
CybersecurityKumar and Mathuria Cybersecurity (2019) 2:8
https://doi.org/10.1186/s42400-019-0026-y

RESEARCH Open Access

Comprehensive evaluation of key
management hierarchies for outsourced data
Naveen Kumar1* and Anish Mathuria2

Abstract

Key management is an essential component of a cryptographic access control system with a large number of
resources. It manages the secret keys assigned to the system entities in such a way that only authorized users can
access a resource. Read access control allows read access of a resource by the authorized users and disallows others.
An important objective of a key management is to reduce the secret key storage with each authorized user. To this
end, there exist two prominent types of key management hierarchy with single key storage per user used for read
access control in data outsourcing scenario: user-based and resource-based. In this work, we analyze the two types of
hierarchy with respect to static hierarchy characteristics and dynamic operations such as adding or revoking user
authorization. Our analysis shows that the resource-based hierarchies can be a better candidate which is not given
equal emphasis in the literature. A new heuristic for minimizing the key management hierarchy is introduced that
makes it practical in use even for a large number of users and resources. The performance evaluation of dynamic
operations such as adding or revoking a user’s read subscription is shown experimentally to support our analytical
results.

Keywords: Key management hierarchy, Data outsourcing, Access control

Introduction
Data outsourcing in the cloud is a cost-effective solution
for a resource-constrained IT organization with a signifi-
cant amount of data tomanage. A typical data outsourcing
architecture consists of three entities (Wang et al. 2009;
di Vimercati et al. 2007): a data owner, a cloud service
provider (CSP), and the end users. The data owner creates
a service level agreement with the CSP and sends its initial
set of data with other necessary information to the service
provider. The end users first register with the data owner,
receive their authorization information and then (to avoid
any bottleneck at the data owner) can directly access the
outsourced data from the CSP without interacting with
the data owner. The CSP is responsible for initial user
authentication, data availability to the authorized users
and system scalability.
A major challenge to any data outsourcing is to keep

the data confidential from unauthorized entities including
the untrusted CSP. We assume “honest-but-curious” CSP
which may launch only passive attacks on the stored data

*Correspondence: naveen_kumar@iiitvadodara.ac.in
1Indian Institute of Information Technology, Vadodara, India
Full list of author information is available at the end of the article

(Arapinis et al. 2013). Data encryption provides a straight-
forward solution to enforce data confidentiality. An access
control mechanism allows the authorized users to access
the data. The simplest cryptographic solution is to encrypt
each set of related data files with a distinct secret key.
The decryption keys are then distributed securely to the
authorized users by the data owner. In order to reduce the
secret key storage requirement (minimum secret key per
user’s subscription), a key management hierarchy (Akl and
Taylor 1983; Atallah et al. 2005) or simply a hierarchy is
generally used. A hierarchy is a directed acyclic graph typ-
ically composed of many nodes. A key is assigned to each
node using an appropriate hierarchical key assignment
scheme (Akl and Taylor 1983; Atallah et al. 2005). Data
files are associated with the nodes and are encrypted with
the respective node’s key. The key assignment ensures that
a user having a node’s key can efficiently compute any
descendant node’s key in the hierarchy and hence access
the associated data files. It also ensures that it is com-
putationally infeasible to derive a key corresponding to a
non-descendant node in the hierarchy.
Two other goals of secure data outsourcing setup (other

than reducing the secret key storage with each user) are

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-019-0026-y&domain=pdf
http://orcid.org/0000-0002-9218-602X
mailto: naveen_kumar@iiitvadodara.ac.in
http://creativecommons.org/licenses/by/4.0/

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 2 of 17

to reduce the key derivation cost and public storage cost.
Optimizing public storage cost is critical when using a
pay-by-use system such as cloud. Although the minimiza-
tion of secret key storage per user can be addressed using
key management hierarchies, other two objectives need
further exploration especially whenworking with the large
hierarchies (needed for a system with a large number of
resources). The size (the number of nodes and edges) of
a hierarchy depends on the number of system resources
or the number of users. Therefore, the latter two objec-
tives are more dependent on the construction of the key
management hierarchy.
Two types of key management hierarchy have been pre-

viously used in the literature for secret data outsourcing:
user-based and resource-based (di Vimercati et al. 2008).
In a user-based hierarchy, each node represents a group
of users having access to that node’s key. In contrast, each
node of a resource-based hierarchy represents a group of
resources such that a user having access to the node’s key
can access each resource associated with the node.

Motivation
Blundo et al. (2010) formally prove that the problem of
minimizing the number of nodes and edges in a key man-
agement hierarchy (or the number of system secret keys)
required to enforce an authorization policy is NP-Hard.
Their proposed heuristic to minimize the hierarchy con-
siders only user-based hierarchies. In particular, a tree
hierarchy is used which requires one or more secret keys
to be stored at each user (see “User-based hierarchies”
section). The heuristic considers static hierarchy and does
not consider dynamic operations such as a grant or revoke
read authorization, or user revocation.
Prior to the work by Kumar et al. (2015), it was a

common belief that resource-based hierarchies require
a significantly more public storage (i.e., 2|R|, where R is
the set of resources, di Vimercati et al. (2008)) than the
user-based hierarchies (i.e., 2|U|, in general |U| << |R|).
The analysis given in Kumar et al. (2015) shows that with
comparable public storage, the resource-based hierarchies
performs better than the user-based hierarchies when
considering very basic and frequent dynamic operation
such as extending a user’s read authorization.
In this work, we use a resource-based hierarchy solu-

tion with single key storage per user per subscription (as
compared to the existing tree-based solution with one or
more keys storage per user per subscription). The problem
of finding minimum cost (sum of nodes and edges) hier-
archy can be easily transformed into well-known q-RST
problem (Suchý 2016) which is NP-hard (Rothvoß 2011).
We prove that findingminimum cost hierarchy and q-RST
problems are equivalent. Therefore, if there exists an algo-
rithm to solve the minimum cost hierarchy problem, the
algorithm can be used to solve the q-RST problem. We

propose a new heuristic for minimizing the number of
nodes in a generic resource-based hierarchy. The heuris-
tic calledminimal vertex hierarchyminimizes the number
of nodes in the hierarchy and give a close solution to the
minimal hierarchy. The algorithm for building a minimal
vertex (resource and user-based) hierarchy is discussed in
“Key management hierarchy: definitions and properties”
section.
We critically analyze the user and resource-based hier-

archies satisfying the proposed heuristic for minimal
criteria. The work discusses the dynamic operations con-
sidering minimal vertex hierarchy and demonstrates in-
depth analysis of both the hierarchy types. Both of the
hierarchy types are implemented and the performance
of dynamic operations are experimentally evaluated to
demonstrate our analytical results. For the sake of con-
fidence, the dynamic operations are performed over the
varying size of initial hierarchies and individual results
are averaged. A similar kind of implementation work is
recently carried out by Hassan and Lounes (2017) to ana-
lyze a key tables-based key management scheme. How-
ever, the scheme is restricted to linear hierarchies. Similar
to Blundo et al. (2010), this work revisited and intro-
duced the definitions of discussed security solutions for
the enforcement of access control policies.
Our analysis shows that both types of hierarchy satisfy-

ing the minimal heuristic criteria have comparable pub-
lic storage requirements in practice. The resource-based
hierarchies aremore efficient in terms of computation and
communication costs with respect to the dynamic opera-
tions such as extending and revoking a user’s read access
authorization.

Preliminaries
An authorization policy defines who can access what
resource. Access authorizations are generally defined
using an Access Control Matrix (ACM). We assume each
user has read authorization for some resource. An ACM
can be represented in two ways, either as a collection of
Access Control Lists (ACLs) or CaPability Lists (CPLs)
(Sandhu and Samarati 1994). An ACL corresponding to
a resource is the set of users who are authorized to read
the resource. On the other hand, a CPL is the set of
resources for which a given user has read authorization.
Both are dual of each other. For example, consider a sys-
tem with four users A,B,C,D and four resources a, b, c, d.
An example of ACM is shown in Fig. 1. In table (i), each
row represents an ACL. acl[o] represents an ACL cor-
responding to the resource o, i.e., the set of users who
are authorized to read o. The entry acl[a]= ABCD or
{A,B,C,D} means that the resource a can be read by the
users A,B,C and D. Similarly, in table (ii), each row rep-
resents a CPL. cpl[u] represents a CPL corresponding to
user u, i.e., the set of resources for which u has read

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 3 of 17

Fig. 1 An example access control matrix as (i) ACLs (ii) CPLs

authorization. The entry cpl[A]= acd or {a, c, d} means
that the user A can access the resources a, c and d.
In general, a resource can be accessed by a group of

users. A subset of these users may be authorized to access
another resource. For example, resource a can be accessed
by users A,B,C, and D. The subsets {C,D} and {A,B} are
authorized to access resources b and c, d, respectively. The
relationships between user subsets can be represented
using a hierarchy structure as shown in Fig. 2i. In the hier-
archy, each node is labeled by a subset of users, hence
the name user-based hierarchy (or user hierarchy). For
example, user B can access the descendant nodes AB and
ABCD, and hence can access the associated resources, i.e.,
c, d and a, respectively.
Consider the hierarchy shown in Fig. 2ii, where the

nodes other than the individual user nodes represent
resource groupings. This type of hierarchy is called a
resource-based hierarchy. In the figure, user A can access
all the resources a, b, c, d, whereas user D can only access
a and b.
In the following section, we give the definitions and

properties of different types of key management hierarchy
proposed in the literature for outsourced data. We criti-
cally compare the two prominent hierarchy types (user-
based and resource-based) with respect to their static
structure in “Comparison of static hierarchies” section.
“Dynamic access control” section gives the procedures for
dynamic operations such as granting and revoking read

access permissions. It also compares the two hierarchy
types with respect to dynamic characteristics. In “Exper-
imental evaluation” section, operations for both the hier-
archy types are experimentally evaluated and compared.
“Conclusions” section concludes this work. For the sake
of readability, the notations used in this work are listed in
Table 1.

Keymanagement hierarchy: definitions and
properties
In a key management hierarchy, each user is assigned a
fixed number of keys using which it can derive the rest of
the authorized keys. The design goals of a key manage-
ment hierarchy are to minimize the secret key storage per
user, system public storage, and key derivation time. In
what follows, we describe and compare various resource
and user-based hierarchy constructions considering the
above design goals.

Resource-based hierarchies
In this section, we describe a key derivation structure
called resource hierarchy (introduced in di Vimercati et al.
(2008)), where nodes are defined based on the resource
groupings (i.e., CPLs). In what follows, we first define the
most general resource hierarchy structure called resource
graph. In the definition, v.cpl for a node v is a set of
resources that can be accessed using node v’s key.

Definition 1 (Resource graph) A resource graph over a
given set of resources R, denoted GR, is a graph (VR,ER),
where VR is the power set of R and ER = {e(vi, vj)| vj.cpl ⊂
vi.cpl}.

Figure 3 shows the Hasse diagram of a resource graph
for four resources {a, b, c, d}. In the graph, there is a
directed path from each node vi to node vj such that
vj.cpl ⊂ vi.cpl. For example, the node abc with capability
list {a, b, c} has a path to each of the nodes ab, ac, bc, a, b,
and c.
In a resource graph, each user requires to store only

one secret key corresponding to its respective node in the
graph. For example, knowledge of key assigned to the node
abc is sufficient to derive the keys for the nodes a, b, and
c. Note that a resource graph is a worst case graph over a

Fig. 2 Example hierarchy structures based on (i) ACLs (ii) CPLs

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 4 of 17

Table 1 Notations used

Notation Description

a, b, c, ... Resources

A, B, C, ... End users

Ki Random key assigned to node labeled i

acl[o] A set of read authorized users for the resource o

cpl[u] A set of resources authorized for user u

e(i, j) A directed edge from node i to node j

ri,j A public token associated with an edge e(i, j)

E() Symmetric encryption function

E andD A symmetric encryption and decryption operation

C A communication between data owner and CSP

[X] It represents a node corresponding to set X of users/resources

set of resources, i.e., it contains a node for every possible
grouping of resources in the given resource set and an
edge between every related pair of nodes. A resource
graph contains 2|R| nodes. Considering that |R| >> |U|
where U is the set of users, resource graphs are less prac-
tical in use. The next key derivation structure we study,
namely resource hierarchy, is a sub-graph of the resource
graph. We define a material nodes set M that only con-
tains the nodes used to encrypt a data file. A resource
hierarchy is defined as follows.

Definition 2 (Resource hierarchy) LetA be a set of CPLs
over a set of users U and set of resources R. A resource
hierarchy denoted RH = (V ,E) for given A is a sub-
graph of GR = (VR,ER) where M

⋃
U ⊆ V ⊆ VR and

E = E1
⋃

E2 where E1 = {e([u] , [cpl[u]])|u ∈ U} and
E2 = {e(vi, vj)|vi, vj ∈ V , vj.cpl ⊂ vi.cpl}.

The above definition ensures that a resource hierarchy
includes root nodes representing the users and leaf nodes
representing the resources. The intermediate nodes are
corresponding to the given user’s CPL. There is an edge

from each user (u) node to the node represents its capa-
bility list (cpl[u]∈ A). Ignoring the user nodes, there is
a path from every node x to node y if y.cpl ⊂ x.cpl. An
example resource hierarchy is shown in Fig. 4 where (i)
represents an example set of CPLs and (ii) gives a cor-
responding resource hierarchy. In the example hierarchy,
there is an edge from user node B to node bcd since
B.cpl =< b, c, d > as shown in Figure (i). Similarly, there
are edges from node C to node ad, nodeD to node ab, and
node A to node abc.
In general, the public storage is defined as the total num-

ber of nodes and the number of edges present in the hier-
archy as there is a public value for each node and for each
edge (Atallah et al. 2005). In the resource hierarchy, the
total number of edges or the nodes can be further reduced
to some extent by adding additional nodes or deleting
non-material nodes. For example, suppose v1.acl = bcdex
and v2.acl = abcdef , then a common subset of the two
given ACLs is bcde. Adding bcde node into the hierarchy
may reduce the number of existing edges. If another node
v3.acl = abcdfy exists, then it may happen that instead of
node bcde, node bcd (common to v1, v2, and v3) further
reduces the number of edges. Therefore, there are many
such possibilities exist. It motivates us to define the notion
of minimal hierarchy.

Definition 3 (Minimal hierarchy problem) To find a
hierarchy H = (V ,E) for which |V | + |E| is minimum over
all M

⋃
U ⊆ V and E = {e(vi, vj)|vi, vj ∈ V , vj.cpl ⊂

vi.cpl} is called a minimal hierarchy problem.

Our objective is to find a hierarchy which optimizes
|V |+|E|. We call this problem asMinimal Hierarchy Prob-
lem (MHP). In what follows, we show that the MHP is a
hard problem.
The Steiner Tree Problem (STP, (Hwang and Richards

1992)) on weighted graphs asks for a tree of minimum
weight that contains all leaf nodes, but may also include
additional nodes. Therefore, when edge weight is fixed to

Fig. 3 A resource graph

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 5 of 17

Fig. 4 (i) An example CPLs, and (ii) A resource hierarchy

1, the problem is the same as minimizing the number of
edges and the non-leaf nodes in the graph. It is known
that the Steiner tree problem is NP-hard and remains so
even in very restricted planar cases (Aho et al. 1977). A
variation of STP is directed STP whose goal is to find a
minimum cost tree in a directed graph G = (V ,E) that
connects all leaf nodes X ∈ V to a given root r ∈ V
(Rothvoß 2011).
A generalization of directed STP is directed STP with

multiple roots (or q-Root Steiner Tree, i.e., q-RST problem
(Suchý 2016)). The q-RST problem is that given a directed
graph G = (V ,E), two subsets of its nodes, a set of root
nodes Rt of size q andT, the goal is to find aminimum cost
subgraph ofG that contains a path from each node of Rt to
each node ofT. The rest of the nodes in setV \(Rt∪T) can
be added to form a minimum cost subgraph. This opti-
mization problem is known to be NP-hard (Suchý 2016;
Rothvoß 2011).
Now, consider the q-RST problem with given directed

graph GU = (VU ,EU) containing unit weight edges, two
subsets of its nodes, Rt of size q as user nodes and T
the leaf nodes represents the ACLs. The goal is to find a
minimum cost subgraph of GU that contains a path from
each node v1 of Rt to each node v2 in T, where v1.acl ⊆
v2.acl and v2 �= �, i.e., there is at least one target node
corresponding to the given root node. This problem is
equivalent to the MHP. Therefore, if there exists an algo-
rithm to solve MHP, the algorithm can be used to solve
the q-RST problem. Below we show that MHP and q-RST
problems are equivalent.

Theorem 1 MHP and q-RST problems are equivalent.

Proof To show the equivalence between MHP and q-
RST problems, consider an arbitrary instance graph of
MHP with unit directed edges, set Rt of size q containing
user nodes as root nodes representing the CPLs and T the
leaf nodes representing the individual resources. Now, we
will show how the MHP instance can be converted into
a general weighted graph as in q-RST problem. Consider
each chain C =< x1, x2, ..., xi > of nodes in the graph such
that each node except xi in C has only one outgoing edge.

Then replace C with one edge chain C′ =< x1, xi > and
weight of the edge is i − 1, i.e., the sum of edge weights
in C. The updated graph now becomes an instance of q-
RST problem which says that the q-RST problem is no
harder than the MHP problem. This implies that the two
problems are equivalent.

As an approximation to the MHP problem, we define a
new heuristic namedminimal vertex hierarchy. Aminimal
vertex hierarchy (V ,E) only contains the material nodes
(M) and their associated edges. To satisfy the minimal-
ity condition if we fix the number of nodes to |M| then
the minimum and maximum number of edges required
to create a connected hierarchy will be |M| − 1 and
|M|(|M| − 1)/2, respectively. Although, the number of
edges may be further reduced by adding more vertices,
this introduces an additional complexity of analyzing the
relationship between all the vertices and edges in the hier-
archy. Therefore, we will use minimal vertex hierarchy as
an approximation to theminimal hierarchy (the one where
|V | + |E| is minimum). Following minimal vertex hier-
archy, a minimal vertex resource hierarchy is defined as
follows.

Definition 4 (Minimal vertex resource hierarchy) Let
A be a set of CPLs over a set U of users and set R of
resources. A minimal vertex resource hierarchy denoted
RHm = (V ,E) for given A is a subgraph of GR = (VR,ER)
with V = U

⋃
R and E = {e(vi, vj)|vi =[u] ,u ∈ U , vj =

[r] , r ∈ R, and r ∈ cpl[u] }

The above definition ensures that a minimal vertex
resource hierarchy includes root nodes representing the
users and leaf nodes representing the resources. Since
each resource is encrypted with its dedicated leaf node’s
key, there is no intermediate node needed between user
and resource nodes. An algorithm for constructing min-
imal vertex resource hierarchy corresponding to a given
set of CPLs is given in Algorithm 1. There is a direct
edge from every user node u to a node corresponding to
a resource r if r ∈ cpl[u]. An example minimal vertex
resource hierarchy is shown in Fig. 5, where (i) represents

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 6 of 17

an example set of CPLs and (ii) gives a corresponding
minimal vertex resource hierarchy. In the example hierar-
chy, there is a direct edge from node A to the set of nodes
{[a] , [b] , [c] } since cpl[A]= {a, b, c} as shown in Figure (i).
Similarly, there are edges from node B to the set of nodes
{[b] , [c] , [d] }, node C to the set of nodes {[a] , [d] } and
node D to the set of nodes {[a] , [b] }.

Algorithm 1 Create_RHier(ACM,U ,R)

Input: An ACM containing a set of CPLs, a set of users U,
and a set of resources R.
Output: Create a minimal vertex resource hierarchy cor-
responding to the given ACM.
1: for (each user u ∈ U) do
2: Create a node [u] for u
3: end for
4: for (each user r ∈ R) do
5: Create a node [r] for u
6: end for
7: for (each CPL[u]∈ ACM for a user u) do
8: for (each resource r ∈ CPL[u]) do
9: Create an edge e([u] , [r])

10: end for
11: end for

Here, each leaf node in a minimal vertex resource
hierarchy represents a resource node, i.e., a resource is
encrypted with a leaf node’s key. There is a direct edge
from each user node u to all of her authorized resource
nodes, i.e., resources in her capability list (cpl[u]).

User-based hierarchies
We review here the user-based key management hierar-
chies (Blundo et al. 2010; Raykova et al. 2012; Vimercati
et al. 2008, 2013), where nodes are defined based on the
users grouping (i.e., ACLs), instead of the resource group-
ings (i.e., CPLs). In what follows, we first define the user
graph in a similar fashion to a resource graph and then
other related hierarchy constructions. Following (Blundo
et al. 2010) and the resource graph, a user graph is defined

as follows, where each node represents a group of users. In
the definition, notation v.acl represents a set of users that
can access the node v’s key.

Definition 5 (User graph) A user graph over a given
set of users U, denoted GU, is a graph (VU ,EU) rooted
at node v0, where VU is the power set of U and EU =
{e(vi, vj)|vi.acl ⊂ vj.acl}.

It follows from Definition 5 that v0 is a root node.
There is a node corresponding to each subset of users
and there is a directed path from each node vi to node vj
with vi.acl ⊂ vj.acl. Also, there is an edge from the root
node to each single user node. Figure 6 shows Hasse dia-
gram (Baker et al. 1972) of a user graph with four users
{A,B,C,D}. For simplicity, the edges that are implied by
other edges are not shown in the figure.
As the resource graph, in a user graph, each user stores

only one secret key corresponding to its respective node
in the graph. For example, knowledge of key assigned to
node A is sufficient to derive the keys assigned to nodes
AB,AC,AD,ABC, ABD and ABCD, respectively. It also
contains one hop distance to reach any descendant node
in the graph but with a significant increase in the num-
ber of edges (or the public storage). It requires O (nn)
edges even when excluding those implied by the transitive
property, where n is the number of nodes in the hierarchy.
A user tree is a subgraph of user graph, where each

node has at most one incoming edge, i.e., allows only one
path between two nodes. Every node whose key is used
for encrypting a resource is included in the user tree (i.e.,
M). Formally, for a set of ACLs over a set of resources R,
M = {[acl[o]] : o ∈ R}. Following (Blundo et al. 2010), a
user tree can be defined as follows.

Definition 6 (User tree) Let GU be a user graph over
a set of users U, with root node v0 and a set of material
nodes M. A subgraph T = (V ,E) of GU with M

⋃{v0} ⊆
V ⊆ VU and E = {e(vi, vj)|vi, vj ∈ V , vi.acl ⊂ vj.acl} that
satisfies the property of being a tree rooted at v0 is called a
user tree.

Fig. 5 (i) Example CPLs, and (ii) A minimal vertex resource hierarchy

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 7 of 17

Fig. 6 A user graph over a set {A, B, C,D} of four users

For a given set of ACLs, more than one user trees can
exist. An example with four users U = {A,B,C,D} and
four resources R = {a, b, c, d} is shown in Fig. 7. Figure 7i
represents example ACLs, and Figure (ii) represents one
possible user tree corresponding to the given ACLs. Each
node in the user tree represents a user grouping, i.e., a
set of users that can access the node’s key and the asso-
ciated resources. For example, node ACD represents a
group of users A, C and D that can access the key KACD
and hence the associated resource a. We can see in the
Figure that there is a node for each ACL, i.e., acl[o] for a
resource o. For example, there are nodes acl[a]= ACD,
acl[b]= ABD, acl[c]= AB and acl[d]= BC, in the
figure.
Although there is a node for each acl[o] in Fig. 7ii, for

each node there is no guarantee that its respective ACL
exists. For example, there is no ACL for node A. To reduce
the public storage, such nodes may be deleted from the
tree, resulting in a minimal vertex user tree considering
the minimal vertex hierarchy heuristic. A minimal vertex
user tree can be defined as follows.

Definition 7 (Minimal vertex user tree) LetA be a set of
ACLs over a set of users U and set of resources R. Aminimal
vertex user tree Tm = (Vm,Em) is a subgraph of GU =

(VU ,EU), rooted at node v0 with v0.acl = φ, where Vm =
M

⋃{vo} and Em = {e(vi, vj)|vi, vj ∈ Vm, vi.acl ⊂ vj.acl}.

A minimal vertex user tree contains exactly the mate-
rial nodes M and the root node v0. An example minimal
vertex user tree is shown in Fig. 7iii. The secret storage
with each user in the tree is shown in Table 2. From the
table, we see that a user may need to store more than
one secret key. In the worst case, a user may need to
store as many keys as the number of leaf nodes in the
tree.

Claim 1 A minimal vertex user tree is a minimal user
graph.

Proof A minimal vertex user tree contains exactly one
node for each ACL. Since each node’s key is used to
encrypt at least one resource, the number of nodes cannot
be reduced. If the number of nodes is n, then theminimum
number of edges required to retain connectivity is exactly
n − 1. Therefore, a minimal vertex user tree is always a
minimal graph.

In comparison to the user graph, a minimal vertex user
tree reduces the public storage, while increasing the secret

Fig. 7 (i) Example ACLs with read authorization, (ii) A user tree, and (iii) Minimal vertex user tree

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 8 of 17

Table 2 Secret keys with each user

User Secret keys

A KACD , KAB

B KAB , KBC

C KACD , KBC

D KACD , KABD

storage at each user. In contrast to the user trees, a user
hierarchy needs to store a single secret key per user and
consists of a node for each user.Moreover, a node can have
more than one incoming edge. Following (Raykova et al.
2012; Vimercati et al. 2008, 2013), a user hierarchy (can be
viewed as a dual of resource hierarchy) can be defined as
follows.

Definition 8 (User hierarchy) Let A be a set of ACLs
over a set U of users and set R of resources. A user hier-
archy denoted UH = (V ,E) for given A is a subgraph of
GU = (VU ,EU) where M

⋃
U ⊆ V ⊆ VU and E =

{e(vi, vj)|vi, vj ∈ V , vi.acl ⊂ vj.acl}.

Definition 9 (Minimal vertex user hierarchy) A mini-
mal vertex user hierarchy UHm = (Vm,Em) for a given
UH = (V ,E) is a subgraph of UH with Vm = M

⋃
U.

Consider the set of ACLs shown in Fig. 8i. A mini-
mal vertex user hierarchy implementing the given ACLs is
shown in Fig. 8ii.
In a minimal vertex user hierarchy, each user requires

only one secret key, as in the case of user graph. However,
a user hierarchy will take a number of edges, i.e., the public
storage, as compared to the corresponding user tree (see
in Fig. 7ii). This is because there is a node for each system
user in the user hierarchy.
Although the MHP problem is NP-hard, constructing

a minimal vertex user hierarchy for a given ACM can be

done in polynomial time. A procedure for constructing a
minimal vertex user hierarchy for a given ACM is shown
in Algorithm 2. In the algorithm, the notation [x] repre-
sents a node corresponding to set x of users. A node n is
called a out-neighbor of nodem if there is a directed edge
fromm to n.
The Algorithm 2 works as follows. A node is created

for each user in set U (Steps 1-3). For each ACL in the
given ACM, a corresponding node X is created (Step 5)
and inserted into the hierarchy (Steps 6 to 26). For each
user u in the given ACL, a node S after which X can
be inserted (satisfies the access control relationships) is
searched (Steps 7 to 18). Then, outgoing edges from node
X corresponding to S and u are updated (Steps 19 to 24).
Incoming edge to X is then updated (Step 25). At the end
of this algorithm, a user hierarchy is created correspond-
ing to the given ACLs in the ACM. For a given set of
resources R, the Algorithm 2 will take a running time cost
of O

(|R|2) in the worst case, considering |U| << |R|. It is
due to the statement numbers 4 and 11 in the algorithm
each of which iterates O(|R|) times. Statement number 6
and 9 will iterate O(|U|) times each.

Comparison of static hierarchies
A hierarchy with a fixed structure is called a static hierarchy.
In this section, we compare minimal vertex user and
resource hierarchies in a static situation. An ACM is said
to be in the worst case if all of its ACLs or CPLs are dis-
tinct. We will compare the number of nodes and edges
that are required to construct a minimal vertex hierarchy
for a worst case ACM. In “Dynamic access control”
section, we give algorithms for dynamic operations that
guarantee the minimal vertex hierarchy construction.
Let |U| and |R| denote the number of users and

resources, respectively. We assume that |U| << |R| but
|R| < 2|U|. For example, consider that we need to create
an electronic health record management system for India,
and assume that 1 crore patients receive care every year.
Suppose a central database is created to store the patient

Fig. 8 (i) Example ACLs with read authorization, and (ii) A minimal vertex user hierarchy

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 9 of 17

Algorithm 2 Create_UHier(ACM,U)

Input: An ACM containing a set of ACLs and a set of users
U.
Output: Create a user hierarchy corresponding to the
given ACM.
1: for (each user u ∈ U) do
2: Create a node [u] for u
3: end for
4: for (each ACL ∈ ACM) do
5: Create a node X for ACL
6: for (each user u ∈ ACL) do
7: Create and initialize set S = {u}
8: Set “Update” = True
9: while (“Update” = True) do

10: Set “Update” = False
11: for (each out-neighbor n of [S]) do
12: if (n.acl ⊂ ACL) then
13: S ← n.acl /* Update set S */
14: Set “Update” = True
15: Break /* Exit from inner for loop */
16: end if
17: end for
18: end while
19: for (each out-neighbor n1 of [S]) do
20: if (ACL⊂ n1.acl) then
21: Create an edge e(X, n1) /* Update outgoing

edges from X */
22: Delete edge e([S] , n1)
23: end if
24: end for
25: Create an edge e([S] ,X) /* Update incoming

edge on X */
26: end for
27: end for

records. For 100 years and assuming 20 documents per
patient per year, it requires ∼ 1010 data files to be stored.
However, for a set of only 50 users, 2|U| = 250 ∼ 1015
which is a significant number, as compared to the total
number of resources in an organization.

Cost of user hierarchy In a user hierarchy, consider a
set of ACLs in the worst case, i.e., each resource o has a

distinct acl[o]. As there is a node for each acl[o], the max-
imum number of nodes is |R|. In case |U| is small and
2|U| < |R| then a maximum number of nodes will be 2|U|.
Therefore, the total number of nodes in the hierarchy will
bemin(2|U|, |R|). In totalmin(2|U|, |R|) orO(|R|) nodes are
needed assuming |R| < 2|U|.
For finding the number of edges required for a given

number of nodes, consider user nodes as level 0 nodes,
directly connected nodes of the level 0 nodes as level
1 nodes, and so on. In the worst case, the level 0 con-
tains |U|C1 nodes, level 1 contains |U|C2 nodes, and so
on (similar to user graph). Also, the number of incom-
ing edges at each node in level 1 is 1 and in level 2 is
2 and so on. Therefore, the total number of incoming
edges at level 1 is 1 ×|U| C1, at level 2 is 2 ×|U| C2 and
so on. Now the total number of edges can be written as
follows.

1 ×|U|C1 + 2 ×|U|C2 + ... + (|U| − 1) (1)
×|U|C|U|−1 + (|U|) ×|U|C|U|

= |U|
0!

+ |U|(|U| − 1)
1!

+ ... + |U|(|U| − 1)
1!

+ |U|
0!

(2)

= 2
(|U|

0!
+ |U|(|U| − 1)

1!
+ ... + |U|(|U| − 1)...(|U| − (|U|/2))

(|U|/2)!
)

(3)

In total, it comes out as 2
(∑|U|/2

i=0
|U|!

(|U|−i−1)!i!

)
, i.e.,

O
(|U||U|/2) due to the last term in Eq. 3. Also, the num-

ber of levels gives the key derivation steps (or time), i.e.,
O(|U|) (in worst case).
When considering the number of edges in worst case

minimal vertex user hierarchy, all the ACLs are distinct
of O|R| number of users each and there is no node
whose corresponding ACL is a subset of other (i.e., all
nodes are at the same level). It creates a hierarchy with
two level: user nodes in one level and other nodes in
the second level. Now, the total number of edges will
be O(|U||R|).

Cost of minimal vertex resource hierarchy In the worst
case minimal vertex resource hierarchy, each user has a
direct edge to each of its authorization resource node. In
total, |U| + |R| nodes and |U||R| edges are needed in the

Table 3 Comparison of storage and key derivation cost

Hierarchy → User-based hierarchies Minimal vertex
User User Minimal vertex resource

↓ Attributes graph tree user hierarchy hierarchy

of keys/users Single Multiple Single Single

of nodes 2|U|+1 min
(|R|, 2|U|)+1 |U| + |R| |U| + |R|

of edges O
(|U||U|/2) O

(
min

(|R|, 2|U|)) O(|U||R|) O(|U||R|)
key derivation cost O(|U|) O(|U|) O(|U|) O(1)

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 10 of 17

worst case. Also, the key derivation cost will be O(1) due
to a direct edge from a user to an authorized resource
node.
Table 3 compares the minimal vertex resource hierar-

chy with existing user-based hierarchies (user graph, user
tree, and minimal vertex user hierarchy) in the worst case.
We can see from the table that, the maximum number of
nodes and edges in both minimal vertex user and resource
hierarchies are |U| + |R| and O(|U||R|), respectively. The
key derivation cost in minimal vertex resource hierarchy
is only one edge whereas in minimal vertex user hierarchy
is |U| − 1 edges in the worst case. This is more in mini-
mal vertex user hierarchy because it may form the longest
chain of O(|U|) nodes.

Dynamic access control
Data access authorizations change with time as employ-
ees join and leave the organization or the depart-
ment within the organization. A scheme with dynamic
access control would allow granting or revoking access
authorizations. In the following, we evaluate the user
and resource-based hierarchies in terms of computa-
tional and communication costs of the common dynamic
operations.

Algorithms for user hierarchy
Grant/revoke read access In user hierarchy, if access
authorization is granted (or revoked) for a resource o to a
user u then acl[o] will be updated to acl[o]′ = acl[o]∪{u} (
or acl[o]′ = acl[o] \{u}). Now, since acl[o] �= acl[o]′ (both
represent different nodes in the hierarchy), resource o will
be now encrypted with the key K[acl[o]′] corresponding to
acl[o]′. To avoid storing multiple copies of the resource
encrypted with different keys (K[acl[o]′] and K[acl[o]]) for
security reasons, data owner must delete the old copy
from the server. Since granting read access is a frequent
operation, associated re-encryption operation to the out-
sourced resource by the data owner should be avoided, if
possible.
Consider Algorithm 3 for granting read access. Run-

ning time of the algorithm with respect to the hierarchy
manipulation, i.e., excluding encryption, decryption or
communication cost will be O(U + R). It is due to the

statement number 6 in the algorithm that requires cost
O(U) in updating incoming edges to new node vnew and
O(R) in updating outgoing edges. In the following, E
represents the cost of one symmetric encryption opera-
tion, D the cost of one symmetric decryption operation
and C the cost of one communication between the data
owner and the CSP.
In Algorithm 3, granting read access for a resource

to a user requires the following steps: (1) download-
ing the resource from the server (1C), (2) decrypting it
using the old key (1D), (3) encrypting it with the new
key (1E), and (4) storing it back to the server (1C) (i.e.,
total cost = 1E + 1D + 2C). For example, consider
the user hierarchy shown in Fig. 9i, granting read access
for resource c to users C leads to the modified hierar-
chy shown in Fig. 9ii. In the modified hierarchy, a new
node ABC is inserted and the resource c is encrypted
with KABC .

Algorithm 3 Grant_Revoke_Read_Access(UH, o,u)

1: Find node v with v.acl = acl[o] in UH
2: In case of

“Grant operation”: acl[o]← acl[o]
⋃{u} /* update the

ACL of resource o */
“Revoke operation”: acl[o]← acl[o] \{u}

3: Find node vnew with vnew.acl = acl[o]
4: if (vnew does not exist in the UH) then
5: Create node vnew with vnew.acl = acl[o]
6: Insert vnew into UH
7: end if
8: Download the encrypted version o′ of o from the

server
9: o ← DKv(o′)

10: o′′ ← EKvnew (o)
11: Outsource o′′ to the server

/* Delete v if v.acl is not in the ACL list*/
12: if (does not exist p ∈ R with acl[p]= v.acl) then
13: Delete v and associated edges from UH /* deleting

redundant node */
14: end if
15: Publish updated UH to the cloud server

Fig. 9Modified example of minimal vertex user hierarchy (i) before, and (ii) after granting read access

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 11 of 17

Fig. 10Modified example of minimal vertex user hierarchy after revoking user D

User revocation Since each node in a user hierarchy rep-
resents a user grouping, a user revoke operation requires
a modification to the hierarchy. Revoking a user requires
that each node previously accessible to the revoked user
be deleted and replaced by a new node (without revoked
user label). For example, consider the minimal vertex user
hierarchy given in Fig. 9i. To revoke D we delete the node
ABCD and replace it with the new node ABC (by deleting
labelD). Now, resources a and b are re-encrypted with the
new key (KABC) so that user D will not be able to access
the revoked resources. The updated hierarchy is shown in
Fig. 10.

Algorithms for resource hierarchy
Grant read access To grant read access for a resource o
to a user u, the data owner executes Algorithm 4.

Algorithm 4 Grant_readAccess(RH , o,u)

Input: A minimal vertex resource hierarchy RH, a
resource o, and a user u.
Output: Grant read access of resource o to user u.

1: u.cpl = u.cpl
⋃{o} /* updating user u’s CPL */

2: Create an edge from [u] to [o] by computing a public
edge token r[u],[o]

3: Publish r[u],[o] (and E(o,K[o]), if new resource) at the
cloud server to update RH

In the algorithm, [x] represents a node corresponding to
set x of users or resources. K[o] is the key used to encrypt
resource o. Consider the example hierarchy in Fig. 11i. Ini-
tially, user C has read access to the resources a and b.
Suppose, read access for resource c is to be granted to
the user C. Using Algorithm 4, user C’s capability list
C.cpl = {a, b} is updated by inserting resource c, i.e.,
C.cpl = {a, b, c} (Step 1). An edge is created from node [u]
to [c] (Step 2). All updated public information (i.e., r[u],[o]
and E(o,K[o]) (if o is new resource)) will be now published
at the server (Step 3). The modified CPL and the hierarchy
are shown in Fig. 11ii.

Revoke read access To revoke read authorization of a
resource o for a user u assuming both exists, the data
owner executes Algorithm 5. For example, consider the
hierarchy in Fig. 11ii, where user B has initially read
access for the resources b, c and d. Suppose, read access of
resource d is revoked from user B, the algorithm works as
follows. Old capability list of user B, i.e., bcd is updated to
bc (Step 1). A new key K ′

[d] is assigned to node d (Step 2).
Encrypted resource d is downloaded from the server,
decrypted using old key K[d] and then encrypted with new
key K ′

[d] (Steps 3 − 5). Edge rB,[d] is deleted (Step 6). Now,
for each user node v with o ⊂ v.cpl, compute public token
for edge e(v, o) and update it with the stored one (Steps
7 − 9). The updated resource hierarchy information is
then sent to the server along with encrypted resource K ′

[d]

Fig. 11 (i) An example minimal vertex resource hierarchy, and (ii) Granting read access for resource c to user C

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 12 of 17

Fig. 12 After revoking read access of resource d from user B

(Step 10). The updated CPL and resource hierarchy are
shown in Fig. 12.

User revocation To revoke a user u, the data owner exe-
cutes the following. For each outgoing edge e(u, o) from
u to some resource o, the data owner calls the procedure
Revoke_readAccess(RH ,u, o) (Algorithm 5).

Algorithm 5 Revoke_readAccess(RH , o,u)

1: u.cpl ← u.cpl \ {o} /* updating user u’s CPL */
2: Update node [o]’s key to K ′

[o]
3: Download the encrypted version o′ of o from the

server
4: o ← DKo
5: o′′ ← EK ′

[o]
(o)

6: Delete edge from [u] to [o] by deleting public edge
token r[u],[o]

7: for (each user v with o ⊂ v.cpl) do
8: Compute r[v],[o] and use it to replace the old public

edge token in RH
9: end for

10: Publish o′′ and updated RH information at the cloud
server

Comparison of dynamic hierarchies
Table 4 compares the minimal vertex UH and RH. It
compares the two with respect to the number of encryp-
tion (E) or decryption (D) operations needed by the data
owner, communications (C) needed with the CSP to grant
one read access, revoke one read access, and whether

revoking a user requires modification to the hierarchy
structure. An attractive property of theminimal vertex RH
is that it does not require any encryption or decryption
operation while granting read access of a user. It requires
single communication between the data owner and CSP to
update the outsourced hierarchy structure while granting
read access of a user. Also, it does not require any modi-
fication to the hierarchy structure when a user is revoked,
unlike the user-based hierarchies. Revoking a user’s read
access right takes similar cost in both the hierarchy
types.

Experimental evaluation
We have implemented the minimal vertex UH and RH for
read access control on a local area network. The goal of
the experiment is to evaluate the cost of dynamic opera-
tions from the perspective of the user and the data owner.
We will evaluate the time of user’s grant and revoke access
right operations, and elapsed time performance of the
data owner machine. The elapsed time is the time dif-
ference between a start and finishing time for a set of
operations.

Setup For testing purposes, we use two machines: a file
server and a data owner. Each machine consists of an Intel
core 2 quad Q8400 processor 2.66 GHz with 3 GB RAM
and 7200 RPM, 16 MB Cache, SATA 3.0 Gb/s hard drive.
Both systems running windows XP are connected with a
1 Gbps Ethernet link. We choose AES − 128 as the cipher
for file encryption and employ SHA − 1 as the hash func-
tion (found in java.security package). We implement grant
and revoke read methods in Java with JDK 1.7. The test

Table 4 Comparison of computation and communication cost

Hierarchy type ↓ Cost of a grant read access Cost of a revoke read access Modification of hierarchy due to user revocation

Minimal vertex UH 1E + 1D + 2C |R|(1E + 1D) + 2C Yes

Minimal vertex RH 1C |R|(1E + 1D) + 2C No

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 13 of 17

Fig. 13 Permission operation cost

includes a file server that stores 1000 files. The file size
varies from 1 MB to 2 MB. The hierarchy is implemented
using Hashmap in Java by storing it as an adjacency list.
For the test, we fix the number of users to 30 and number
of resources to 50. Considering fewer resources will not
affect our experimental results since the cost of a grant
or revoke operation dependent only on the corresponding
resource whose access right is updated. After fixing these,
we create different initial hierarchies.We define the size of
initial hierarchy in terms of the number M of consecutive
grant access right operations. Each grant operation ran-
domly selects a user and a resource from the set of 1000
files.

Minimal vertex RH: Grant and revoke read operations cost
We first evaluate the cost of one grant and revoke oper-
ations cost at the data owner. An initial minimal vertex
RH is created for a fixed value of M. This defines an ini-
tial ACM. Then the grant and revoke permissions are
initiated in sequence at the data owner machine for which
it updates the respective CPLs and the hierarchy structure.
We define a thread containing one grant and one revoke
operation that will execute simultaneously to maintain
the same size of the initial hierarchy. The thread is exe-
cuted 100 times. The average cost of each operation in the
thread is then computed separately immediately after the
corresponding hierarchy is published.
Figure 13 shows the cost of one grant and one revoke

operation for different sizes of initial hierarchy, i.e., M =
100, 300, 500 and taking an average over 100 operations.
Table 5 summarizes the cost (in milliseconds) of one grant

or revoke operation along with average number of file re-
encryptions needed for different values of M. From the
figure, we conclude that the cost of one grant operation
is approximately same with different size of initial hier-
archy. This is due to the fact that each grant operation
adds to at most one node into the hierarchy and updating
of corresponding edges. However, the cost of one revoke
operation increases almost linearly with the size of initial
hierarchy. As the size of hierarchy increases by randomly
applying grant permission operations with the same
number of users and resources, the user’s subscription
(subscribed resources) will increase. This will lead to an
increase in the number of re-encryption operations at
the time of revoke operation and hence the revocation
cost.
Figure 14 shows the computation for average cost of

revoke operation when considering M = 100. We take
an average over 100 operations. It requires 296 total
file re-encryptions and on average 3 re-encryptions per
revoke operation. The average cost of revoke operation is
13.247 ms.

Table 5 Grant and revoke subscription cost in minimal vertex RH

Size of initial
hierarchy

Grant operation Revoke operation Average file
re-encryptions

(M)

100 0.477ms 13.2ms 3

300 0.454ms 38.0ms 7

500 0.440ms 78.8ms 11

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 14 of 17

Fig. 14 Average elapse time of one grant/revoke operation

Fig. 15 Elapsed time performance of data owner machine for evaluating user threads

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 15 of 17

Table 6 Grant and revoke cost in minimal vertex UH

Size of initial hierarchy (M) → 200 500 1000

Operation Average file size

Grant 100 KB 12.961 ms 13.923 ms 18.530 ms

1 MB 146.174 ms 160.385 ms 186.561 ms

Revoke 100 KB 13.511 ms 14.223 ms 17.935 ms

1 MB 133.274 ms 151.843 ms 172.015 ms

Performance of data owner machine In the above eval-
uation, we considered only one user. Now, we consider
a number of users involve in grant or revoke operations.
For each operation, the data owner will update the ACM
and corresponding hierarchy. To evaluate the data owner’s
elapsed time performance for handling a number of user
threads, we simulate T simultaneous threads at the data
owner. Due to random inputs for each operation, we per-
form the test 100 times and then the average cost of one
batch of T threads is computed. We perform the tests for
T = 10, 50, 100, 200, 300, 500, 700, 1000, 1500, 2000.M is
fixed to 100. Figure 15 shows the results. From the figure,
we conclude that there is almost linear relation between
the elapsed time and the number of threads T.

Minimal vertex UH: grant and revoke read operations cost
Similar to the minimal vertex RH, the minimal vertex
UH is created by fixing M and the corresponding ACM
is stored. The grant and revoke operations are initiated
in the same way as in the minimal vertex RH. The eval-
uation cost is shown in Table 6. For a given file size,
our results show that the grant and revoke access right

operations have a similar cost. This is because each
operation requires one re-encryption of an outsourced
resource and an addition of at most one node in the
hierarchy.

Minimal vertex UH and RH: comparing grant read
operation cost
Considering the experimental setup described above, we
evaluate the cost of one grant read permission for a user.
Figure 16 compares the two hierarchies against grant
operation cost. We fixed the initial hierarchy parameter
M = 200, 500 and 1000. The average file size is 1MB. This
grant operation is executed 100 times. The average cost of
one operation is then computed. The results are shown in
Table 7. The Fig. 16 shows that in minimal vertex UH the
cost of one grant operation is significantly large in com-
parison to minimal vertex RH. It is due to file encryption
and decryption operations needed in the minimal vertex
UH when user subscription is granted. These operations
are not required in the minimal vertex RH.

Minimal vertex UH and RH: Comparing user revoke
operation cost
Figure 17 compares minimal vertex user and resource
hierarchies with respect to a user revoke operation cost.
In the experiment we only consider the hierarchy mod-
ification cost due to user revoke operation, i.e., the cost
of resource encryption and decryption is omitted for sim-
plicity. It is to be noted here that the average cost of
encryption and decryption operations required per user
revocation is same in both the hierarchy types. The graph
shows that the hierarchy modification cost significantly

Fig. 16 Elapsed time of one grant read subscription operation

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 16 of 17

Table 7 Comparison of grant read operation cost

Size of initial
hierarchy (M)

Avg. file size UH grant op. RH grant op.

200 1MB 146.18 ms 0.481 ms

500 1MB 162.17 ms 0.472 ms

1000 1MB 193.26 ms 0.459 ms

increases in minimal vertex UHwith the increase in initial
hierarchy size. This is due to the increase in a number
of nodes to be modified with the increase in the size of
user’s ACL. In the minimal vertex RH, the hierarchy mod-
ification cost is constant and straightforward as there is
an direct edge between a user node and its authorized
resource nodes which only needs to be deleted from the
hierarchy.

Conclusions
We critically analyzed the types of key management hier-
archy used for data outsourcing and based on a new
heuristic named minimal vertex hierarchy for optimizing

the hierarchy. Such hierarchies require only one secret
key per user. Our analysis shows that the storage require-
ment for minimal vertex resource hierarchies will be
same as minimal vertex user hierarchies. The key deriva-
tion cost is constant in case of minimal vertex resource
hierarchies as compared to the linear cost (i.e., O(U))
in minimal vertex user hierarchies. Also, the minimal
vertex resource hierarchies perform better in case of
dynamic operations such as extending read authoriza-
tion and revoking a user without affecting other required
functionalities. Based on our analysis, we recommend
the use of resource-based hierarchies for data access
control in a system with a large number of resources.
The proposed algorithms for the dynamic operations will
be used to maintain the hierarchy size. For the sake of
our arguments, we have implemented the two hierar-
chy types and evaluated the results experimentally. Our
results show that the cost of one grant operation is sig-
nificantly large in user-based hierarchies as compared to
resource-based hierarchies. The resource-based hierar-
chies are also improved over the other when considering
user revocation operation.

Fig. 17 Average elapsed time of one user revoke operation

Kumar and Mathuria Cybersecurity (2019) 2:8 Page 17 of 17

Authors’ contributions
NK: Initiate the idea, conceptual reasoning, preparation of the manuscript,
does experiment evaluation and formulate end results. AM: Coordinate in the
initiation of this idea, suggested important conceptual corrections for
preparation of the manuscript, participated in drafting or revising it critically
and given approval for the final submission. Both authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Indian Institute of Information Technology, Vadodara, India. 2Dhirubhai
Ambani Institute of Information and Communication Technology,
Gandhinagar, India.

Received: 6 September 2018 Accepted: 28 January 2019

References
Aho AV, Garey MR, Hwang FK (1977) Rectilinear steiner trees: Efficient

special-case algorithms. Networks 7(1):37–58. https://doi.org/10.1002/net.
3230070104

Akl SG, Taylor PD (1983) Cryptographic solution to a problem of access control
in a hierarchy. ACM Trans Comput Syst 1(3):239–248

Arapinis M, Bursuc S, Ryan M (2013) Privacy-suppor -ting cloud computing by
in-browser key translation. J Comput Secur 21(6):847–880. https://doi.org/
10.3233/JCS-130489

Atallah MJ, Frikken KB, Blanton M (2005) Dynamic and efficient key
management for access hierarchies. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security, CCS 2005,
Alexandria, VA, USA, November 7-11, 2005. pp 190–202. https://doi.org/10.
1145/1102120.1102147

Baker KA, Fishburn PC, Roberts FS (1972) Partial orders of dimension 2.
Networks 2(1):11–28. https://doi.org/10.1002/net.3230020103

Blundo C, Cimato S, Vimercati SDC, Santis AD, Foresti S, Paraboschi S, Samarati
P (2010) Managing key hierarchies for access control enforcement:
Heuristic approaches. Comput Secur 29(5):533–547. https://doi.org/10.
1016/j.cose.2009.12.006

di Vimercati SDC, Foresti S, Samarati P (2008) Recent advances in access
control. In: Handbook of Database Security - Applications and Trends.
pp 1–26. https://doi.org/10.1007/978-0-387-48533-1_1

di Vimercati SDC, Foresti S, Jajodia S, Paraboschi S, Samarati P (2007) Over-
encryption: Management of access control evolution on outsourced data.
In: Proceedings of the 33rd International Conference on Very Large Data
Bases, University of Vienna, Austria, September 23-27, 2007. pp 123–134.
http://www.vldb.org/conf/2007/papers/research/p123-decapitani.pdf

Hassen HR, Lounes E (2017) A key management scheme evaluation using
markov processes. Int J Inf Sec 16(3):271–280

Hwang FK, Richards DS (1992) Steiner tree problems. Networks 22(1):55–89.
https://doi.org/10.1002/net.3230220105

Kumar N, Mathuria A, Das ML (2015) Comparing the efficiency of key
management hierarchies for access control in cloud. In: Security in
Computing and Communications - Third International Symposium, SSCC
2015, Kochi, India, August 10-13, 2015. Proceedings. Springer. pp 36–44.
https://doi.org/10.1007/978-3-319-22915-7_4

Raykova M, Zhao H, Bellovin SM (2012) Privacy enhanced access control for
outsourced data sharing. In: Financial Cryptography and Data Security -
16th International Conference, FC 2012, Kralendijk, Bonaire, Februray
27-March 2, 2012, Revised Selected Papers. Springer. pp 223–238. https://
doi.org/10.1007/978-3-642-32946-3_17

Rothvoß T (2011) Directed steiner tree and the lasserre hierarchy. CoRR
abs/1111.5473. 1111.5473

Sandhu RS, Samarati P (1994) Access control: Principle and practice. Comm
Mag 32(9):40–48. https://doi.org/10.1109/35.312842

Suchý O (2016) On directed steiner trees with multiple roots. In:
Graph-Theoretic Concepts in Computer Science - 42nd International

Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected
Papers. pp 257–268. https://doi.org/10.1007/978-3-662-53536-3_22

Vimercati SDC, Foresti S, Jajodia S, Livraga G, Paraboschi S, Samarati P (2013)
Enforcing dynamic write privileges in data outsourcing. Comput Secur
39:47–63

Wang W, Li Z, Owens R, Bhargava BK (2009) Secure and efficient access to
outsourced data. In: Proceedings of the First ACM Cloud Computing
Security Workshop, CCSW 2009, Chicago, IL, USA, November 13, 2009.
pp 55–66. https://doi.org/10.1145/1655008.1655016

https://doi.org/10.1002/net.3230070104
https://doi.org/10.1002/net.3230070104
https://doi.org/10.3233/JCS-130489
https://doi.org/10.3233/JCS-130489
https://doi.org/10.1145/1102120.1102147
https://doi.org/10.1145/1102120.1102147
https://doi.org/10.1002/net.3230020103
https://doi.org/10.1016/j.cose.2009.12.006
https://doi.org/10.1016/j.cose.2009.12.006
https://doi.org/10.1007/978-0-387-48533-1_1
http://www.vldb.org/conf/2007/papers/research/p123-decapitani.pdf
https://doi.org/10.1002/net.3230220105
https://doi.org/10.1007/978-3-319-22915-7_4
https://doi.org/10.1007/978-3-642-32946-3_17
https://doi.org/10.1007/978-3-642-32946-3_17
http://arxiv.org/abs/1111.5473
https://doi.org/10.1109/35.312842
https://doi.org/10.1007/978-3-662-53536-3_22
https://doi.org/10.1145/1655008.1655016

	Abstract
	Keywords

	Introduction
	Motivation

	Preliminaries
	Key management hierarchy: definitions and properties
	Resource-based hierarchies
	User-based hierarchies
	Comparison of static hierarchies
	Cost of user hierarchy
	Cost of minimal vertex resource hierarchy

	Dynamic access control
	Algorithms for user hierarchy
	Grant/revoke read access
	User revocation

	Algorithms for resource hierarchy
	Grant read access
	Revoke read access
	User revocation

	Comparison of dynamic hierarchies

	Experimental evaluation
	Setup
	Minimal vertex RH: Grant and revoke read operations cost
	Performance of data owner machine

	Minimal vertex UH: grant and revoke read operations cost
	Minimal vertex UH and RH: comparing grant read operation cost
	Minimal vertex UH and RH: Comparing user revoke operation cost

	Conclusions
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

