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Abstract

Web crawlers have been misused for several malicious purposes such as downloading server data without
permission from the website administrator. Moreover, armoured crawlers are evolving against new anti-crawler
mechanisms in the arm races between crawler developers and crawler defenders. In this paper, based on one
observation that normal users and malicious crawlers have different short-term and long-term download behaviours,
we develop a new anti-crawler mechanism called PathMarker to detect and constrain persistent distributed crawlers.
By adding a marker to each Uniform Resource Locator (URL), we can trace the page that leads to the access of this URL
and the user identity who accesses this URL. With this supporting information, we can not only perform more
accurate heuristic detection using the path related features, but also develop a Support Vector Machine based
machine learning detection model to distinguish malicious crawlers from normal users via inspecting their different
patterns of URL visiting paths and URL visiting timings. In addition to effectively detecting crawlers at the earliest
stage, PathMarker can dramatically suppress the scraping efficiency of crawlers before they are detected. We deploy
our approach on an online forum website, and the evaluation results show that PathMarker can quickly capture all 6
open-source and in-house crawlers, plus two external crawlers (i.e., Googlebots and Yahoo Slurp).
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Introduction
With the prosperity of Internet data sources, the demand
of crawlers is dramatically increasing. The 2018 bot traf-
fic report from Distil (Network 2018) points out that bots
account for 42.2% of all website traffic, and malicious bots
contribute almost 21.8% of the web traffic. Meanwhile, an
increasing number of new algorithms (Baeza-Yates et al.
2005; De Groc 2011; Batsakis et al. 2009; Jin et al. 2013a)
have been adopted by malicious crawlers to increase the
download efficiency and decrease the chance of being
detected.
To protect confidential documents or sensitive data,

most websites require users to authenticate themselves
before accessing the valuable web content. Though this
layer of authentication can successfully block external
malicious crawlers, authorized insiders can still crawl
the entire website. For instance, with full access to the
NSA’s files, Edward Snowden used inexpensive and widely
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available web crawler tool to scrape at least 1.7 million
secret files (Snowden used common web crawler tool to
collect NSA files). To prevent from being easily detected,
stealthy insiders may customize their crawlers to better
mimic the access behaviour of real users. To compensate
the intentionally degraded download efficiency, insiders
have the patience to launch a persistent download in a
long time period. Furthermore, multiple insiders may col-
lude and adopt a divide-and-conquer strategy to speed up
the crawling process.
To detect and constrain malicious crawlers, researchers

have developed a number of anti-crawler mecha-
nisms (Stevanovic et al. 2013; Tan and Kumar 2004;
Stassopoulou and Dikaiakos 2006; 2009; Doran and
Gokhale 2011; Yu et al. 2010; Park et al. 2006; Gianvecchio
et al. 2009; Gianvecchio et al. 2008; Jacob et al. 2012),
which can be generally divided into two categories,
namely, heuristic detection and machine learning detec-
tion. Heuristic detection mechanisms rely on analyzing
well defined features (e.g., visiting rate of individual vis-
itor) to define abnormal website access behaviour at
first, and then define any other behaviour as normal
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behaviour (Yu et al. 2010; Park et al. 2006). How-
ever, they cannot guarantee to detect crawlers that
are able to constrain their behaviours and manipu-
late those observed features. Machine learning detec-
tion mechanisms can detect malicious crawlers based
on the different visiting patterns between normal
users and malicious crawlers (Stevanovic et al. 2013;
Stassopoulou and Dikaiakos 2006; 2009). In other words,
they first model the normal website access behaviour and
then define any other behaviour as abnormal. Most recent
anti-crawlers mechanisms combine these two techniques
to better defeat malicious crawlers (Tan and Kumar 2004;
Jacob et al. 2012). However, it is still a challenge to detect
and constrain armoured inside crawlers that can collude
in a persistent scraping.
In this paper, we develop a new anti-crawler mecha-

nism called PathMarker that aims to detect and constrain
persistent distributed inside crawlers, which have valid
user accounts to stealthily scrape valuable website con-
tent. Moreover, we manage to accurately detect those
armoured crawlers at their earliest crawling stage. The
basic idea is based on one observation that the normal
users and malicious crawlers have different short-term
and long-term download behaviours. In other words,
crawlers have similar accessing patterns regarding to the
path (e.g., depth-first, width-first, or random access) in
both the short-term and the long-term; while human
beings have obvious accessing patterns only in the short
term and have no certain patterns in the long term. This
is because crawlers are working based on certain crawling
algorithms, and once the algorithm is chosen, the crawling
paths would follow certain pattern.
It is well known that existing path based anti-crawler

solutions (Tan and Kumar 2004) have the difficulty in
accurately calculating the depth and width of one access.
Given a group of access logs, we may not know the par-
ent page1 of each log entry’s link so we can only guess
how deep or wide this link is. For instance, when one
page A is linked in two other pages B and C, it is diffi-
cult to find its parent page if both pages B and C have
been accessed before A. Moreover, when a number of
distributed crawlers collude in a download task, each
individual crawler may have no obvious path pattern.
We solve this problem in PathMarker by automatically

generating and appending a marker to each web page
URL. We call the marker as URL marker, which records
the page that leads to the access of this link and the user
ID who accesses this link. To further protect the URL
markers from being misused by armoured crawlers, we
encrypt the URL markers along with the original URL
except the domain name. URL markers can help quickly
detect distributed crawlers that share collected links in
a pool through a user ID mismatch, since the user who
collects the pagemay not be the same as the one who visits

the URLs contained in that page. With the aid of URL
marker, we can not only perform more accurate heuristic
detection using path related features, but also develop a
Support Vector Machine (SVM) based machine learning
detection to model the different patterns of URL visiting
paths and different URL visiting timings between human
beings and malicious crawlers. Moreover, URL markers
can decrease the crawler’s download efficiency. since the
crawlers may download the same web page multiple times
via different parent pages by different users.
We develop a PathMarker prototype on an online open

source forum website. We train SVM models based on
the access log data collected from more than 100 normal
users and 6 in-house crawlers, and then test the model
using 6 open-source crawlers and another set of nor-
mal user data. The experimental results show that our
anti-crawler technique can effectively detect all crawlers.
Moreover, two external crawlers, Googlebot (Sexton) and
Yahoo Slurp (Yahoo), are also detected, and PathMarker
can successfully suppress these two distributed crawlers.
In summary, we make the following contributions.

• We design an anti-crawler system named
PathMarker to detect persistent and distributed web
crawlers that have the credentials to download the
privately accessible valuable web contents as insiders.
PathMarker relies on the URL visiting path and URL
visiting timing features derived from the encrypted
URL markers added to the URLs.

• PathMarker can instantly detect distributed crawlers
that share download links with a high accuracy. If the
distributed crawlers do not share links in a pool, our
encrypted URL technique can effectively suppress
their efficiency to a rate lower than the sum of
individual crawlers. For individual persistent crawler
that mimics human being’s download behaviour, we
can reduce its download speed of to the level of
human beings.

• We implement a PathMarker prototype on an online
forum website and the experimental results show that
PathMarker is capable of detecting state-of-the-art
crawlers including Googlebot and Yahoo Slurp.

The remaining of the paper is organized as follows.
“Background” section introduces background informa-
tion. “Threat model and assumptions” section describes
threat model. We present the architecture of PathMarker
in “PathMarker architecture” section and perform the
security analysis in “Security analysis” section. The sys-
tem implementation is presented in “System implementa-
tion” section and the evaluation is detailed in “System
evaluation” section. “Discussion and limitations” section
discusses limitations and potential extensions.We present
related works in “Related work” section. Finally, we con-
clude the paper in “Conclusions” section.
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Background
Crawling algorithms
Web crawlers start their downloads by visiting a seed
page, which is usually the homepage of the target web-
site. By parsing the seed page, the crawler collects URLs
embedded in that page. Based on the crawling algo-
rithm, the crawler picks the next page from the already
collected URLs to visit. Olston and Najork (2010) sum-
marizes 15 techniques that are able to decide the order
of page accesses using different features. Here we focus
on three common techniques (i.e., depth-first, width-first,
and random-like) to show the visiting paths in different
crawling algorithms. We use a simple website structure
shown in Fig. 1 to present the differences.
First, starting from the seed page (home page), depth-

first crawler greedily visits the URLs as far as possible in a
branch of a website tree graph before backtracking. Thus,
its visiting path in Fig. 1 is homepage, page1, page3, page4,
and page2. Breadth-first crawlers visit all links of a page
before visiting links of another page, so its visiting path is
homepage, page1, page2, page3, and page4.
PageRank-first crawlers aim to collect most valuable

content of a server. PageRank is an algorithm used by
Google to rank all pages of a website. PageRank-first eval-
uates the importance of a web page based on several
features and then keeps visiting the link with the highest
rank. However, these features have no directly relationship
with depth or width. Therefore, we classify PageRank-
first algorithms as “random-like”, since the correspond-
ing crawlers have no preference about depth or width.
Besides this one, all the crawlers whose visiting path has
no preference about depth or width can be classified as
“random-like”.

Anti-crawler mechanisms
Researchers have developed a number of anti-crawler
mechanisms.
Hypertext transfer protocol (HTTP) request fields

checking. Web server administrators can examine their
web servers’ logs and check several fields of the HTTP
request such as referrers and cookies to detect the
abnormal requests. Some crawlers’ requests miss these

Home Page

Page 1 Page 2

Page 3 Page 4
Fig. 1 A Simple Website Structure

fields while some other requests have obviously differ-
ences comparing with normal users’ requests in these
fields. One typical field of a request is User-Agent. Each
HTTP request contains the field User-Agent and we can
tell which software is acting on behalf of the user accord-
ing to this field. For instance, one User-Agent of Google
robots is “Googlebot/2.1” while normal users’ User-
Agents in most case would be the names of browsers.
Though it is effective to detect simple crawlers by check-
ing these fields, armoured crawlers are able to mod-
ify these fields in their requests to escape this type of
detection.
URL features recognition. The server can check a ses-

sion’s URLs of one user to decide if the user is normal. A
session is a group of continuous access logs that belongs to
the same user. For example, some crawlers try to “guess”
the URLs for future access, so they will visit non-existent
URLs with a high rate within a session. Another example is
that when crawlers try to avoid visiting the same pagemul-
tiple times, the rate of revisiting pages will be low within a
session.
Timing-based features recognition. When the server

checks the timestamps of a session’s logs, it may derive
several features for recognizing the crawler. One exam-
ple is that some crawlers may access pages more quickly
than a human being’s capability. An armoured malicious
crawler may discover the upper bound of visiting speed
by trail and failure, and then it can set its download
rate below this threshold. However, since the distributed
crawlers of one attacker have similar timing-based pat-
terns, defenders may detect them by analyzing the simi-
larities of each user’s time series (Jacob et al. 2012).
Crawler trap. A crawler trap can be used to catch

crawlers and allure them to make an infinite number
of meaningless requests. Crawler traps such as hidden
links are transparent to normal users but can be seen by
crawlers (Barbosa and Freire 2007). An armoured crawler
may identify the crawler traps by analyzing the CSS struc-
ture of a page.

Threat model and assumptions
This work targets at detecting insiders that have valid
user accounts to scrape the privately accessible web con-
tents from the victimwebsites. The websites that everyone
could visit without authentication like google.com are out
of the scope of this paper. We assume the attacker can
be persistent on crawling the entire website in a long
time period. Moreover, a number of insiders may coor-
dinate to scrape the website contents. We assume the
attacker may control one or multiple user accounts, but
the number of compromised accounts is limited due to
economic concerns (e.g., paying the premium), labour
concern (repeating registration process), or identity con-
straints (real name or ID number required). The scenario
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that an attacker controls all user accounts by cracking the
website’s password database is out of the scope of this
paper.
Since we target at detecting inside crawlers, We assume

that we can access the source code of the web server
and make changes on certain web pages. Furthermore,
we assume we have the permission of reading the server’s
access logs. We assume the web server has one self-
owned secret key to encrypt all the URL. Since this key
is not shared with any user, users cannot forge valid URL
requests to the server.

PathMarker architecture
Figure 2 shows the PathMarker architecture, which con-
sists of two major components, namely, Website Prepro-
cessing and Real-Time Detection. Website preprocessing
contains two major changes, namely, Adding URL Marker
and Creating Extended Access Log Table, on the target
website system to help record accurate web page visiting
information for real-time detection. We introduce URL
marker into website’s existing URLs to help accurately
track the visiting path of each visitor.
The real-time detection module consists of three

components, namely, Heuristic Detection, Path-Based
Machine Learning Detection, and CAPTCHA2 Verifica-
tion. For incoming HTTP requests, PathMarker first
extracts the URL markers from the original URLs and
collects features for the next step detection. Heuristic
detection focuses on investigating the fields of requests as
well as checking URL marker integrity.
Path-based machine learning detection focuses on

checking both visiting path features from the URL mark-
ers and visiting time features from website access logs.
After a suspicious user is detected, PathMarker prompts
CAPTCHAs to further reduce the false positive rate. If the
user fails or activates the CAPTCHA challenges multiple
times, it will be marked as a malicious crawler.

Website preprocessing
Given a website to be protected, PathMarker needs to per-
form two major changes, adding URL markers into all

URLs and creating extended access log table for saving
visitors’ information and URL markers information.

Adding URLmarker
PathMarker dynamically adds a URL marker at the
end of each hyperlink on each web page. Each URL
marker records the page that the URL is retrieved
from and the user who requests the URL. By analyz-
ing the information in URL markers, we are able to
verify if a user is visiting a URL that is obtained by
other users through comparing visitor’s user ID with
the ID in the marker. We can also learn the causal
relationship between two links from the URL markers
and accurately determine the width and depth of every
access log.
The URL marker should be protected with encryption;

otherwise, the malicious user can easily manipulate both
the parent page and the requesting user ID in marker to
defeat our mechanism. The server can use one self-owned
secret key to encrypt the URL with marker before send-
ing it out to the requester. One secret key can be used
for all users since distributed crawlers cannot reuse oth-
ers’ ciphertext due to the ID information contained in the
URL marker. Moreover, encrypted markers can suppress
distributed crawlers by forcing them to repeatedly visit the
same page that has different URL markers for different
crawlers.
We show one example for URL Marker. One sam-

ple URL of the domain A is http://A.com/B/C.
html. After adding the URL marker into the sam-
ple URL, it becomes http://A.com/B/C.html/mk:B/
root.html;User1, where the appended URL marker is
“mk:B/root.html;User1”. This marker means this URL
is retrieved from the page “A.com/ B/root.html” by
user “User1”. The entire URL after encryption becomes
http://A.com/en:bf37cf8f8f6cb5f3924825 013e3f79c04086d
1e569a7891686fd7e3fa3818a8e.

Creating extended access log table
Most websites maintain access log tables, which are
responsible of recording all visitors’ accesses information

Real-Time Detection Preprocessing 

 Web 
Requests

Feature
Collection

Adding 
URL Marker

Path-based 
Heuristic Detection

Path-based 
Machine Learning Detection

CAPTCHA 
Verification

suspicious 
userCreating 

Extended
Access Log 

Table

PathMarker
Fig. 2 PathMarker Architecture
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http://A.com/B/C.html/mk:B/root.html;User1
http://A.com/en:bf37cf8f8f6cb5f3924825 013e3f79c04086d1e569a7891686fd7e3fa3818a8e
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such as IP address, the page URL being visited, and times-
tamp. In order to save more information than the normal
access log, PathMarker creates a new table in the database.
We call the new table as Extended Access Log Table.
When a new web request is received, the server decrypts
the encrypted URL and parses the plaintext to get the
URL marker. Then PathMarker extracts the information
in the server’s normal access log and insert them into the
extended access log table with the visitor’s user ID and
corresponding marker’s information.

Heuristic detection
Heuristic detectionmodule performs basic analysis on the
incoming traffic and aims to discover crawlers based on
basic traffic flow features such as the referrer, User-Agent,
and cookies of all incoming traffic. Besides those general
features, this module also performs URL marker integrity
checking, a new heuristic detection feature we proposed.
Specifically, after the server extracts the marker from the
URL, the PathMarker first compares the visitor ID with
the information recorded in the URL marker. If the real
visitor of this page is not the one recorded in the URL
marker, we flag this log entry and mark this user as a
potential crawler that visits shared links obtained by other
crawlers. If the user is marked multiple times within a
time period, we mark this user as a suspicious crawler and
prompt it with a CAPTCHA.
Though heuristic detection have been deployed on

many web systems, it is still a challenge to accurately
detect distributed crawlers that share the URLs for crawl-
ing. With the integration of URL marker, our heuris-
tic detection module can detect distributed crawlers by
examining the user IDs in markers.

Machine learning detection
We first define two concepts, namely, short session and
long session, and then derive six new features to be used
in machine learning algorithms to separate crawlers from
human beings.

Long session and short session
PathMarker calculates the depth and width of an extended
access log based on the session that the log belongs to.

The length of a session is the number of log entries in
the session. A group of continuous access logs belong to
a short session if the accessing time interval between any
two requests is less than a time threshold. As long as a new
request is made after the time interval period, the follow-
ing requests will be grouped in another short session. The
length of a short session varies depending on the visiting
pattern of the user.
When the number of continuous extended access logs

of a visitor reaches a pre-determined length, the machine
learning module will be triggered for further analysis. We
consider this continuous group belonging to a long ses-
sion. The length of a long session is fixed. A short session
only belongs to one long session. When one short session
runs across two long sessions, we separate it into two short
sessions.
We discover that human beings have different pat-

terns about path depth and width in their short sessions
and long sessions while crawlers always behave similarly,
which has been verified by our experiments in “Data
collection” section.
Figure 3 provides an example on session concepts.

It contains 64 extended access logs. The time interval
threshold of short sessions is set to 10 s, and the long
session’s length is set to 60 logs. Note these numbers
are adjustable for real-world deployment according to the
principles we mentioned above. This piece of extended
access logs contains one long session from log#0 to log#59
and three short sessions from log#0 to log#3, log#58 to
log#59, and log#59 to log#62. Noted that the user starts
its second short session at log#58 and the short sesstion
actually continue to log#62; however since the long ses-
sion stops at log#59, we have to separate these logs into
two short sessions.

Session-based features
We use machine learning technique to determine if an
active user who has one or more long sessions is a normal
user or a crawler. We adopt the supervised Support Vec-
tor Machine (SVM) as the learning model in PathMarker.
We identify six features to train the SVM-based detection
model, based on the fact that normal users and crawlers
have large difference in visiting pattern regarding to the

 1s  5s  7s 23s  1s 2s

log#0 log#1 log#2 log#3 log#4 log#57

…...

log#58 log#59 log#60 log#61

 14s

short session 1

long session 1

 3s  7s 14s

log#62 log#63

short session 2
short session 3

Fig. 3 Long Session vs. Short Session
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path and timing. Four features are calculated based on the
depth and width of the logs within a session. For each log
in a given session, if its parent page is accessed prior to the
log within the session, then this log’s depth equals to its
parent page’s depth plus one and it’s parent page’s width
will be incremented by one.

1 The depth rate of long session max(DL)
LLong .max(DL)

represents the maximum log’s depth in a long session
and LLong represents the fixed length of the long
session. This feature describes how visitors keep
reaching new pages as deep as possible in a long
session.

2 The width rate of long session max(WL)
LLong .max(WL)

represents the maximum log’s width of a long
session. This feature is similar to the depth rate of
long session, yet in the width dimension.

3 Time interval variation of long session Var(IL)
IL

2 . Time
interval is the time gap between two consecutive
requests, which is represented as I. This feature is
computed as the variance of time interval in a long
session over the square of the average time interval in
this long session. This feature describes the time
interval’s uncertainty of a user’s long session.

4 The absolute difference between depth rate of long
session and depth rate of the longest short session in
the long session
∣
∣
∣
max(DL)
LLong − max(DS)

LShort

∣
∣
∣. To compute this feature, we

need at first find out the longest short session in one
long session. Then we calculate the maximum log’s
depth in this longest short sessionmax(DS) and the
longest short session’s total length LShort . This
feature describes how the depth pattern of one user’s
long session is different from this user’s pattern of
the longest short session. This feature is close to zero
for crawlers, who have consistent depth rates for
their short sessions and long sessions.

5 The absolute difference between width rate of long
session and width rate of the longest short session in
the long session
∣
∣
∣
max(WL)
LLong − max(WS)

LShort

∣
∣
∣. This feature describes width

pattern difference between the longest short session
and a long session of a user.

6 Time interval variation of the longest short session
Var(IS)
IS

2 . This feature is similar to time interval
variation of long session; however, the time interval
is computed based on the longest short session in the
long session. This feature describes the time
interval’s uncertainty of a user’s short session.

Feature 1, 2, 4, 5 are new path-related features that
present features in website visiting path. In a short ses-
sion, human beings usually have more obvious pattern.

Specifically, there are two common patterns when a user
is viewing websites. First, one user may openmultiple web
pages at one time, so the maximum width of the user’s
visiting path could be as large as the length of the short
session. Second, the user prefers to jump to another page
after he or she takes a glance at one page, so it will present
a large depth of short session. However, for both cases of
normal users, in a long session, the maximum depth and
width of a user’s visiting path is likely to be much smaller
than the length of a long session, since a long session may
contain several short sessions and these short sessions are
independent to each other in terms of depth and width.
Meanwhile, crawlers usually have homogeneous patterns
in visiting path. For example, a depth-first crawler would
have both large depth rates of long session and short ses-
sion, while a random-like crawler would have a small rate
of depth and width.
We also have two session-based timing features 3 and 6.

Normal users have a small variance of time interval for
their short sessions and a large variance for long sessions.
When crawlers visit web pages in a more regulated pace,
the variance of time interval is small compared to human
visitors. Even for an armoured crawler that adds random
delay in its visiting pattern, it still can be easily detected
since it does not produce different interval variances in a
short session and a long session as human beings.

Machine learning
Basically, our features well describe such difference so
the SVM model is able to distinguish normal users from
crawlers accurately. To get an ideal result, the machine
learning model should be trained using data from normal
users and crawlers. System administrators may use some
of or all crawlers available to crawl their own systems.
Therefore, it is straightforward to collect data of crawlers.
However, collecting normal user data is not easy since
we need to guarantee that there is no crawler running
when collecting training data. We adopt the method in
Jacob et al. (2012) for selecting the data of normal user.
First, we use heuristic module to filter out most suspicious
users. Then we manually check the logs of all users and
remove logs with wrong URL markers.

CAPTCHA challenges
To avoid blocking a normal user, we add CAPTCHA
challenges to suspicious users. When one user inputs
the CAPTCHA correctly, we remove its suspicious mark.
Since there are many types of CAPTCHAs, it’s hard for
one crawler to prepare itself for recognizing all types
of advanced CAPTCHAs. In this case, we can identify
the real crawlers that cannot answer correctly. On the
other hand, those CAPTCHAs can be solved easily by
normal users. Furthermore, we set another counter in
“User Information Table” described in “Creating database
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tables” section. This counter records how many times one
user inputs CAPTCHAs and the user would be blocked
directly if he activates CAPTCHA module 3 times within
one day. With this counter, even a crawler could recognize
all CAPTCHAs of our system, it would be detected finally
as long as the real-time detection module works.

Security analysis
PathMarker consists of two layers of detection and one
layer of verification. The detection mechanism consists of
heuristic detection and machine learning detection, and
the verification method is to use CAPTCHA to constrain
crawling activities and lower the false positive rate.
PathMarker can effectively detect different types of

crawlers. First, the heuristic detection module can detect
basic crawlers that are not designed for stealthily down-
loading web data, since these crawlers have much faster
download rates than human beings. Second, some timing-
aware crawlers can manipulate their download rates or
even mimic the timing features of human visitors; how-
ever, PathMarker can detect them since their web page
access paths are different from normal users. Third, when
the crawlers are both path-aware and timing-aware, they
can mimic human beings in both access timing pat-
terns and visiting paths. Based on our observations that
crawlers and human beings have different visiting pat-
terns in short and long sessions, we still can detect
this type of crawlers. Now suppose an armored crawler
knows the internal algorithms of our defense mechanism
and is capable of deriving the server configuration on
the short session and long session. In this case, though
the crawler may manager to customize its download
behavior to escape our detection, our design can ensure
that its crawling rate will be compressed to the level of
human beings. In other words, the crawler has to sac-
rifice its download rate in order to escape from being
detected.
PathMarker can suppress multiple distributed crawlers

to the visiting rate of a single crawler. By checking the URL
marker integrity, PathMarker can easily detect distributed
crawlers that share the downloaded URLs in a pool. Mali-
cious crawlers have two options to obtain URLs, either
directly collecting URLs from the website or construct-
ing the URLs based on URL patterns of the target system.
However, PathMarker can prevent crawlers from con-
structing URLs since the attacker cannot forge a fake URL
that is encrypted with a secret key, which is only known by
the web server. Moreover, since we encrypt the URL with
the URL marker, one web page may have different URLs
in ciphertexts due to the different parent pages. Since the
crawler cannot tell the web page content until visiting the
URL, we can force the crawler, especially the distributed
crawlers, to visit the same web page repeatedly and there-
fore suppress the crawler’s downloading efficiency. We

evaluate the suppress results in “Suppressing distributed
crawlers” section.

System implementation
We implement PathMarker on an open source online
forum website. Meanwhile, we install a monitoring pro-
gram and a machine learning program at the server side.
The monitoring program is responsible for tracking all
extended access logs and calculating suspicious users’
session-based features. The machine learning program
classifies each suspicious user according to those features.
We rent the server from DigitalOcean, where the server
is configured with 1 GB Memory and 30 GB Disk. The
operating system of the server is Ubuntu 14.04 × 64.
We deploy the website based on the code of CodeIgnitor
(EllisLab) that uses PHP as the server-side scripting lan-
guage. We use MySQL as the database for saving data of
the website.
Our implementation consists of five steps. First, we

set up the website and connect the website with the
MySQL according to the Installation Instruction of the
CodeIgniter’s website (EllisLab). Second, we create two
MySQL tables named “Extended Access Log Table” and
“User Information Table” that are responsible for record-
ing accesses and saving users’ information. Third, we
modify the server-side scripts. We rewrite all functions
on generating URLs to make sure all links of our web-
site have URL markers and are encrypted. We also modify
the main controller of the website. The main controller
is the entry of the website and this class is responsible
for generating pages after the server receives requests. To
handle the encrypted URLs of each request, we add a new
function in the main controller to decrypt the encrypted
URL and separate markers from the entire link. Then
the function inspects the user identity. If the user is not
a known crawler, we record this access as an extended
access log, return the related page to user, and conduct
heuristic detection for this request. Fourth, we install and
run the monitoring program on the server side. The pro-
gram is written in C language and it is responsible for
finding out suspicious users and passing their long ses-
sions’ features to machine learning program. When one
long session is marked as suspicious, the monitoring pro-
gram updates the corresponding user’s identity in “User
Information Table”. Lastly, we install the machine learning
program based on the code of LIBSVM (Chang and Lin
2011) at the server side to first detect crawlers and then
further identify the type of the crawler. The results are sent
to the monitoring program.

Creating database tables
The first table is “Extended Access Log Table”, which saves
all extended access logs. It has six columns: Log ID, User
ID, User IP, URL, URL marker, and timestamp. For our
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online forum, whenever the main controller confirms the
current user ID is not known crawler, PathMarker inserts
one entry into this table.
The second table is “User Information Table”, which

saves all user related information. It has four columns:
User ID, User Identity, Wrong Heuristic Logs, User Total
Pending Logs , and User CAPTCHA Times. User ID is the
key of this table while the other three columns are all inte-
ger variables and their default values are 0. For column
User Identity, 0 represents the user is normal user while
any number larger than 0 means the user is a crawler.
Wrong Heuristic Logs records the number of requests that
are abnormal for a user regarding to the heuristic detec-
tion. It resets to 0 at 12 am each day. If any user has more
than 30 wrong logs, then our system sets its User Identity
as 4. Thus, the server script knows this user is suspicious.
User Total Pending Logs records the number of logs that
one user has generated after last long session. If this col-
umn equals to 60, we know this user has generated a
new long session and we should inspect this long session.
User CAPTCHA Times records how many times the user
has been checked by CAPTCHA. It resets to 0 at 12 am
each day.

Modifying server script
URL generation functions
We use three functions to generate all URLs for the
website: site_url(), base_url() and redirect(). These func-
tions can dynamically output URLs according to different
inputs. These URL generation functions requires at least
two inputs, namely, type of the page and content ID. The
server script predefines several types for web pages such
as main page, post page, navigation page, and user infor-
mation page. This input tells the server what type of page
the user is requesting. In the database, each type of the
pages has a corresponding table for saving data. Each page
belongs to the type has an unique content ID. After taking
the inputs, these functions output a normal URL with-
out domain name. For example, for the website “A.com”,
if the page type is “post” and the content ID is “123”, then
the output is the string “post/123” and the entire URL is
“A.com/post/123”.
To add the marker and encrypt the URL, we add a

new function add_marker() in those URL generation func-
tions. This new function takes three inputs, namely, the
original URL, the parent URL, and the user ID. It first
generates a marker “mk:” | parent URL | “;” | user ID.
Then the function generates a new URL: the original
URL | “/” | marker. Finally, add_marker() encrypts the
new URL with AES-256-CBC and outputs the cipher-
text. The key of AES is saved in the server side. By
calling add_marker() at the end of those URL generation
functions, we can achieve dynamic encrypted URLs with
markers.

Websitemain controller
When the server is running, each received request is
passed to the class main controller, which initializes
the process of generating the page by finding related
sub-controllers. The finding process is achieved by the
component Website Router. Typically there is a one-
to-one relationship between a URL string and its cor-
responding sub-controller class/method(EllisLab). Those
sub-controllers fill data from database into the corre-
sponding templates of the URL.
We add a new function called before_routing() in the

main controller to achieve the tasks such as decrypt-
ing URL, extracting marker, recording extended access
log, and conducting heuristic detection. When the server
receives a request, before_routing() decrypts the URL by
applying AES-256-CBC decryption with the key from the
same key file in “URL generation functions” subsection.
Then before_routing() separates the marker from URL by
looking for the string “/mk:” and we save the marker
in a string variable. After this step, before_routing() gets
current user’s identity from “User Information Table”. If
the user’s identity value is not 0, then we would check
the value of User CAPTCHA Times for this user. If User
CAPTCHA Times is larger than 2, then we would return
the message that current ID is blocked and the user
should contact administrator for future issues. If User
CAPTCHA Times is equal or smaller than 2, then we
return the CAPTCHA page to the user and increment one
to the user’s User CAPTCHA Times. If the user inputs
the CAPTCHA correctly within 30 s then the CAPTCHA
page redirects to the target page and we reset the user’s
identity as 0.
For the cases that user’s identity is normal,

before_routing() passes the part before “/mk:” to the
Website Router to find the corresponding sub-controller
and we record an extended access log in the database.
After recording the extended access log, we get the
timestamp and IP address from the system default log.
before_routing() conducts heuristic detection of current
request. If any field is abnormal, we increment the cur-
rent user’s Wrong Heuristic Logs’s value in the “User
Information Table”.

Monitoring program
It is a tiny size program that keeps running on the server
side to check the “Extended Access Log Table”. When this
table has a new entry, the monitoring program gets the
user ID of this log as “current user”. Then it checks the
value of current user’s Wrong Heuristic Logs. If this value
is equal to or larger than 30, we set current user’s User
Identity as 4 in “User Information Table”. Furthermore, the
program increments the value of current user’s User Total
Pending Logs in “User Information Table”. If the number
of pending logs is equal to the length of a long session, we
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get the latest 60 logs of this user and take them as a long
session. Next the monitoring program calculates the six
features of this long session and then pass the features to
the machine learning program in the server side. Finally,
the monitoring program updates current user’sUser Iden-
tity as the returning classification result from machine
learning program in “User Information Table”.

Machine learning program
Our machine learning program is developed based on
a library for support vector machines called LIBSVM
(Chang and Lin 2011). The training set of the SVM pro-
gram is created as described in “Data collection” section.
We use two models of the LIBSVM: one-class SVM and
C-support vector classification (C-SVC). After receiving 6
features of a long session, we first use one-class SVM to
decide if the user is a normal user or a crawler. If it is a nor-
mal user, we output result “0” into a file that will be read
by the monitoring program.
When the one-class SVM identifies a crawler, we use

the multi-class SVM named C-SVC to further classify the
crawler using the long session information. We number
three classes as 1, 2, and 3 in the training set of C-SVC
for depth-first crawler, width-first crawler, and random-
like crawler, respectively. We also output the specific class
number as results into the file for the monitoring program
to update the “User Information Table”.

System evaluation
Data collection
After implementing our prototype in the server, we publi-
cize the forum where students may exchange information
and trade used products. All the experiments have gone
through IRB review and all users have been requested to
agree with our data policy to sign up. We collect user data
from the forum in one month period. We use half of the
data for training and the other half for testing. We ensure
the user data is generated by real human users through
heuristic detection and manual inspection.
Besides the data of normal users, we include crawlers’

data in the training set by implementing 6 internal
crawlers to crawl the system. We build internal crawlers
provided by Frontera (Frontera 0.3), which relies on
Scrapy (Scrapy 1.0). The 6 crawlers are depth-first, depth-
first with delay, breadth-first, breadth-first with delay,
random-like, and random-like with delay. The random-
like crawlers randomly choose a link to visit from all
links they gathered and put newly gained links in the
link pool.
The crawlers with delay means that they wait some time

between any consecutive requests. In our implementa-
tion, the delay follows a Gaussian distribution with mean
of 8 and standard deviation of 1 (d ∼ N(8, 1)). This
configuration comes from our history logs of real users.

The testing set also contains crawler data and the testing
crawler consists of these 6 internal crawlers and 2 external
crawlers Googlebots and Yahoo Slurps.
To better understand the pattern of outside crawlers’

algorithms, we publicize all forum contents without
requiring a valid user ID and password for authentication.
As we remove the user ID authentication requirement, we
use the IP address of each visit to replace the user ID in
each URL marker. The website is released in one month
period. We select the crawlers’ logs that can be manually
verified by checking the User-Agent field or IP address
(Google).

Data analysis
By analyzing the data of both crawlers and normal users,
we first show they behave differently in the forum. Specif-
ically, we have the following observations. First, no matter
which algorithm the crawler is relying on, the features
of a crawler’s long session are similar to their features
of short session. However, users expose significantly dif-
ferent behaviours in long sessions and short sessions.
Second, normal users may show a similar visiting pattern
as crawlers in a short session. Most users have a clear
depth-first pattern.
Third, if a user visits a group of web pages continuously,

we observe that most time gaps between two continu-
ously logs are less than 10 s. Therefore, we set 10 s as the
time threshold for a short session. Fourth, the lengths of
active users’ longest short session are similar. Most active
users’ longest short sessions contain 20-30 log entries. We
set the length of a long session as 60 since we recom-
mend the long session to be twice as a user’s longest short
session.
Most time when active user starts a new short session,

they visit the site with a different path, so the depth and
width will not keep growing across different short ses-
sions. Therefore, we see that the depth rate and width
rate of long session are usually smaller than short session
for normal users. Since the time threshold of short ses-
sions and the total length of long sessions can be changed
according to the web structure, web contents, and web
user behaviors, the sessions’ settings are adjustable to
web server developers/admins who adopt ourmechanism.
These adjustable settings make the system more diffi-
cult for the malicious crawler to understand or escape.
Normal users express different behaviours in short ses-
sions and long sessions. Meanwhile, crawlers perform
similar behaviours in long sessions and short sessions.
Based on the different visiting paths crawlers and users
expose, we carefully select the path features in our SVM
models.
To illustrate the effectiveness of our models, we show

the four path features we use in Figs. 4 and 5, in which each
shape is a data point represents a long session. The circles
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Fig. 4 Differences Between Crawlers and Users about Feature 1 and 2

represent the sessions of normal users, the squares rep-
resent the sessions of breadth-first crawlers, the triangles
represent the sessions of depth-first crawlers and the stars
represent the sessions of random-like crawlers. Mean-
while, all the solid shapes represent the cases our machine
learning programmisjudge a session’s corresponding type.
The depth rate and width rate in long sessions are shown
in Fig. 4 and the depth rate difference and width rate dif-
ference are also shown in Fig. 5. Again, all the hollow
points are the sessions we classify correctly. We see that
within a long session, crawlers show extrusive path pat-
terns in terms of width and depth. However, normal users
have moderate width and depth rate in a long session.
Also, the behaviour difference between the longest short

session and the corresponding long session is small for
crawlers, while the difference is large for normal users.

Performance evaluation
We evaluate three aspects of PathMarker, namely, the
accuracy of crawler detection of PathMarker, the capabil-
ities of PathMarker to reduce the efficiency of distributed
crawlers, and the performance overhead added to the web
system. Moreover, we conduct a case study on an external
crawler, Googlebots.

Detection capabilities
We first study the effectiveness and implication of marker
integrity checking. Then we show that our SVM model is

Fig. 5 Differences Between Crawlers and Users about Feature 4 and 5
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able to correctly classify normal users and crawlers with a
high accuracy.
Heuristic detection. Our heuristic detection module

consists of multiple validation mechanisms such as HTTP
header investigation and visiting rate limitation. However,
we only discuss the new URL marker integrity checking
function since other mechanisms have already been thor-
oughly studied in the past. The number of all log entries
of logged-in users is 2608, among which only 6 logs con-
tain wrong URL marker information, which indicate that
a user is visiting a link that is obtained by other users.
The percentage of requests with wrong URL marker is
0.23% only, meaning that the users in our system do no
usually share links to each other. After manually checking
the 6 logs, we believe these logs with wrong URL marker
information are not generated by distributed crawlers that
share a link pool. Therefore, our system is not under
such attacks by any insiders. However, as we will show
in our case study on Googlebots in “Googlebots – a
case study” section, the heuristic detection module is able
to detect these link-sharing distributed crawlers almost
instantly.
Machine learning detection. Our test set contains both

data from users and crawlers. Besides the 6 crawlers we
use to generate test data, we find two external crawlers.
One is Googlebot and the other one is Yahoo Slurp. We
believe they are the only two search engines that try to
crawl our system by manually checking all public visitors
that generate relatively abundant access logs.
We notice that these external crawlers are based on dif-

ferent crawling techniques. Both Yahoo and Google use
distributed crawlers, which are verified by verifying the
User-Agent field of HTTP requests and IP address lookup.
However, one of Yahoo’s bots is responsible for over 90%
of pages collected. This bot has generated over 50 long
sessions and all of them are classified as a crawler by our
SVM model. Different from Yahoo, Google uses an alter-
nating approach for all distributed workers to crawl our
system, which will be discussed in detail in “Googlebots –
a case study” section.
Table 1 shows our classification results on the test set.

For the accuracy about discovering crawlers from nor-
mal users, we successfully identified 96.74% crawlers’ long
sessions and 96.43% normal users’ long sessions. For all
3.26% crawlers’ long sessions that have been misjudged
as normal user long sessions, there is at least one other

Table 1 Classification result

Original type Classify As 0 Classify As 1 Classify As 2 Classify As 3

0 96.43% 0% 3.57% 0%

1 0% 100% 0% 0%

2 0% 6.25% 93.75% 0%

3 1.51% 1.77% 0% 96.72%

long session of the same crawler that implies the visitor
is not human being. Thus, we do not miss any crawler
even we misjudge one crawler’s behaviour for at most
two long sessions. After identifying a crawler, we clas-
sify the path-patterns of the crawler, as shown in Table 1.
All three types of crawlers are correctly identified with
over 90% accuracy. Type 0 represents normal users. Type
1, 2, and 3 represents crawlers that expose extrusive
breadth-first, depth-first, and random-like crawling fea-
tures, respectively. We see that most bots’ paths can be
fit into the three patterns we define for crawlers. Note
that Google and Yahoo crawlers expose random-like vis-
iting paths since they use popularity concerned crawling
algorithms.

Suppressing distributed crawlers
Suppressing crawlers mainly contains two cases. First, a
single crawler may repeatedly visit the same page if the
page is retrieved from different parent pages. Second,
distributed crawlers may repeatedly visit the same page
if the page is collected by different user accounts. We
now evaluate how much pressure does PathMarker add to
distributed crawlers.
We assume a website contains 10,000 unique pages,

each page contains 100 links to other pages. Among the
100 links, 20 of them are fixed, which means that these
links reside in each page.We define these fixed URLs since
most websites put links in the header, footer, and side bars
of a website such as homepage and account management
button and these links will not change for different pages.
The rest 80 links are drawn from all the 10,000 links. We
assume the links satisfy a Gaussian probability distribu-
tion with mean 0 and standard deviation 3333, which is a
third of the number of pages. Each page corresponds to
a number between 0 and 9999. The probability of a page
being selected is Pn = (cdf (n) − cdf (n − 1)) × 2, where
n is the page number and cdf is the cumulative density
function.
We conduct two sets of simulation experiments to study

the impacts of PathMarker on distributed crawlers. First,
we show the web pages crawled in a fixed time period
for single and distributed crawlers. We assume the crawl-
ing efficiency of each distributed worker is the same.
Therefore, theoretically a distributed crawler consisting
of 10 workers visit 10 times of pages as a single crawler
in a fixed time period. Figure 6 shows the efficiency
about visiting first 100 new pages for crawlers with dif-
ferent total number of workers. When the crawler only
has one worker, 8.2% of its downloads are duplicates.
The efficiency of each individual worker decreases as
the number of worker increases. When using 100 work-
ers, the efficiency of each worker is less than half of a
single crawler. In general, distributed crawlers get the
URLs of one page several times from different workers
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Fig. 6 Suppressing Distributed Crawlers

but it cannot detect it since the encrypted URLs are
different.
Figure 7 illustrates the entire work of a 10-worker dis-

tributed crawler need to download a certain percentage
of the entire website. 100% work means the workload
for a crawler who always visits new page and extra work
means this crawler visits repeated pages. We see that
crawling half of all content requires 143% more queries
than crawling an unencrypted website, which means that
the crawlers waste 58.9% of its crawling power. Further-
more, over 2781% more queries are required to crawl 95%
of all content, which indicates a 96.5% crawling power
waste. It shows that even if armoured distributed crawlers
can escape all detection methods in PathMarker, their
efficiency will be largely suppressed by the encrypted path

and URLmarkers and the suppressing effect getting better
when the total number of workers or targeted pages are
larger.

System overhead
Our defence system would introduce overhead to the
server from two parts: analyzing program and server
modification. For analyzing program, the memory con-
sumption is limited. It is written by C and it is just a
project whose size is 175KB. Furthermore, it is separated
from website so we do not need to worry about that it
would affect the running of website. For the server mod-
ification, the memory overhead is limited too. We need
to add two additional tables in server side but each table
only has several columns and for most websites the size of

Fig. 7 Overhead for Distributed Crawlers
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additional tables are much smaller than the size of their
original tables that save logs.
To evaluate the runtime overhead introduced by server

modification, we conduct the experiment to show how
much runtime overhead PathMarker puts on the web
system in a visitor’s perspective. We record the time a
HTTP request is received and the time the web page is
sent out. By computing the time interval we learn the
time needed for the server to generate the page. We set-
up two forum copies that have identical database tables,
on one of which we build PathMarker on it. We imple-
ment a crawler to automatically query the homepage of
the forum, which consists of 116 links, for 1000 times
on both of the two copies. Note that crawlers may not
fetch the images in the homepage. However, it does not
affect our experiment results since we are only interested
in the time overhead introduced by URL markers. The
average time needed to generate a page without Path-
Marker is 32 ms and the average time needed to generate
a page with PathMarker is 41.5ms. This increase is accept-
able since for a normal user, they can barely feel a 10
ms difference and the number of links in each page is
large enough for the website that contain confidential
documents.

Googlebots – a case study
After we publicize the online forum, we notice Google
search engine is actively visiting it by checking visitors’
User-Agent and IP address lookup. Since Googlebots is
the largest crawler that uses sophisticated and evolving
algorithm, we study the behaviour of Googlebots to show
how the both layers of PathMarker response with crawlers
that armed with unknown algorithm and how PathMarker
suppresses the crawlers.
During the one-month data collection, we discover

Googlebots from over 50 IP addresses, which indicate
that at least 50 crawling workers are crawling our sys-
tem. Google crawler is not designed to escape from anti-
crawler mechanisms, and it does not hide itself in HTTP
requests by stating its identity as Googlebots. However,
it does have an efficient rate control mechanism to avoid
introducing a large overhead on web servers or being
banned due to high visiting speed. With manual checking,
we note that each worker waits for some time between two
consecutive requests from several seconds to several hun-
dred of seconds. Moreover, Googlebots are cooperating
among a large number of workers, decreasing the number
of total visiting pages for each single worker.
Since most existing anti-crawler mechanisms use the

visiting rate or total visiting number as the key fac-
tors to detect crawlers, Googlebots can escape these
mechanisms successfully if the Googlebots hide its iden-
tity in the User-Agent field. Because of the features of
Googlebots, we consider Googlebot as a representative

of the distributed crawlers that have rate control mech-
anism. Therefore, by presenting the detection results on
Googlebots, we can show how well PathMarker per-
forms on those distributed crawlers that visit web pages
slowly.
There are 19,844 log entries recording the activities of

Googlebots. Although there are many workers visiting our
system, we notice that most of them only visit one or two
times while only 9 workers are responsible for most of
the requests (they visited more than 25 pages). We reckon
that Google is trying to probe the network and assign
the fastest workers to crawl our system. Now Google can
be treated as an attacker who scrapes the content of our
system using a distributed crawler consisting of 9 active
workers3.
Now we explain how Googlebots can be detected by

our heuristic detection. Though the Googlebot is able to
escape visiting rate detection, we can easily discover that it
is a distributed crawler by URL marker integrity checking
which belongs to the heuristic detection of PathMarker.
The total number of URLs with wrong URL markers are
12,271, which is 62% of all requests by Googlebots. This
result means that 62% of the URLs a worker visits is col-
lected by other workers. We show several examples of
wrong URL markers in Table 2. From the last field of the
URL markers we see that the collector of this URL marker
is from a different IP address than the visitor IP address,
so we could tell one IP is abnormal if it happens multiple
times.
We also analyze the path features of Googlebots to

illustrate how these features differentiate them from nor-
mal users. We gather totally 381 long sessions from
Googlebots, which means the SVM module is invoked
381 times to analyze the owner of each long session.
Figure 8 shows the depth rate and width rate of long
session of Googlebots and normal users. We can see an
obvious difference between the two groups even we only
consider the two features. Among the 381 long session,
our SVM model can correctly identify 376 of them as

Table 2 Detecting Googlebots by checking URL markers

Visitor IP URL URL marker

66.249.67.83 home/node/show/12/ home/topic/show/855/;66.
249.67.71

66.249.67.77 home/topic/add/ home/home/getmore/13/;
66.249.67.83

66.249.67.86 home/policy/ home/user/profile/13/;66.
249.67.80

66.249.67.80 home/node/ home/home/getmore/70/;
66.249.67.92

66.249.67.71 home/node/show/12/15/ /index.php/node/show/12/
8/;66.249.67.77
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Fig. 8 Depth and width rate in long session for Google Bots

belonging to a crawler, which indicates that the accuracy
achieves 98.425%. We also emphasize that although some
of the long sessions are misjudged, every single worker
has at least one correctly identified long session. There-
fore, all Googlebots have at least one long sessions will be
prompted a CAPTCHA in a full functionality PathMarker
system.
We also show how PathMarker suppresses the effi-

ciency of Googlebots. Among the 19,844 requests, only
1010 pages (around 40% of total pages) are unique, which
means that Google has wasted almost 95% of its crawling
power on visiting repeated pages.

Discussion and limitations
Usability of URL marker
In PathMarker, the path and URL marker information in
URLs are encrypted to protect the URL marker security
and lower the efficiency of distributed crawlers. Mean-
while, since normal users cannot know the plaintext of
URLs, it is difficult for the users to remember the URLs
or infer the content of the web page. However, users can
save the encrypted URLs in bookmarks and reopen them
later. Also, since current web pages typically have their
own titles to identify the content, the plaintext of URLmay
not be necessary.
Another issue is the sharing of URLs between nor-

mal users. However, we can solve this problem by set-
ting a relatively high threshold for users to visit URLs
shared from others without being tagged as crawlers.
Meanwhile, we still can identify distributed crawlers in
a short time. Also, since PathMarker targets on protect-
ing valuable private contents like confidential documents,
the case that users share URLs will not happen many
times.

Deployability of PathMarker
There are many ways to implement the web servers and
generate web pages. In general, there are two types of
web pages: static web pages and dynamic web pages.
For static web pages, PathMarker can automatically make
the required modification using a simple script to pre-
process links before publicize the website. However, for
dynamic web pages, since there are various server-side
scripting languages like PHP and Python to generate
dynamic website structures, it is difficult, if not impos-
sible, to design a generic tool to automatically deploy
PathMarker for all types of web servers. However, after
studying two famous open-source website framework,
Discuz! (Comsenz Inc.) and CodeIgniter (EllisLab), we
discover that there are usually one or two most common
functions to generate most URLs and the total num-
ber of such functions is usually less than 10. Therefore,
with some light-weight customization, most dynamic web
page servers are able to integrate PathMarker in their
system.

Related work
Both crawlers and anti-crawler mechanisms evolve in
their arms race. A naive crawler is the kind of crawler that
does not make any effort to conceal its activities at all. It
could be a rough crawler created by the attacker. Next, a
basic crawler has realized that it can be easily detected,
so it forges its requests to make them look like normal
requests. Also, a timing-aware hidden crawler also con-
trol its timing features, such limiting its visiting rate by
adding random delays. Later, an armoured crawler may be
able to simulate a human user in both visiting timing and
visiting path patterns. Moreover, distributed crawlers may
assign crawling activities to multiple agents, who are only
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responsible for downloading certain part of the website
content. Each individual crawler can be any of the above
five types of crawlers.
Web crawlers have been studied and characterized for

a long time (Olston and Najork 2010; Kausar et al. 2013).
For instance, (Doran et al. 2013) investigates the differ-
ence between resources such as images crawler. Dikaiakos
et al. (2005) focuses on analyzing the features and prefer-
ences on search engine crawlers. Some works have been
done to detect crawlers from a large scale network service
(Yu et al. 2010; Lee et al. 2009). Frontier that can deter-
mine the crawling behaviour becomes a core component
of crawlers (Olston and Najork 2010). On the other hand,
Frontier has been adopted by attackers to help crawlers
achieve better crawling results (Baeza-Yates et al. 2005;
De Groc 2011; Jin et al. 2013a; Batsakis et al. 2009). For
instance, (Jin et al. 2013a) proposes a novel solution for
mimicking human behaviours according to the human
observational proofs so the new crawler could escape the
detection of other defence systems.
There are several research works targeting at defend-

ing crawlers. One recently work (Stringhini et al. 2015)
observes that cyber-criminals might misuse several
accounts on stealing sensitive information and they pro-
pose a solution to capture these crawlers by mapping
between an online account and an IP address. The most
popular trend in this area is utilizing machine learning
technique to detect sophisticated crawlers. Researchers
have developed numerous anti-crawling artifacts that
explore machine learning techniques to suppress the effi-
ciency of crawlers (Yu et al. 2010; Lee et al. 2009) or even
completely block them (Stevanovic et al. 2013; Jacob et al.
2012; Tan and Kumar 2004; Doran and Gokhale 2011),
based on the observations that crawlers behave differently
from human beings (Tan and Kumar 2004; Jacob et al.
2012). One challenge for machine learning based solu-
tions is to select the set of effective features to train the
machine learning model. In one of the earliest work (Tan
and Kumar 2004), Tan and Kumar develop 24 features to
train the anti-crawling model.
A number of follow-up works focus on using vari-

ous features under different scenarios (Zhang et al. 2013;
Aghamohammadi and Eydgahi 2013; Guo et al. 2005;
Bomhardt et al. 2005; Yu et al. 2010; Lee et al. 2009; Jacob
et al. 2012). For example, Jacob et al. (2012) use multiple
timing features to characterize crawlers, and they are able
to differentiate crawlers and busy proxies based on more
regular time pattern of crawlers. Numerous features have
been proposed and proven to be effective for specific use
cases (Stevanovic et al. 2012;2013). The usage of request-
related features such as the percentage of GET request and
POST request, percentage of error responses, and total
number of pages requested has been proposed in Jacob
et al. (2012). There are also other comprehensive features

that profile the visiting behaviour of crawlers, including
traffic timing shape (Jacob et al. 2012), page popular-
ity index, standard deviation in visiting depth Stevanovic
et al. (2013), clickstream related features (Lourenço and
Belo 2007; Ahmadi-Abkenari and Selamat 2012) and
some special features for the Bayesian network to recog-
nize crawlers (Stassopoulou and Dikaiakos 2006; 2009;
Suchacka and Sobkow 2015). Some others are even try-
ing to understand the crawlers to capture them (Xie et al.
2014; Rubinstein et al. 2009).
Constrained by the crawling algorithms for automatic

web content download, it is difficult for crawlers to per-
fectly mimic human beings’ visiting patterns. Therefore,
path related features can effectively differentiate crawlers
and normal users. Stevanovic et al. (2013) uses stan-
dard deviation of requested page depth as one feature
to describe the visiting path. However, it cannot accu-
rately reflect the difference between crawlers and normal
users since the page depth is simply extracted from pars-
ing the URL. Tan and Kumor (2004) learn session depth
and width from the referrer field of HTTP request headers
to more accurately describe the path information. How-
ever, it is easy for intelligent crawlers to fake the referrer
field of HTTP headers. Similarly, PathMarker also largely
rely on path-related features to identify crawlers. Differ-
ently, PathMarker relies on the URL marker appended
to each URL to learn the referring relationship between
two requests. The URL marker and path of a URL are
encrypted so the crawler cannot fake visiting path through
forging URL markers.
How to deal with crawlers after detecting them is

another essential problem. Setting traps in pages is a com-
mon method to catch crawlers (Barbosa and Freire 2007).
Specifically, websites may integrate invisible links in the
web pages that only crawlers can view. As long as the
links are visited, the visitors will be directed to an infinite
loop or wrong content. Park et al. (2006) capture crawlers
that do not generate mouse or keystroke events. However,
these methods can be easily bypassed by page render-
ing analysis or imitating mouse and keystroke operations.
Among various kinds of crawler blocking mechanisms,
using CAPTCHA one of the most reliable one since it is a
kind of Turing Test to finally detect machine from users.
Recently CAPTCHA techniques may even use video as
CAPTCHA (Kluever and Zanibbi 2008; Gossweiler et al.
2009). Gossweiler et al. (2009) also requires people to
recognize more complex content of image such as the
orientation.

Conclusions
In this paper, we develop an anti-crawler system named
PathMarker to help server administrators capture and
suppress stealthy persistent crawlers who may collude
to download the contents of servers. PathMarker can
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distinguish crawlers from normal users based on their
visiting path and time features. PathMarker can quickly
capture distributed crawlers by checking the URL marker
integrity. Even for the most advanced crawler that may
bypass our detection by mimicking human beings, their
crawling efficiency can be dramatically suppressed to the
level of human beings. We evaluate PathMarker on an
online forum website. We are able to detect 6 popular
crawlers with a high accuracy as well as external crawlers
such as Yahoo and Google bots.

Endnotes
1 If the user accesses web link A from page B, then B is

the parent page of link A.
2CAPTCHA: Completely Automated Public Turing test

to tell Computers and Humans Apart
3We ignore the workers that visit our system very few

times since it is almost infeasible to prohibited a potential
malicious visitor from downloading few pages.

Abbreviations
CAPTCHA: Completely automated public turing test to tell computers and
humans apart; HTTP: Hypertext transfer protocol; SVM: Support vector
machine; URL: Uniform resource locator
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