Wang et al. Cybersecurity (2019) 2:12
https://doi.org/10.1186/542400-019-0028-9

Cybersecurity

RESEARCH Open Access

From proof-of-concept to exploitable

™

Check for

updates

(One step towards automatic exploitability assessment)

Yan Wang'#>6, Wei Wu'3#, Chao Zhang?, Xinyu Xing?, Xiaorui Gong'*" and Wei Zou'#

Abstract

Exploitability assessment of vulnerabilities is important for both defenders and attackers. The ultimate way to assess
the exploitability is crafting a working exploit. However, it usually takes tremendous hours and significant manual
efforts. To address this issue, automated technigues can be adopted. Existing solutions usually explore in depth the
crashing paths, i.e., paths taken by proof-of-concept (PoC) inputs triggering vulnerabilities, and assess exploitability by
finding exploitable states along the paths. However, exploitable states do not always exist in crashing paths. Moreover,
existing solutions heavily rely on symbolic execution and are not scalable in path exploration and exploit generation.

set.

In this paper, we propose a novel solution to generate exploit for userspace programs or facilitate the process of
crafting a kernel UAF exploit. Technically, we utilize oriented fuzzing to explore diverging paths from vulnerability
point. For userspace programs, we adopt a control-flow stitching solution to stitch crashing paths and diverging paths
together to generate exploit. For kernel UAF, we leverage a lightweight symbolic execution to identify, analyze and
evaluate the system calls valuable and useful for exploiting vulnerabilities.

We have developed a prototype system and evaluated it on a set of 19 CTF (capture the flag) programs and 15
realworld Linux kernel UAF vulnerabilities. Experiment results showed it could generate exploit for most of the
userspace test set, and it could also facilitate security mitigation bypassing and exploitability evaluation for kernel test

Keywords: Exploit, Vulnerability, Taint analysis, Fuzzing, Symbolic execution

Introduction

Due to the success of automated vulnerability discovery
solutions (e.g., fuzzing), more and more vulnerabilities are
found in real world applications, together with proof-of-
concept (PoC) inputs. As a result, more and more human
resources are spent on assessing vulnerabilities, e.g., iden-
tifying root causes and fixing them. It thus calls for solu-
tions to automatically assess the severity and priority of
vulnerabilities.

Vulnerability assessment, especially exploitability assess-
ment, is important for both defenders and attackers.
Attackers could isolate exploitable vulnerabilities and
write exploits to launch attacks. On the other hand,
defenders could prioritize exploitable vulnerabilities to

*Correspondence: gongxiaorui@iie.ac.cn

'School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China

4Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China

Full list of author information is available at the end of the article

@ Springer Open

fix first, and allocate resources accordingly. Moreover,
defenders could learn from the exploits to generate IDS
(Intrusion Detection System) signatures, to block future
attacks.

A straightforward way to assess a vulnerability is analyzing
the program state at the crashing point, i.e., the instruction
leading to program crashes or security violations, which
could be caught by a sanitizer (e.g., AddressSanitizer
(Serebryany et al. 2012)). For example, Microsoft’s
lexploitable tool (lexploitable Crash Analyzer 2018)
inspects all instructions in the crashing point’s basic
block, and searches for known exploitable patterns,
e.g., control transfer instructions with tainted targets.
HCSIFTER (He et al. 2017) takes an extra step to recover
the data corrupted by heap overflow, enabling the pro-
gram to execute more code after the crashing point, and
thus provides more reliable assessments. However, these
solutions rely on heuristics to determine the exploitabil-
ity of vulnerabilities, and thus are inaccurate sometimes.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-019-0028-9&domain=pdf
mailto: gongxiaorui@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Wang et al. Cybersecurity (2019) 2:12

Moreover, they could not provide exploit inputs to prove
the exploitability.

The ultimate way to assess the exploitability of a vul-
nerability is generating a working exploit. But crafting an
exploit is typically regarded as a time-consuming manual
process requiring security knowledge.

Several prototype approaches to automatically generat-
ing exploits have been proposed. Sean Heelan proposed
a prototype (Heelan 2009) in his thesis, using dynamic
analysis and symbolic execution to generate exploits for
classic buffer overflow vulnerabilities. AEG (Avgerinos et al.
2011) and Mayhem (Cha et al. 2012) provide end-to-
end systems to discover vulnerabilities and automatically
generate exploits when possible, for source code and
binary respectively. Q (Schwartz et al. 2011) and CRAX
(Huang et al. 2012) could generate exploits for binaries
given PoC inputs. However, these solutions are insuffi-
cient and could only solve a small number of problems.
For example, machines developed in CGC could only
solve in total 26 out of 82 challenge programs in the
Final Event. Most solutions could not exploit heap-based
vulnerabilities.

For OS kernel which has higher complexity and scalabil-
ity, it is not suitable for fully-automated exploit generation.
This is mainly due to the fact that state-of-the-art pro-
gram analysis techniques have many limitations. However,
we can still use semi-automated techniques to facilitate
exploitability evaluation by easing the process of exploit
crafting.

There are several challenges need to be addressed
for both fully-automated and semi-automated exploit
generation:

Challenge 1: Exploit derivability issue As pointed in
(Dullien and Flake 2011; Vanegue 2013), once memory
corruption vulnerabilities are triggered, the victim pro-
gram’s state machine turns into a weird (state) machine.
Exploitation is actually a process of programming the
weird machine to perform unintended behavior. It is
extremely important to set up the initial state of this weird
machine in order to exploit it.

However, PoC inputs (e.g., provided by fuzzers) could
corrupt some data and lead weird machines to non-
exploitable initial states. For example, the program may
exit soon after the crashing point due to some sanity
checks. So, AEG solutions have to search for exploitable
states not only in crashing paths taken by PoC inputs,
but also in alternative diverging paths. In OS kernel, the
diverging paths cause different kernel panic. Generating
an exploit for a kernel UAF vulnerability also needs to vary
the context of a kernel panic and explore exploitability in
them.

This is known as exploit derivability, one of the core
challenges of exploitation (Vanegue 2013). Few AEG solu-
tions have paid attentions to this issue.

Page 2 of 25

Challenge 2: Symbolic execution bottleneck Existing
solutions heavily rely on symbolic execution to explore
program paths (e.g., for vulnerability discovery), or per-
form reasoning (e.g., for test case and exploit generation).
AEG (Avgerinos et al. 2011) and Mayhem (Cha et al. 2012)
utilize symbolic execution to explore paths reachable from
the vulnerability point and search for exploitable states,
able to mitigate the aforementioned exploit derivability
issue. However, symbolic execution has scalability issues
and performs poorly in exploit generation.

First, it faces the path explosion issue when explor-
ing paths, and consumes too many resources even when
analyzing only one path. Second, it gets blind to cer-
tain exploitable states after concretizing some values. For
example, it has to concretize symbolic arguments of mem-
ory allocations and symbolic indexes of memory access
operations in a path, in order to model the memory states
and enable exploring following sub-paths. But the con-
cretized values could lead to non-exploitable memory
states.

Challenge 3: Exploiting Vulnerability in OS kernel Kernel
vulnerabilities have higher complexity than other vulnera-
bilities, and there is no solution can facilitate exploitability
evaluation for them. Usually, vulnerabilities in OS kernel
could lead to privilege escalation (Azad 2016) and critical
data leakage (jndok 2016).

To solve the exploit derivability issue, we must search
exploitable states in diverging paths not only crashing
paths. However, symbolic execution which is heavily used
in existing solutions has several severe challenges, and
is not suitable for path exploration or exploitable state
searching, especially for heap-based vulnerability or UAF
in OS kernel So instead of symbolic execution, we use
fuzzing to explore diverging paths.

First, we use dynamic analysis to analyze the vulner-
abilities and collect some runtime information in the
crashing path. In addition, we inspect corrupted mem-
ory objects (denoted as exceptional objects), and objects
that can be used to locate the exceptional objects. Then
we use oriented fuzzing to search alternative diverging
paths for exploitable states based on the information
collected before. Finally, we try to synthesize new EXP
inputs to trigger both the exploitable states in diverg-
ing paths and vulnerabilities in crashing paths. In certain
cases, we can directly generate working exploits. But it
is not guaranteed. The complexity of OS kernel is far
beyond the ability of current constraint solver. For OS
kernel, it is not for the purpose of fully automating
exploit generation. Rather, we leverage a lightweight sym-
bolic execution to explore exploitability under different
contexts.

Results We have build a framework Revery, able
to generate working control-flow hijacking exploits for
userspace programs. We also build a framework FUZE,

Wang et al. Cybersecurity (2019) 2:12

able to evaluate the exploitability of kernel Use-After-Free
vulnerabilities.

We evaluated Revery it on 19 CTF (Capture The
Flag) programs. It demonstrated that Revery is effec-
tive in triggering exploitable states, and could generate
working exploits for a big portion of them. More specif-
ically, Revery could generate exploits for 9 (47%) out of
19 programs, while existing open source AEG solutions
could not solve any of them. Furthermore, it could trigger
exploitable states for another 5 (26%) of them.

We implement FUZE on a 64-bit Linux system by
extending a binary analysis framework and a kernel fuzzer.
Using 15 real-world kernel UAF vulnerabilities on Linux
systems, we then demonstrate FUZE could not only esca-
late kernel UAF exploitability but also diversify work-
ing exploits from various kernel panics. In addition, we
demonstrate FUZE could even help security analysts to
craft exploits with the ability to bypass broadly-deployed
security mitigation such as SMEP and SMAP.

In summary, we have made the following contributions:

e We proposed an automated solution Revery able to
transfer PoC inputs into EXP inputs, which could
trigger vulnerabilities and enter exploitable states. It
could also directly generate working exploits in
certain cases.

e We designed FUZE, an exploitation framework that
utilizes kernel fuzzing along with symbolic execution
to facilitate kernel UAF exploitation as well as
facilitating security mitigation circumvention.

® We proposed a novel layout-oriented fuzzing
solution, to search for exploitable states in diverging
paths, without symbolic execution.

¢ We have implemented a prototype of Revery and
FUZE, and demonstrated its effectiveness in CTF
programs and real world UAF vulnerabilities in Linux
kernels..

Page 3 of 25

Motivation example

In this section, we will illustrate the exploit derivability
issue facing by automated exploit generation solutions,
and present the overview of our solution Revery, with a
running example demonstrated in Fig. 1.

The vulnerability

As shown in Fig. 1, there is a heap overflow vulnerabil-
ity at line 10. The two objects obj1 and obj2 have the
same size, and are likely to be allocated next to each other
in the heap. If the vulnerability condition vul at line 9 is
met, lengthy inputs could cause an overflow in the buffer
objl->data. As a result, objects (e.g., obj2) following
this buffer will be corrupted.

Therefore, the statement at line 12 and 14 will read from
and write to corrupted memory address respectively. If
the corrupted pointer obj2->ptr points to invalid (e.g.,
nonexistent) memory, these two statements will cause
crashes. If it points to valid memory, the statement at
line 12 will execute normally (but result in wrong return
value), while the statement at line 14 will further corrupt
the target memory and cause Arbitrary Address Write
(AAW).

From the perspective of exploitation, the statement at
line 12 is non-exploitable, unless the returned value res
affects control-flow in caller functions. But the statement
at line 14 triggers an exploitable state. It causes an AAW
primitive able to overwrite arbitrary targets, including the
global function pointer handler which is invoked at line
15, and thus could cause control-flow hijacking at line 15.

Exploit derivability

As discussed in Vanegue (2013), exploit derivability is
one of the core challenges of exploitation. More specif-
ically, given a PoC input for a vulnerability, the pro-
gram could be turned into a weird machine, but with a
non-exploitable initial state. To successfully exploit the

1. struct Typel { char[8] data; }i

2. struct Type2 { int status; int* ptr; void init(){..}; };

3. int (*handler)(const int*) = ..;

4. struct{Typel* objl; Type* obj2;} gvar = {};

5. int foo(){ diverging input

6. gvar.objl = new Typel;

7. gvar.obj2 = new Type2;

8. gvar.obj2->init(); // resulting different statuses

9. if(vul)

10. scanf (“%s”, &gvar.objl->data); // vulnerability point ﬂﬂcmngpdnt<i>

11. if (gvar.obj2->status) // stitching point | EXP

12. res = *gvar.obj2->ptr; // crashing point ;input C:) crashing point
13. else // stitching point . . N /

14. *gvar.obj2->ptr = read_int(); // exploitable point e //

15. handler(gvar.obj2->ptr); // hijacking point

16. return res; hijacking point

17. }

Fig. 1 An example heap overflow. The vulnerability at line 10 could overwrite the following object, i.e., 0bj2. PoC inputs would crash at line 12 and
enter a non-exploitable state. Successful exploits will trigger the exploitable state at line 14

Wang et al. Cybersecurity (2019) 2:12

vulnerability, we have to search for exploitable states in
alternative diverging paths, and lead the weird machine to
exploitable.

As shown in the running example, assuming a PoC input
proving the vulnerability at line 10 is provided (e.g., by
fuzzers), it could overwrite the field obj2->status to
non-zero, and overwrite obj2->ptr to invalid memory
address, and cause a crash at line 12. So this PoC leads the
weird machine to a non-exploitable initial state. A success-
ful exploitation has to trigger the vulnerability (at line 10)
and enter an exploitable state (e.g., at line 14).

For simplicity, we introduce several terminologies:

e Crashing path: the path taken by the PoC input, e.g.,
the path 9->10->11->12 in the example.

e Crashing point: the instruction where the program
crashes or a security violation is caught by sanitizers,
e.g. line 12.

¢ Vulnerability point: the instruction where the
vulnerability (i.e., security violation) happens, e.g.,
line 10 in the example. A crashing path may have
multiple security violations. The first violation point
is denoted as the vulnerability point.

¢ Exploitable point: the instruction which could lead
to a successful exploit, e.g., line 14 in the example.
Exploitable points lead to exploitable states where the
weird machine could work properly. In practice,
arbitrary address read/write/execute instructions
(AAR/AAW/AAX) are classical exploitable points.

e Diverging path: the path where exploitable states
could be found, e.g., 9->11->13->14 in the
example.

¢ Hijacking point: the instruction where the
control-flow could be hijacked, e.g., line 15 in the
example. They are special exploitable points. In the
running example, it is a second-order exploitable
point, caused by the first exploitable point in line 14.

¢ Exploitation path: the path taken by a successful
exploit, e.g., 9->10->11->13->14->15 in the

Page 4 of 25

e Stitching points: special instructions in the
diverging path and crashing path, which could be
stitched together to generate the exploitation path,
e.g., line 11 and line 13 in the example. In practice,
there may be numerous sub-paths between two
stitching points to explore.

It is worth noting that, the crashing point (line 12) in
the running example could reach to the hijacking point
(line 15), but it is not exploitable. As aforementioned, this
hijacking point is a second-order exploitable point, made
by the exploitable point in line 14. Without the help of line
14, line 15 could not be exploited.

So, to conduct successful exploitations, we have to think
outside the box made by the original PoC, and search for
exploitable states in diverging paths. This is the intuition
of our solution and the origin of the name Revery. To
the best of our knowledge, existing AEG solutions paid
few attentions to this exploit derivability issue.

Our solution: Revery

We proposed a novel solution Revery, to solve the
exploit derivability issue and assess the exploitability of
heap-based vulnerabilities. At the high level, Revery ana-
lyzes the vulnerability in detail, utilizes the vulnerability
information to guide a fuzzer rather than symbolic execu-
tion to explore diverging paths and search for exploitable
states, then synthesizes exploitation paths by stitching the
crashing path and diverging path, and finally generates
inputs to trigger both the vulnerability and exploitable
states. As shown in Fig. 2, it has three major components.

Vulnerability analysis

Revery first analyzes the vulnerability in detail, simi-
lar to existing AEG solutions. It uses dynamic analysis to
test target application with the provided PoC input. More
specifically, it tracks the states of each pointer and mem-
ory object, and catches security violations along the crash-
ing path. It could thus identify the vulnerability point, e.g.,

example. line 10 in Fig. 1.
Crashing
Path
———
Prog Vulnerability Analysis oot Diverging Path Exploration Exploit Synthesis
¥ Diverging - A
contributor i i
Vulnerability Layout slice > Layout-oriented Fil Exploitable R Sld_er;]t!ly c Sll(lc:;l Generate
Identification || Analysis — Fuzzing ter | | State Search iehing EIEAAE Exploit
POC Points Paths
layout- 4.[
contributor

path with the crashing path to synthesize exploits

Fig. 2 Overview of Revery. It first analyzes the vulnerability in the crashing path and gets the layout-contributor digraph to characterize the
vulnerability, then guides a fuzzer with this digraph to explore diverging paths and search for exploitable states, and finally stitches the diverging

Wang et al. Cybersecurity (2019) 2:12

More importantly, it identifies exceptional objects
corrupted by the vulnerability, e.g., obj2 in the example.
Revery also identifies the exceptional object’s indexing
objects, which could be used to locate the excep-
tional object, e.g., the global variable gvar in the
example. Moreover, it retrieves layout-contributor
instructions from the execution trace, which create the
exceptional and indexing objects and set up their point-to
relationships, e.g., line 7 in the example. These objects
and contributor instructions are used to construct a
layout-contributor digraph.

Diverging path exploration

Revery searches for exploitable states in diverging paths,
to solve the exploit derivability issue. Rather than using
symbolic execution, it employs fuzzing.

First, it employs a novel layout-oriented fuzzing solution
to explore diverging paths. To facilitate exploit genera-
tion, only diverging paths with memory layouts similar
as the PoC input’s will be explored. So, it drives a fuzzer
to explore paths close to the crashing path, in a similar
way as directed fuzzing solutions (Bohme et al. 2017).
But instead of using the full crashing path, it uses
the aforementioned layout-contributor instructions as
the fuzzer’s guidance. The fuzzer could thus produce
diverging inputs to exercise the diverging paths (e.g.,
9->11->13->14 in the figure) with proper memory
layouts.

Then, Revery searches for exploitable states in the
diverging paths. Several heuristics are used to identify
exploitable states. For example, if a memory store oper-
ation’s destination is controlled by the corrupted object,
e.g., line 14, it is an exploitable state.

Furthermore, Revery also searches for hijacking points
in these diverging paths. Hijacking points sometimes are
not obvious. So Revery uses some heuristics to infer
hijacking points. For example, line 15 in the figure is a
second-order hijacking point, which could be enabled if
line 14 overwrites the global function pointer.

PoC stitching

Once an exploitable state (together with a diverging input)
in a diverging path is found, Revery will try to syn-
thesize a new input to trigger both the vulnerability and
the exploitable state. In general, it first finds the stitch-
ing points in the crashing path (e.g., line 11) and in the
diverging path (e.g., line 13), with some specific data flow
analysis.

Then it utilizes a lightweight symbolic execution to
explore potential sub-paths between these two stitch-
ing points (e.g., 11->13), and stitch the crashing path
with the diverging path to synthesize an exploitation
path (e.g,9->10->11->13->14->15), and finally gen-
erate inputs to exercise the exploitation paths. Several

Page 5 of 25

optimizations are deployed to make the symbolic execu-
tion lightweight.

Therefore, Revery could produce EXP inputs able to
trigger both vulnerabilities and exploitable states. It could
help experts to quickly generate working exploits. In cer-
tain cases, Revery is able to directly generate exploits.
For example, Revery could generate an exploit input to
hijack the control flow, by utilizing the exploitable state at
line 14 to overwrite the global function pointer handler.

Our solution: FUZE

We also proposed a novel solution FUZE, to solve the
exploit derivability issue in OS kernel and evaluate the
exploitability of kernel Use-After-Free vulnerabilities. We
design FUZE to first run a PoC program and perform anal-
ysis using off-the-shelf address sanitizer. Along with the
facilitation of a dynamic tracing approach, FUZE could
identify the critical information pertaining to the vul-
nerable objects as well as the time window needed for
consecutive exploitation.

Using the information identified, we then design FUZE
to automatically vary the contexts of that PoC for the pur-
pose of easing the process of synthesizing new PoC pro-
grams. We alter the context of a PoC program by inserting
a new system call that dereferences the vulnerable object
in between the occurrence of the dangling pointer and
its dereference. Technically speaking, we therefore design
and develop an under-context fuzzing approach, which
automatically explores the kernel code space in the time
window identified and thus pinpoints the system calls
(and corresponding arguments) that can drive the kernel
panic in a new context.

Similar to the context represented by that original PoC,
a new context (.i.e new kernel panic) does not necessar-
ily assist an analyst to craft a working exploit. Moreover,
a security analyst generally has difficulty in determining,
following which contexts he could craft a working exploit.
Therefore, we further design FUZE to automatically eval-
uate each of the new contexts. Intuition suggests that we
could summarize a set of exploitable machine states based
on the exploitation approaches commonly adopted. For
each context, we could then examine whether the corre-
sponding terminated kernel state matches one of these
exploitable machine states.

FUZE sets each byte of the freed object as a sym-
bolic value and then perform symbolic execution under
each context. This allows FUZE to explore the exploitable
machine states in a more complete fashion and thus thor-
oughly pinpoint the set of contexts useful for exploita-
tion.It should be noted that, symbolic execution under
the context does not mean that symbolically execut-
ing kernel code at the site of kernel panic. Rather, it
means that we perform symbolic execution right after
the site of dangling pointer dereference. As we will

Wang et al. Cybersecurity (2019) 2:12

demonstrate and discuss in the following section, such
a design could prevent incurring path explosion without
reaching to any sites useful for exploitation. In addition,
it enables FUZE to use off-the-shelf constraint solvers
to accurately compute the content that needs to spray
in between the occurrence of a dangling pointer and its
dereference.

Vulnerability analysis

To exploit a vulnerability, it is necessary to locate
the vulnerability point and the program state at that
point. Furthermore, to solve the exploit derivability issue,
exploitable states around the vulnerability state should be
searched for. Therefore, Revery performs vulnerability
identification to locate the vulnerability, and performs
layout analysis to characterize the vulnerability state.
And FUZE extracts information needed for consecutive
exploitation by using an off-the-shelf kernel address sani-
tizer KASAN (KASAN 2017) along with a dynamic tracing
mechanism.

Vulnerability identification

Given a PoC input, Revery first needs to identify its cor-
responding vulnerability point. Dozens of solutions have
been proposed to detect memory errors, e.g., AddressSan-
itizer (Serebryany et al. 2012) and Valgrind (2018). How-
ever, AddressSanitizer and Valgrind will slightly change
the memory layout of target applications, and thus are not
suitable for exploit generation.

Revery utilizes a different technique, named memory
tagging (MT, also known as memory coloring, memory
tainting, lock and key) to locate vulnerabilities. A recent
work (Serebryany et al. 2018) has implemented memory
tagging in hardware. However, it encodes tags in memory

Page 6 of 25

pointers and thus affects the program states. Moreover, it
only detects spatial memory violations, but not temporal
violations.

Revery uses a shadow memory to non-intrusively
track the tags of pointers and heap objects. It also tracks
the status of heap objects, enabling detection of not only
spatial vulnerabilities (e.g., heap overflow) but also tem-
poral vulnerabilities (e.g., use-after-free).

In principle, each pointer is expected to access a specific
memory object of valid status. If it is used at runtime to
access an object of different tags or invalid status, then a
security violation is caught. Figure 3 shows an example of
vulnerability identification.

Memory tags

Each heap object and pointer is attached with a memory
tag, indicating its lineage. This tag will be uniquely gen-
erated when an object is created, and propagate to the
object’s pointers and other related pointers as a taint label
(taint analysis). Moreover, each heap object is associated
with a status, i.e., uninitialized, busy, or free,
standing for three status in its life-cycle, i.e., allocated but
not initialized, initialized and being used, or freed. It is
worth noting that, a freed memory region could be allo-
cated to new objects, and its memory status and tag will
change accordingly.

In some corner cases, developers could use one object’s
pointer to get another object’s pointer, with an arithmetic
operation. It will wrongly propagate the first object’s tag
to the second pointer. Fortunately, this is rare for heap
objects, since the offsets between heap objects are not
fixed. The only exception is heap management functions,
which could inspect adjacent objects in this way, no matter
what semantics these objects would have. So Revery will

(a)request

malloc

store/load

attached to each memory object

(b) return
. Gag > pointer
(c) pointer transfer J
y
(d) access|

@D %

Fig. 3 lllustration of heap-based vulnerability identification. Each heap object and pointer is associated with a memory tag. An extra status is

Shadow

Memory Memory

status
tag A | s
status
g B | e
A\ J . J

Wang et al. Cybersecurity (2019) 2:12

disable tag propagation and validation for these special
functions. It is worth noting that, this optimization is
only for cross-object pointer deriving. Revery supports
in-object pointer driving as normal.

Security rules

For each heap memory access instruction (i.e., load and
store), we could get the pointer’s tag tag_ptr and target
memory region’s tag tag obj and status status_obj.
The memory access must not violate the following
security rules:

e V1:access intended objects: Instructions should
only access intended objects, i.e., tag _obj and
tag_ptr must match.

e V2:read busy objects: Load instructions should not
access freed or uninitialized memory, i.e.,
status_obj must be busy.

e V3: write alive objects: Store instruction should not
access freed memory, i.e, status_obj must be
busyoruninitialized.

Any violation of these rules will cause a vulnerability.
For example, a buffer overflow memory access will vio-
late the rule V1. An uninitialized variable vulnerability will
violate the rule V2. A use-after-free (UAF) vulnerability
could violate either rule V1, V2 or V3. If the freed object’s
memory has not been taken by other objects, then read
access to it will violate V2, and write access to it will vio-
late V3. If the freed object’s memory is taken, then its tag

Page 7 of 25

will change, and any access to it via the original dangling
pointer will violate the rule V1.

Layout analysis
Revery further analyzes object layouts to characterize
the vulnerability state and retrieve instructions contribut-
ing to the state.

Vulnerability-related object layout

Each heap-based vulnerability (including heap overflow
and UAF) is related to one exceptional object, whose con-
tent is (or will be) corrupted by the vulnerability. Further
operations on these objects could lead the weird machine
to exploitable states.

Assume the vulnerability point uses a pointer with tag
tag_ptr to access a target object with tag tag obj.
If it is a write access, the object with tag tag obj is
the exceptional object, which will be corrupted by this
write access. If it is a read access and this vulnerability is
a UAF, the object with tag tag ptr is the exceptional
object, which will be corrupted by new object allocations
that take the same memory. Revery currently does not
support other types of read access violation well.

Further, Revery also tracks all indexing objects that
can be used to locate exceptional objects. These excep-
tional objects and indexing objects are connected with
the point-to relationship. As a result, Revery could get
a digraph of objects, denoted as layout digraph. This lay-
out digraph characterizes the vulnerability state to some
extent. Figure 4b shows an example layout digraph.

(@) (b)

4 N\
5: call malloc layout-contributor digraph:
6: mov [ptr],eax
ins 6
11: mov ebx,[ptr]
12: mov [ebx+8],eax ins 5
ins 12 ins 25
23: mov [eax],0x0
24: mov ebx,[ptr] ins 10
25: mov [ebx+0x10],eax tOxOS otr
P l .
35: call malloc ' ins 38
36: mov ebx,[ptr] : .
37: mov ecx,[ebx+0x10] L0x00 2)4 ins 35
38: mov [ecx+8],eax))
layout-contributor slice:
N J tag: 135

Fig. 4 An example layout-contributor digraph. Assume the object created at line 35 is an exceptional object. It could be indexed by objects created
atline 22 and 5 repsectively, and eventually pointed by a global pointer ptr. a sample execution trace, b layout digraph, ¢ layout-contributor

5,6, 10, 12, 22, 25, 35, 38

()

Wang et al. Cybersecurity (2019) 2:12

Vulnerability-related code

As aforementioned, the weird machine has to enter spe-
cific initial states, including the vulnerability state. So,
it is necessary to prepare a similar object layout as the
vulnerability’s, both in diverging paths and exploitation
paths. Thus, instructions contributing to the layouts are
important.

We can see that, the following two types of operations
could contribute the object layout: (1) memory allocations
that creates new objects, and (2) store operations that
assign an object’s field with a pointer to another object. As
aresult, Revery could retrieve all such contributor oper-
ations, which operate on objects in the layout digraph, and
generate a layout-contributor digraph.

More specifically, each node in this digraph is an excep-
tional object or an indexing object, with an attribute of
the object’s creator instruction and memory tag. Each
edge in the digraph represents a point-to relationship
between two objects, with an attribute of the pointer
assignment instruction. Given a target exceptional object,
we could use backward slicing to construct this digraph.
Figure 4c shows an example layout-contributor digraph.
This digraph has a simpler form, called layout-contributor
slice, which is a sequence of contributor instructions in
execution order.

Critical information extraction in OS kernel

Here, we describe the information extracted through ker-
nel address sanitizer as well as the design of the dynamic
tracing mechanism, followed by how we leverage them
both to identify other critical information for exploitation.

Information from Kernel Address Sanitizer. KASAN
is a kernel address sanitizer, which provides us with the
ability to obtain information pertaining to the vulnerabil-
ity. To be specific, these include (1) the base address and
size of a vulnerable object, (2) the program statement per-
taining to the free site left behind a dangling pointer and
(3) the program statement corresponding to the site of
dangling pointer dereference.

Design of Dynamic Tracing. In addition to the infor-
mation extracted through KASAN, consecutive exploita-
tion needs information pertaining to the execution of
system calls that trigger vulnerabilities. As a result, we
design a dynamic tracing mechanism to facilitate the abil-
ity of extracting such information. To be specific, we first
trace the addresses of the memory allocated and freed
in Linux kernel as well as the process identifiers (PID)
attached to these memory management operations. In this
way, we could enable memory management tracing and
associate memory management operations to our target
PoC program. Second, we instrument the target PoC pro-
gram with the Linux kernel internal tracer (Et race). This
could allow us to obtain the information pertaining to the
system calls invoked by the PoC program.

Page 8 of 25

Other Critical Information Extraction. With the facil-
itation of dynamic tracing along with KASAN log, we can
extract other critical information needed for exploitation.
For example, Using the information obtained through
KASAN, we can easily identify the address of the vul-
nerable object and tie it to the free operation indicated
by kfree(). With PID associated with each memory man-
agement operation, we can then pinpoint the life cycle
of system calls on the trace and thus identify close(), the
system call tied to the free operation.

Since system call socket() manifests as an incomplete
trace, we can easily pinpoint that it serves as the system
call that dereferences the dangling pointer. Associating
this information with debugging information and source
code, we can easily understand how the dangling pointer
was dereferenced and further track down which variable
this dangling pointer belongs to.

Diverging path exploration in Revery

To solve the exploit derivability issue, it is necessary to
explore diverging paths and search exploitable states in
them. In this section, we will introduce how Revery
explores diverging paths.

Alternative choices

Existing automated exploit generation solutions, e.g., AEG
(Avgerinos et al. 2011) and Mayhem (Cha et al. 2012),
heavily rely on symbolic execution to explore the crashing
path or reachable paths from the vulnerability point, in order
to search exploitable states along the path exploration.
However, symbolic execution has several severe chal-
lenges, and is not suitable for path exploration or
exploitable state searching.

First, it is not scalable in path exploring. It suffers from
the path explosion issue caused by branches and loops
in programs. Even when analyzing one path, it costs too
many resources. Moreover, the symbolic constraints are
often too complicated to solve.

Second, symbolic execution may get blind to certain
exploitable states. It has to concretize some symbolic val-
ues along the exploration, by adding extra constraints of
concretized value assignments. It is impossible to try all
candidate concretized values, thus misses certain values
and causes blindness to certain exploitable states.

For example, it will concretize the symbolic arguments
of memory allocation in a path, in order to model the
memory states and explore following sub-paths. It is
likely that only a small number of allocations could cause
exploitable states. So the concretized memory allocation
may lead to a non-exploitable state.

Moreover, it will also concretize symbolic indexes in
memory access operations, because otherwise the opera-
tions’ results are unknown. Similarly, it could also lead to
non-exploitable states.

Wang et al. Cybersecurity (2019) 2:12

Layout-oriented fuzzing

Revery utilizes fuzzing solely to explore diverging paths
and search for exploitable states. As shown in vulnera-
bility discovery, fuzzing is more effective than symbolic
execution in exploring paths and program states. So, it is
likely that fuzzing could also help find diverging paths and
exploitable states faster.

Revery employs a novel layout-oriented fuzzing solu-
tion guided by the layout-contributor digraph, to explore
diverging paths that build similar memory layouts as the
vulnerability.

Design

Revery extends the popular coverage-guided fuzzer AFL
to perform fuzzing. Instead of relying solely on code
coverage to guide path exploration, Revery uses layout-
contributor digraph as a guidance to tune the direction of
exploration and mutation.

Similar to directed fuzzing (Bohme et al. 2017), Revery
drives the fuzzer to explore paths close to the crashing
path. It only aims at matching instructions in the layout-
contributor slice, and ignores other instructions in the
crashing path. The design choices are made from the
following three intuitions.

For simplicity, we introduce several terminologies.
Given an input I, it could hit several layout-contributor
instructions (maybe not in the same order as the guid-
ing slice). The full list of such instructions is denoted as

Page 9 of 25

L,, and its longest common subsequence (LCS) with the
target guiding slice is denoted as P,.

e Intuition 1: An input that hits all layout-contributor
instructions, in the same order as the guiding slice,
could construct a similar memory layout as the
vulnerability. Layout-contributor instructions are
responsible for creating the exceptional object of a
vulnerability and its indexing objects, as well as
setting the point-to relationships among them. So, an
input hitting the full layout-contributor slice could
probably construct similar memory layouts.

e Intuition 2: An input that hits a longer subsequence
of the guiding slice is more likely to derive inputs
hitting the full slice.

In other words, if input ,'s LCS P, is longer than I;’s
LCS Py, then the input I, is better than [j,. As shown
in Fig. 5, assuming the target slice is in path
a=>c=>e=>f, then an input exercising the path
a=>c=>d is better than other inputs exercising a=>b.
Further mutations on this input could derive inputs
hitting the full guiding slice faster.

¢ Intuition 3: Inputs hitting fewer layout-contributor
instructions are more likely to introduce fewer
troubles for further exploit generation.

In other words, for two inputs I, and Iy, if their LCS
P, and Pj, have a same length, but the layout-
contributor instruction list L, is longer than Ly, then

a

Fig. 5 An example layout-contributor slice. Compared to the path a=>b, the path a=>c=>d has a longer prefix with the target slice in the path

a=>c=>e=>f

Wang et al. Cybersecurity (2019) 2:12

the input Ij, is better than I,. In this case, the input I,
has more duplicated or out-of-order contributor
instructions than I, which could cause redundant
object creation or layout construction, making the
memory layout too complicated to exploit.

Implementation details

Revery extends the popular fuzzer AFL (Zalewski 2018).
As shown in Fig. 6, AFL applies a continuous loop to
explore paths. It (1) keeps a queue of good testcases, i.e.,
seeds; and (2) selects a seed from the queue; and then
(3) mutates the seed to get a bunch of new testcases, and
then (4) run the target binary program with the gener-
ated testcases in QEMU, and track the coverage, and then
(5) identify seeds based on coverage information. Revery
modifies AFL in the following two aspects.

Tracking Slice Hit Count Revery adds an extra buffer
HIT in the shared memory between QEMU and the fuzzer
driver, in addition to the existing bitmap used for code
coverage tracking. HIT [0] is used to track the count of
slice hit, while HIT [i] is used to track whether the i-th
instruction in the guiding slice has been hit or not.

More specifically, each time a layout-contributor
instruction is executed, QEMU will increase the slice
hit count HIT [0]. If this instruction is the n-th (n>=1)
instruction in the guiding slice, then QEMU will set
HIT [n] ifand onlyif HIT [n-1] hasbeen set. In this way,
the fuzzer driver could get the slice hit count in HIT [0],
and the LCS of guiding slice in HIT [1:N].

Tuning Fuzzing Directions Revery modifies the
fuzzer driver to make use of the collected slice hit infor-
mation. Basically, it slightly changes the algorithms of seed
selection. When picking up a seed from the queue to
mutate, it first prioritizes seeds that have longer LCS, as
discussed in Intuition 2. Then among seeds with LCS of
same length, it prioritizes seeds with fewer slice hit count,
as suggested in Intuition 3. Finally, it prioritizes seeds
with smaller size and faster execution time, same as AFL’s
default policy.

Page 10 of 25

Diverging inputs filtering

With layout-oriented fuzzing, Revery could find diverg-
ing inputs able to trigger the same layout-contributor
slice as the PoC input. However, unlike layout-contributor
digraph, the data flow constraints are missing in the
layout-contributor slice. So the diverging inputs some-
times do not match the target layout-contributor digraph
built from the crashing path. Revery thus takes an extra
step to isolate diverging inputs that could match the target
layout-contributor digraph.

In general, it first aligns the diverging path with the
crashing path, and locates the instructions responsible
for creating the exceptional object. Then, it constructs a
new layout-contributor digraph of the exceptional object
from the diverging path by backward slicing, in a same
way as the crashing path. Finally, it matches this new
digraph against the target digraph, by comparing each
node’s memory tag and its creator instruction’s address
in two digraphs. Figure 7 shows an example of how the
match works.

If these two digraphs do not match, then this diverg-
ing input will be discarded. Otherwise, the diverging input
is kept. Moreover, these two digraphs’ nodes (i.e., heap
objects) will be aligned accordingly, as well as the memory
tags of all nodes. So, we could infer each object’s coun-
terpart between the diverging path and crashing path,
enabling further common analysis on these two paths.

Exploitable states searching

Even if the diverging paths have similar layouts as the
vulnerability, not all of them are exploitable. Revery fur-
ther removes diverging paths that do not have exploitable
states.

Exploitable state

The exceptional object could affect other objects, and
sometimes will be directly or indirectly used in some sen-
sitive operations. The program states resulting from these
sensitive operations are denoted as exploitable states.

Target Binary /

v
—> Testcases > QEMU

Application
seed > Mutate
A
Select ,
Seed |

Inputs

[88 G

Identify |_ code
Seeds | coverage

Fig. 6 lllustration of the fuzzer implemented by Revery

Wang et al. Cybersecurity (2019) 2:12

Page 11 of 25

4)
diverging paths [N :
verging p layout-contributor

digraph

(. N\
target crashing path

layout-contributor|

S I [)\]
A

Match & Align

Fig. 7 Filter diverging paths by matching their layouts against target crashing path’s and aligning them when matched

In this paper, we mainly consider two types of sensitive
(exploitable) operations, i.e., memory write and indirect
call. For example, if the target address of a memory write
is affected by the exceptional object, then attackers may
control where to write and cause AAW (arbitrary address
write), i.e., a commonly used exploitable state in practice.
If attackers could affect the target of indirect calls, includ-
ing virtual function calls and indirect jmp instructions
etc., then they could hijack the control flow. In addition,
Revery offers a template for experts to extend the defi-
nition of exploitable points, e.g., operations launching the
unlinking attack.

Exploitable states searching
This problem thus becomes identifying sensitive instruc-
tions whose operands are affected by the exceptional
objects. Taint analysis is a straightforward solution.
Revery marks each object creation operation as a taint
source, and attaches a unique taint label to it. Each oper-
ation propagates all source operands’ taint labels to the
destination. At each sensitive instruction (i.e., memory
write or function call), the target address’ taint labels will
be checked if they contain the exceptional object’s taint
label. If yes, then this sensitive instruction is exploitable.

Diverging path exploration in FUZE

To solve the exploit derivability issue in OS kernel,
FUZE utilizes kernel fuzzing to explore other system
calls and thus diversifies running contexts for exploita-
tion facilitation. In the following, we describe the detail
of our kernel fuzzing. To be specific, we first discuss
how to initialize a context for fuzz testing. Then, we

describe how to set up kernel fuzzing for system call
exploration.

Fuzzing context initialization

FUZE utilize kernel fuzzing to identify system calls that
dereference a dangling pointer. To do this, we must start
kernel fuzzing after the occurrence of a dangling pointer
and, at the same time, ensure the fuzz testing is not
intervened by the pointer dereference specified in the
original PoC. As a result, we need to first accurately pin-
point the site where a dangling pointer occurs as well
as the site where the pointer is dereferenced by the sys-
tem call defined in the PoC program. As is demonstrated
above, this can be easily achieved by using the information
extracted through KASAN and dynamic tracing.

With the two critical sites identified, our next step is to
eliminate the intervention of the system call that is speci-
fied in the original PoC and also capable of dereferencing
the dangling pointer. To do this, we wrap a PoC program
as a standalone function, and then instrument the func-
tion so that it could be augmented with the ability to
trigger a free operation but refrain reaching to the site of
dangling pointer dereference. With this design, we could
encapsulate initial context construction for kernel fuzzing
without jeopardizing the integrity of kernel execution.

Based on the practices of free operation and dangling
pointer dereference defined in a PoC program, we design
different strategies to instrument a PoC program (i.e. the
wrapping function). For a single thread PoC program with
a free operation and consecutive dereference occurring in
two separated system calls, we instrument the PoC pro-
gram by inserting a return statement in between the

w N~

SIS

Wang et al. Cybersecurity (2019) 2:12

system calls because this could prevent the PoC itself
entering the dangling pointer dereference site defined in
the PoC program. For a multiple-thread PoC program,
the dangling pointer could occur in the kernel at any
iteration. Therefore, our instrumentation for such PoC
programs inserts system call ioct1 at the end of the iter-
ation. Along with a customized kernel module, the system
call examines the occurrence of the dangling pointer and
performs PoC redirection accordingly

KASAN checks the occurrence of a dangling pointer at
the time of its dereference, and we need to terminate the
execution of a PoC before the dereference of a dangling
pointer. As a result, we cannot simply use KASAN to facil-
itate the ability of the kernel module to identify dangling
pointers.

To address this issue, we follow the procedure below.
From the information obtained from KASAN log, we first
retrieve the code statement pertaining to the dereference
of the dangling pointer. Second, we perform an analy-
sis on the kernel source code to track down the variable
corresponding to the object freed but leaving behind a
dangling pointer. Since such a variable typically presents
as a global entity, we can easily obtain its memory address
from the binary image of the kernel code!. By provid-
ing the memory address to our kernel module, which
monitors the allocation and free operations in kernel
memory, we can augment the kernel module with the
ability to pinpoint the occurrence of the target object as
well as alert system call 1octl to redirect the execu-
tion of the wrapping function to the consecutive kernel
fuzzing.

Listing 1 The pseudo-code indicating the way of performing
concurrent kernel fuzz testing

pid = fork();

if (pid == 0)

PoC_wrapper(); // PoC wrapper function running
inside namespaces

else

fuzz (); // kernel fuzzing

Under-context kernel fuzzing

To perform kernel fuzzing under the context initialized
above, we borrow a state-of-the-art kernel fuzzing frame-
work, which performs kernel fuzzing by using sequences
of system calls and mutating their arguments based on
branch coverage feedbacks. Considering an initial context
could represent different environment for triggering an
UAF vulnerability, we set up this kernel fuzzing frame-
work in two different approaches.

In our first approach, we start our kernel fuzzing right
after the fuzzing context initialization. Since we wrap
an instrumented PoC program as a standalone func-
tion, this can be easily achieved by simply invoking the
wrapping function prior to the kernel fuzzing. In our
second approach, we set up the fuzzing framework to

Page 12 of 25

perform concurrent fuzz testing. In Linux system, names-
paces are a kernel feature that not only isolates system
resources of a collection of processes but also restricts the
system calls that processes can run. For some kernel UAF
vulnerabilities, we observed that the free operation occurs
only if we invoke a system call in the Linux namespaces. In
practice, this naturally restricts the system call candidates
that we can select for kernel fuzzing. To address this issue,
we fork the PoC program prior to its execution and per-
form kernel fuzzing only in the child process. To illustrate
this, we show a pseudo code sample in Fig. 1. As we can
observe, the program creates two processes. One is run-
ning inside namespaces responsible for triggering a free
operation, while the other executes without the restriction
of system resources attempting to dereference the data in
the freed object.

In addition to setting up kernel fuzzing for different
initial contexts, we design two mechanisms to improve
the efficiency of the kernel fuzzing framework. First, we
escalate fuzzing efficiency by enabling parameter sharing
between the initial context and the fuzzing framework.
For kernel UAF vulnerabilities, their vulnerable objects
are typically associated with a file descriptor, an abstract
indicator used for accessing resources such as files, sock-
ets and devices. To expedite kernel fuzzing for hitting
these vulnerable objects, we set up the parameters of sys-
tem calls by using the file descriptor specified in the initial
fuzzing context.

Second, we expedite kernel fuzzing by reducing the
amount of system calls that the fuzzing framework has
to examine. In Linux system 4.10, for example, there are
about 291 system calls. They correspond to different ser-
vices provided by the kernel of the Linux system. To
identify the ones that can dereference a dangling pointer,
a straightforward approach is to perform fuzz testing
against all the system calls. It is obvious that this would
significantly downgrade the efficiency in finding the sys-
tem calls that are truly useful for exploitation facilitation.

To address this problem, we track down a vulnera-
ble object using the information obtained through the
aforementioned vulnerability analysis. Then, we search
this object in all the kernel modules. For the mod-
ules that contain the usage of the object, we retrieve
the system calls involved in the modules by looking
up the SYSCALL DEFINEx() macros under the directory
pertaining to the modules. In addition, we include the
system calls that belong to the subclass same as the
ones already retrieved but not present in the modules.
It should be noticed that this approach might result
in the missing of the system calls capable of deref-
erencing dangling pointers. As we will show in
“Evaluation” section, this approach however does not
jeopardize our capability in finding system calls useful for
exploitation.

Wang et al. Cybersecurity (2019) 2:12

Exploitable states searching

FUZE perform symbolic execution under the context with
the goal of determining whether a diverging context could
direct kernel execution to an exploitable machine state.
In the following, we first describe how to set up symbolic
execution based on the context obtained through the
aforementioned kernel fuzzing. Then, we discuss how to
identify the machine states truly useful for exploitation by
using symbolic execution.

Symbolic execution setup

The random input fed into kernel fuzzing could poten-
tially crash kernel execution without providing useful
primitives for exploitation (e.g. writing arbitrary data to
an arbitrary address). As a result, we start our sym-
bolic execution right before the site where kernel fuzzing
dereferences a dangling pointer. To do this, we need to
pinpoint the site of dangling pointer dereference, pause
kernel execution and pass the running context to symbolic
execution.

Different from kernel fuzzing, symbolic execution can-
not leverage kernel instrumentation to facilitate this pro-
cess. This is simply because we use symbolic execution
for exploit generation and the exploit derived from instru-
mented kernel cannot be effective in a plain Linux system.

To address this issue, we utilize the information
obtained through KASAN and dynamic tracing. As is men-
tioned in “Critical information extraction in OS kernel”
section, the information obtained carries the code state-
ment pertaining to the dereference of a dangling pointer.
Since this information represents in the source code level,
we can easily map it to the plain Linux system, and set a
breakpoint at that site.

This approach could guarantee to catch the occurrence
of a dangling pointer. However, the setup of the break-
point could intervene kernel execution even at the time
when the dangling pointer does not occur. This is because
the statement could also involve in regular kernel exe-
cution. To reduce unnecessary intervention, we design
FUZE to automatically retrieve the log obtained from the
aforementioned dynamic tracing, and then examine if the
pointer pertaining to the statement refers to an object that
has already been freed at time the execution reaches to
the breakpoint. We force the kernel to continue its exe-
cution if the freed object is not observed. Otherwise, we
pause kernel execution and use it as the initial setting for
consecutive symbolic execution.

Exploitable machine state identification

Starting from the initial setting, we create symbolic values
for each byte of the freed object. Then, we symboli-
cally resume kernel execution and explore machine states
potentially useful for vulnerability exploration. To identify
machine states exploitable, we define a set of primitives

Page 13 of 25

indicating the operations needed for exploitation. Then,
we look up these primitives and take them as candidate
exploitable states while performing symbolic execution.

Since primitives represent only the operations generally
necessary for exploitation, but not reflect their capabil-
ity in facilitating exploitation, we further evaluate the
primitives guided by exploitation approaches commonly
adopted, and deem those passing the evaluation as our
exploitable states. In the following, we specify the primi-
tives that FUZE looks up and detail the way of perform-
ing primitive evaluation.

Primitives Specification. We define two types of prim-
itives — control flow hijacking and invalid write. They are
commonly necessary for performing exploitation under a
certain assumption.

A control flow hijacking primitive describes a capability
that allows one to gain a control over a target destination.
To capture this primitive during symbolic execution, we
examine all indirect branching instructions and determine
whether a target address carries symbolic bytes (e.g. call
rax where rax carries a symbolic value). This is because the
symbolic value indicates the data we could control and its
occurrence in an indirect target implies our control over
the kernel execution.

An invalid write primitive represents an ability to
manipulate a memory region. In practice, there are many
exploitation practices dependent upon this ability. To
identify this primitive during symbolic execution, we pay
attention to all the write instructions and check whether
the destination address or the source register or both carry
symbolic bytes (e.g. mov qword ptr [rdi], rsi where both rdi and
rsi contain symbolic values). The insight of this primitive
is that the symbolic value indicates the data we could con-
trol and its occurrence in a source register or a destination
address or simultaneously both implies a certain level of
control over an memory area.

Primitive Evaluation. As is described above, it is still
unclear whether one could utilize the aforementioned
primitives to facilitate his exploitation. Given a control
flow hijacking primitive, for example, it may be still chal-
lenging for one to exploit an UAF vulnerability because of
the mitigation integrated in modern OSes (e.g. SMEP and
SMAP). To select primitives truly valuable for exploitation
(i.e. exploitable machine states), we evaluate primitives as
follows.

As is specified in Nikolenko (2016), with SMEP enabled,
an attacker can use the following approach to bypass
SMEP and thus perform control flow hijacking. First, he
needs to redirect control flow to kernel gadget xchg eax, esp; ret.
Then, he needs to pivot the stack to user space by set-
ting the value of eax to an address in user space. Since
the attacker has the full control to the pivot stack, he
could prepare an ROP chain using the stack along with the
instructions in Linux kernel. In this way, the attacker does

Wang et al. Cybersecurity (2019) 2:12

not execute instructions residing in user space directly.
Therefore, he could fulfill a successful control flow hijack
attack without triggering SMEP.

In this work, we use this approach to guide the eval-
uation of primitives. At the site of the occurrence of a
control flow hijacking primitive, we retrieve the target
address pertaining to the primitive as well as the value
in register eax. Since the target address carries a sym-
bolic value, we check the constraint tied to the symbolic
value and examine whether the target could point to the
address of the aforementioned gadget. Then, we further
examine if the value of eax is within range (0x10000, 7).
Here, (0x10000, t) denotesthe valid memory region.
0x10000 represent the end of an unmapped memory
region, and t indicates the upper bound of the memory
region in user space.

Given SMEP enabled, another common approach
(Argyroudis 2012) for bypassing SMEP and performing
control flow hijacking is to leverage an invalid write
to manipulate the metadata of the freed object. In this
approach, one could leverage this invalid manipulation to
mislead memory management to allocate a new object to
the user space. Since one could have the full control to
the user space, he could modify the data in the new object
(e.g. a function pointer) and thus hijack the consecutive
execution of Linux kernel.

To leverage this alternative approach to guide our eval-
uation, we retrieve the source and destination pertaining
to each invalid write primitive. Then, we check the value
held in the destination. If that points to the metadata of
the freed object, we further inspect the constraint tied
to the source. We deem a primitive matches this alterna-
tive exploitation approach only if the source indicates a
valid user-space address or provides one with the ability
to change the metadata to an address in user space.

In addition to the approaches for bypassing SMEP, there
is a common approach (Konovalov 2017) to bypass SMAP
and perform control flow hijacking. First, an attacker
needs to set register rdi to a pre-defined number (e.g.
0x6£0 in our experiment). Then, he needs to redirect
the control flow to function native_write_cr4(). Since the func-
tion is responsible for setting register Cr4 — the 21st bit
of which controls the state of SMAP — and vdi is the argu-
ment of this function specifying the new value of CR4, he
could disable SMAP and thus perform a control flow hijack
attack.

To use this approach to guide our primitive evalua-
tion, we examine each control flow hijacking primitive
and at the same time check the value in register rdi.
To be specific, we check the constraints tied to regis-
ter rdi as well as the target of the indirect branching
instruction. Then, we use a theorem solver to perform
a computation which could determine whether the tar-
get could point to the address of native write_cr4() and

Page 14 of 25

at the same time rdi could equal to the pre-defined
number.

It should be noticed that this work does not involve
leveraging information leak for bypassing KASLR and
acquiring the base address of kernel code segment. This is
because there have been already a rich collection of works
that could easily facilitate the acquirement of the base
address of kernel code segment (e.g. Gruss et al. (2016);
Jang et al. (2010)) and the facilitation of information leak
provided by FUZE is neither a necessary nor a suffi-
cient condition for successful exploitation. In addition, it
should be noted that the symbolic execution applied above
naturally provides FUZE with the ability to compute the
data that needs to be sprayed to the freed object. In this
work, we therefore utilize off-the-shelf constraint solver
(i.e. SMT) to compute values for all the symbolic variables
while the symbolic exploration reaches to the machine
states exploitable.

Exploit synthesis
In this section, we will introduce how to synthesize new
exploits from PoC inputs and diverging inputs.

Once an exploitable state is found in a path, exist-
ing AEG solutions usually generate exploits by solving
the path, vulnerability and exploit constraints. However,
as discussed in “Alternative choices” section, symbolic
execution solely is not effective in exploit generation.

Therefore, Revery uses symbolic execution as few
as possible. It uses a lightweight symbolic execution as
a bond to stitch the crashing path and diverging path
together, and reuses the PoC input and diverging inputs to
further reduce complicated constraints, making symbolic
execution more practical.

Figure 8 shows the general workflow of exploit synthe-
sis. In practical, it first identifies stitching points, and then
explores sub-paths between stitching points and synthe-
size exploitation path, and finally solve related constraints
to generate working exploits.

Identify stitching points
We first introduce how Revery identifies stitching points
in both the crashing path and diverging path.

Stitching points in the crashing path

In order to successfully exploit the victim program, its vul-
nerability must be first triggered, and some exceptional
objects are corrupted. Revery thus chooses locations
where exceptional objects are corrupted in the crashing
path as stitching points.

As mentioned in “Vulnerability-related object layout”
section, in the crashing path, each write access violation
corrupts an exceptional object, and thus it is a candi-
date stitching point. For each read access violation in a
UAF vulnerability, the exceptional object is the one that

Wang et al. Cybersecurity (2019) 2:12

Page 15 of 25

e N\ (oo 2
diverging path crashing path

MM

Jemyoeq

Indentify Stitching Points
Fig. 8 The workflow of exploit synthesis

e — ™
Exploitation Path

—

Path Stitching

Path
Constraints

from

PoC Vulnerability

Constraints

Exploit

State
Constraints

Generation

Payload
Constraints

has been freed but still pointed by the dangling pointer.
This exceptional object’s memory region will be occu-
pied by another memory allocation. Revery takes the
new memory allocation operation as a candidate stitching
point.

Since there could be multiple violations in one crash-
ing path, there could also be multiple stitching points.
Revery will try to stitch each of them with the diverging
path.

Stitching points in diverging paths

In order to successfully exploit the victim program,
exploitable operations must be performed on corrupted
exceptional objects or collateral objects.

What are good stitching points? Every instruction
could be used as stitching points. But not all of them are
good ones. A proper stitching point should satisfy several
criterions:

® Not too close to entry points. Otherwise, many
duplicated operations as the crashing path will be
performed. Since duplicate operations (e.g., object
initializations) will not happen in a legitimate control
flow, it is infeasible to find a path to connect this
stitching point with its counterpart in the crashing
path.

e Not too close to exploitable points. Otherwise, a
longer path is required to connect this stitching point
with its counterpart, requiring more efforts of
symbolic execution. The stitching point can be set
before certain operations, e.g., initialization of

exploitable points’ operands, to save symbolic
execution efforts.

e Minimum data dependency. The data flow after the
stitching point in the diverging path should have few
intersections with the data flow before the stitching
point in the crashing path.

How to find stitch points? At a high level, Revery
matches the diverging path’s data dependency against
the crashing path’s, and locates the differences. Then it
uses the instruction which causes the differences in the
diverging path as stitching point.

First, Revery builds the layout-contributor digraph of
the exploitable operation’s operand in the diverging path.
Then it matches this digraph against the digraph of the
exceptional object in the crashing path. If the former is
a sub-graph of the latter, it means the crashing path has
already set up all data dependencies for the exploitable
operation. Then, the instruction in the diverging path,
which is right after the last write access to the exploitable
operations’ operands, is chosen as the stitching point.

Otherwise, there are different nodes or edges in the
diverging path’s digraph, i.e., the diverging path has alter-
nated the dependency of the exploitable operations. In
this case, Revery chooses the earliest instruction (object
creation or write) in the diverging path, which causes
differences in the digraph, as the stitching point.

Control-flow path stitching

In order to stitch the crashing path and the diverging
path together, Revery explores potential sub-paths con-
necting the stitching points in these paths. In general, it

Wang et al. Cybersecurity (2019) 2:12

relies on symbolic execution to explore paths. However,
Revery utilizes several heuristics to efficiently guide
symbolic execution.

First of all, Revery uses the function call stack to
guide the path exploration. It inspects the call stacks at
the two stitching points respectively, and finds the dif-
ferences. Figure 9 shows two example call stacks. These
differences in call stacks indicate the direction of path
exploration. Function invocations in the crashing path
(e.g., 91, g2, ., gM in the figure) should be
returned one by one first, while function invocations
in the diverging path (e.g, hl, h2, ..., hK in the
figure) should be called one by one later.

In other words, when exploring potential paths,
Revery will add the return instruction of function
gM, .. g2, gl as target instructions one by one, and
then add the entry point of function hl, h2, ..., hK
as target instructions one by one. These target instruc-
tions are dominator points between the two stitching
points. Then Revery will explore potential sub-paths
between these intermediate target instructions.

Revery further mitigates the sub-path exploration by
reusing existing paths. For example, if there is already
a sub-path connecting two intermediate destinations in
either the diverging path or the crashing path, Revery
will reuse this sub-path. Revery also performs a sim-
ple loop identification algorithm, and finds a sub-path
to escape the loop as soon as possible, in order to
reduce the burden of symbolic execution. Sometimes, the
reused sub-path would cause the overall path unsolvable,
Revery will try to remove these sub-paths and search for
alternative sub-paths.

In this way, Revery greatly reduces the burden of sym-
bolic execution when exploring sub-paths to connect the
stitching points.

Exploit generation
Once a sub-path connecting two stitching points is found,
a candidate exploitation path is constructed. Revery

Page 16 of 25

could also solve the vulnerability constraints, path con-
straints and exploit constraints to generate final exploit
samples. However, it is inadequate.

Exploitable state constraints

Simply solving constraints of the exploitation path may
not trigger the same exploitable state as the diverging
path. Revery thus adds several extra data constraints to
the exploitation path, ensuring the program state is still
exploitable.

First, the memory allocation sizes in the exploitation
path should be the same as the diverging path, in order
to trigger the exploitable states as in the diverging path.
Revery records the concrete sizes of all memory alloca-
tions when analyzing the diverging path. In the exploita-
tion path, if a memory allocation which was in the diverg-
ing path has a symbolic size, then Revery will add a
constraint to ensure this size equals to the concrete value
in the diverging path.

Second, Revery will align the digraph of the crashing
path with the diverging path’s. Certain symbolic addresses
in the diverging path are logically the same as their coun-
terparts in the crashing path. So, in the stitched exploita-
tion path, extra constraints must be introduced to claim
the equality between these symbolic addresses.

Payload constraints

With the aforementioned exploitable state constraints,
together with the vulnerability and path constraints,
Revery is able to generate EXP inputs to trigger both
exploitable states and vulnerabilities. These inputs could
help security experts to construct a full exploit.

In certain cases, Revery is able to directly generate
working exploits. At the exploitable point, Revery could
construct payload constraints which could lead to control
flow hijacking. If the exploitable point is a function call
(e.g., indirect call or jmp instruction) and its target is a
symbolic value, Revery adds an extra constraint to set
the target to attacker controlled value. If the exploitable

f1
fN
g1
gM
stitching point
in crashing path
Fig. 9 Example call stacks of stitching points

f1

fN

h1

hK

stitching point
in diverging path

Wang et al. Cybersecurity (2019) 2:12

state is a write access, and both the destination address
and content to write are symbolic, then Revery adds
an extra constraint to overwrite a known address (e.g.,
Global Offset Table entries or global function pointers)
with attacker controlled value.

In this way, Revery could generate exploits to hijack
control-flow for certain cases. However, it is not always
guaranteed to succeed.

Evaluation

We implemented a prototype of Revery based on the
binary analysis engine angr (Shoshitaishvili et al. 2016)
and the popular fuzzer AFL (Zalewski 2018). It consists
of 1334 lines of code to analyze vulnerabilities, 190 lines
of code to explore diverging paths with fuzzing, and 1249
lines of code to stitch paths and generate exploits.

In this section, we present the evaluation results of
this system. The experiments are conducted in a Ubuntu
17.04 system running on a server with 115G RAM and
Intel Xeon (R) CPU E5-2620 @ 2.40GHz*24. We evaluated
Revery against 19 vulnerable programs collected from
15 CTF (capture the flag) competition, 14 of them can be
found in CTFTIME (CTF TIME 2018)2.

To thoroughly evaluate the effectiveness of Revery, we
selected the target programs from CTF events based on
the following rules: (1) no source code or debug symbols
exist for these programs; (2) each program must have at
least one heap-based vulnerability; (3) the diversity of vul-
nerability types must be large; and (4) the quality of the
source CTF events is well acknowledged.

All programs are tested in a regular modern Linux
operating system (Ubuntu 17.04), with the defense DEP
(Andersen and Abella 2004) enabled. Unlike traditional
environments, we disabled ASLR (PaX-Team 2003) in the
evaluation. In practice, an information disclosure vulner-
ability or exploit is required to bypass ASLR. The current
prototype of Revery could not generate information
disclosure exploits yet.

We also demonstrate the utility of FUZE using 15
real-world kernel UAF vulnerabilities. Regarding the con-
figuration of FUZE, we performed kernel fuzzing and
symbolic execution using a machine with Intel(R) Xeon(R)
CPU E5-2630 v3 2.40GHz CPU and 256GB of memory.
As is mentioned in “Exploitable states searching” section,
the address space layout randomization is out of the scope
of this work. Last but not least, we therefore disabled
CONFIG_RANDOMIZE_BASE option in all Linux kernels that
we experiment.

To showcase FUZE can truly benefit the exploita-
tion, we performed end-to-end exploitation using the
exploitable machine states we identified. To be specific,
we computed the data that needs to be sprayed based
on the constraints tied to the exploitable states. Then,
we performed the heap spray with three different system

Page 17 of 25

calls — add_key(), msgsnd(), sendmsg() — by fOllOWing the tech-
niques introduced in Xu et al. (2015). To fulfill exploita-
tion using the exploitable states identified, we eventu-
ally redirect the execution to an ROP chain (Nikolenko
2016) commonly used for exploitation. To illustrate the
exploits generated through the facilitation of FUZE, we
have released some example exploits along with the virtual
machine at (Anonymous 2018). In addition, we discuss
those kernel UAF vulnerabilities, the exploitation of which
FUZE fails to provide with facilitation.

Exploits by Revery

Table 1 shows the list of programs we evaluated. Out of
19 programs, Revery successfully exploited 9 of them,
i.e., able to hijack their control flow. Revery could trigger
the exploitable states for 5 more programs, i.e., providing
exploit primitives for experts to launch successful exploits.
It failed to analyze the rest 5 programs. More details will
be discussed later.

This table also shows in detail the name and CTF event
of each program. It shows the type of the known vulner-
ability in each program, including heap overflow, off-by-
one, UAF and double free. Further, it shows the crash type
of each vulnerability, i.e., results of applying PoC inputs
to the vulnerable programs. Some of them are caught
by the memory manager’s sanity checks (denoted as
heap error in the table), some others crash at invalid
memory read instructions. Most of them do not even
crash.

In addition, it shows the violation type of each vulnera-
bility detected by Revery, the final exploitable state trig-
gered by Revery, and whether Revery could generate
exploits or not. Revery could detect security violations in
16 out of 19 programs. It could trigger exploitable states of
EIP hijacking, arbitrary memory write, and unlink attack
for 3, 6 and 5 programs respectively. Revery could gen-
erate working exploits for first two types of exploitable
states.

As a comparison, we also evaluated the open-source
AEG solution Rex (2018) provided by the Shellphish team
on these programs. As shown in the last column of the
table, Rex could not solve any of these programs.

Case studies
In this section, we investigated these programs in detail,

and analyzed why our solution Revery succeeded or
failed.

Control-Flow hijacking exploits

Revery successfully generated control-flow hijacking
exploits for 9 programs. With the given PoC inputs, 2
programs corrupt the heap metadata and are caught by
the sanity checks deployed in glibc memory allocator.
Three other programs crash at invalid memory read

Wang et al. Cybersecurity (2019) 2:12

Table 1 List of CTF pwn programs evaluated with Revery

Page 18 of 25

Name CTF Vul type Crash type Vio. Final state EXP Rex
Control Flow Hijack woQ2 TU CTF 2016 UAF heap err Vi EIP hijack Y N
woO2_fixed TU CTF 2016 UAF heap err Vi EIP hijack Y N
shop 2 ASIS Final 2015 UAF mem read Vi EIP hijack Y N
main RHme3 CTF 2017 UAF mem read V1 mem write Y N
babyheap SECUINSIDE 2017 UAF mem read V1 mem write Y N
b00ks ASIS Quals 2016 Off-by-one no crash Vi mem write Y N
marimo Codegate 2018 Heap BOF no crash Vi mem write Y N
ezhp Plaid CTF 2014 Heap BOF no crash Vi mem write Y N
notel ZCTF 2016 Heap BOF no crash V1 mem write Y N
Exploit-able State note2 ZCTF 2016 Heap BOF no crash Vi unlink init N N
note3 ZCTF 2016 Heap BOF no crash V1 unlink init N N
fb AliCTF 2016 Heap BOF no crash Vi unlink init N N
stkof HITCON 2014 Heap BOF no crash Vi unlink init N N
simple note Tokyo Westerns 2017 Off-by-one no crash Vi unlinkinit N N
Failed childheap SECUINSIDE 2017 Double Free heap err V1 - N N
CarMarket ASIS Finals 2016 Off-by-one no crash Vi - N N
SimpleMemoPad CODEBLUE 2017 Heap BOF no crash - - N N
LFA 34¢3 2017 Heap BOF no crash N N
Recurse 33c32016 UAF no crash - - N N

Out of 19 applications, Revery could generate exploits for 9 of them, and generate EXP inputs to trigger exploitable state for another 5 of them, and failed for the rest 5

instructions, whose results are only dumped by func-
tions like printf, which could not cause control-flow
hijacking. The rest 4 programs do not even crash with the
provided PoC.

Limit of State-of-the-art AEG Solutions. Such vul-
nerabilities are usually considered as non-exploitable by
exploitability assessment tools. To successfully exploit
these vulnerabilities, we have to avoid the metadata
corruption being caught by sanity checks, and accu-
rately model the memory allocator if using symbolic
execution.

So state-of-the-art AEG solutions could not generate
exploit automatically for them. We have tested all these
programs with Rex (2018), an automated exploit gener-
ation tool that developed by the Shellphish team, which
won the first in offense in CGC. But it failed to generate
exploits for any of them.

Performance of Revery. By exploring exploitable states
in diverging paths, Revery can generate exploits for
all 9 programs. For example, WoO2 and WoO_ fixed
crash because one object is freed twice. To exploit this
kind of vulnerabilities, heap Fengshui (Sotirov 2007) is
needed, which is too complicated for automated solutions.
Instead, Revery goes back to the vulnerability point,

and finds a diverging path which could lead to EIP
hijack.

Three of the exploitable states could hijack the program
counter, and the other six could cause arbitrary address
write (AAW). AAW is a well-known exploit primitive,
could enable many exploits. For example, it could be used
to modify the global offset table (GOT) and hijack the
control flow.

Exploitable states

Sometimes Revery is not able to generate working
exploits, even if it has found the exploitable states and
stitched an exploitation path. As shown in the table,
Revery could trigger exploitable states but fail to gener-
ate working exploits for 5 programs.

For these programs, there is no critical data fields (e.g.,
function pointer, VTable pointer etc.) in the exceptional
object, and it is extremely challenging to automatically
generate exploits against them. Instead, we have to uti-
lize the corrupted metadata in the exceptional objects to
exploit the specific heap allocators.

Revery utilizes layout-oriented fuzzing to find a
diverging path that will free the exceptional object, and
trigger an exploitable state. Given that the glibc library
uses a double-linked list to maintain objects, unlinking a
node from this list (due to certain memory operations) will

Wang et al. Cybersecurity (2019) 2:12

update forward and backward nodes’ pointers, causing an
unintended memory write operation. This is known as
unlink attack (Unlink Exploit 2018).

However, to successfully exploit such states, we have to
arrange the heap layout, with heap Fengshui and other
techniques, which is out of the scope of this paper. How-
ever, with the inputs generated by Revery, experts could
manually massage the heap layouts and write an exploit
much quicker.

Failed cases

As aforementioned, Revery cannot guarantee to gener-
ate working exploits or trigger exploitable states. In our
experiments, Revery failed for 5 programs.

Limitations of Vulnerability Detection For some of the
programs, Revery fails to detect the security violations.
For example, the challenge SimpleMemoPad has a buffer
overflow inside objects, i.e., it will corrupt the neighbor
data fields rather than neighbor objects. Revery cur-
rently only supports object level corruption detection. We
leave it as a future work to support detection of in-object
buffer overflow.

Limitations of Angr Our solution Revery relies on
angr (Shoshitaishvili et al. 2016) to perform symbolic exe-
cution. Angr emulates all syscalls by itself, which has not
fully implemented yet. Alternatively, angr rewrites library
functions in Python, and hooks the original functions.
However, this is far from finished too. As a result, angr

Page 19 of 25

cannot support most real world programs. This is also
the major reason why we only evaluate Revery on CTF
programs.

Efficiency of layout-oriented fuzzing

We further evaluated the efficiency of Revery in terms of
diverging path exploration and exploitable states search-
ing. We compared our layout-oriented fuzzing with the
original fuzzer AFL. To evaluate the efficiency of layout-
oriented fuzzing fairly, we run Revery and AFL at the
same time, and use a same exploitable state searching
module in Revery to evaluate the test cases generated by
both fuzzers.

Figure 10 shows the time interval used by Revery
and AFL to find the first input that hits all instructions
in layout-contributor slice. On average, Revery is 122%
faster than AFL.

Revery also spends less time than AFL to find an
exploitable state in diverging paths. As shown in Fig. 11,
AFL failed to find exploitable states for 3 programs in 8
hours. By contrast, Revery has found exploitable states
for all the programs. For programs that both AFL and
Revery succeed, Revery is 247% faster than AFL on
average.

In short, with layout-oriented fuzzing, Revery could
find diverging paths and exploitable states much faster
than AFL.

We also compared layout-oriented fuzzing with
Driller(Stephens et al. 2016). The result shows that Driller
didn’t find any exploitable state for all the programs in 4 h.

30000
N/A N Revery
AFL
25000
20000
£
£ 15000
=
10000
5000
OJ_Jﬁ-_L I -
Q © O R o N 4% Q
> > . < () < AN
‘O\x © > &
P &
Binary name
Fig. 10 Time interval for finding first diverging path triggering the layout-contributor slice by Revery, comparing to AFL

Wang et al. Cybersecurity (2019) 2:12 Page 20 of 25
30000
N/A N/A N/A = Revery
[AFL

25000

20000
wn
@
g 15000
‘s

10000

o ‘ J ——
0 >
Q © S N o N 5 Q
Yo > . (Z (0] < AQ
¢ & ¥ & ¢ E ¢ &S
S ™ &
Q AN
Binary name

Fig. 11 Time interval for finding exploitable states in diverging path by Revery, comparing to AFL

And only in one program (i.e., notel) the symbolic
execution engine of Driller is invoked. This is probably
because driller is designed for CGC programs and has
some bugs for ELF binaries.

Efficiency of control-flow stitching

Given the candidate exploitable states, Revery utilizes
a novel control-flow stitching solution to generate inputs
to trigger both the vulnerability and exploitable states. In
theory, symbolic execution could be used solely to explore
paths from the vulnerability point to the exploitable states.
To compare the efficiency between them, we thus eval-
uated Revery and a strawman symbolic exuection tool
SYMBEX based on angr.

Overall results

Table 2 shows the evaluation results on 14 programs
which angr is able to handle. Revery could generate EXP
inputs to trigger exploitable states for all 14 programs in
minutes. But SYMBEX could only solve 4 of them. The
exploitable points of these 4 programs are right after the
vulnerability points and before the crashing points, and
thus require no efforts to explore paths. SYMBEX failed to
solve the program main in four hours, and failed for the
rest 9 programs.

Path Reusing Rate We use path reusing rate to assess
the quality of stitching points that Revery found. This
rate is computed based on the count of basic blocks

reused from the diverging path, compared to the count
of basic blocks in the exploitation path. A higher reusing
rate indicates that the stitching point is better for
exploit generation. As shown in the table, more than
half of the programs has a path reusing rate higher
than 60%.

Table 2 Comparison with symbolic execution

Name Vul Revery Path Revery SYM. SYM.
type Gen. reuse EXP. Gen. EXP.
Time rate work Time work
(s) (s)
shop 2 UAF 238 100% YES Failed NO
note2 BOF 70 100% YES Failed NO
ezhp BOF 56 98.0% VYES Failed NO
fb BOF 60 85.1% YES Failed NO
note3 BOF 83 84.1% YES Failed NO
main UAF 146 71.0% YES >4h -
stkof BOF 208 655% YES Failed NO
marimo BOF 264 62.2% YES Failed NO
simplenote BOF 263 41.9% YES Failed NO
babyheap UAF 442 27.8% YES Failed NO
notel BOF 161 84.0% YES 412 YES
b0O0ks BOF 81 833% YES 91 YES
wo02 UAF 38 227% YES 39 YES
woO2_fixed UAF 38 227% YES 38 YES

Wang et al. Cybersecurity (2019) 2:12

Failure Analysis SYMBEX failed for 9 programs. We
pointed out that, traditional symbolic execution is unable
to infer some exploitable state constraints and thus fails
to generate exploits. As discussed in “Exploit synthesis”
section, Revery could infer these constraints from the
diverging path.

Effectiveness of FUZE

Table 3 specifies the amount of distinct exploits publicly
available for each kernel UAF vulnerability as well as their
capability of bypassing mitigation mechanisms commonly
adopted (i.e. SMEP and SMAP). We use this as our base-
line to compare with exploits generated under the facili-
tation of FUZE. We show this comparison side-by-side in
Table 3.

With regard to the ability to perform exploitation and
bypass SMEP illustrated in Table 3, we first observe
that there are only 5 publicly available exploits capable
of bypassing SMEP whereas FUZE enables exploitation
and SMEP-bypassing for 5 additional vulnerabilities. This
indicates the facilitation of FUZE could not only signifi-
cantly improve possibility of generating exploits but, more
importantly, escalate the capability of a security analyst
(or an attacker) in bypassing security mitigation.

For all the vulnerabilities that an attacker could exploit
and bypass SMEP, we also observe a significant increase
in the amount of unique exploits capable of bypassing
SMEP. This indicates that our kernel fuzzing could diver-
sify the running contexts and thus facilitate our symbolic

Table 3 Exploitability comparison with and without FUZE

CVE-ID # of public exploits # of generated exploits
SMEP SMAP SMEP SMAP
2017-17053 0 0 1 0
2017-15649 0 0 3 2
2017-15265 0 0 0 0
2017-10661 0 0 2 0
2017-8890 1 0 1 0
2017-8824 0 0 2 2
2017-7374 0 0 0 0
2016-10150 0 0 1 0
2016-8655 1 1 1 1
2016-7117 0 0 0 0
2016-4557 1 1 4 0
2016-0728 1 0 3 0
2015-3636 0 0 0 0
2014-2851 1 0 1 0
2013-7446 0 0 0 0
Overall 5 2 19 5

Page 21 of 25

execution to identify machine states useful for exploitation.
It should be noticed that we count the amount of distinct
exploits shown in Table 3 based on the number of contexts
capable of facilitating exploitation but not the exploitable
states we pinpointed. This means that, the exploits crafted
for the same UAF vulnerability all utilizes different sys-
tem calls to perform control flow hijacking and mitigation
bypassing.

Regarding the capability of disabling SMAP shown in
Table 3, we discovered only 2 exploits publicly avail-
able and capable of bypassing SMAP. They attach to 2
different vulnerabilites - CVE-2016-8655 and
CVE-2016-4557. Using FUZE to facilitate exploit
generation, we observe that FUZE could enable and
diversify exploitation as well as SMAP-bypassing for 2
additional vulnerabilities (see CVE-2017-8824 and
CVE-2017-15649 in Table 3). In addition, we
notice that FUZE fails to facilitate SMAP-bypassing for
CVE-2016-4557 even though a public exploit has
already demonstrated its ability to perform exploitation
and bypass SMAP. This is for the following reason. As is
described in “Exploitable states searching” section, FUZE
explores exploitability through control flow hijacking. For
some exploitation such as privilege escalation, control
flow hijacking is not a necessary condition. In this case,
the exploit publicly available performs privilege escalation
which bypasses SMAP without leveraging control flow
hijacking.

In addition to the ability of bypassing mitigation and
diversifying exploits, Table 3 reveals the capability of
FUZE in facilitating exploitability. As we will discuss in
the following session, there are 4 kernel UAF vulnerabili-
ties for which FUZE cannot perform fuzzing because the
PoC programs obtained all perform free and dereference
operations in the same system call. However, we observe
that FUZE can still facilitate exploit generation particu-
larly for the vulnerabilities tied to CVE-2017-17053 and
CVE-2016-10150. This is for the following reason.
Kernel fuzzing is used for diversifying running contexts.
Without its facilitation, FUZE only performs symbolic
execution and explores machine states exploitable under
the context tied to the PoC program. For the two vul-
nerabilities above, their running contexts attached to the
PoC programs have already carried valuable primitives,
which symbolic execution could track down and expose
for exploit generation.

Last but not least, Table 3 also specifies some cases
which FUZE fails to facilitate exploitation. However, this
does not imply the ineffectiveness of FUZE. For the case
tied to CVE-2015-3636, the vulnerability can be trig-
gered only in the 32-bit Linux system, in which the Linux
kernel has to access a fixed address defined by marco
LIST POISON prior to an invalid free. In a 64-bit Linux
system on an x86 machine, this address is unmappable and

Wang et al. Cybersecurity (2019) 2:12

thus this vulnerability cannot be triggered. For the case
tied to CVE-2017-7374, the NVD website (Database
2017) categorizes it into a kernel UAF vulnerability. After
carefully investigating the PoC program and analyzing
the root cause of this vulnerability, we discovered that
the root cause behind this vulnerability is actually a null
pointer dereference. In other words, the vulnerability
could make kernel panic only at the time when a system
call dereferences a null pointer. Up until the submission
of this work, for the cases tied to CVE-2013-7446,
CVE-2017-15265and CVE-2016-7117, both exhaus-
tive search and FUZE have not yet discovered any exploits
indicating their ability to perform exploitation. This is pre-
sumably because these vulnerabilities could result in only
a Denial-of-Service to the target system or they could be
exploitable only in support of other vulnerabilities.

Efficiency of FUZE

Table 4 specifies the time spent on identifying the first
context capable of facilitating exploitation or, in other
words, the context from which the consecutive symbolic
execution could successfully track down an exploitable
machine state. We observe that FUZE could perform
fuzz testing against 9 vulnerabilities. For all of them,
FUZE could pinpoint a valuable context within about 200
min, which indicates a relatively high efficiency in sup-
porting exploit generation. For the rest cases, there are
mainly two reasons behind the failure of our fuzz testing.
First, our kernel fuzzing has to start after the occur-
rence of a dangling pointer. However, for the case tied

Table 4 The Efficiency of fuzzing and symbolic execution

Page 22 of 25

to CVE-2015-3636, the invalid free operation cannot
be triggered in 64-bit Linux kernel. Second, for the other
4 cases, the free and dereference are entangled in the
same system call. This practice leaves a short time frame
for kernel fuzzing, and FUZE performs only symbolic
execution.

To perform kernel fuzzing in a more efficient man-
ner, syzkaller customizes these system calls and
extends their amount to 1,203. As is mentioned in
“Diverging path exploration in FUZE” section, we trim the
set of system calls that FUZE has to explore for the pur-
pose of improving the efficiency of FUZE. In Table 4, we
show the amount of system calls that FUZE has to explore
during 12-hour kernel fuzzing. For all the cases except for
that tied to CVE-2014-2851, we can easily observe that
FUZE cut more than 60% of system calls. Among them,
there are approximately half of the cases, for which kernel
fuzzing needs to explore only about 100 system calls. This
implies the contribution to the efficiency in exploitation
facilitation.

In addition to the efficiency of kernel fuzzing, Table 4
demonstrates the performance of symbolic execution.
More specifically, the table shows the minimum, max-
imum and average length of the path from a dangling
pointer dereference site to a control flow hijacking or
an invalid write primitive. Across all cases except for
CVE-2015-3636 — which we cannot trigger a UAF
vulnerability in a 64-bit Linux system — we observe
that the maximum number of basic blocks on a path
is 86. This indicates primitives usually occur at the

CVE-ID Fuzzing Symbolic execution
Time # of syscalls Min # of BBL Max # of BBL Ave # of BBL

2017-17053 NA NA 6 18 13
2017-15649 26m 433 4 39 21
2017-15265 NA NA 4 5 5
2017-10661 2m 26 7 14 1
2017-8890 139m 448 13 86 48
2017-8824 99m 63 2 33 23
2017-7374 NA NA NA NA NA
2016-10150 NA NA 1 1 1
2016-8655 m 448 4 27 14
2016-7117 NA NA 1 1 1
2016-4557 m 133 3 48 29
2016-0728 Tm 7 21 31 26
2015-3636 NA NA NA NA NA
2014-2851 146 m 1203 1 5 3
2013-7446 209 m 448 1 2 1

Wang et al. Cybersecurity (2019) 2:12

site close to dangling pointer dereference. By setting
symbolic execution to explore exploitable machine states
within a maximum depth of 200 basic blocks, we
could not only ensure the identification of exploitable
states but also reduce the risk of experiencing path
explosion.

Related work

Automatic exploit generation

Revery aims at automatic exploit generation, which is
still an open challenge. A few number of solutions have
been proposed.

AEG based on symbolic execution

APEG (Brumley et al. 2008) is the first automated
exploitation solution based on patch analysis. AEG
(Avgerinos et al. 2014) develops a novel preconditioned
symbolic execution and path prioritization techniques
to generate exploits at the source code level. Mayhem
(Cha et al. 2012), which is built based on the hybrid
symbolic execution and memory index modeling tech-
niques, can automatically generate exploits at the binary
level.

These solutions symbolically execute the whole pro-
gram and are not scalable in path exploration. Unlike
Revery, they are unaware of exploitable state constraints.
Previous AEG solutions (such as (Avgerinos et al. 2014))
could not solve the derivability problem. They usually
only support stack overflow (where exploitable point is
the crashing point) and format string (where exploitable
point is the vulnerability point) vulnerabilities, rather than
heap-based vulnerabilities. Since the exploitable points
are in the crashing paths, no diverging paths are explored
by these solutions.

Moreover, they will concretize symbolic values in
order to make symbolic execution practical. For example,
Mayhem proposes a prioritized concretization solution.
As aforementioned, concretization could lead to non-
exploitable states.

AEG based on crash analysis

Sean Heelan (Heelan 2009) makes use of dynamic taint
analysis and program verification to generate control-
flow-hijack exploits based on the crashing PoC input.
Similarly, starting from the crashing point, CRAX (Huang
et al. 2012) symbolically executes the program to find
exploitable states and automatically generates working
exploits at the binary level.

These solutions only search the crashing paths for
exploitable states. As aforementioned, exploitable states
do not always exist in crashing paths. So they will be
hindered by the exploit derivability issue. By contrast,
Revery explores exploitable states not only in crashing
paths but also in diverging paths.

Page 23 of 25

Data-oriented AEG

FLOWSTITCH (Hu et al. 2015) automatically generates
data-oriented exploits, able to reach information disclo-
sure and privilege escalation, by stitching multiple data
flows without breaking the control flow.

Although it also uses stitching, it is quite different from
Revery. First, it targets data-flow stitching, while the
control-flow is intact, making symbolic execution easier.
Second, it only produces exploits of data-only attacks,
instead of control-flow hijacking attacks.

Other AEG solutions

Ardilla (Kiezun et al. 2009) and Chainsaw (Alhuzali et al.
2016) are AEG solutions for web applications. Ardilla can
create SQL injection and cross-site scripting (XSS) attacks
automatically. Chainsaw is a system that reasons systemat-
ically over the navigation structure and uses the database
state of web applications to automatically generate work-
ing exploits. They are quite different from AEG for binary
applications, including Revery.

Directed fuzzing
Revery utilizes fuzzing to explore diverging paths. There
are many advances in this field in recent years.

Coverage-guide fuzzing

There are many works which aim to increase code cov-
erage of fuzz testing, called coverage-guide fuzzing. AFL
(Zalewski 2018), libFuzzer (Serebryany 2016), honggfuzz
(Swiecki 2016), AFLFast (Bohme et al. 2016), VUzzer
(Rawat et al. 2017) and CollAFL (Gan et al.) are some
state-of-the-art coverage-guided fuzzers. In general, they
prioritize the seeds with higher code-coverage for fur-
ther mutation. However, they do not target specific code
or memory states, and thus are not efficient in exploring
diverging paths which must satisfy some requirements.

Target-directed fuzzing

The most similar work to our focus is AFLGo (B6hme
et al. 2017), a greybox fuzzing tool. AFLGo (B6hme et
al. 2017) prioritizes seeds that are closer to a piece of
predetermined target code, enabling efficient directed
fuzzing. In our solution, we are interested in seeds that can
trigger multiple layout-contributor instructions, rather
than one instruction. AFLGo is not effective in explor-
ing diverging paths which have multiple target points.
Revery guides a fuzzer with layout-contributor slice to
explore diverging paths and search for exploitable states
efficiently.

Discussion

AEG is an open challenge. Revery only moves one step
towards this goal. It has many challenges, including but
not limited to:

Wang et al. Cybersecurity (2019) 2:12

e Advanced Defenses. More and more defenses are
proposed and deployed in practice, in order to stop
popular attacks. These defenses not only raise the bar
for human attackers, but also hinder automated
solutions. For example, Revery could not bypass
ASLR because it lacks the ability of information
disclosure. It could trigger exploitable states for 5 of
19 programs, but not able to generate working
defenses, because of the sanity checks deployed in
heap allocators.

e Heap Layout Massaging. A large number of
heap-based vulnerabilities could only be exploited in
specific memory layouts. Due to the complexity of
memory allocators and the program behavior, it is
very challenging to generate inputs to build memory
layouts as expected.

e Combination of Multiple Vulnerabilities. In
practice, a successful exploit usually require multiple
vulnerabilities. We have to assemble different
vulnerabilities and utilize their corruption effects to
craft a final exploit.

® Program Comprehension and Analysis. To
successfully exploit a program, it is necessary to
understand the program behavior, e.g., what input
will cause what output, and make dynamic decisions
at runtime. In addition, few program analysis
solutions could extract such information. As
aforementioned, the widely used symbolic execution
has many limitations too.

Conclusion

Existing AEG solutions are facing the challenges from
exploit derivability issue, symbolic execution bottleneck,
heap-based and kernel UAF vulnerabilities. We proposed
two solutions able to search exploitable states in diverg-
ing paths rather than crashing path, with a novel oriented
fuzzing and a control-flow stitching solution. They could
trigger both vulnerabilities and exploitable states for a
big portion of vulnerable applications. They could also
successfully generate working exploits for certain vulner-
abilities. For some programs which have higher complex-
ity and scalability, such as OS kernel, we can facilitate
exploitation of kernel UAF vulnerabilities.We show that
our framework could explore OS kernel and identify var-
ious system calls essential for exploiting an UAF vulner-
ability and bypassing security mitigation. We has moved
one step towards practical AEG. But there is a long way
to go.

Endnotes

L At the fuzzing stage, our objective is to identify sys-
tem calls for diversifying running contexts but not directly
for generating exploitation. Therefore, we disable kernel

Page 24 of 25

address randomization for reducing the complexity of
tracking down dangling pointers.

2We did not evaluate Revery on CGC programs which
have heap-based vulnerabilities or real world programs,
because the binary analysis engine angr (Shoshitaishvili
et al. 2016)’s constraints solving ability is not enough for
complex programs. And we are still working on it.

Acknowledgements
Not applicable.

Funding

We would like to thank the anonymous reviewers for their constructive
comments. This work is supported by the Key Laboratory of Network
Assessment Technology, Chinese Academy of Sciences and Beijing Key
Laboratory of Network Security and Protection Technology, as well as Beijing
Municipal Science and Technology Project (No.Z181100002718002), National
Natural Science Foundation of China (No. 61572481 and 61602470, 61772308,
61472209, 61502536, and U1736209), and Young Elite Scientists Sponsorship
Program by CAST (No. 2016QNRC001).

Availability of data and materials
All public dataset sources are as described in the paper.

Authors’ contributions

YW and WW designed the study. YW and WW performed the experiments. CZ,
YW, WW and XX wrote the paper. XG and WZ reviewed and edited the
manuscript. All authors read and approved the manuscript.

Authors’ information

Xiaorui Gong is a senior engineer at School of Cyber Security, University of
Chinese Academy of Sciences. His research focuses on software and system
security.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

1School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China. ?Institute for Network Sciences and Cyberspace, Tsinghua University,
Beijing, China. 3College of Information Sciences and Technology, Pennsylvania
State University, University Park, United States. 4Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China. °Key Laboratory of
Network Assessment Technology, CAS, Beijing, China. ®Beijing Key Laboratory
of Network Security and Protection Technology, Beijing, China.

Received: 5 November 2018 Accepted: 20 February 2019
Published online: 29 March 2019

References

lexploitable Crash Analyzer (2018). http://msecdbg.codeplex.com/. Accessed 1
May 2018

Alhuzali A, Eshete B, Gomemo R, Venkatakrishnan V (2016) Chainsaw: Chained
automated workflow-based exploit generation. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM. pp 641-652

Andersen S, Abella V (2004) Data Execution Prevention: Changes to
Functionality in Microsoft Windows XP Service Pack 2, Part 3: Memory
Protection Technologies. http://technet.microsoft.com/en-us/library/
bb457155.aspx

Anonymous (2018) Demo exploit. https://www.dropbox.com/s/
xk7bijxd66650ee/demo.tar.gz?dl=0

http://msecdbg.codeplex.com/
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
https://www.dropbox.com/s/xk7bijxd66650ee/demo.tar.gz?dl=0
https://www.dropbox.com/s/xk7bijxd66650ee/demo.tar.gz?dl=0

Wang et al. Cybersecurity (2019) 2:12

Argyroudis P (2012) The Linux kernel memory allocators from an exploitation
perspective. https://argp.github.io/2012/01/03/linux-kernel-heap-
exploitation/

Avgerinos T, Cha SK, Lim B, Hao T, Brumley D (2011) Aeg: Automatic exploit
generation. In: Network and Distributed System Security Symposium

Avgerinos T, Cha SK, Rebert A, Schwartz EJ, Woo M, Brumley D (2014)
Automatic exploit generation. Communications of the ACM 57(2):74-84

Azad B (2016) Mac OS X Privilege Escalation via Use-After-Free: CVE-2016-1828.
https://bazad.github.io/2016/05/mac-os-x-use-after-free/#use-after-free

Béhme M, Pham V-T, Nguyen M-D, Roychoudhury A (2017) Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM. pp 2329-2344

Bohme M, Pham V-T, Roychoudhury A (2016) Coverage-based greybox fuzzing
as markov chain. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM. pp 1032-1043

Brumley D, Poosankam P, Song D, Zheng J (2008) Automatic patch-based
exploit generation is possible: Techniques and implications. In:
Proceedings of the 29th IEEE Symposium on Security & Privacy, Oakland

Cha SK, Avgerinos T, Rebert A, Brumley D (2012) Unleashing mayhem on
binary code. In: Security and Privacy (SP), 2012 IEEE Symposium On. IEEE.
pp 380-39%4

CTF TIME (2018). https://ctftime.org. Online: accessed 01-May-2018

Database NV (2017) CVE-2017-7374 Detail. https://nvd.nist.gov/vuln/detail/
CVE-2017-7374

Dullien T, Flake H (2011) Exploitation and state machines. Proc Infiltrate

Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, Chen Z Collafl: Path sensitive fuzzing. In:
2018 IEEE Symposium on Security and Privacy (SP), vol. 00. pp 660-677.
https://doi.org/10.1109/SP.2018.00040. https.//doi.ieeecomputersociety.
org/10.1109/5P.2018.00040

Gruss D, Maurice C, Fogh A, Lipp M, Mangard S (2016) Prefetch side-channel
attacks: Bypassing SMAP and kernel ASLR. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM

He L, Cai Y, Hu H, Su P, Liang Z, Yang Y, Huang H, Yan J, Jia X, Feng D (2017)
Automatically assessing crashes from heap overflows. In: Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press. pp 274-279

Heelan S (2009) Automatic generation of control flow hijacking exploits for
software vulnerabilities. PhD thesis, University of Oxford

Hu H, Chua ZL, Adrian S, Saxena P, Liang Z (2015) Automatic generation of
data-oriented exploits. In: USENIX Security Symposium. USENIX
Association, Washington, D.C. pp 177-192. http://blogs.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/hu

Huang S-K, Huang M-H, Huang P-Y, Lai C-W, Lu H-L, Leong W-M (2012) Crax:
Software crash analysis for automatic exploit generation by modeling
attacks as symbolic continuations. In: Software Security and Reliability
(SERE), 2012 IEEE Sixth International Conference On. IEEE. pp 78-87

Jang Y, Lee S, Kim T (2010) Breaking kernel address space layout randomization
with intel tsx. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS)

jndok (2016) Analysis and exploitation of Pegasus Kernel vulnerabilities.
https://jndok.github.io/2016/10/04/pegasus-writeup/

KASAN (2017) The Kernel Address Sanitizer(KASAN). https://github.com/
google/kasan/wiki

Kiezun A, Guo PJ, Jayaraman K, Ernst MD (2009) Automatic creation of SQL
injection and cross-site scripting attacks. In: ICSE 2009, Proceedings of the
31st International Conference on Software Engineering. IEEE Computer
Society, Vancouver. pp 199-209

Konovalov A (2017) Exploiting the Linux kernel via packet sockets. https://
googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-
packet.html. Accessed 18 Jan 2018

Nikolenko V (2016) Linux Kernel ROP - Ropping your way to # (Part 1). https://
www.trustwave.com/Resources/SpiderLabs-Blog/Linux-Kernel-ROP---
Ropping-your-way-to---(Part-1)/

PaX-Team (2003) PaX ASLR (Address Space Layout Randomization). http://pax.
grsecurity.net/docs/aslr.txt

Rawat S, Jain V, Kumar A, Bos H (2017) VUzzer: Application-aware Evolutionary
Fuzzing. In: Network and Distributed System Security Symposium

Rex (2018) Shellphish’s automated exploitation engine. https://github.com/
shellphish/rex. Online: accessed 01-May-2018

Page 25 of 25

Schwartz EJ, Avgerinos T, Brumley D (2011) Q: Exploit hardening made easy. In:
USENIX Security Symposium. Usenix. pp 25-41

Serebryany K (2016) Continuous fuzzing with libfuzzer and addresssanitizer. In:
Cybersecurity Development (SecDev), IEEE. IEEE. pp 157-157

Serebryany K, Bruening D, Potapenko A, Vyukov D (2012) Addresssanitizer: A
fast address sanity checker. In: the 2012 USENIX Annual Technical
Conference. USENIX Association,. pp 309-318

Serebryany K, Stepanov E, Shlyapnikov A, Tsyrklevich V, Vyukov D (2018)
Memory tagging and how it improves C/C++ memory safety. CoRR
abs/1802.09517.1802.09517

Shoshitaishvili Y, Wang R, Salls C, Stephens N, Polino M, Dutcher A, Grosen J,
Feng S, Hauser C, Kruegel C, et al (2016) Sok:(state of) the art of war:
Offensive techniques in binary analysis. In: Security and Privacy (SP), 2016
IEEE Symposium On. IEEE. pp 138-157

Sotirov A (2007) Heap feng shui in javascript. Black Hat Eur

Stephens N, Grosen J, Salls C, Dutcher A, Wang R, Corbetta J, Shoshitaishvili Y,
Kruegel C, Vigna G (2016) Driller: Augmenting fuzzing through selective
symbolic execution. In: NDSS Vol. 16. pp 1-16

Swiecki R (2016) Honggfuzz. Available online a t: http://code.google.com/p/
honggfuzz

Unlink Exploit (2018). https://heap-exploitation.dhavalkapil.com/attacks/
unlink_exploit.html. Online: accessed 01-May-2018

Valgrind (2018). http://valgrind.org. Accessed 1 May 2018

Vanegue J (2013) The automated exploitation grand challenge. In: Presented
at H2HC Conference

XuW, LiJ, ShuJ, Yang W, Xie T, Zhang Y, Gu D (2015) From collision to
exploitation: Unleashing use-after-free vulnerabilities in linux kernel. In:
Proceedings of the 2015 ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM

Zalewski M (2018) American Fuzzy Lop. http://Icamtuf.coredump.cx/afl/.
Online: accessed 01-May-2018

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://argp.github.io/2012/01/03/linux-kernel-heap-exploitation/
https://argp.github.io/2012/01/03/linux-kernel-heap-exploitation/
https://bazad.github.io/2016/05/mac-os-x-use-after-free/#use-after-free
https://ctftime.org
https://nvd.nist.gov/vuln/detail/CVE-2017-7374
https://nvd.nist.gov/vuln/detail/CVE-2017-7374
https://doi.org/10.1109/SP.2018.00040
https://doi.ieeecomputersociety.org/10.1109/SP.2018.00040
https://doi.ieeecomputersociety.org/10.1109/SP.2018.00040
http://blogs.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
http://blogs.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://jndok.github.io/2016/10/04/pegasus-writeup/
https://github.com/google/kasan/wiki
https://github.com/google/kasan/wiki
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://www.trustwave.com/Resources/SpiderLabs-Blog/Linux-Kernel-ROP---Ropping-your-way-to---(Part-1)/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Linux-Kernel-ROP---Ropping-your-way-to---(Part-1)/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Linux-Kernel-ROP---Ropping-your-way-to---(Part-1)/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://github.com/shellphish/rex
https://github.com/shellphish/rex
http://arxiv.org/abs/1802.09517
http://code. google. com/p/honggfuzz
http://code. google. com/p/honggfuzz
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html
http://valgrind.org
http://lcamtuf.coredump.cx/afl/

	Abstract
	Keywords

	Introduction
	Motivation example
	The vulnerability
	Exploit derivability
	Our solution: Revery
	Vulnerability analysis
	Diverging path exploration
	PoC stitching

	Our solution: FUZE

	Vulnerability analysis
	Vulnerability identification
	Memory tags
	Security rules

	Layout analysis
	Vulnerability-related object layout
	Vulnerability-related code

	Critical information extraction in OS kernel

	Diverging path exploration in Revery
	Alternative choices
	Layout-oriented fuzzing
	Design
	Implementation details

	Diverging inputs filtering
	Exploitable states searching
	Exploitable state
	Exploitable states searching

	Diverging path exploration in FUZE
	Fuzzing context initialization
	Under-context kernel fuzzing
	Exploitable states searching
	Symbolic execution setup
	Exploitable machine state identification

	Exploit synthesis
	Identify stitching points
	Stitching points in the crashing path
	Stitching points in diverging paths
	What are good stitching points?
	How to find stitch points?

	Control-flow path stitching
	Exploit generation
	Exploitable state constraints
	Payload constraints

	Evaluation
	Exploits by Revery
	Case studies
	Control-Flow hijacking exploits
	Limit of State-of-the-art AEG Solutions.
	Performance of Revery.

	Exploitable states
	Failed cases
	Limitations of Vulnerability Detection
	Limitations of Angr

	Efficiency of layout-oriented fuzzing
	Efficiency of control-flow stitching
	Overall results
	Path Reusing Rate
	Failure Analysis

	Effectiveness of FUZE
	Efficiency of FUZE

	Related work
	Automatic exploit generation
	AEG based on symbolic execution
	AEG based on crash analysis
	Data-oriented AEG
	Other AEG solutions

	Directed fuzzing
	Coverage-guide fuzzing
	Target-directed fuzzing

	Discussion
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	Author details
	References

