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Abstract

In Wireless Sensor Network (WSN), energy and packet forwarding tendencies of sensor nodes plays a potential role
in ensuring a maximum degree of co-operation under data delivery. This quantified level of co-operation signifies
the performance of the network in terms of increased throughput, packet delivery rate and decreased delay
depending on the data being aggregated and level of control overhead. The performance of a sensor network is
highly inclined by the selfish behaving nature of sensor nodes that gets revealed when the residual energy ranges
below a bearable level of activeness in packet forwarding. The selfish sensor node needs to be identified in future
through reliable forecasting mechanism for improving the lifetime and packet delivery rate. Semi Markov Process
Inspired Selfish aware Co-operative Scheme (SMPISCS) is propounded for making an attempt to mitigate selfish
nodes for prolonging the lifetime of the network and balancing energy consumptions of the network. SMPISCS
model provides a kind of sensor node’s behavior for quantifying and future forecasting the probability with which
the node could turn into selfish. Simulation experiments are carried out through Network Simulator 2 and the
performance are analyzed based on varying the number of selfish sensor nodes, number of sensor nodes and
range of detection threshold.

Keywords: Information security, Routing overhead, Selfish sensor nodes, Semi Markov process, Wireless sensor
networks

Introduction
Wireless Sensor Networks (WSNs) comprise of a large
number of low cost tiny sensors distributed in a specific
region for facilitating the activity of data process through
sensing capability (Chen et al. 2013a). The multi-hop,
decentralized and self-organizing nature of sensor nodes
make it suitable for gathering the essential environmen-
tal data such that it could be effectively employed in
various range of applications such as agriculture, indus-
try and military (Guo et al. 2013). The co-operation be-
tween the sensor nodes is essential as they are devoid of
a fixed infrastructure and a centralized entity of control
(Arun Korath and Vineeth 2011). The sensor nodes need
to deliver its co-operation for the other interacting

sensor nodes by ignoring its benefits for improving the
lifetime of the network (Qiu et al. 2010). The limited
computational capability, energy and storage potential of
sensor nodes induces selfish activity of sensor nodes. In
practical situations, it is even more complex when the
sensor nodes deployed for different objectives react
with selfish intent (Duan et al. 2014a). This selfish
action of sensor nodes paralyses the normal activity
delivered by the sensor nodes for ensuring effective
packet forwarding process. The potential challenge of
sensor network lies in the formulation of efficient
forecasting technique that motivates the selfish sensor
nodes to enforce normal operation in the network
(Zhang et al. 2010).
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Generally, reputation and incentive mechanism are
considered to be the best option for enforcing better
co-operation among the sensor nodes of the networks.
The reputation mechanism explores the degree of col-
laboration of sensor nodes based on its past behavior ra-
ther than its present co-operation strategy opted (Reindl
et al. 2010). They investigate the issue of misbehavior
through the trust factors that are evaluated based on the
parameters like packet forwarding potential and energy.
Similarly, the incentive mechanisms target on rewarding
a sensor node for its collaborative behavior or punish
them for their malicious intent. Most of the proposed
selfish node prevention schemes of the literature fail to
predict the selfish intent of sensor nodes based on the
present interactive index computed through direct or in-
direct trust value (Eswari and Vanitha 2013).
Semi-Markov chain inspired forecasting approach is the
phenomenal among the existing forecasting scheme for
preventing selfish activity of sensor nodes under routing
(George and Kumar 2013).
In this paper, SMPISCS based on Semi-Markov

chain is proposed in this paper for preventing selfish
sensor nodes from routing so as to improvise the sen-
sor network lifetime and enforce maximum possibility
of collaboration under data dissemination. The core
objective of this proposed SMPISCS focuses on esti-
mating the probability of each state that a sensor
node could get transited during its process of routing.
This objective focuses on the development of a
Semi-Markov inspired accurate forecasting scheme
that aids in better prediction for reactive decision
making process related to the selfish intent of sensor
nodes. The probe diagnostic routine used in SMPISCS
is uniformly distributed and thus converge the
Semi-Markov prediction process into Semi-Markov
chain by assuming the probe diagnostic time to be
non-exponential. The comparative evaluation of
SMPISCS is also performed through three dimensions
that study the influence of increasing the total num-
ber of sensor nodes, selfish sensor nodes and
co-operation factor under different detection limits.
The major contributions of this proposed SMPISCS

approach are,

i) The proposed SMPISCS is potential in forecasting
the selfish intention of the sensor nodes in prior to
the routing process through Semi-Markov Process,
such that packet drops or decrease in cooperation
between sensor nodes is prevented.

ii) The proposed SMPISCS predicts the transition
probability of sensor nodes that has the maximum
feasibility of becoming a selfish intent node by
investigating the possible states that a sensor node
can enter into.

iii) The proposed SMPISCS is also capable of
identifying the transition probability of each and
every sensor node state at any given point of time.

The roadmap of the forthcoming sections is discussed
as follows. Section 2 lists and details on the potential
selfish sensor node prevention schemes propounded in
the literature for improving network lifetime. The prob-
lem description, network model, communication model
and description about the implementation of SMPISCS
is elaborated in section 3. The simulation environment
and inferences derived from the simulation results are
clearly portrayed and investigated in Section 4 and Sec-
tion 5 highlights the conclusions, potential contributions
and possible enhancements that could be derived from
implementation of SMPISCS.

Related work
In this section, the significant contributions of the litera-
ture proposed for preventing selfish nodes in sensor
nodes are discussed with their merits and limitations for
motivating the formulation of SMPISCS.
Initially, an attempt known as Incentive Detection

Technique (IDT) (Chen et al. 2013b) was made for pre-
venting the issue of selfish nodes which is the potential
misbehavior in wireless sensor networks. IDT enforces
co-operation between the sensor nodes of the network
using two modules that relates to the punishment and
detection for malicious intent of selfish nodes. The first
module is responsible for dynamically alternating the be-
havior of sensor nodes depending on packet forwarding
potential and the second module performs detection
based on the difference between the elucidated mean
re-transmission counts identified for a sensor node to
the maximum re-transmission count estimated for the
same. IDT enforces co-operation between the sensor
nodes of the network using two modules that relates to
the punishment and detection for malicious intent of
selfish nodes. The first module is responsible for dynam-
ically alternating the behavior of sensor nodes depending
on packet forwarding potential and the second module
performs detection based on the difference between the
elucidated mean re-transmission counts identified for a
sensor node to the maximum re-transmission count esti-
mated for the same. IDT is confirmed to reduce the false
detection rate and at the same time, enhances the detec-
tion rate and throughput. Window-based Scheme (WBS)
was proposed by Tripathi et al. (Tripathi et al. 2013) for
reducing the degree of overhead incurred by the under-
lying detection technique. WBS explores the detection
of selfish sensors based on three dimensions that pertain
to the intensity of misbehavior, the influence produced
by each type of sensor misbehavior and the overhead in-
curred for processing the activity of detection. WBS is
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not only a detection scheme but also aims at isolating
this malicious intent from routing. Thus WBS is found
to minimize the false positive rate to an appreciable
threshold.
Further, an Evolutionary Game-based Incentive Mech-

anism (EGIM) was proposed by Chen et al. (Chen et al.
2011) for adjusting the fitness of the node’s forwarding
approach through the determination of co-operation fac-
tor. This fitness function aids in converging the mali-
cious intent of sensor nodes into reliable normal entities
of the network. EGIM confirmed its performance by im-
proving the throughput, packet delivery and reducing
the routing overhead and energy consumptions. EGIM
suffers from the limitations of computation overhead as
they need to compute and adjust the co-operation factor
depending on the kind of maliciousness induced by the
sensor nodes of the network. Reputation-based uneven
Clustering Routing Protocol (RUCRP) (Zhang et al.
2016) was proposed for selfishness by considering energy
assessment and reputation determination. Unequal kind
of clustering is used in RUCRP for controlling and main-
taining the objective of energy conservation. The deter-
mined reputation entity and energy are considered as
the indexes for enforcing the act of collaboration.
RUCRP provides between detection rate as it uses
multi-level indexes for quantifying the action of sensor
nodes, but they fail in addressing the issue that arises
due to routing overhead.
Furthermore, a Co-operative Game–Based Routing

Approach (CGBRA) is an incentive mechanism pro-
posed for handling security and energy conservation
through the principle of cooperative game theory (Li et
al. 2012). This CGBRA used the concept of rewarding
the normal and selfish nodes for packet forwarding and
punish them when they fail for forwarding packets. The
nodes are forced to establish collaboration for maximiz-
ing the payoff value in the player game strategy. CGBRA
enhances the rate of throughput by prolonging the net-
work lifetime. Then, a Game Theory-based Node Behav-
ior Regulation Scheme (GT-NBRS) was proposed for
preventing selfish nodes in wireless sensor nodes (Lin et
al. 2015). This GT-NBRS utilized two stages for regulat-
ing the behavior of sensor nodes in the sensor networks.
In the first stage, VA-based game theory model was in-
corporated for regulating the behavior of sensor nodes
and in the second stage, a transmission approach was in-
corporated for ensuring reliable data dissemination to
the destined sink within the expected timestamp. This
GT-NBRS scheme was proved to meet the theoretical
requirements under reduced energy cost by balancing
the energy cost with a view to extend the lifetime of the
network.
In addition, Trust Support-based Malicious Node De-

termination Scheme (TS-MNDS) was proposed mainly

for detecting and also for preventing malicious selfish
nodes in the sensor network (Prathap et al. 2016). In
this TS-MNDS, the data dissemination between each
sensor node and the sink is always facilitated with se-
lection of parent node. This process of selecting the
parent node is always initiated by adding the identity
and trust value computed for each individual sensor
nodes in order to perform encryption only when the
bytes are actually appended by the forwarding node.
This option of selection facilitated by this TS-MNDS
aided in identifying the malicious selfish sensor nodes
in the network by the estimated trust and identities.
Once the parent node is selected, the child nodes in the
network are responsible for monitoring the parent in
order to evaluate their reliability determined through
successive and failure data transactions. This
TS-MNDS iterates this process of parent selection in
the beginning of each round of implementation by par-
titioning the complete time incurred in data transmis-
sion into multiple rounds with equal time utility. This
TS-MNDS was determined to improve the rate of de-
tection with reduced energy cost for facilitating a su-
perior increase in the lifetime of the network. Finally, a
Trust-based Lightweight Selfish Node Detection
Scheme (TLSNDS) was proposed for identifying the
concealed characteristics of malicious sensor nodes in
the network (Rikli and Alnasser 2016). This TLSNDS
was inferred to be potential in handling the issues that
emerge due to the influence of selfish and jamming at-
tack. This TLSNDS utilized a single level of trust in
which each and every sensor node is responsible for
monitoring and collecting neighbor one hop informa-
tion that aids in evaluating the trustworthiness of the
sensor nodes under participation. In TLSNDS, the trust
value of the sensor nodes under participation is
achieved for classifying them into genuine and selfish
nodes in the network. This TLSNDS was also formu-
lated as an effective trust model that detects concealed
characteristics of sensor nodes through the utilization
of minimum power and memory. The results of the
TLSNDS was confirmed to improve the rate of detect-
ing malicious selfishly behaving sensor nodes with in-
creased throughput, packet delivery rate and, reduced
energy cost and routing overhead.
The research challenges that motivated the formula-

tion of the proposed SMPISCS scheme are,

i) The selfish node detection approaches propounded
sofar has been designed to mitigate the selfish
sensor nodes have not focused on the effective
Semi-Markov model for prediction.

ii) The majority of the selfish node detection
approaches proposed for mitigating selfish sensor
nodes have enabled only a maximum classification
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rate of 94.62% during its discrimination process
between selfish and cooperative sensor nodes.

iii) The traditional forecasting models that derived the
benefits of the exponential smoothing average
method are not highly potential in accurate
prediction of selfish behavior of sensor nodes.

The aforementioned shortcomings elucidated from
each of the contributed works of the literature induced
the need for formulating a Semi-Markov Chain inspired
forecasting SMPISCS model.

Problem description and system model for
SMPISCS
The problem description, network model, communica-
tion model and detailed description of SMPISCS are de-
tailed in the forthcoming sections.

Problem description
SMPISCS is the significant selfish behavior forecasting
scheme proposed for sensor networks in order to ensure
effective packet dissemination and co-operation degree
for facilitating maximum network lifetime. SMPISCS
make use of the characteristic features of Semi-Markov
Chain for isolating selfish nodes from the network
through the use of the probe diagnostic routine. The
probe diagnostic routine is efficient enough in conver-
ging the Semi-Markov process of detection to a
Semi-Markov Chain as the interval of detecting selfish-
ness behavior is not necessarily exponentially distrib-
uted. The probe diagnostic routine is potential in
transmitting the probe packets to all the interacting sen-
sor nodes of the network with a threshold diagnostic
time. This transmission of probe packets is responsible
for estimating the probable transition probability of sen-
sor nodes in the network at each and every instant of
time. The number of probe packets and time of trans-
mitting probe packets is uniformly distributed with a
lower and upper limit of 0 and T respectively. This
problem of selfishness identification considers an aver-
age diagnostic time under the uniform distribution for
ensuring rapid detection of intentionally behaving selfish
sensor nodes.
The notations that are utilized in this proposed

SMPISCS are presented in Table 1.

Network model for SMPISCS
In the network model of SMPISCS, ‘Ns‘refers to the sen-
sor nodes which are assumed to be disseminated ran-
domly on the terrain area of ‘TS ∗ TS ‘and the
characteristic features of the deployed nodes are listed as
follows:

i) The sensor nodes of the network initially possess
the same value of energy, trust and behavior.

ii) The energy possessed by the base station of the
network is always infinite and the network
comprises of only one base station.

iii) The sensor nodes of the topology gather knowledge
related to the present location of the sensor nodes
even under the absence of capabilities like GPS.

Table 1 The notations with its descriptions used in the
proposed SMPISCS

Notations Description

Ns Number Of Sensor Nodes In The Network

TS ∗ TS Terrain Area

ds Inter-communication distance between sensor nodes

dre Reachable inter-communication distance between
sensor nodes

Ee Energy consumed for sending data in the free path

Etrans Energy consumed for transmission

Eamp Energy consumed for sending data in the multi-fading path

Efuse Energy consumed for sending data under fused path

l Length in Bits of data

(C, S) Sensor node with cooperative state and has possibility
of transiting into its selfish state

Cr The threshold energy probability of sensor nodes

1 − Cs The complementary threshold energy probability of
sensor nodes

β Failure time of the sensor node operating in normal
mode

βs Time to failure of the selfish nodes

μ Time to re-energize the failed node to turn into a
reliable mode

πC, S Transition probability of a sensor node from cooperative
state to its selfish state

πNC Transition probability of a sensor node from non cooperative
state to its cooperative state

πF, F Transition probability of a sensor node from failure state that
could not be rehabilitated

πC, C Transition probability of a sensor node to retain its
cooperative state

Ud(0, T) Uniformly distributed probe diagnostic time

STi Sojourn time

PT(i, j) General probability representing the transition of sensor
node from one state to another

(F, F) Sensor node with failure state and has no possibility
of transiting into its cooperative state

(C, F) Sensor node from cooperative state to its failure state

Si Sojourn time state

TPR Threshold probe diagnostic time

(N, C) Sensor node from cooperative state to its non
cooperative state

(N, D) Sensor node from defective state to its cooperative state
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iv) The sensor nodes of the network are set to be static
after their deployment and they incur a different
degree of energy depending on the energy model
identified based on transmission.

Communication model for SMPISCS
The communication model used in SMPISCS is similar
to the communication model used in (Heinzelman et al.
2002). This communication model depends on ‘ds‘is the
intercommunication distance among the sensor nodes
and also the broadcast distance among the sensor nodes.
This ‘ds‘is estimated based on two constraints viz., ‘dre ≤
ds ‘and ‘dre > ds‘which represents the free-space model of
the system and multipath-fading model of the system re-

spectively using ds ¼
ffiffiffiffiffiffiffiffiffiffi
NeðfsÞ
NeðmpÞ

q
. Further, the energy in-

curred by the sensor nodes for transmitting and
receiving ‘l’ bits of data is computed using EtransðlÞ ¼ l

�Ee þ l � Efuse � d2
re (free space model), EtransðlÞ ¼ l

�Ee þ l � Eam � d4
re (multi-path fading model) and Ere-

ceive(l) = l × Ee . Where ‘Ee ‘, ‘Eamp’ and ‘Efuse ‘represents
the amount of energy consumed for sending data in the
free path, multi-fading path and fusion.

Description of semi Markov process inspired selfish aware
co-operative scheme
In this section, initially the base of Semi Markov Process
has been explained. This model is derived using the ben-
efits of Markov-Renewal Process (MRP), it is quietly a
different kind of two dimensional Markovian Sequence.
The MRP used in the Semi Markov Process is defined
through the renewal kernel called transition probabilities
considered as initial distribution. The counting process
related to the Semi-Markov Process that permits the es-
timation of process regularity. The regularity in the
Semi-Markov Process is enforced through the counting
process by incorporating a finite number of sequential
jumps over a finite time period.
In wireless sensor networks, the degree of co-operation

rendered by active sensor nodes is found to be phenomen-
ally significant when compared to the selfish sensor nodes
as they misbehave in the network for preserving its energy
such that they remain survival even though they cannot
facilitate enough co-operations. The failure rate of
co-operating and selfish nodes are found to be entirely dif-
ferent and further, the impact produced by the
co-operating and selfish nodes of the network is found to
exhibit deviation. Initially, the sensor nodes of the network
are operating in reliable mode, then the network is re-
ferred to be in the state (C, C). In this context, let ‘β‘,’βs’
and ‘μ ‘denotes the time to failure time of the sensor node
operating in normal mode, time to failure of the selfish

nodes and time to re-energize the failed node to turn into
a reliable mode as highlighted in Fig. 1.
The transition of the network into the state (C, S) oc-

curs when the energy possessed by the sensor nodes of
the network reaches below the probability of ‘Cs‘. This
induces the normally operating sensor nodes to behave
in the selfish way in order to remain active in the net-
work. Similarly, the network remains in the state (C, S)
when some of the selfish nodes of the network are to-
wards failure, but maximum of the sensors are in reliable
mode with the defection probability of ‘Cr‘. In contrast,
if the failures of the sensor nodes are not able to be esti-
mated with detection probability ‘1 −Cs ‘then the net-
works enter in the state (N, C). Likewise, if the failure of
the selfish sensor nodes are estimated with the same de-
tection probability ‘1 −Cs ‘, the network enters into the
state ‘ND‘. The probability ‘Cs ‘and ‘Cr ‘depends on the
computation of direct and indirect trust factor per-
formed in (Chen et al. 2015). The system enters into the
state (S, S) when the latent failure (i.e, the energy thresh-
old is not sufficient enough to exhibit either selfish or
reliable mode) takes place in the network when they are
in the state (C, S), NC and ND respectively. Thus the
steady balance equations derived from the state transi-
tion diagram of SMPISCS are.

μπCS ¼ πCC βþ βS
� �

: ð1Þ

μπNC þ βSπNC ¼ πCCβ 1−CSð Þ: ð2Þ

βπND ¼ πC;CβS 1−Crð Þ: ð3Þ

Fig. 1 State Transition Diagram of SMPISCS
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μ γ þ βS
� �

πFF þ μπFF þ μ2πFF

¼ πCC βþ βS
� �

βþ πCC βS 1−Crð Þ� �
þ πCC βþ βS

� �
βS: ð4Þ

The aforementioned steady state equations of
SMPISCS are solved based on πC, Cand the steady state
probabilities pertaining to the possible state behavior of
sensor nodes of the network (Pal 2009) are obtained as.

πCS ¼
πCC βþ βS

� �
μ

: ð5Þ

πNC ¼ πCCβ 1−CSð Þ
γ þ βS
� � : ð6Þ

πND ¼ πCCβS 1−Crð Þ
β

: ð7Þ

πFF ¼ πCC
β 1−CSð ÞβS
μ γ þ βS
� � þ βþ βS

� �
β

μ2
þ βS 1−Crð Þ

μ

 !
:

ð8Þ
Where

πCC ¼ 1

1þ βþ βS
� �

μ
1þ β

μ

� �
þ β 1−CSð Þ

γ þ βS
� � 1þ βS

μ

� �
þ βS 1−Crð Þ 1

β
þ 1
μ

� � :

ð9Þ
In this context, a probe routine is incorporated for

identifying the selfish behavior in the network which re-
petitively run for ‘TPR‘units. The sensor node (reliable or
selfish) of the network possesses the failure and
re-energize time which inspires exponential distribution,
but the time interval of incorporating the run of probe
routine for detection is not exponentially distributed.
Thus SMPISCS fails to possess the characteristic proper-
ties of continuous Markov chain (Wereley and Walker
1988). But, SMPISCS is found to unveil the properties of
Semi-Markov process because the change in state of the
network form (N, D) to (C, S) is influenced by the so-
journ time that depends on the amount of time dur-
ation, the network was under the state (N, D) rather
than the past state. This Semi-Markov inspired
SMPISCS technique uses the approximation time, which
is exponentially distributed with mean probe time of ‘T2 ‘.
Hence the steady balance equations derived using (5–8)
is solved through approximations and the solutions are
obtained using.

πCS ¼
πCC βþ βS

� �
μ

: ð10Þ

πNC ¼ πCCβ 1−CSð Þ
γ þ βS
� � : ð11Þ

πND ¼ πCCβS 1−Crð Þ
βþ 2

T

� � ð12Þ

πFF ¼ πCCðβ 1−CSð ÞβS
μ γ þ βS
� � þ βþ βS

� �
μ2

þ βS 1−Crð Þ
μ βþ 2

T

� � : ð13Þ

Where

πCC ¼ 1

1þ βþ βS
� �

μ
1þ β

μ

� �
þ β 1−CSð Þ

γ þ βS
� � 1þ βS

μ

� �
þ βS 1−Crð Þ

λT þ 2ð Þ 1þ β
μ

� � :

ð14Þ

From the enhanced steady state balancing equation
under approximation, the states’ πC, S‘and ‘πNC ‘are not
influenced by probe diagnostic time with is uniformly
distributed with ‘Ud(0,T)’ The Semi-Markov Pro-
cess(SMP) of SMPISCS converges to a Semi-Markov
chain and hence a transition labeled ‘Ud(0,T) ‘is added
into the transition diagram of SMPISCS. Fig. 2 portrays
the transition diagram of SMPISCS with Semi-Markov
chain. In this Semi-Markov chain, each of the transitions
is assumed to occur in two stages. During the first stage,
SMP is found to be in state’ Si‘with the sojourn time de-
scribed by ‘STi‘and in the second step, SMP utilizes the
probability of ‘PT(i, j) ‘that emphasizes the possibility of
sensor nodes to move from one state to the other. SMP
in SMPISCS is represented using sojourn time ‘STi‘and
transition probability ‘PT(i, j) ‘. SMP of SMPISCS infers
that, except the state ‘ND’, the distribution of the sojourn
time for the remaining states is exponentially
distributed.

Fig. 2 Semi-Markov chain-based State Transition Diagram of SMPISCS
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The sojourn time of ‘ND’ is determined by the mini-
mum of exponential variable based ‘β‘and ‘Ud(0,T) ‘based
random variable. Hence the sojourn time ‘STi‘of states in
Semi-Markov chain-based SMPISCS are observed to be.

STcc tð Þ ¼ 1−e− βþβSð Þt : ð15Þ

STCS tð Þ ¼ 1−e− γþβSð Þt: ð16Þ

STCS tð Þ ¼ 1− 1−
t
T

� �
e−βt ; t≤T : ð17Þ

STCS tð Þ ¼ 1; t≥T : ð18Þ
STFF tð Þ ¼ 1−e−μt ; t≥T : ð19Þ

For determining the stochastic probability of transition
from ‘ND’ to (C,S), let ‘X’ and ‘Y’ be considered as the ran-
dom variables which represents the transition possibility
‘β‘and ‘Ud(0,T) ‘respectively. This probabilities need to be
compared for analyzing whether the time required for the
transition from ‘NC’ to ‘(C,S) is greater than the time re-
quired for the transition from ‘ND’ to ‘(C,S). If the transi-
tion time for the sensor node to transit from ‘NC’ to ‘(C,S)
is greater than the time required for the sensor node to
transit from ‘ND’ to ‘(C,S)’. is expressed using.

PT X>Yð Þ ¼ 1
βT

1−eβT
� �

: ð20Þ

The Discrete Time Markov Chain-based one-step
transition probability matrix’MPT’ of SMPISCS is repre-
sented through.

Then the five steady state probabilities of SMPISCS
are computed using the vector VTP= [V(C,C),VNC,V(C, S),
VND,V(F, F)] and ‘MPT ‘through equationVTP =VTP ∗MPT.
The sojourn time in each state ‘i ‘is derived as.

S CCð Þ ¼ 1
βþ βS

: ð21Þ

SNC ¼ 1
γ þ βS

: ð22Þ

SCS ¼ 1
βþ μ

: ð23Þ

SND ¼ 1
β
−

1

Tβ2
1−e−βT
� � ð24Þ

S FFð Þ ¼ 1
μ
: ð25Þ

Finally, the state probabilities of SMPISCS are derived

using ‘πi ¼ VTPðiÞ�siX
j

V TPðiÞ�si
’ in whichi, j ∈ {(C,C),NC, (C, S),

ND, (F, F)}. In this approach, the selfish behavior of sen-
sor nodes is computed through the sum of state prob-
abilities related to ‘πNC‘and ‘π(F, F) ‘respectively. Based on
this summation value, the sensor nodes are identified as
selfish when it reaches below the value of ‘0.3′ as ex-
plained in (Ju et al. 2010).

Simulation results and discussions
In this section, the simulation environment, simulation
parameters and performance metrics used for simulating
the performance of SMPISCS is presented and the pos-
sible conclusions that are derived from the inferences
are determined and elaborated as follows.

Simulation environment
The network area of simulation utilized for evaluating
the performance of proposed SMPISCS and the bench-
marked Co-operative Game–Based Routing Approach
(CGBRA) Game Theory-based Node Behavior Regula-
tion Scheme (GT-NBRS) Trust Support-based Malicious
Node Determination Scheme (TS-MNDS) Trust-based
Lightweight Selfish Node Detection Scheme (TLSNDS)
is 200 × 200 meters with 200 as the maximum number
of sensor nodes. The implementation of the proposed
SMPISCS scheme and the benchmarked CGBRA,
GT-NBRS, TS-MNDS and TLSNDS schemes are simu-
lated by assigning the similar parameters in the simula-
tion setup. The selfish sensor nodes are scattered
uniformly in the topology. The number of selfish nodes
is also varied dynamically during the process of simula-
tion in order to study the influence of the proposed
SMPISCS scheme towards the minimization of its im-
pact in the network topology. The initial energy of the
sensor nodes is assigned to 0.5 J and maximum number
of rounds used for implementation are 800 rounds. The
length of data and control packets are 4000 and 100 re-
spectively, with 4200 bits of data packet size.
The additional parameters used for simulation are de-

scribed in Table 2.
In the forthcoming section, the significance of

SMPISCS in terms of its performance over CGBRA,
GT-NBRS, TS-MNDS and TLSNDS schemes are dis-
cussed below.

(C,C) NC (C,S) ND (F,F)

(C,C) 0 βð1−CSÞ
ðβþβSÞ

ðβþβSCrÞ
ðβþβSÞ

βSð1−Cr Þ
ðβþβSÞ

0

NC 0 0 γ
ðγþβSÞ 0 βS

ðγþβSÞ

(C,S) μ
βþμ 0 0 0 β

βþμ

ND 0 0 1
βT ð1−e−βT Þ 0 1− 1

βT ð1−e−βT Þ
(F,F) 0 0 1 0 0
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Results and discussions
The significance of SMPISCS used in the selfish sensor
node detection is explored by investigating its perform-
ance in three dimensions. In the first dimension,
SMPISCS is studied through packet delivery ratio,
throughput, routing overhead and energy consumptions
based on different numbers of sensor nodes of the net-
work topology. In the second perspective, SMPISCS is ex-
plored using the same performance metrics similar to the
first dimension of investigation under the influence of
varying selfish sensor nodes of the network. Finally, the
improvement in network lifetime of SMPISCS is analyzed
under different thresholds of detection with a different
co-operation degree of 0.3, 0.6 and 0.9 respectively.
Initially, packet delivery ratio, throughput, routing over-

head and energy consumptions of the network is studied
under the impact of dynamically varying sensor nodes.
The packet delivery ratio and throughput of SMPISCS

evaluated under different sensor nodes in the network
field. The result emphasizes that SMPISCS is strong
enough in facilitating maximum packet delivery rate and
throughput than CGBRA, GT-NBRS, TS-MNDS and
TLSNDS schemes. This result proves that the packet de-
livery rate of SMPISCS is improved to about 11%, 15%,
18% and 22% compared to CGBRA, GT-NBRS,
TS-MNDS and TLSNDS schemes. The throughput is also
found to improve by 13%, 15%, 17% and 20% due to the
exploration possibility of transition behavior used in
SMPISCS are presented in Figs. 3 and 4.
The routing overhead and energy consumption rate of

SMPISCS explored under different sensor nodes in the
network field. The result emphasizes that SMPISCS is
suitable and capable of reducing the routing overhead
and energy utilization rate over CGBRA, GT-NBRS,
TS-MNDS and TLSNDS schemes by triggering a reliable
probe-based exponentially varying diagnostic routine
that aids in the rapid detection process. The result infers
that the routing overhead of SMPISCS is minimized to
the phenomenal level of 12%, 15%, 18% and 21% com-
pared to CGBRA, GT-NBRS, TS-MNDS and TLSNDS
schemes. Similarly, the energy consumptions of
SMPISCS seem to get reduced by 7%, 10%, 13% and 16%
higher than CGBRA, GT-NBRS, TS-MNDS and
TLSNDS schemes unveils in Figs. 5 and 6.
In the second experimental investigation, packet deliv-

ery ratio, throughput, routing overhead and energy con-
sumptions of the network is studied under the influence
of different number of selfish sensor nodes. The packet
delivery ratio and throughput of SMPISCS analyzed
under different number of selfish sensor nodes in the
network field. The result infers the potentiality of

Table 2 Simulation parameters for SMPISCS

Parameter description Used value

Sensor nodes 200

Initial energy of sensor nodes 0.5J

Location of base station (100,100)meters

Uniform speed distribution (0,25)meters

Data packet size 4200 bits

Coverage area of the network (0,0)-(200,200)

Maximum number of rounds 800

Length of control packets 100

Length of data packets 4000

Position of the sink (0,0)

Fig. 3 SMPISCS-Packet delivery ratio (number of sensor nodes)
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SMPISCS in assuring significant packet delivery rate and
throughput compared to CGBRA, GT-NBRS, TS-MNDS
and TLSNDS scheme. This result proves that the packet
delivery rate of SMPISCS is improved to about 11%,
13%, 16%, 18% compared to CGBRA, GT-NBRS,
TS-MNDS and TLSNDS schemes. The throughput is
also found to get enhanced by 9%, 11%, 14% and 17%
compared to the benchmarked schemes due to the fore-
casting ability of SMPISCS which is ensured by the
Semi-Markov modeling of the detection process are
highlighted in Figs. 7 and 8.
The routing overhead and energy consumption rate of

SMPISCS studied under the impact of different number
of selfish sensor nodes of the network. The result infers

the suitability of SMPISCS in minimizing routing over-
head and energy utilization rate due to its dominance in
reducing the number of re-transmissions. The result
confirms that the routing overhead of SMPISCS is re-
duced to the significant level of 9%, 12%, 14% and 16%
compared to CGBRA, GT-NBRS, TS-MNDS and
TLSNDS schemes. The energy consumptions of
SMPISCS also seem to get reduced by 10%, 13% and
17% higher than CGBRA, GT-NBRS, TS-MNDS and
TLSNDS schemes are presented in Figs. 9 and 10.
Finally, the potential of SMPISCS investigated through

co-operation degree under different detection levels of
selfish behavior using network lifetime is represented
using Figs. 11, 12 and 13.

Fig. 4 SMPISCS-Throughput (number of sensor nodes)

Fig. 5 SMPISCS-Routing Overhead (number of sensor nodes)
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The results from Fig. 11 presents the network lifetime
of SMPISCS under the cooperation degree in 0.3 and
ensure that the rate of detection and isolation of selfish
nodes enforced by SMPISCS is significant in enhancing
the cooperation of degree to a mean level of 3.82%,
4.5%, 5.4% and 6.3% greater than CGBRA, GT-NBRS,
TS-MNDS and TLSNDS. This enhancement in network
lifetime under the impact of different detection thresh-
olds are made feasible by SMPISCS mainly through the
employment of uniformly distributed exponential

parameter-based Semi-Markov Chain used for diagnos-
ing selfish activity of selfish nodes. Fig. 12 highlights the
improvement in network lifetime facilitated by SMPISCS
under the co-operation degree of 0.6. The results portray
that the incorporation of probe diagnostic time in
SMPISCS improves the detection rate to a phenomenal
level and enforces rapid detection and isolation of selfish
nodes at an average of 4.2%, 5.8%, 6.4% and 6.8% greater
than CGBRA, GT-NBRS, TS-MNDS and TLSNDS. This
enhancement in network lifetime of SMPISCS is nearly

Fig. 6 SMPISCS-Energy consumptions (number of sensor nodes)

Fig. 7 SMPISCS-Packet Delivery Ratio (with selfish sensor nodes)
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5–7% more significant than its performance facilitated
under the co-operation degree of 0.3. Likewise, Fig. 13
highlights the improvement in network lifetime facili-
tated by SMPISCS under the co-operation degree of 0.9.
The results ensures a maximum level of detection and
routing isolation of selfish nodes to an appreciable mean
level of 4.6%, 5.4%, 6.2% and 7.3% greater than CGBRA,
GT-NBRS,TS-MNDS and TLSNDS. This improvement
in network lifetime enabled by SMPISCS is about 3–5%
and 8%–11% higher than its performance in the
co-operation degree of 0.6 and 0.3 respectively.

In addition, the detection rate of SMPISCS con-
firmed under different degrees of thresholds used for
selfish behavior isolation. The results ensure that
SMPISCS is capable of enhancing better detection
rate of 8%, 13%, 16% and 19% compared to
CGBRA,GT-NBRS, TS-MNDS and TLSNDS. This
rapid rate of detection in SMPISCS is solely due to
the convergence of probe-based diagnosis about self-
ish nodes from Semi-Markov Process to a
Semi-Markov Chain. SMPISCS is also found to pos-
sess this maximum rate of detection due the level of

Fig. 8 SMPISCS-Throughput (with selfish sensor nodes)

Fig. 9 SMPISCS-Routing Overhead (with selfish sensor nodes)
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co-operation enforced by the interacting nodes of the
sensor network through the deployment of
probe-routines are shown in Fig. 14.
The predominant performance of the proposed

SMPISCS under an increasing number of sensor nodes
and selfish sensor nodes is determined due to the follow-
ing reasons as listed below.

i) The proposed SMPISCS scheme is capable of
estimating the selfish intent of sensor nodes in
an adaptive way at a dynamic time rate

depending on the number of sensor nodes that
get increased in the network.

ii) The proposed SMPISCS scheme is potential
computation of transition probability depending on
the number of selfish nodes in the sensor network.

iii) The increasing rate of packet delivery and
throughput bears that the proposed SMPISCS
model progresses the network lifetime compared to
other specified models as in Figs. 11, 12 and 13.

iv) Selfish Sensor Node detection rate also has been
addressed in experimentation by varying the

Fig. 10 SMPISCS-Energy Consumptions (with selfish sensor nodes)

Fig. 11 SMPISCS-(Co-operation degree-0.3)-Network Lifetime
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threshold. The proposed SMPISCS model bears a
good improvisation comparatively with other
models which uses exponential smoothing average
method as in Fig. 14.

Conclusion
SMPISCS proposed in this paper is an attempt to pro-
long the network lifetime by effectively forecasting the
selfish intent of sensor nodes and efficiently isolating
them from the routing activity for enforcing
co-operation. SMPISCS performs the act of predicting
selfishness through the incorporation of probe routine
which possess non-exponentially distributed diagnostic

time interval and from the derivation of characteristic
probabilities that are not influenced by the uniformly
distributed diagnostic time. The evaluation results of
SMPISCS estimated through varying degrees of
co-operation level ensures its potential in prolonging the
network lifetime at the mean rate of 10% higher than
TFTBD, IBSBD and IBNBD. The results of SMPISCS
confirm its maximum average detection rate of 26%
which is comparably superior to most of the contribu-
tions of the literature proposed for detecting selfish in-
tent of sensor nodes for the threshold 0.9. The
performance evaluation of SMPISCS also unveils its cap-
ability in reducing the routing overhead and energy

Fig. 12 SMPISCS-(Co-operation degree-0.6)-Network Lifetime

Fig. 13 SMPISCS-(Co-operation degree-0.9)-Network Lifetime
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consumptions by 16% and 13% compared to the
schemes used for analysis. The process of predicting self-
ishness of sensor nodes is planned to be forecasted
through grey theory in the near future and it is also
planned to be focused on investigating the role and suit-
ability of statistical reliability factors for enabling effect-
ive detection.
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