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Abstract

Wearing smartwatches becomes increasingly popular in people’s lives. This paper shows that a smartwatch can
help its bearer authenticate to a login system effectively and securely even if the bearer’s password has already
been revealed. This idea is motivated by our observation that a sensor-rich smartwatch is capable of tracking the
wrist motions of its bearer typing a password or PIN, which can be used as an authentication factor. The major
challenge in this research is that a sophisticated attacker may imitate a user’s typing behavior as shown in previous
research on keystroke dynamics based user authentication. We address this challenge by applying a set of machine
learning and deep learning classifiers on the user’s wrist motion data that are collected from a smartwatch worn by
the user when inputting his/her password or PIN. Our solution is user-friendly since it does not require users to
perform any additional actions when typing passwords or PINs other than wearing smartwatches. We conduct a
user study involving 51 participants so as to evaluate the feasibility and performance of our solution. User study
results show that the best classifier is the Bagged Decision Trees, which yields 4.58% FRR and 0.12% FAR on a
QWERTY keyboard, and 6.13% FRR and 0.16% FAR on a numeric keypad.
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Introduction
A smartwatch is a computerized wristwatch with func-
tionalities beyond timekeeping. The use of smartwatch
has become a rising trend in today’s consumer electron-
ics. According to a recent forecast (CCS Insight Forecast
Predicts Apple Watch and Hearables to Fuel Growthin
Wearables 2017), 71 million smartwatches will be sold
in 2018 worldwide, and doubled to 140 million in 2022.
Equipped with rich sensors, smartwatches can help en-
hance the security of password/PIN-based user authenti-
cation. This is based on an observation that smartwatch
sensors can be used to track users’ wrist movements
when users type passwords or PINs, and thus authenti-
cate users to a login system even if the users’ passwords
or PINs have already been revealed to attackers. Our so-
lution requires that a machine learning or deep learning
classifier be trained on a user’s smartwatch sensor data,

and be used to authenticate a user according to the
user’s smartwatch sensor data, where the data are col-
lected from a smartwatch worn by the user when input-
ting his/her password or PIN.
Similar to this idea, keystroke dynamics has long been

used for user authentication based on users’ hand move-
ments (Monrose and Rubin 1997; Monrose and Rubin
2000; Peacock et al. 2004), where keystroke dynamics re-
fers to the timing patterns of a user who presses and re-
leases keys on a keyboard. Keystroke dynamics had been
considered to be a reliable user authentication factor
until Meng et al. showed that keystroke dynamics may
not be suitable for user authentication as it is vulnerable
to user imitation attacks (Meng et al. 2013). In a user
imitation attack, an attacker can imitate a user’s key-
stroke dynamics and pass keystroke dynamics based user
authentication after being trained with the victim’s key-
stroke pattern.
Compared to keystroke dynamics, the sensor data ob-

tained from a smartwatch worn by a user when the user
types a password or PIN contain much more information
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about the user’s typing behavior, including acceleration
and angular velocity data that are measured at a relatively
high frequency (e.g., 50 Hz). It is difficult for an attacker
to imitate a victim’s wrist motions that are measured at a
high frequency for password/PIN entry. We show that our
solution can effectively thwart the imitation attack to
users’ keystrokes.
Interestingly, the sensor data measured by smartwatches

have been exploited recently to conduct keystroke inference
attacks (Liu et al. 2015; Maiti et al. 2016; Wang et al. 2016;
Wang et al. 2015). While a user types on a QWERTY key-
board or numeric keypad, he/she moves his/her hand to
reach the keys and this causes distinct motions of the user’s
wrist. The motion sensor data collected from the user’s
smartwatch can be used to track the user’s wrist motions
and thus infer the user’s inputs such as PINs and pass-
words. In common, previous studies on keystroke inference
attacks show that the motion sensors of smartwatches can
be exploited to compromise user security and privacy.
From another point of view, the motion sensor data col-
lected from smartwatches contain unique features of users’
typing behaviors, and can thus be exploited to enhance the
security of password/PIN-based user authentication.
In this paper, we make good use of smartwatch sensor

data to enhance password/PIN-based user authentication.
Our solution is user-friendly since it does not require users
to perform any additional actions when typing passwords
or PINs other than wearing smartwatches. We show that
our solution is secure against the keystroke imitation attack
proposed in (Meng et al. 2013). Even if an attacker obtains
a target user’s password and is able to imitate the keystroke
dynamics of the user, our solution can detect the imitation
attack with a high probability by analyzing the sensor data
collected from smartwatches. To evaluate the feasibility and
performance of our solution, we conduct an IRB-approved
user study with 51 participants. We test six popular ma-
chine learning algorithms for processing smartwatch data,
and evaluate their performance in user authentication. We
discover that the Bagged Decision Trees performs the best
in our user study, yielding 4.58% false reject rate (FRR) and
0.12% false acceptance rate (FAR) on the QWERTY key-
board for password-based user authentication, and 6.13%
FRR and 0.16% FAR on the numeric keypad for PIN-based
user authentication.We also show that the keystroke imita-
tion attack has insignificant impact on the accuracy of our
scheme.
This paper extends a preliminary conference version

"employing smartwatch for enhanced password authenti-
cation" published in WASA 2017 in the following as-
pects: (i) We apply a deep learning algorithm, long
short-term memory (LSTM) network to process smart-
watch sensor data and evaluate its performance for user
authentication. We use TensorFlow to implement LSTM
and compare its evaluation results with other machine

learning algorithms. (ii) A comprehensive performance
analysis shows that our solution is secure against the
imitation attack presented in (Meng et al. 2013). Even if
an attacker's keystroke timings are similar to a victim's,
our solution can still differentiate imitators from legitim-
ate users by analyzing smartwatch data. (iii) The presen-
tation of this paper is improved with more details,
analyses, and figures. Compared to the conference ver-
sion, the length of this paper increases by about 50%.

Roadmap
The rest of this paper is organized as follows. Section
“Background” presents some background information
about smartwatch, sensor dynamics, and keystroke dynam-
ics. Section “Assumptions” introduces the assumptions that
are used in our solution. Section “Scheme Design” presents
the details of our design. Section “Evaluation” evaluates our
solution. Section “Discussion” provides discussions on mo-
tion leaks and limitations. Section “Related Work” summa-
rizes the related work, and Section “Conclusion” concludes
this paper.

Background
Smartwatch and sensor dynamics
There are various sensors on smartwatches to collect in-
formation about users, including accelerometer, gyro-
scope, heart rate sensor, and microphone. We choose
Moto 360 sport, which is powered by Android Wear OS,
for our evaluation purpose. We collect data from accel-
erometer and gyroscope for the purpose of user authen-
tication. The built-in motion sensor is an InvenSense
MPU 6051 Six-Axis (Gyroscope + Accelerometer)
MEMS motion tracking device, which can measure the
accelerations and angular velocities of movement in x-,
y- and z-axis regardless of the orientation of watch. Ac-
celerometer and gyroscope in smartwatches have been
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Fig. 1 The accelerometer data when a user types “924673” followed
by “Enter”
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extensively used in user behavioral characterization, in-
cluding sensor-based keystroke inference (Liu et al.
2015; Maiti et al. 2016; Wang et al. 2016; Wang et al.
2015). The basic idea is that the sensor data provide ne-
cessary information which can be used to accurately
recognize the hand movements performed by users
wearing smartwatches. For instance, Figs. 1 and 2 show
the accelerometer and gyroscope data that we collect
when a user types “924,673” using the keypad of DELL
SK-8115 keyboard. These data contain the motion infor-
mation when the user types the PIN. Instead of using
such sensor data for keystroke inference, we use them
for user authentication.

Keystroke dynamics
Keystroke dynamics refers to the timing information as-
sociated with key-press events. Two types of key-press
events are usually used in modeling keystroke dynamics, in-
cluding (a) key-down event (KD): a user presses a key and
(b) key-up event (KU): a user releases a key. One or more
possible keystroke timings associated with consecutive
key-press events, e.g., KD-KU time and KD-KD time, are
considered as keystroke dynamics features in (Killourhy

and Maxion 2010) and shown in Fig. 3. Keystroke dynamics
features have been used to identify and authenticate users
using both hardware keyboards (Clarke et al. 2003; Karat-
zouni and Clarke 2007; Zahid et al. 2009) and software key-
boards (Tasia et al. 2014; Trojahn and Ortmeier 2012).
However, Meng et al. (2013) revealed that a training inter-
face can be set up to help attackers imitate users’ keystroke
dynamics, which makes it unsafe to employ keystroke dy-
namics for user authentication. Because keystroke dynamics
contains only the timing information about users’ key-
stroke, it is possible for an attacker to imitate a user’s key-
stroke via a training interface. To address this problem, we
model a user’s typing behavior using both acceleration data
and angular velocity data from the user’s smartwatch. It is
difficult for an attacker to imitate a user’s typing behavior
in our model without accessing the victims’ smartwatch
sensor data.

Assumptions
It is assumed that a user (the victim) wears a smartwatch
such as Apple Watch or Moto 360 Sport, while he/she
types passwords and PINs. The smartwatch is equipped
with accelerometer and gyroscope which collect the motion
information of the victim’s wrist. If the victim uses one
hand to type, the smartwatch is worn on the same hand. As
smartwatches are widely used, it is not uncommon to make
such assumption in daily life. We focus on two types of
keyboards in this paper, including QWERTY keyboards and
numeric keyboards, which can be used on PCs, mobile de-
vices, Point of Sale (POS) terminals and Automatic Teller
Machines (ATMs).
An attacker intends to login to a user/victim’s account

after the attacker obtains the victim’s username and
password/PIN. The attacker may observe or record the
victim’s entry of passwords or PINs. However, it is as-
sumed that the attacker cannot obtain any sensor data
about the victim’s typing of passwords/PINs from the
victim’s smartwatch; instead, the attacker has the follow-
ing capabilities. First, the attacker may obtain the vic-
tim’s username and password (e.g., by shoulder-surfing
attack or key logger). Second, the attacker may obtain
the victim’s keystroke timing data and imitate the
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Fig. 2 The gyroscope data when a user types “924673” followed
by “Enter”

Fig. 3 Keystroke timings used in keystroke dynamics techniques
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victim’s keystroke as shown in (Meng et al. 2013). In
such imitation attacks, the attacker may wear the same
kind of smartwatch and access the same kind of key-
board as the victim’s.

Scheme design
In this section, we present the design of our smartwatch
enhanced password/PIN authentication scheme.

Overview
The main goal of our design is to demonstrate that using
smartwatches can help enhance the security of password/
PIN authentication systems. Password/PIN authentication
systems suffer from password/PIN observation attacks such
as shoulder surfing and key logging in which attackers may
obtain users’ passwords/PINs. We design and implement a
system which can distinguish legitimate users from illegit-
imate users by processing the sensor data from the smart-
watches worn on legitimate users’ wrists. Even if an
attacker types in the same password/PIN with the victim’s,
the attacker’s hand motion is still different from the user’s.
The accelerometer and gyroscope in a smartwatch can be
used to track its wearer’s hand motion during password/
PIN input. As smartwatches are widely used nowadays, our
system does not require any additional actions when typing
passwords/PINs other than wearing smartwatches, making
our system user-friendly. Our system can be employed as
long as a smartwatch is worn on the user’s wrist when the
user types a password/PIN on a keyboard, or keypad of any
device such as PC, ATM, and mobile phone.
Figure 4 shows the flow of our system. Our system

takes as input the password/PIN and the raw sensor data
(e.g., acceleration, angular velocity) from the smartwatch
worn on a user’s wrist. The password/PIN and the raw
sensor data are sent to our server for verification. The
password/PIN is for the conventional password/PIN au-
thentication while the raw sensor data are processed to
further verify the user. Our system consists of two
phases, a training phase and a detection phase. During
the training phase, user ID and password/PIN are

registered for the conventional password/PIN authenti-
cation and the raw sensor data are recorded. The raw
sensor data are then processed according to our feature
extraction method which translates all the recorded sen-
sor data into features suitable for our classifier. After the
features are extracted, we train the classifier with these
features. During the detection phase, the system verifies
the user ID and password/PIN first. If the typed pass-
word/PIN is correct, it extracts features from the sensor
data and inputs the extracted features into the classifier
so as to verify the user. The classifier matches the fea-
tures extracted from the sensor data against the user’s
profile so as to identify whether the password/PIN is
typed by the legitimate user. A user is authenticated only
if both the password/PIN is correct and the typing pat-
tern matches the user’s profile.
As the conventional password/PIN authentication has

been rigorously investigated, we focus on how to use
machine learning techniques to process the sensor data
of smartwatches and match users’ profiles. We collect
the sensor data when users type passwords on QWERTY
keyboards or type PINs on numeric keypads. QWERTY
keyboards and numeric keypads are mainstream devices
for inputting passwords and PINs nowadays, respect-
ively. As long as a user types passwords or PINs with the
hand wearing the smartwatch, the sensor data can be
collected and then help authenticate the user. We ex-
tract unique features from the sensor data and train sev-
eral machine learning classifiers using the features as
user profiles. The classifiers are used to authenticate
users.

Data collection
Our system collects the accelerometer and gyroscope
data within a time window from a smartwatch worn on
a user’s wrist. The time window begins when the user
begins to type a password or PIN, and ends once the
user presses “Enter” to finish the input. The data col-
lected from accelerometer and gyroscope are streams of
timestamped real values along three axes. For a given

Fig. 4 Overview of smartwatch enhanced authentication scheme
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timestamp, t, the accelerometer data are in the form of
a(t) = (ax,ay,az) while the gyroscope data are in the form
of ω(t) = (ωx,ωy,ωz). Note that the accelerometer data are
affected by the earth gravity, so when the smartwatch is
lying flat on the desk, the accelerometer data show that
there is an acceleration of 9.8 m/s2 along the z-axis.
We install an app in each smartwatch used in our experi-

ment to collect the sensor data. The app is given the per-
mission to access the accelerometer and gyroscope of the
smartwatch. The app is also given the permission to com-
municate with the password/PIN input interface and obtain
the timing information when the user begins typing and
when the user finishes typing. According to the timing in-
formation, the app collects the sensor data and sends the
data to our server which is used to authenticate users. We
collect the sensor data in both the training phase and the
detection phase. In the training phase, we collect enough
data to train certain classifiers. Assuming it takes 6 s for a
user to type in a password or PIN, it will take about 10 min
to type in the password/PIN 100 times, which is enough for
training. In the detection phase, the app collects the sensor
data when the user types the password or PIN and send the
data to our server to verify whether the user is legitimate.

Feature extraction
The raw data from accelerometer and gyroscope are
streams of timestamped real values along three axes. We
extract temporal features from these data for authentication
purpose. We summarize the features that we extract from
the sensor data streams in Table 1. These features have
been previously used for sensor-based smartphone finger-
printing (Das et al. 2015) and tracking mobile web users.
Since there are three axes for both sensors, we obtain a vec-
tor of 36 elements (6 features * 3 axes * 2 sensors) after
extracting the features from a sensor data stream. Our ser-
ver extracts the aforementioned features for certain classi-
fier in both the training phase and the detection phase. In
the training phase, all the extracted features are used to
train the classifier, while in the detection phase, the features
are used to authenticate users according to the classifier.

Supervised learning and detection
In the training phase, after the system extracts all the fea-
tures from training data, it trains the classifier using the

features. In Section “Evaluation”, we evaluate six widely
used classification algorithms, including Support Vector
Machine (SVM), k-Nearest Neighbor (k-NN), Bagged Deci-
sion Trees (Matlab’s Treebagger model), Naive Bayes classi-
fier, Discriminant Analysis classifier, and Long Short-Term
Memory (LSTM) network. We discover that the Bagged
Decision Trees outperforms the other classifiers in Section
“Evaluation”. In the detection phase, a feature vector is ex-
tracted from the sensor data of a user’s smartwatch, and fed
into a trained classifier for the user so as to determine
whether the user is legitimate or not.

Evaluation
In this section, rigorous experiments are conducted to
evaluate the performance and security of our proposed
scheme.

Experimental setup
To collect the sensor data when a user wearing a smart-
watch types in a password or PIN, we setup a data col-
lection system which consists of four components, a
keyboard/keypad, a laptop, a mobile phone and a smart-
watch. Figure 5 illustrates our data collection system. A
user needs to wear a smartwatch and type in passwords/
PINs on a laptop using a keyboard. The sensor data are
recorded automatically on the user’s mobile phone.

Keyboard/keypad
We use a DELL SK-8115 keyboard for user input. Users
type passwords on QWERTY keyboards and type PINs
on numeric keypads.

Laptop
The laptop is a MacBook Pro with an Intel i7 2.7GHz pro-
cessor and 8GB RAM, running an Ubuntu 14.04 64-bit vir-
tual machine. We obtained the source code of the data
collection system from the authors of (Meng et al. 2013)
and rebuilt their system. We then modified their system for
our experiments. The main functions of the modified sys-
tem include providing tasks for users to type, judging
whether users’ inputs are correct and sending control infor-
mation to the mobile phone via WiFi connection. A user
interface is provided as a web page for users to type in pass-
words or PINs according to a prompt. When the system

Table 1 Extracted features

Feature Description

Mean Strength Arithmetic mean of the signal strength

Standard Deviation Standard deviation of the signal strength

Average Deviation Average deviation from mean

Skewness Measure of asymmetry about mean

Kurtosis Measure of the flatness or spikiness of a distribution

RMS Square root of arithmetic mean of squares of the signal strength
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shows the prompt, it sends out a “start”message to the mo-
bile phone at the same time. Upon receiving the message,
the mobile phone also sends a “start” message to the smart-
watch, which begins to record the sensor data. When the
user presses “Enter” to finish the input, the system sends a
“finish” message to the mobile phone and triggers it to send
a “finish” message immediately to the smartwatch. The
smartwatch terminates its recording of the sensor data and
sends the recorded data to the phone. If the input password
is incorrect or the user presses “backspace”, the user’s input
is erased and the system sends a “restart” message to the
phone and in turn to the smartwatch which restarts the re-
cording of the sensor data.

Mobile phone
The mobile phone is a Nexus 6 powered by Android 6.0.
We install an app in this phone to communicate with
the laptop and the smartwatch, as well as store the sen-
sor data obtained from the smartwatch. The app receives
the control information from the laptop through WiFi
connection and communicates with the smartwatch
through Bluetooth connection. After the user finishes
typing each password or PIN, the accelerometer data
and gyroscope data from the smartwatch are stored in
two files respectively. Each file is a list of the sensor data
entries which consist of timestamps and data values in
three axes.

Smartwatch
The smartwatch is a Moto 360 Sport, which runs on the
Android Wear platform. We install an app in this smart-
watch to collect its sensor data. When the app receives a
“start” message from the phone, the app starts recording
accelerometer and gyroscope readings. During data

collection, the sensor data are stored locally. When the
app receives a “finish” message, the sensor data are
transferred to the phone via Bluetooth. The highest sam-
pling frequency that Moto 360 sport supports is 50 Hz
and we specify the SENSOR DELAY FASTEST flag at the
sensor listener registration time to achieve this.

User study
Figure 6 shows the process of our user study1. We col-
lect testing data from 51 participants in our university
(students and staff ), including 22 males and 29 females
with ages between 19 and 34 (45 of them are between
20 and 27 years old). Twenty-six of them major in com-
puter science and all of them are skilled keyboard users.
Our user study involves two sessions, and each of them
takes about 60 min. Every participant takes part in Ses-
sion I and we choose 9 of them (5 males and 4 females)
to take part in Session II. Each participant is paid with
10 dollars after completing each session.

Data collection
In the data collection phase of Session I, we collect the
sensor data when each participant types a predefined
QWERTY keyboard password and a predefined keypad
PIN. The QWERTY keyboard password is used to simu-
late that a user types a password on a standard keyboard
while the keypad PIN is used to simulate that a user
types a PIN on a keypad of ATM or POS terminal. The
layouts of POS terminal keypad, ATM keypad and the
keypad on a keyboard are shown in Fig. 7. There is no
fundamental difference to use a smartwatch to track a
user’s wrist motion when the user inputs PINs on them.
Therefore, we choose the keypad on DELL SK-8115 key-
board in our user study. The participants are required

Fig. 5 Experimental setup
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to wear smartwatches on their right wrists, type in
QWERTY passwords with both hands, and type in PINs
with the right hands. The participants are also required
to keep standing when they type PINs, since people usu-
ally type PINs on ATMs or POS terminals while stand-
ing. We choose the QWERTY keyboard password and
the keypad PIN as “ths.ouR2” and “924,673”, respect-
ively in our experiment. The password “ths.ouR2” is a
strong password used in previous work (Meng et al.
2013) while “924,673” is a randomly generated PIN. The
participants are required to type each password/PIN
100 times.

Keystroke imitation attack
In order to find some participants who are potentially
good at keystroke imitation and test whether our system
can resist the imitation attack proposed in (Meng et al.
2013), we arrange an imitation phase in both Session I
and Session II. We have re-implemented the system
proposed in (Meng et al. 2013) and require that each
participant uses this system to imitate a previous

participant’s keystroke dynamics. After the participant
finishes each input, the system shows an interface (Fig. 8)
and a score to indicate the differences between this in-
put and the target typing pattern. Note that in Fig. 8, the
circles mean the hold timings and the bars mean the
inter-keystroke timings. The blue circles and bars are
the target’s timing information. Imitators can adjust their
typing according to the differences between their timing
information and the target’s. In the imitation phase of
Session I, we aim to find some participants who are
good at imitation, so each participant is required to imi-
tate a previous participant’s typing pattern of “ths.ouR2”.
We find 9 best imitators according to the imitation per-
formance and they are invited to take part in Session II.
In Session II, each participant is required to imitate other
two participants typing “ths.ouR2” and “924,673”, respect-
ively. We discover that it is unable to distinguish these im-
itators from the corresponding victims according to the
keystroke dynamics only, which is similar to the conclu-
sion drawn in (Meng et al. 2013). In section “Defending
against Keystroke Imitation Attack”, we further investigate

Fig. 6 User study process

Fig. 7 Three kinds of keypad: keypad of POS terminal (left), keypad of ATM (middle), keypad on keyboard (right)
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whether it is possible to distinguish them by analyzing the
sensor data taken from smartwatches.

Performance analysis
Data processing
To show the performance of our system on both
QWERTY keyboard and numeric keypad, we process the
sensor data collected when the 51 participants type
“ths.ouR2” and “924,673”, respectively. Different partici-
pants are required to type in the same password/PIN as
we aim to find out whether and to what extent the sen-
sor data can help differentiate them. After deleting in-
valid data caused by system error, we extract the features
according to Section “Feature Extraction” and obtain
4789 feature vectors for the QWERTY keyboard and
4868 feature vectors for the numeric keypad. For each
participant, we have approximately 93 feature vectors.
We delete some outliers from the accelerometer data as
follows. We first calculate the mean value M and the
standard deviation D of the mean strengths, and then
calculate the difference between M and each mean
strength. If the difference is larger than three times of D,
we delete the corresponding feature vector. In addition,
if the D values of some participants are three times
higher than others, we also delete these data to improve
the quality of the collected data. In total, we delete 759
out of 4789 feature vectors for the QWERTY keyboard
and 609 out of 4868 feature vectors for the numeric key-
pad. To evaluate the performance of our scheme, we
adopt false acceptance rate (FAR), which indicates the
fraction of imposter access attempts identified as valid
users, and false rejection rate (FRR), which indicates the
fraction of valid user attempts identified as impostors.

Performance of different classifiers
We evaluate the performance of five machine learning
classifiers, including Support Vector Machine (SVM),
k-Nearest Neighbor (k-NN), Bagged Decision Trees
(Matlab’s Treebagger model), Naive.
Bayes classifier, and Discriminant Analysis classifier. For

training and testing of these classifiers, we randomly select
50% of the feature vectors for each participant as a training
set while the remaining 50% as a testing set. To prevent
any bias in our experiments, we randomize the training and
testing sets 10 times and compute the average accuracy.
Our experimental results are shown in Table 2 and Table 3.
In both tables, “keyboard (improved)” and “keypad (im-
proved)” mean the improved data set derived by removing
outliers from the original data set. The results show that
the Bagged Decision Trees outperforms the other classifiers
and its accuracy is 4.58% FRR and 0.12% FAR on the
QWERTY keyboard, and 6.13% FRR and 0.16% FAR on the
numeric keypad.

Deep learning method
As deep learning methods are increasingly used in user
authentication systems, we evaluate the performance of
a widely used deep learning algorithm, LSTM (Hochrei-
ter and Schmidhuber 1997). We use the basic LSTM cell
in TensorFlow (Abadi et al. 2016) to conduct our experi-
ment. Instead of using the extracted features, we use the
raw sensor data as the input to this algorithm. The sen-
sor data is preprocessed to obtain the last 200 data
points for each sample, and pad with 0 if the sample
contains less than 200 data points. A challenge in train-
ing is that LSTM needs to be trained with a large
amount of training data (i.e., data hungry); however, the

Fig. 8 The interface of the imitation system (Meng et al. 2013)

Table 2 FRR in different scenarios

keyboard (improved) keypad (improved) imitation I (keyboard) imitation I (keypad) imitation II (keyboard) imitation II (keypad)

SVM 18.15% 11.79% 14.81% 5.46% 14.00% 6.64%

k-NN 28.03% 20.02% 22.10% 9.23% 20.99% 8.80%

BDT 4.58% 6.13% 1.93% 1.51% 2.03% 3.41%

Naive Bayes 8.79% 11.03% 12.02% 6.97% 11.42% 9.34%

DAC 6.08% 6.09% 1.72% 1.51% 1.47% 3.95%

LSTM 6.77% 8.04% 3.64% 2.79% 4.12% 4.75%
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collected data set is relatively small. To address this
challenge, we add ±1% perturbation to the original data
so as to generate more training data. In total, we use
about 48,000 samples for training LSTM model for each
user in our experiment. We conduct the experiments 10
times and compute the average accuracy. The results are
also shown in Table 2 and Table 3. The results show that
the accuracy of LSTM is 6.77% FRR and 0.17% FAR on
the QWERTY keyboard, and 8.04% FRR and 0.19% FAR
on the numeric keypad.

Impact of different sensors
To understand the impact of different sensors, we test
our scheme using the data collected from one sensor
only, instead of two sensors. Figure 9 shows the evalu-
ation results with the Bagged Decision Trees. In all
cases, using accelerometer only can reach almost the
same accuracy as using both sensors, while using gyro-
scope only results in much lower accuracy. Nonetheless,
using both sensors can improve the accuracy by about
3% compared to using accelerometer only. As a result,
we use both sensors in our scheme.

Defending against keystroke imitation attack
To test whether our scheme can defend against the key-
stroke imitation attack proposed in (Meng et al. 2013),
we process the sensor data collected from nine selected
participants imitating others in session II of our experi-
ments. Note that the selected participants are the best
imitators among the 51 participants selected in Session

I. In Session II, they are requested to imitate other two
participants typing on QWERTY keyboard and numeric
keypad, respectively. We have reproduced the results of
(Meng et al. 2013) with these nine participants. After
trained with the system proposed in (Meng et al. 2013),
the selected participants can imitate their targets’ typing
patterns in a success rate higher than 90%.
To investigate whether our scheme can differentiate ori-

ginal users from imitators, we extract the features from the
sensor data collected from the original users and from their
imitators, respectively. We then randomly select 50% of the
feature vectors collected from each original user to train all
classifiers. The testing set consists of (i) other 50% of the
feature vectors derived from the sensor data collected from
the same user, and (ii) all feature vectors derived from the
sensor data collected from imitators. Our evaluation results
are shown in Table 2 and Table 3. In the first round of imi-
tation, the results show that the accuracy of the Bagged De-
cision Trees is 1.93% FRR and 0.21 FAR on the standard
keyboard, and 1.51% FRR and 0.15% FAR on the numeric
keypad. In the second round of imitation, the accuracy of
the Bagged Decision Trees is 2.03% FRR and 0.24 FAR on
the standard keyboard, and 3.41% FRR and 0.47% FAR on
the numeric keypad. The results show that the keystroke
imitation attack has little impact on our scheme.
To show the differences in the typing pattern between an

original user and an imitator of the user, we analyze the key-
stroke timing data and the sensor data collected from them.
Figures 10 and 11 show the keystroke timings of the original

Table 3 FAR in different scenarios

keyboard (improved) keypad (improved) imitation I (keyboard) imitation I (keypad) imitation II (keyboard) imitation II (keypad)

SVM 0.43% 0.28% 1.5% 0.47% 1.3% 0.63%

k-NN 0.67% 0.48% 2.2% 0.83% 1.9% 0.80%

BDT 0.12% 0.16% 0.21% 0.15% 0.24% 0.47%

Naive Bayes 0.21% 0.26% 1.2% 0.78% 0.78% 1.0%

DAC 0.14% 0.14% 0.17% 0.15% 0.08% 0.04%

LSTM 0.17% 0.19% 0.58% 0.49% 0.57% 0.73%

Fig. 9 The accuracy (FRR) when using only one sensor Fig. 10 Inter-keystroke timings of an original user and the imitator
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user and the user’s imitators. We can see that the
inter-keystroke timings (Fig. 10) and the hold timings
(Fig. 11) of them are rather similar. However, their sensor
data are clearly different. Figures 12 and 13 shows the sensor
data of the original user and the imitator. The acceleration
data of the original user are shown in Fig. 12 while the accel-
eration data of the imitator are shown in Fig. 13. We can
see the mean values of the original user’s sensor data are
around (6,-4,5), while the mean values of the imitator’s sen-
sor data are around (3,-10,0). Although their keystroke tim-
ings are very similar, their sensor data can be used by our
scheme to differentiate imitators from legitimate users.

Discussion
Motion leaks vs. sensor enhanced authentication
Previous research shows that sensor data collected from a
user’s smartwatch can help an attacker infer the user’s key-
stroke (Liu et al. 2015; Maiti et al. 2016; Wang et al. 2016;
Wang et al. 2015). We show that the sensor data can also
help authenticate users. In both cases, the sensor data in
smartwatches are closely related to users’ privacy and thus
should be protected properly. In particular, the smartwatch

sensor data contain vital information about the motions of
users’ wrists. By analyzing the common features across dif-
ferent users typing the same PINs or texts, attackers can
infer what users typed or narrow down their search scope
significantly. On the other hand, by analyzing the unique
features of different users typing the same passwords or
PINs, authentication servers can differentiate legitimate
users from imposters. It is worth to note that the security
of sensor data has not been addressed rigorously., We rec-
ommend using more strict access control to protect sensor
data in smartwatches (e.g., (Xu et al. 2012; Xu and Zhu
2015)).

Limitations
Our approach has two major limitations. First, a user is
supposed to wear a smartwatch on the hand which is
used to type in keypad PINs.2 It is a problem if a user
wears a smartwatch on one hand while types in a PIN
using the other hand. Since smartwatches are commonly
designed to be worn comfortably on either wrist, a user
can wear a smartwatch on the hand which he/she uses
to type in PINs. Given the increasingly cheaper price of
wearable devices, people may wear both smartwatch and
fitness tracker3 on different hands, so that users can type
in PINs using any hands. The second limitation is that a
user is supposed to maintain his/her typing pattern for
successful login. This is a common issue in keystroke dy-
namics. If the user’s typing pattern changes or the user’s
hand is injured, the user should update his/her typing
pattern or switch to other two factor authentication op-
tions. The third limitation is that our scheme is key-
board specific. (Since all the QWERTY keyboard are
designed based on a basic layout for convenient use, our
scheme should be able to work on similar QWERTY
keyboards.) Another problem is that our solution is not
scalable if a user registers different passwords to mul-
tiple websites. This problem can be mitigated to a

Fig. 11 Hold timings of an original user and the imitator
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Fig. 12 The original user’s acceleration data

Fig. 13 The imitator’s acceleration data
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certain degree by using single sign-on (Pashalidis and
Mitchell 2003) services.

Related work
Typing inference from sensor data
Previous research has shown that attackers can infer
what users type on smart devices such as smartphones
and tablets via various side channel attacks (Aviv et al.
2012; Cai and Chen 2011; Cai and Chen 2012; Miluzzo
et al. 2012; Owusu et al. 2012; Xu et al. 2012). When
users type on different locations on the virtual keyboard
of a smart device, the users’ keystrokes may cause dis-
tinct motions of the smart device, and the motion sensor
data generated by the smart device can be used to infer
the tapped locations and pressed keys.
In particular, typing inference can be made from the

sensor data that are collected from smartwatches. For ex-
ample, Wang et al. proposed using a linguistic model to
infer which word a user types on a standard keyboard ac-
cording to the accelerometer and gyroscope data collected
from the user’s smartwatch (Wang et al. 2015). A limita-
tion of this solution is that it cannot deal with
non-contextual inputs such as passwords and PINs, which
are not covered by a linguistic model. Liu et al. proposed
another solution that makes use of the sensors in smart-
watches, including accelerometer and microphone, to
infer users’ inputs on keyboards or POS terminals (Liu
et al. 2015). Their solution is based on a machine-learning
classifier which should be trained from smartwatch sensor
data measuring hand movements between keystrokes.
Maiti et al. also proposed a solution that makes use of
smartwatch sensors to infer users’ input; in addition, they
proposed a protection framework that regulates sensor
data access (Maiti et al. 2016). Different from these re-
search efforts, Wang et al. proposed a contextual-free and
training-free solution to infer users’ PINs by exploiting the
sensors in wearable devices, including accelerometers, gy-
roscopes, and magnetometers (Wang et al. 2016).
These studies have shown that it is possible to infer

users’ typing on keyboards using the sensor data col-
lected from smartwatches. In comparison, our study
aims to authenticate users according to the sensor data
collected from users’ smartwatches. To the best of our
knowledge, we are among the first to exploit smartwatch
sensors for user authentication purpose.

Keystroke dynamics
Tremendous work has been made in previous research on
using keystroke dynamics as biometrics (e.g., (Monrose and
Rubin 1997; Monrose and Rubin 2000; Peacock et al.
2004)). The majority of research in this line focuses on how
to design a solution that can best distinguishes legitimate
users from imposters. The study of keystroke dynamics was
initially conducted on PCs and hardware keyboard

(Bergadano et al. 2002; Joyce and Gupta 1990; Kang et al.
2007; Killourhy and Maxion 2010; Killourhy and Maxion
2009; Kotani and Horii 2005; Monrose and Rubin 1997;
Monrose and Rubin 2000; Obaidat and Sadoun 1997; Pea-
cock et al. 2004). As mobile devices became increasingly
popular, the research of keystroke dynamics switched to
mobile devices (Campisi et al. 2009; Clarke et al. 2003;
Hwang et al. 2009; Karatzouni and Clarke 2007; Zahid et al.
2009), and software keyboards (Huang et al. 2012; Saevanee
and Bhatarakosol 2008; Saevanee and Bhattarakosol 2009;
Tasia et al. 2014; Trojahn and Ortmeier 2012). Commercial
products based on keystroke biometrics have been devel-
oped over the years (Id control 2018; Intensity analytics
2018; Keyboard biometrics - KeyTrac 2018; Plurilock Se-
curity Solutions Inc 2018).
To challenge the use of keystroke dynamics as biomet-

rics, Meng et al. (Meng et al. 2013) proposed a feedback
and training interface, called Mimesis. Mimesis can help
one user imitate another user’s keystroke dynamics
through incremental adjustments of typing patterns.
This imitation attack poses an threat to keystroke dy-
namics based user authentication. Giuffrida et al. (2014)
proposed using sensor-enhanced keystroke dynamics to
authenticate users typing on mobile devices. A limitation
of their solution is that it works on mobile devices only.
It does not apply to users typing passwords/PINs on
hardware keyboards/keypads. In comparison, our solu-
tion is more generic; it can be applied in all cases no
matter what kinds of devices and keyboards are used for
password/PIN entry as long as users wear smartwatches
when they input their passwords/PINs.

Conclusion
In this paper, we proposed a novel solution for enhan-
cing password/PIN-based user authentication with
smartwatches. Our solution relies on machine learning
classifiers to distinguish legitimate users from imposters
according to the sensor data collected from the user’s
smartwatch during password/PIN entry. Our solution is
reliable even if users’ passwords/PINs are revealed to at-
tacks. Our experimental results show that our solution is
highly accurate. The best classifier for our solution
achieves an accuracy of 4.58% FRR and 0.12% FAR on
the QWERTY keyboard, and 6.13% FRR and 0.16% FAR
on the numeric keypad. While previous keystroke dy-
namics based user authentication is subject to keystroke
imitation attacks, we have shown that our solution is im-
mune to such attacks.

Endnotes
1The user study was approved by the Institutional Re-

view Board of our university. Data collected from the
participants were anonymized and protected according
to the corresponding IRB submission documents
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2There is no restriction on which hand a smartwatch
is worn when a user types in passwords on the standard
keyboard with two hands.

3Fitness trackers are usually equipped with motion
sensors such as accelerometer and gyroscope.
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