb {G}_2}\)
KeyGen 2n+2 4n+8 2n+5 2n+4 n+6 n+5
Encrypt 2n+2 4n+8 2n+5 2n+4 n+6 n+5
Decrypt 2n+2 4n+8 2n+5 2n+4 n+6 n+5
Assumption SXDH SXDH XDLIN SXDH XDLIN XDLIN
Security IND IND IND SIM SIM SIM
  1. Legends: n represents dimension of the vectors. All schemes utilize asymmetric bilinear maps over two groups \(\mathbb {G}_{1}\) and \(\mathbb {G}_{2}\) of order q. \(\ell _{\mathbb {G}}\) is the bit length to represent an element in group \(\mathbb {G}\)