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Abstract

The group signature scheme is an important primitive in cryptography, it allows members in a group to generate
signatures anonymously on behalf of the whole group. In view of the practical application of such schemes, it is
necessary to allow users’ registration and revocation when necessary, which makes the construction of dynamic
group signature schemes become a significant direction. On the basis of (Ling et al., Lattice-based group signatures:
achieving full dynamicity with ease, 2017), we present the first full dynamic group signature scheme over ring, and
under the premise of ensuring security, the efficiency of the scheme is improved mainly from the following three
aspects: the size of keys, the dynamic construction of a Merkle hash tree that used to record the information of
registered users, and the reuse of the leaves in this tree. In addition, the public and secret keys of both group manager
and trace manager are generated by a trusted third party, which prevents the situation that the two managers
generate their respective public key and secret key maliciously. Compared with the counterpart of the scheme in
(Ling et al., Lattice-based group signatures: achieving full dynamicity with ease, 2017) over ring, the expected space
complexity of the Merkle tree used in our work down almost by half, and the computational complexity of its update
has been reduced by a notch because of the dynamic construction of the hash tree.
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Introduction
The concept of group signature scheme was proposed
by Chaum and van Heyst (1991), which allows and only
allows members in a group to sign messages anonymously
on behalf of the whole group, and the generated signa-
ture would reveals nothing about the identity of the signer.
In other words, the verifier in the scheme can only ver-
ify that the signature was generated by one of the group
members, and have no idea which member it is. How-
ever, the trace manager can use its secret key to open the
signature to trace the identity of the signer, which avoids
the unnecessary disputes. In view of the group signature
scheme has the above properties: anonymity (Chen and
Pedersen 1994) and traceability, which help the group sig-
nature scheme to be one of the cryptography primitives to
realize anonymous authentication.
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In the early stages, most of the constructions of
group signature schemes are static (Boneh et al. 2004;
Camenisch and Lysyanskaya 2004; Nguyen and Naini
2004; Furukawa and Yonezawa 2004), namely the mem-
bers in a group and its size are all fixed in the setup phase,
no changes about these parameters would appear during
the subsequent operations in the scheme. And further-
more, they also assume that the group manager is always
honest and trustworthy. After that, many other properties
were considered in the construction of the group signature
schemes:

(1) It is fortunately that the size of public key and
generated signatures could do not depend on the size
of the group (Camenisch and Stadler 1997;
Camenisch and Michels 1998), this property is very
important for the construction and application of
group signature schemes, which avoids the
over-expansion of the size of public key and
signatures as the number of valid group members
increases, and makes the schemes with this property
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are well suited for large groups. At the same time, the
former is beneficial to improve the implementation
efficiency of schemes, while the latter makes the
communication complexity and cost of the scheme
are independent of the group size.

(2) The power of the group manager was weakened
(Bellare et al. 2005) by separating a trace manager
GMtrace from the group manager GMupdate and
decreasing the trust level to each authority to
enhance protection for honest algorithm executant,
for example, their key pairs were generated by a trust
third party, which improves the security of the
algorithms and makes them closer to the practical
application. GMtrace is responsible for the trace of a
signature when necessary, and GMupdate is
responsible for the registration and revocation of
users and the update of the group information. The
tracing soundness of a group signature scheme
(Stern 1996) no longer assumes that the group
managers are all reliable, which means that, before
the verifier outputs the final verification result, the
identity of the signer traced by a trace manager and
the corresponding proof are also need to be checked.
This improvement makes the constructed group
signature schemes have stronger security.

(3) Semi-dynamic model (Kiayias and Yung 2006), which
involves the dynamic registration that allows users to
apply to join the group when needed in RO model
(Camenisch and Stadler 1997; Camenisch and
Michels 1998; Ateniese et al. 2000; Furukawa and
Imai 2005; Kawachi et al. 2008; Delerablée and
Pointcheval 2006; Bichsel et al. 2010) and standard
model (Practical Group Signatures Without Random
Oracles; Boyen and Waters 2006; Groth 2006; 2007;
Boyen and Waters 2007; Signing on Elements in
Bilinear Groups for Modular Protocol Design), or the
dynamic revocation that allows the group manager to
remove certain group members from the group. And
there are different manners to realize the latter
functionality:

(a) The group manager updates the group public
key and distribute it to the users that are not
revoked (Sakai et al. 2012; Camenisch and
Lysyanskaya 2002).

(b) Making use of a accumulator (Dodis et al.
2004; Nguyen 2005), which allows efficient
proof of group membership and update of the
group information.

(c) The signer is required to include a proof of
eligible membership when signing a message
(Bresson and Stern 2001) or update its secret
key (Boneh et al. 2004) according to the
changes of the group.

(d) VLR(verifier local revocation) (An Efficient
Protocol for Anonymously Providing
Assurance of the Container of a Private Key;
Boneh and Shacham 2004; Nakanishi and
Funabiki 2005; Libert and Vergnaud 2009)
means that the list of revoked group members
is only distributed to the verifier.

(4) Full dynamic model (Naor et al. 2001; Peikert and
Rosen 2007; Camenisch and Groth 2004; Nakanishi
et al. 2009; Libert et al. 2012a, b), which allows both
the dynamic registration of users and the dynamic
revocation of group members, which makes the
algorithm has stronger security and higher
practicability.

The security of schemes mentioned above are mostly
based on the hardness assumption in the algebraic theory
while the development of quantum computing technology
makes such schemes meet serious security problems. For-
tunately, the research of the post-quantum cryptography
has brought new hope to cryptology. And as one impor-
tant branch of it, lattice based cryptography is widely
considered has potential ability to against quantum attack,
because there is no efficient algorithm has been found to
breaks the hardness assumptions based on lattice. How-
ever, the computational complexity and space complexity
of lattice based cryptographic schemes have not been
solved very well.
The first lattice based group signature scheme is given

in (Gordon et al. 2010) in 2010, which was improved to
obtain stronger anonymity in (Camenisch et al. 2012), and
given the size of group N, the size of signatures gener-
ated by the schemes in (Gordon et al. 2010; Camenisch et
al. 2012) are all polynomials in N. Subsequently, the size
of the signature was lowered up to O(logN) in (Laguil-
laumie et al. 2013; Nguyen et al. 2015; Ling et al. 2015)
by different manners. And then, an efficient lattice based
static group signature scheme is presented in (Libert et
al. 2016b) without using the GPV trapdoor (Gentry et
al. 2008), where a Merkle tree was used as an accumu-
lator to keep a record of the registered user and group
information. In order to further satisfy the requirements
of making the schemes allow users to register and to be
revoked dynamically, the schemes in (Langlois et al. 2014;
Libert et al. 2016a) are dependent on lattice trapdoor seri-
ously, and contains some complex modules. By combining
the static scheme in (Libert et al. 2016b) with the security
model in (Bootle et al. 2016), it is possible to realize the
dynamic registration and revocation of users efficiently
(Ling et al. 2017). It includes an update algorithm in accu-
mulator, and both the security and the signature size were
improved.
In this paper, the first full dynamic group signature

scheme over ring is presented inspired by (Ling et al.
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2017), which realizes the full dynamic register and revo-
cation of users, the dynamic construction of Merkle hash
tree that is used to record the legitimate users with
their witnesses and the group information, the reuse of
leaves in this tree, and the honestly generation of keys of
GM=(GMupdate, GMtrace) by a trusted third party, which
leads to a reduction in the security of the generated algo-
rithm. And in theory, the trust third party needs to be
completely trusted and not easy to be violated, however,
it is impossible in practice. We can only use relatively
trusted entities to partially implement the functions of
a trusted third party, such as certificate authority(CA),
to avoid situations where the group manager and trace
manager generate their respective keys maliciously. Con-
cretely, the scheme in this paper improves the efficiency of
that in (Ling et al. 2017) from the following three aspects:

(1) To reduces the size of keys and signature, the scheme
is implemented over ring, which also helps to reduce
the space complexity and computational complexity
of the scheme.

(2) The dynamic construction and update of the Merkle
hash tree allows the size of it expanded along with
the size of group gradually, and this change helps to
reduce both the computational complexity of the
update of group information and the space
complexity of the scheme.

(3) The reuse of leaves in Merkle hash tree is realized in
this scheme, which reduces the space complexity of
the scheme indirectly to a certain extent.

Though we have tried a lot, there is still a large space
for improvement in the use of zero-knowledge protocol
to proof a legitimate membership. And the problem of
the delayed verification of a signature is also not solved,
the direct idea to solve this problem is to store the sig-
nature and the verification information or just store the
verification result of the signature by the group manager
at each time τ , and the verifier requests the corresponding
information from it as needed. Unfortunately, this would
increase the space complexity unlimitedly along with the
extension of the time.
In the remainder of this paper, we start by review-

ing some definitions, theorems used in the scheme, and
the dynamic algorithm to construct the Merkle hash
tree in “Preliminaries” section. And then the detailed full
dynamic group signature scheme is presented in “The effi-
cient full dynamic group signature scheme” section. To
analysis the security properties of the scheme, we present
the underlying zero knowledge protocol and its security
analysis in “The underlying protocol” section. Finally, we
discuss the properties of the scheme in “The analysis of
the group signature scheme” section, and conclusion in
“Conclusion” section.

Preliminaries
The background of lattice
In this section, we will review some notations, defini-
tions and theorems used for analysing our main results.
Throughout this paper, set the security parameter λ, inte-
ger n = O(λ), prime modules q = Õ

(
n1.5
)
, k =

�log q�,m = 2k, and R = Z[ x] /f (x), f (x) = xn + 1,Rq =
R/qR, given vectors x = (x1, · · · , xm), z = (z1, · · · , zm),
integer t, then ‖x‖t = (∑m

i=1 ‖xi‖t
) 1
t denotes its t-norm,

(x|z) is a concatenation of the two vectors.

Definition 1 (The ring-SVP and ring-SIVP) (Lyuba-
shevsky et al. 2013) Given a field R, let γ ≥ 1, then the
ring-SVPγ problem is: given the ideal lattice I over R, find
out a non-zero short vector x ∈ I , such that ‖x‖∞ ≤
γ · λ1(I). And the ring-SIVPγ problem could be defined
similarly: find out n independent elements (x1, · · · , xn) in
I , such that ‖(x1, · · · , xn)‖∞ ≤ γ · λn(I).

Definition 2 (The ring-SIS∞
n,m,q,β ) (Ling et al. 2015;

Peikert 2016) Choose m elements aj
$← Rq uniformly, let

random vector A = (a1, · · · , am) ∈ Rm
q , positive real

number β = poly(n), find out a non-zero short vector
z = (z1, · · · , zm) ∈ Rm

q , ‖z‖∞ ≤ β , such that

fA(z) = 〈A, z〉 = A� · z =
∑

j
aj · zj = 0 ∈ Rq

Numerous studies (Lyubashevsky and Micciancio 2006;
Lyubashevsky 2008; 2012; Peikert and Rosen 2006; 2007)
have shown that if f (x) is irreducible polynomial with inte-
ger coefficients, m >

log q
log(2β)

, γ = 16mn log2 n, q ≥ γ
√
n

4 log n ,
then the problem ring-SIS∞

n,m,q,β is at least as difficult as
the problem ring-SVP∞

γ over I .

Definition 3 (The ring-LWE distribution) (Peikert
2016) For secret element s ∈ Rq, X is the noise distribution
in Rq with bound β , choose a $← Rq, e

$← X uniformly,
then As,X = (a, b = s·a+e mod q) is called the ring-LWE
distribution in Rq × Rq.

Definition 4 (The decision ring-LWEn,m,q,X ) (Lyuba-
shevsky et al. 2010; Peikert 2016) Let n,m ≥ 1, q ≥ 2, given
m samples (aj, bj) ∈ Rq × Rq, which are sampled from
one of the two distributions: As,X and the uniform distri-
bution in Rq × Rq, then the decision ring-LWEn,m,q,X is to
distinguish which one the samples are from.

Theorem 1 (Lyubashevsky et al. 2010) Let q = 1
mod 2n,β ≥ ω

(√
n log n

)
, γ = n2

(
q
β

) (
nm

log(nm)

)1/4
, then

there is an error distribution X with bound β , such that
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the problem ring-LWEn,m,q,X is at least as difficult as the
problem ring-SVP∞

γ over I .

The Merkle hash tree and its dynamic comstruction
The construction of Merkle tree used in the group sig-
nature scheme is based on the collision-resistant hash
functions. For arbitrary positive integer t, let G =(
1, 2, 4, · · · , 2k−1) ,bin(t) is the binary representation of

t, then t = G · bin(t). let H =
{
hA|A $← Rm

q

}
, hA :

{0, 1}k × {0, 1}k → {0, 1}k is collision-resistant hash func-
tions based on the problem ring-SISn,m,q,β , where A =
[A0|A1]∈ Rm

q , A0,A1
$← Rk

q, for arbitrary (u0,u1) ∈
{0, 1}k × {0, 1}k , we have

hA(u0,u1) = bin(A0 · u0 + A1 · u1 mod q) ∈ {0, 1}k
so the following equivalent relationship is true,

hA(u0,u1) = u ⇔ A0 · u0 + A1 · u1 = G · u mod q

Let H = {hA|A ∈ Rm
q }, then we give the following

specific description of the dynamic updating algorithm
TDA(t,d∗) to construct and update the Merkle tree that
is used to record the registered users and partial group
information in this paper:

TSetup: Initialize the Merkle tree as an empty tree
with depth 1, and its root is u. Let t denote the
number of legal members in the group.
TJoin: Search for the first non-zero leaf in all leaves,
and assume that its index is i ≤ t. Include an empty
tree with depth j = �log t� into the original one if
there is not a such leaf. And take its root ut,1 and the
root ut,0 of the original tree as two inputs of the hash
function to compute a new root u = hA(ut,0,ut,1)
of the new Merkle tree. In other words, the original
tree and the empty tree are two children of the new
Merkle tree with depth j + 1. And for any i ∈ [2j+1],
we have |bin(i)| = j + 1.
TUpdate: Let uj+1 = d∗ denote the value of the leaf
corresponding to the ith user, bin(i) = (i1, · · · , ij+1)
is the binary description of integer i, its witness is
w = (bin(i), (wj+1, · · · ,w1)). Update the value of
notes recursively in the path uj, · · · ,u0 from the leaf
uj+1 to root u, then output the witness w, a new root
unew, where wj+1, · · · ,w1 and uj, · · · ,u0 satisfy the
following relationship

∀l ∈ {j, · · · , 1, 0},ul =
{
hA(ul+1,wl+1), if il+1 = 0
hA(wl+1,ul+1), if il+1 = 1

Let unew = u0 be the new root of the Merkle tree.

Given the variable t, the computational complexity of
algorithm TUpdate(t,d∗) is O(log t), and it satisfies the
following property

Theorem 2 Suppose that the ring-SIS∞
m,q,β is difficult,

R = {d0, · · · ,dt} be the set of the leaves related to users
who have been registered, then the algorithm TDA(t,d∗) is
secure. And given a negligible function negl(λ), for any PPT
adversaryA, the following inequality is true

Pr[ (d∗,w∗) ← A(R, t) : d∗ /∈ R,u = u0]≤ negl(λ)

The full dynamic group signature scheme and its security
Generally, there are four participants in a group signa-
ture scheme: the trusted third party(TTP): who generates
the public parameters and the public-private key of the
group manager and the trace manager. The group man-
ager GMupdate: who is responsible to update the group
information and the registration and revocation of users.
The trace manager GMtrace: given a signature, GMtrace is
responsible to trace the identity of signer when there is a
dispute. The users: who are usually appeared as a signer
to sign messages or a verifier to verify signatures. Here,
we give some changes of the full dynamic group signature
scheme in (Ling et al. 2017), and a revised definition is
given as follows:

GKeyGen(λ) → (pp, (mpk,msk), (opk, osk)): On
input the security parameter λ, this algorithm out-
puts the public parameter pp, group public key
gpk = (pp,mpk, opk), and distribute the group
secret key msk to GMupdate, the tracing secret key
osk to GMtrace. Initialize the registration list reg and
the group information info as ∅, and we assume that
they can only be edited by a party knowingmsk.
UKeyGen(pp) → (upk,usk): Given the public
parameter pp, this algorithm outputs a user’s key pair
(upk,usk).
〈Join(gpk,upk), Issue(gpk,msk, reg, info)〉: This
algorithm is an interactive protocol between a user
and the group manager GMupdate. Assume that the
new registered user is the tth member in the group,
the user become a legitimate member of the group if
the algorithm goes well, and the Join algorithm sets
its signing secret key gsk = (bin(t),upkt ,uskt). For
the Issue algorithm, GMupdate runs the algorithm
TDA(t,upkt) to update the Merkle hash tree, the
group information infoτ , and the registered user list
reg.
Revoke(gpk, S,msk, reg, infoτ ) → infoτnew : Given
the revocation list S, for any i ∈ S, the group man-
ager GMupdate runs algorithm TUpdate

(
bin(i), 0k

)

to update the Merkle hash tree, the registered user
list reg and the group information infoτnew .
Sign(gpk, gski, infoτ ,M) → �: On input group pub-
lic key gpk, group information infoτ , this algorithm
outputs a signature � to a message M signed by the
user corresponding to ith leaf at τ or an error symbol
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⊥ if the user is illicit at τ , i.e. the user has not been
registered or has been revoked at τ .
Verify(gpk,�sign, infoτ ,M) → 0/1: Verify the signa-
ture � and output 1 if it is valid, otherwise output
0.
Trace(gpk, osk,M,�, reg, infoτ ) → (b6′,�trace):
This algorithm is operated by the trace manager
GMtrace, it outputs the public key b′ of the signer who
signed the message M at τ and generate a proof for
this fact if the signature � is valid. Otherwise output
⊥.
Judge(gpk,b′,M,�trace,�, infoτ ) → 0/1: Verify the
proof�trace generated by the trace manager GMtrace,
and output 1 if it is valid, otherwise output 0.

To verify that whether the signer is legitimate or not,
i.e. the signer has registered and not be revoked when
he signs a message M at τ , the group manager veri-
fies that whether the value of the leaf corresponding
to this signer is non-zero. And to avoid leaking any
information about the signer’s identity, we bring to the
extension-permutation technology to hide it. In other
words, suppose that the binary representation of the
value of the leaf that corresponding to the signer is
bin(di) = (di1, di2, · · · , dik), i ∈[ t], choose a vector a $←
{0, 1}k−1 uniformly such that the Hamming weight of
d′
i = (bin(di)|a) ∈ {0, 1}2k−1 is k. Given S2k−1 =

{π2k−1|π2k−1 is a random permutation of elements
in{0, 1}2k−1},π2k−1 ∈ S2k−1, we have

the Hamming weigth of π2k−1
(
d′
i
)
is k ⇔ di �= 0

Moreover, the full dynamic group signature scheme
needs to satisfies the following properties: correctness,
anonymity, non-frameability, traceability, and tracking
soundness.

Correctness: This property means that if the signer
signs a message honestly, the algorithm Verify can
always output 1, the trace manager GMtrace can trace
the identity of the signer by the algorithm Trace, and
generates a proof �trace accepted by the algorithm
Judge.
Anonymity: For any PPT adversary A, this prop-
erty means that it is impossible to distinguish sig-
natures generated by two legitimate users with a
non-negligible probability, even though the adver-
sary A could learn the secret key msk of GMupdate,
corrupt some of the users, and is given the access to
the oracle Trace.
Non-frameability: For any PPT adversary A, the
probability to generate a valid signature that traced
to a legitimate user is negligible, even though the
adversary A could learn the secret keys of GMupdate
and GMtrace, and corrupt some of the users.

Traceability: For any PPT adversaryA, the probabil-
ity to generate a valid signature that traced to a illicit
user is negligible, even though the adversaryA could
learn the secret key of GMtrace and corrupt some of
the users.
Tracing soundness: For any PPT adversary A, the
probability to generate a valid signature that traced
to two different users is negligible, even though the
adversary A could learn the secret keys of GMupdate
and GMtrace, and corrupt some of the users.

The efficient full dynamic group signature scheme
By using the dynamic algorithm to construct the Merkle
hash tree and the formal definition of the full dynamic
group signature scheme, the specific construction of the
scheme in this paper could be defined as follows:

GKeyGen(λ): Given the security parameter λ, this
algorithm is operated by a trusted third party, let t >

0 denote the number of registered users, l = �log t�,
n = O(λ), prime modules q = Õ(n1.5), k = �log q�,
m = 2k, real integer β > 0, X is the noise distribu-
tion bounded by β in R, k′ = ω(log λ). H : {0, 1}∗ →
{0, 1}k′ is a hash function for FS transformation, and
Com : {0, 1}∗ × {0, 1}m → Zn

q is a string commit-
ment schemewith properties of statistical hiding and
computational binding (Kawachi et al. 2008). Choose
a matrix A $← Rm

q uniformly, for any j ∈ {1, 2}, TTP
chooses Sj

$← X k , Ej
$← X , B $← Rk

q, msk $←
Rm uniformly, and computes the public keys Pi =
S�
i B + Ei ∈ Rq, mpk = A × msk. Output the pub-

lic parameter pp = (λ, n, q, k,m,β ,X , k′,H ,Com,A),
the tracing public key opk = (B,P1,P2), the group
public key gpk = (pp,mpk, opk). And distribute the
tracing secret key osk = (S1,E1) to GMtrace, the
group secret keymsk to GMupdate. Initialize the reg-
istration list reg and the group information info as
∅, and we assume that they can only be edited by a
party knowingmsk.
UKeyGen(pp): The user chooses usk $← Rm uni-
formly as its secret key, and computes the related
public key upk = bin(A · usk) mod q ∈ {0, 1}k .
〈Join(gpk,upk), Issue(gpk,msk, reg, info)〉: Assume
that the new registered user is the tth member
in the group, and the user runs algorithm Join,
sends its public key upk to the group manager
GMupdate, and if this algorithm goes well, the algo-
rithm Issue searches and denotes the first non-
zero leaf as t′ if he approves the user’s applica-
tion. Let upkt′ = upk, regt′ = regt′ [upkt′ ] [ τ ],
τ is the time the user registered, the algo-
rithm Issue includes regt′ into the registration list
reg := (reg1[upk1] [ τ ] , · · · , regt′ [upkt′ ] [ τ ] , · · · ,
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regt[upkt] [ τ ] ) . Then the group manager GMupdate
runs the algorithmTDA(bin(t′),upkt′) to update the
Merkle tree, outputs the group information infoτ =
(u, {wj}ij) where u is the root and {wj}ij are witnesses
of all legal users, and updates the counter of regis-
tered users t = t + 1. Let uskt′ = usk, the user sets
gskt′ = (bin(t′),upkt′ ,uskt′) as its signing secret key.
Revoke(gpk, S,msk, reg, infoτ ): Given the revoca-
tion list S that is the set of public keys of
group members who would be revoked, if S ={
upki1 , · · · ,upkir

}
is not an empty set, ij ∈[ t], j ∈

[ r], for every j ∈[ r], upkij ∈ S, GMupdate runs the
algorithm TUpdate in TDA

(
bin(ij), 0k

)
to update

the Merkle hash tree, then updates the registration
list reg: changes regij [upkij ] [ τ ] to regij

[
0k
]
[ τnew]

if upkij ∈ S, otherwise changes regij [upkij ] [ τ ] to
regij [upkij ] [ τnew], outputs the new group informa-
tion infoτnew = (unew, {wj}ij) that consists of a new
root unew and witnesses {wj}ij of upkij , updates the
counter of legitimate users t = t − r. So, the leaves
with value 0k in theMerkle tree corresponding to the
potential users who have not been registered or those
have been revoked.
Sign(gpk, gski, infoτ ,M): To sign amessageM at τ by
using the group information infoτ , the user related
to the ith leaf verifies that whether there is a witness
of bin(i) in infoτ firstly, if not, return ⊥. Otherwise,
the user obtains (bin(i), (wl, · · · ,w1)) from infoτ to
do the follows: For each j ∈ {1, 2}, random string
rj

$← {0, 1}k , the user encrypts vector upki by mak-
ing use of the double-encryption paradigm (Naor
and Yung 1990) and the RLWE-based encryption
scheme (Regev 2009; Lyubashevsky et al. 2013) to
obtain the ciphertext

cj = (cj,1, cj,2) =
(
B · rj mod q,Pj · rj +

⌈q
2

⌋
· upki

mod q
)

∈ Rq × Rk
q

Then the user generates a non-interactive zero-
knowledge argument of knowledge(NIZKAoK)�sign
for:

(1) it has legitimate witness
ζ = (uski,upki,bin(i),wl, · · · ,w1, r1, r2) such
that the signer is a legitimate member in the
group, i.e. upki �= 0k , and the values of nodes
in the path that from the leaf corresponding to
the user to the root are all correct.

(2) (uski,upki) is a valid public-private key-pair.
(3) (c1, c2) are two legitimate ciphertext of upki.

Finally, the signer outputs the signature � =
((c1, c2),�sign). The NIZK argument of knowledge

mentioned above is obtained from the Stern’s
three-round interactive protocol (Song 2001) by
FS transformation, i.e. runs the Stern proto-
col k′ times sequentially to obtain a negligible
soundness error, and the transcript is �sign =(
{CMTj}k′

j=1,CH , {RSPj}k′
j=1

)
, where

CH=H
(
M, {CMTj}k′

j=1,A,uτ ,B,P1,P2, c1, c2
)
∈ {1, 2, 3}k′

Verify(gpk,�sign, infoτ ,M): The verifier obtains the
root uτ of the Merkle hash tree at τ from the group
information infoτ , and verifies that whether the pre-
dicted challenge CH is true, outputs 0 if not, oth-
erwise verifies the respond RSPj that corresponding
to CMTj and CHj for each j ∈[ k′], and outputs 1 if
everything is correct, otherwise outputs 0.
Trace(gpk, osk,M,�, reg, infoτ ): The trace manager
GMtrace uses its tracing secret key osk to decrypt
the ciphertext c1 = (c1,1, c1,2) and compute b′ =⌊

(c1,2−S�
1 ·c1,1)

q/2

⌉
∈ {0, 1}k . If there is not a witness of

b′ in infoτ or b′ = 0k , output ⊥. Then GMtrace gen-
erates a non-interactive zero-knowledge argument
of knowledge(NIZKAoK)�trace for the fact that the
user corresponding to b′ really generated a signature
� to messageM at τ . In other words, the trace man-
ager GMtrace should proof that he has S1 ∈ Rk

q,E1 ∈
Rq, y ∈ Rk

q, such that

‖S1‖∞ ≤ β , |E1| ≤ β , ‖y‖∞ ≤
⌈q
5

⌉

S�
1 · B + E1 = P1 mod q

c1,2 − S�
1 · c1,1 = y +

⌊q
2

⌋
· b′ mod q

Similarly, the NIZKAoK mentioned above is
obtained from the Stern’s three-round interactive
protocol (Song 2001) by FS transformation, i.e.
GMtrace runs the Stern protocol k′ times sequen-
tially to obtain a negligible soundness error, and the
transcript is �trace =

(
{CMTj}k′

j=1,CH , {RSPj}k′
j=1

)
,

where

CH = H(M, {CMTj}k′
j=1, gpk,�, infoτ ,b′) ∈ {1, 2, 3}k′

Finally, this algorithm outputs (b′,�trace).
Judge(gpk,b′,M,�trace,�, infoτ ): Verify the proof
�trace and output 1 if it is true, otherwise output 0.

In this scheme, the public parameter and the public-
private key pair are all generated by a trusted third
party, which can avoid the problem that the illegiti-
mate group managers generate their keys maliciously,
but not the malpractices of the legitimate group man-
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agers. This is one possible attack on this type of scenario
that we can think of, such as group members can be
added or withdrawn according to a group manager’s per-
sonal preference or interest relationship. To this problem,
we can consider to set up the group manager a trust
value TV, a confidence threshold CT, and a reduction
coefficient RC, where the value of TV is initialized to
tv = 1, 0 < CT , and RC < 1. The value of TV
is reduced to TVs = tv − s · RC if the group man-
ager has s times malpractices, and it would be revoked if
TVs < CT .
Furthermore, it is not necessary to prepare a large

storage space for a large empty tree standby before a
signature is generated, namely we only need to extend
or update the Merkle hash tree when a user needs a
registration or be revoked. Compared with the scheme
in (Ling et al. 2017), our work could realizes the truly
dynamic of the group signature scheme, which helps to
economize considerable storage space, and there is also
no limits on the upper bound of the size of the group
as long as the storage space is allowed. In addition, the
fact that the scheme is implemented based on ring could
help to reduce the computational complexity and space
complexity of it.
Finally, a timestamp τ is given to each member in

the group, the group manager GMupdate updates the
group information infoτ once a new user registered
or a legitimate member has been revoked, which indi-
cates that the user can not sign a message M before
a registration or after a revocation. Given a group
information infoτ , we can confirm the timestamp τ

uniquely, and vice versa. For any two timestamps τ1 <

τ2, the group information infoτ1 is published earlier
than infoτ2 .

The underlying protocol
The definition of the underlying protocol
Suppose that the size of the legitimate members in the
group is t ≥ 1 at time τ , for any b ∈ {1, 2}, i ∈[t],
∀j ∈[ l − 1], the underlying zero-knowledge protocol is
used to proof the following relationship by utilizing the
Stern’s protocol (Song 2001)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

upki �= 0

uj =
{
hA(uj+1,wj+1), if ij+1 = 0
hA(wj+1,uj+1), if ij+1 = 1 (�)

upki = bin(A · uski)
cb = (cb,1, cb,2) = (B · rb,Pb · rb + ⌊ q2

⌉ · upki
)

(1)

Given a bit b, a vector a, let ext(b, a) = (b̄ · a, b ·
a)�, ext2(b) = (b̄, b)�, then we have the following equiva-
lence relationship:

(�) ⇔ īj+1 · hA(uj+1,wj+1) + ij+1 · hA(wj+1,uj+1) = uj

⇔ īj+1(A0uj+1 + A1wj+1) + ij+1(A0wj+1 + A1uj+1) = G · uj mod q

⇔ A ·
(
īj+1 · uj+1

ij+1 · uj+1

)

+ A ·
(
ij+1 · wj+1

īj+1 · wj+1

)

= G · uj mod q

⇔ A · ext(ij+1,uj+1) + A · ext(īj+1,wj+1) = G · uj mod q

Then for any b ∈ {1, 2}, i ∈[ t] ,bin(i) = (i1, · · · , il), the
Eq. 1 is equal to the following form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A · ext(i1,u1) + A · ext(ī1,w1) − G · u = 0 mod q
A · ext(i2,u2) + A · ext(ī2,w2) − G · u1 = 0 mod q

· · ·
A · ext(il,upki) + A · ext(īl,wl) − G · ul−1 = 0 mod q
A · uski − G · upki = 0 mod q
cb,1 = B · rb mod q
cb,2 = Pb · rb + ⌊ q2

⌉ · upki mod q

Let B2n
n be the set of strings with length 2n, where the

Hamming weight of each string is n, to illustrate the fact
that the user’s public key upki �= 0k , we pad upki with
a random string with length k − 1 to obtain a new string
upk∗

i , such that upk∗
i ∈ B2k−1

k , then for any permutation
πupki ∈ S2k−1, we have

upki �= 0k ⇔ upk∗
i ∈ B2k−1

k ⇔ πupki
(
upk∗

i
) ∈ B2k−1

k

We make similar operations for each uski to obtain
usk∗

i ∈ B2m
m , for any πupki ∈ S2m, we have usk∗

i ∈
B2m
m ⇔ πuski(usk

∗
i ) ∈ B2m

m . Similarly, extend the vec-
tors u1, · · · ,ul−1, w1, · · · ,wl, r1, r2 to obtain u∗

1 · · · ,u∗
l−1,

w∗
1 · · · ,w∗

l ∈ B2k
k , r∗1, r∗2 ∈ B2k

k . And then let û1 =
ext(i1,u∗

1), · · · , ûl−1 = ext
(
il−1,u∗

l−1

)
∈ {0, 1}4k , ˆupki =

ext
(
il,upk∗

i
) ∈ {0, 1}4k−2, ŵ1 = ext

(
ī1,w∗

1
)
, · · · , ŵl =

ext
(
īl,w∗

l
) ∈ {0, 1}4k .

Given upki = (upki1, · · · ,upkik), for any j ∈[k], let
upk′

ij = ext2(upkij). For any b ∈ {0, 1}, t = (t0, t1) ∈ Z2,
let Tb(t) = (

tb, tb̄
)
. Then for any bj ∈ {0, 1}, we have

upk′
ij = ext2(upkij) ⇔ Tbj

(
upk′

ij

)
= ext2(upkij ⊕ bj).

Because bj is chosen randomly, so the operations above
are equal to carry out a one-time pad to the user’s upkij by
bj to hide it perfectly.
Let r ∈ {2k − 1, 2k}, b ∈ {0, 1},π ∈ Sr , t =

(t0, t1)T ∈ Z2r , we define the permutation
Fb,π (t) = (π(tb),π(tb̄)). Then for all b1, · · · , bl ∈
{0, 1},φu,1, · · · ,φu,l−1,φw,1, · · · ,φw,l ∈ S2k ,πupki ∈ S2k−1,
the following relationship is true,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀j ∈[ l − 1] , ûj = ext
(
ij,u∗

j

)
⇔ Fbj ,φu,j (ûj) = ext

(
ij ⊕ bj,φu,j

(
u∗
j

))

∀j ∈[ l] , ŵj = ext
(
ij,w∗

j

)
⇔ Fbj ,φw,j (ŵj) = ext

(
ij ⊕ bj,φw,j

(
w∗
j

))

ˆupki = ext
(
il ,upk∗

i
)⇔ Fbl ,πupki

( ˆupki
)

= ext
(
il ⊕ bl ,πupki

(
upk∗

i
))

(2)
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Let

z =
(
u∗
1|û1|ŵ1| · · · |u∗

l−1|ûl−1|ŵl−1|upk∗
i | ˆupki|ŵl|

usk∗
i |r∗1|r∗2|upk′

i1| · · · |upk′
ik

)

then z ∈ {0, 1}10kl+2m+6k−3, the Eq. 2 can be unified
into one equation A′ · z = U mod q, where A′,U could
be obtained from the public parameters. Let VALID be
the set of vectors in {0, 1}10kl+2m+6k−3 that satisfy the
relationship above, let

S̄ = S2l−1
2k × S2k−1 × S2m × S2

2l × {0, 1}l
for any

η = ((φu,1, · · · ,φu,l−1,φw,1, · · · ,φw,l),πupki ,πuski ,
(πr,1,πr,2), (b1, · · · , bl)

) ∈ S̄

let �η be the permutation for strings in {0, 1}10kl+2m+6k−3,
then we have

z ∈ VALID ⇔ �η(z) ∈ VALID

After that, we could utilize the Stern’s protocol and the
equal relationship above to proof that z ∈ VALID, and
A′ · z = U mod q. Let D = 10kl + 2m + 6k − 3, the
underlying zero-knowledge argument of knowledge is as
follows,

The security analysis of the underlying protocol
Theorem 3 Suppose that the problem ring-SVPÕ(n)

is
difficult, then the protocol in the previous section satisfies
the following properties: perfect completeness, statistical
zero knowledge, argument of knowledge, and the soundness
error is 2

3 , the communication complexity is Õ(D log q).

Proof As to the property of perfect completeness, if par-
ticipants in the protocol run each step honestly, then V
would accepts the proof generated by P with probability 1.
Owing to rz ∈ ZD

q , z ∈ {0, 1}D, ‖rz‖ = ‖z‖ = D, it is easy
to verify that the communication complexity is Õ(D log q).
And next, we will present a detailed description of the
property of zero knowledge.
We construct a PPT simulator Sim firstly to simulate

the real interactions between a honest prover P and a
malicious verifier V ∗, such that the distribution of the
transcript outputted simulator Sim is statistical close to
that of the real interactions. Sim chooses ¯CH ∈ {1, 2, 3}
randomly as a prediction of the challenge that the verifier
V ∗ would not choose.
If ¯CH = 1, Sim computes a vector z′ ∈ ZD

q by using
the algebraic method , such that A′ · z′ = u mod q.
Then chooses rz ∈ ZD

q , η ∈ S̄ , and strings ρ1, ρ2, ρ3 ∈
{0, 1}m uniformly and randomly to compute the commit-
ments C′

1 = Com(η,A′ · rz; ρ1),C′
2 = Com(�η(rz); ρ2),

C′
3 = Com(�η(z′ + rz); ρ3), and sends the commitment

Algorithm 1: The underlying zero knowledge argu-
ment of knowledge
Commitment: The prover P chooses rz ∈ ZD

q , η ∈ S̄ ,
and ρ1, ρ2, ρ3 ∈ {0, 1}m uniformly and randomly, and
computes the commitments
C1 = Com(η,A′ · rz; ρ1),C2 = Com(�η(rz); ρ2),
C3 = Com(�η(z + rz); ρ3) respectively. Finally, sends
the commitment CMT = (C1,C2,C3) to the verifier V.
Challenge: V chooses a challenge CH ∈ {1, 2, 3}
uniformly and randomly, and sends it to P.
Response: P sends a respond RSP to V depend on the
challenge CH,

1. If CH = 1, set tz = �ρ(z), tr = �ρ(rz),
RSP = (tz, tr , ρ2, ρ3).
2. If CH = 2, set η2 = η, z2 = z + rz,
RSP = (η2, z2, ρ1, ρ3).
3. If CH = 3, set η3 = η, z3 = rz,
RSP = (η3, z3, ρ1, ρ2).

Verification: V verifies the proof generated by P
depend on the challenge CH and the respond RSP,

1. If CH = 1, verify that tz ∈ VALID,
C2 = Com(tr ; ρ2), C3 = Com(tz + tr ; ρ3).
2. If CH = 2, verify that
C1 = Com(η2,A′ · z2 − u; ρ1),
C3 = Com(�η2(z2); ρ3).
3. If CH = 3, verify that C1 = Com(η3,A′ · z3; ρ1),
C2 = Com(�η3(z3); ρ2).

Finally, V outputs 1 if and only if the verification is
true.

CMT = (
C′
1,C′

2,C′
3
)
to V ∗. Depend on the challenge CH

that received from V ∗, the simulator responds as follows:

1. If CH = 1, output ⊥ and break.
2. If CH = 2, let RSP = (η, z′ + rz, ρ1, ρ3) and send it to

V ∗.
3. If CH = 3, let RSP = (η, rz, ρ1, ρ2) and send it to V ∗.

If ¯CH = 2, Sim chooses z′ ∈ VALID, rz ∈ ZD
q , η ∈ S̄ ,

and strings ρ1, ρ2, ρ3 ∈ {0, 1}m uniformly and randomly to
compute the commitments C′

1 = Com(η,A′ · rz; ρ1),C′
2 =

Com(�η(rz); ρ2),C′
3 = Com(�η(z′ + rz); ρ3), and sends

the commitment CMT = (C′
1,C′

2,C′
3) to the verifier V ∗.

Depend on the challenge CH that received from V ∗, the
simulator responds as follows:

1. If CH = 1, let RSP = (�η(z′),�η(rz), ρ2, ρ3) and
send it to V ∗.

2. If CH = 2, output ⊥ and break.
3. If CH = 3, let RSP = (η, rz, ρ1, ρ2) and send it to V ∗.
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If ¯CH = 3, Sim chooses z′ ∈ VALID, rz ∈
ZD
q , η ∈ S̄ , and strings ρ1, ρ2, ρ3 ∈ {0, 1}m uniformly

and randomly, and computes the commitments C′
1 =

Com(η,A′ · (z′ + rz) − u; ρ1),C′
2 = Com(�η(rz); ρ2),C′

3 =
Com(�η(z′ + rz); ρ3), and sends the commitment CMT =(
C′
1,C′

2,C′
3
)
to the verifier V ∗. Depend on the chal-

lenge CH that received from V ∗, the simulator responds
as follows:

1. If CH = 1, compute RSP as in the case
( ¯CH = 2,CH = 1), and send it to V ∗.

2. If CH = 2, compute RSP as in the case
( ¯CH = 1,CH = 2), and send it to V ∗.

3. If CH = 3, output ⊥ and break.

For the commitment scheme is statistical indistinguish-
able, the distribution of the output of Sim and that of
the real interactions are statistical indistinguishable. i.e.
there is a negligible function negl(n) such that Pr[⊥ ←
Sim]= 1

3 ± negl(n). So the simulator would outputs an
acceptable transcript as long as no error symbol ⊥ is out-
putted, in other words, Sim would outputs a transcript
that is indistinguishable from that of a real interactions
with probability almost 2

3 .
Finally, we would like to give a concrete explana-

tion of the property of argument of knowledge. Sup-
pose that there are three different valid responds
RSP1 = (tz, tr , ρ2, ρ3),RSP2 = (η2, z2, ρ1, ρ3),RSP3 =
(η3, z3, ρ1, ρ2) corresponding to three different challenges
of one commitment CMT, then the validity of responds
indicates the following relationship:
⎧
⎪⎨

⎪⎩

tz ∈ VALID;C1 = Com(η2,A′ · z2 − u; ρ1) = Com(η3,A′ · z3; ρ1);
C2 = Com(tr ; ρ2) = Com(�η3 (z2); ρ2);

C3 = Com(tz + tr ; ρ3) = Com(�η2 (z2); ρ3)

Because of the computational binding of the commit-
ment scheme Com, we have
{
tz ∈ VALID; η2 = η3; tr = �η3 (z3); tz + tr = �η2 (z2) mod q;
A′ · z2 − u = A′ · z3 mod q

For tz ∈ VALID, let z′ = �−1
η2 (tz), then z′ ∈ VALID,

�η2(z′) + �η2(z3) = �φ2(z2) mod q, and we could learn
that z′+z3 = z2,A′ ·z′+A′ ·z3 = A′ ·z2 mod q, Finally, we
obtain a solution z′ to a instance of the problem ring-SIS,
which satisfies A′ · z′ = u mod q.

The analysis of the group signature scheme
Notation
The security of the full dynamic group signature scheme
presented in this paper satisfies the strong security defini-
tion given in (Bootle et al. 2016): correctness, anonymity,
non-frameability, traceability, and tracing soundness.
Before the specific description, we would like to give a

brief description of oracles and special symbols used in
the proof firstly. HUL is the set of honest users whose
secret keys are generated honesty. BUL is the set of
users whose signing secret keys are sent to the adver-
sary. CUL is the set of users whose public keys are chosen
by the adversary. SL is the set of signatures generated
by oracle sign. CL is the set of signatures generated
by oracle Chalb. And oracles used in the proof are as
follows:

AddU(i): Add an honest user i into the set HUL at
time τ .
CreU(i,upki): Create a new user i whose public key
upki is chosen by the adversary, which is invoked in
the oracle SenToM.
SenToM(i,Min): It is used to run the algorithm Join,
on behalf of a corrupt user, together with the honest
group manager GMupdate.
SenToU(i,Min): It is used to run the algorithm Join,
on behalf of the corrupt group manager GMupdate,
together with a legitimate user i.
RReg(i): Return the registration information regi of
user i.
MReg(i, ρ): Change the registration information
regi of user i into ρ.
RevealU(i): Return the signing secret key gski of user
i to the adversary, and add i to the set BUL.
Sign(i,M, τ): Return a signature to a message M
signed by user i at time τ , and add this signature to
the set SL.
Chalb(infoτ , i0, i1,M): For any b ∈ {0, 1}, Return the
signature to a message M signed by user ib at time
τ , and add this signature to the set CL. This requires
that the users i0, i1 are all legitimate at time τ , and
this oracle could be revoked only once.
Trace(infoτ ,�,M): Return the signer of a signature
� signed at time τ and a proof of this fact, which
requires that the signature � /∈ CL.
UpdateG(S, τ): It allows the adversary to update
some information about the group at time τ , which
requires that each element in S is legitimate user’s
public key at time τ .
IsActive(infoτ , reg, i): Return 1 if and only if the
user i is a legitimate member in the group at time τ ,
otherwise return 0.

The security analysis
Complexity: Given a security parameter λ, the size of
legitimate users t, l = �log t�, n = O(λ), q = Õ

(
n1.5
) =

Õ
(
cλ1.5

)
with a constant c, k = O

(
log
(
λ1.5
))

(Table 1).
Then the size of group public key gpk = (pp,mpk, opk) is
|gpk| = Õ

(
λ1.5
)+ l ·O(log λ), the size of signing secret key

gski = (bin(i),upki,uski) is |gski| = l+3k = l+O(log λ),
and the size of signature � = (�sign, c1, c2) is



Sun et al. Cybersecurity            (2019) 2:21 Page 10 of 15

Table 1 Comparison of main parameters in (Ling et al. 2017) and
our work

Indicators |gpk| |gsk[ i] | |�|
Schemes

(Ling et al. 2017) Õ
(
λ2 + λ · l) Õ(λ) + l Õ(λ · l)

Our work Õ(λ1.5)+ l ·
O(log λ)

l + O(log λ) Õ(λ) + l · O (log λ1.5
)

|�| =|�sign| + |c1| + |c2|
=k′ · |CMT | + k′ + k′ · |RSP| + 2(k + 1) log q
=k′ · (20kl + 6m + 12k + 3n log q − 5)

+ 2(k + 1) log q
=k′ · (20kl + 6m + 12k + (3n + 2k + 2) log q − 5)

=Õ(λ) + l · O (log λ1.5
)

Suppose that the upper bounds of the size of the group
in (Ling et al. 2017) and that in our work are the same and
denoted as N, let l = logN , then the expected compu-
tational complexity of realizing the dynamic registration
and revocation of the counterpart of the scheme in (Ling
et al. 2017) over ring is O(l), and that of our work is

O
(
1
2

· l + 1
22

· (l − 1) + · · · + 1
2l−1 · 2 + 1

2l

)

=O

⎛

⎝l ·
⎛

⎝

⎛

⎝
l−1∑

i=1

1
2i

⎞

⎠+ 1
2l−1

⎞

⎠−
l−1∑

i=2

i
2i+1

⎞

⎠

=O
(
l −
(
1 − l

2l−1

))

=O(l − 1)

Correspondingly, the expected space complexity of
Merkle tree used in (Ling et al. 2017) is O(2N − 1)
(Table 2), and that of our work is

O
(
1
2

· (2N − 1) + 1
22

· (N − 1) + · · ·

+ 1
2l−1 ·

(
N

2l−3 − 1
)

+ 1
2l

·
(

N
2l−3 − 1

))

= O

⎛

⎝
3−l∑

i=l
2i −

l∑

i=1

1
2i

⎞

⎠

= O
(
1
3

·
(
2l+2 + 1

2l−3

)
−
(
1 − 1

2l

))

= O
(
4
3

· N − 1 + 11
3N

)

= O
(
4
3

· N − 1
)

.
Table 2 Comparison of the expect complexity of Merkle trees
used in (Ling et al. 2017) and our work

Indicators
The update complexity The space complexity

Schemes

(Ling et al. 2017) O(logN) O(2N − 1)

Our work O(log N
2 ) O( 43 · N − 1)

Theorem 4 The full dynamic group signature scheme
based on ring in this paper is correct.

Proof Now, we give a specific description of the correct-
ness of our scheme according to the perfect completeness
of the underlying protocol and the correctness of the
encryption scheme. If the signature � = (�sign, c1, c2) is
generated by a legitimate user, then the perfect complete-
ness of the underlying protocol could help the signature
� to pass the verification of the algorithm Verify, and
the algorithm Trace will outputs the user public key upki
with a probability approximate to 1 together with a proof
�trace accepted by Judge. We need to compute e = c1,2 −
S�
1 c1,1 = E1 · r1 + ⌊ q2

⌋ · upki mod q when to decrypt a
ciphertext, and let b′ = (

b′
1, · · · , b′

l
)
, e = (e1, · · · , el), for

any j ∈[l],

b′
j =
{
0, if |ej − 0| < |ej − q

2 |
1, if |ej − 0| ≥ |ej − q

2 |
Note that ‖E1 · r1‖∞ <

q
5 , so b′ = upki with over-

whelming probability. Furthermore, because the user cor-
responding to upki is legitimate, then the witness w =
(bin(i),wl, · · · ,w1) is included in the group information
infoτ , and the value of the related leaf is not 0k . So, the
algorithm Trace could always obtain a tuple (S1,E1, y)
that satisfies requirement. And finally, for the fact that
the proof �trace is perfect completeness, so the algorithm
Judge outputs 1 with probability 1.

Theorem 5 Suppose that the problem ring-LWEn,m,q,X
is difficult, then the scheme in this paper is anonymous in
RO model.

Proof Assume that the size of legitimate users is t, the
adversary A and challenger C are all PPT algorithms. For
two different users i0 �= i1 ∈[ t] given by A, we give the
following game before the concrete proof:
We say that the scheme has a property of anonymity

if there is a negligible function negl(λ), such that
Pr
[
Expanon−b

FDGS,A(λ)
]

= 1 ≤ negl(λ). Given a negligible
function negl(λ), we will finish this proof by hybrid games.
Let the output of each game is OPl, l ∈[ 0, 9].

Algorithm 2: Expanon−b
FDGS,A(λ)

(pp, (opk, osk)) ←
GKeyGen(λ),HUL,CUL,BUL, SL,CL = ∅.
(info, (mpk,msk)) ← A(pp).
Return 0 ifA’s output is not well-formed, let
gpk = (pp,mpk, opk).
b∗ ← AAddU,CreU,RevealU,SenToU,Trace,MReg,Chalb(gpk),
return b∗.
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Game0: Given two different legitimate users i0 �= i1 ∈
[ t] by A, let b = 0, the challenger C runs the experiment
above honestly by using i0.
Game1: This game is completely consistent with

Game0 except that include (S2,E2) to osk, i.e. let osk =
((S1,E1), (S2,E2)). And this change, to the view of the
adversary A, makes no difference, Pr[OP1 = 1]=
Pr[OP0 = 1].
Game2: This game is completely consistent with

Game1 except that use a simulator Simtrace to simu-
late the real interactions of the protocol that generates
�trace, i.e. replace the real transcript �trace with a simu-
lated transcript of Simtrace. And the two transcripts are
statistical indistinguishable because of the statistical zero-
knowledge of �trace, Pr[OP2 = 1]−Pr[OP1 = 1]≤
negl(λ).
Game3: This game is completely consistent with

Game2 except that replace (S1,E1) with (S2,E2) when
Simtrace simulates the oracle Trace. For a legitimate signa-
ture (M,�sign, c1, c2), where c1, c2 are encryptions to dif-
ferent strings respectively. Let F1 be the signature inquiry
initiated by A to the oracle Trace, and the view of A may
changing if F1 appears, however, it violates the soundness
of the protocol that generates �sign. And the change in
this game, to the view ofA, is indistinguishable except the
incident F1, i.e. Pr[OP3 = 1]−Pr[OP2 = 1]≤ Pr[ F1]≤
negl(λ).
Game4: This game is completely consistent with

Game3 except that use a simulator Simsign to simu-
late the real interactions of the protocol that generates
�sign, i.e. replace the real transcript �sign with a simu-
lated transcript of Simsign. And the two transcripts are
statistical indistinguishable because of the statistical zero-
knowledge of �sign, Pr[OP4 = 1]−Pr[OP3 = 1]≤
negl(λ).
Game5: This game is completely consistent with

Game4 except that change the ciphertext c1 into the
encryption to upki1 when initiate an inquiry to the ora-
cle Chalb. And the difference of the view of A caused by
this change is negligible for the semantic security of the
encryption scheme. The challenger responds with (S2,E2)
during the inquiry to the oracle Trace, which makes no
difference by substitute the ciphertext c1, so, Pr[OP5 =
1]−Pr[OP4 = 1]= negl(λ).
Game6: This game is completely consistent with

Game5 except that replace (S2,E2) with (S1,E1) when
Simtrace simulates the oracle Trace. For a legitimate sig-
nature (M,�sign, c1, c2), where c1, c2 are encryptions to
different strings respectively, let F2 be the signature
inquiry initiated by A to the oracle Trace, which violates
the soundness of the protocol that generates �sign. And
the change in this game, to the view ofA, is indistinguish-
able except the incident F2, Pr[OP6 = 1]−Pr[OP5 =
1]≤ Pr[ F2]≤ negl(λ).

Game7: This game is completely consistent with
Game6 except that change the ciphertext c2 into the
encryption to upki1 . And the difference of the view of A
caused by this change is negligible for the semantic secu-
rity of the encryption scheme. The challenger responds
with (S1,E1) during the inquiry to the oracle Trace,
which makes no difference to the view of the adversary,
Pr[OP7 = 1]−Pr[OP6 = 1]= negl(λ).
Game8: This game is completely consistent with

Game7 except that replace the simulator Simsign with a
real protocol that generates �sign, i.e. replace the sim-
ulated transcript of Simsign by a real transcript �sign.
And the two transcripts are statistical indistinguishable
because of the statistical zero knowledge of the protocol
�sign, Pr[OP8 = 1]−Pr[OP7 = 1]≤ negl(λ).
Game9: This game is completely consistent with

Game8 except that replace the simulator Simtrace with a
real protocol that generates �trace, i.e. replace the sim-
ulated transcript of Simtrace by a real transcript �trace.
And the two transcripts are statistical indistinguishable
because of the statistical zero knowledge of the protocol
�trace, Pr[OP9 = 1]−Pr[OP8 = 1]≤ negl(λ).
Finally, we could learn from the games above that the

probability:

Pr[OP9 = 1]−Pr[OP0 = 1]

=Pr
[
Expanon−1

FDGS,A(λ)
]

− Pr
[
Expanon−0

FDGS,A(λ)
]

≤c · negl(λ)

where c is constant. So, the scheme in this paper satisfies
the property of anonymity.

Theorem 6 Suppose that the ring-SIS∞
n,m,q,1 is difficult,

then the scheme in this paper is unforgeable in the RO
model.

Proof Suppose that there ia a PPT adversary A could
forge a valid signature with a non-negligible probability ε,
then there is a PPT algorithmB could break the security of
Merkle hash tree or solve the problem ring-SIS∞

n,m,q,1 with
a non-negligible probability by invoking A as a black box.
And to complete the proof, we give the following game:
If there is a negligible function negl(λ), such that

Pr
[
ExpunforgeFDGS,A(λ)

]
= 1 ≤ negl(λ), then we say that

the scheme is unforgeable. Given a random matrix
A, the challenger computes the public parameter pp
honestly, then invokes the algorithm of A, runs the
operations in the game above, during this process, B
responds the inquiries of A honestly. If the adversary
A wins the game and outputs

(
M∗,�∗, i∗,�∗

trace, infoτ

)
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Algorithm 3: ExpunforgeFDGS,A(λ) firstly
pp ← GKeyGen(λ), HUL,CUL,BUL, SL = ∅.
(info, (mpk,msk), (opk, osk)) ← A(pp).
Return 0 ifA’s output is not well-formed, let
gpk = (pp,mpk, opk).
(M,�, i,�trace, infoτ ) ←
ACreU,RevealU,SenToU,Sign(gpk).
Return 1 if Verify(gpk, infoτ ,M,�) =
1 ∧ Judge(gpk,upki, infoτ ,�trace,M,�) = 1 ∧ i ∈
HUL \ BUL ∧ (M,�, τ) /∈ SL.

finally, then there is a non-negligible function ε,
such that Pr

[
ExpunforgeFDGS,A(λ)

]
= 1 ≥ ε, and the

algorithm B could operate as follows: Decom-
pose the signature �∗ into

(
�∗

sign, c∗
1, c∗

2

)
, where

�sign =
({

CMT∗
i
}k′
i=1 ,CH

∗,
{
RSP∗

i
}k′
i=1

)
, because the

adversary A wins the game above, so
{
RSP∗

i
}k′
i=1

is legitimate responds to
{
CMT∗

i
}k′
i=1 ,CH

∗. Let
ξ∗ =

(
M∗,

{
CMT∗

i
}k′
i=1 ,A,uτ ,B,P1,P2, c∗

1, c∗
2

)
, for the

successful probability to guess the value H(ξ∗) is 3−k′ , so
the adversary uses the ξ∗ to initiate queries to the oracle
H with overwhelming probability, and ξ∗ is the preimage
ofH with probability ε′ = ε − 3−k′ , let t∗ ∈ {1, 2, · · · ,QH}
be the index of one inquiry, where QH is the number of
inquiries that the adversary A made to the oracle H. The
inputs of the hash queries from 1th to t∗th are all ξ∗, and
B runs the operations ofA for t∗ times. And the inputs of
other hash queries from t∗ + 1th to QH th are something
else, B responds by independent values respectively. By
the Forking lemma in (Brickell et al. 2000; Pointcheval
and Stern 2000), the probability of B gets three different
hash values CH1

t∗ ,CH
2
t∗ ,CH

3
t∗ ∈ {1, 2, 3}k′ to the same

input ξ∗ is ≥ 1
2 , then for any j ∈ {1, 2, · · · , k′}, we have

Pr
[(

CH1
t∗,j,CH

2
t∗,j,CH

3
t∗,j

)
= (1, 2, 3)

]
= 1 − ( 7

9
)k′

.
Given three different legitimate responds(
RSP1t∗,j,RSP

2
t∗,j,RSP

3
t∗,j

)
, what we could learn from

the protocol that generates �sign is that we could
extract a witness ζ ′ = (

uski′ ,upki′ ,w′
τ , r′1, r′2

)
, where

w′
τ = (bin(i′),w′

l,τ , · · · ,w′
1,τ ) ∈ {0, 1}l × ({0, 1}k)l, such

that for ∀b ∈ {1, 2}, ∀j ∈ {0, l − 1}, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uj,τ =
{
hA(uj+1,τ ,wj+1,τ ), if i′j+1 = 0
hA(wj+1,τ ,uj+1,τ ), if i′j+1 = 1

A · uski′ = G · upki′
c∗
b =

(
c∗b,1, c

∗
b,2

)
= (B · r′b,Pb · r′b + ⌊ q2

⌉ · upki′
)

We can learn from the correctness of the encryption
scheme that c∗

1 is the encryption to upki′ . The algorithm
Judge outputs 1 because of the fact thatA wins the game,
and what we can learn from the soundness of the pro-
tocol that generates �trace is that c∗

1 is the encryption to
upki∗ , then upki′ = upki∗ with overwhelming probabil-
ity. By the correctness of the Merkle hash tree, the user
i∗ is legitimate. i∗ ∈ HUL \ BUL indicates that the adver-
sary A doesn’t know gski∗ = (bin(i∗),upki′ ,uski∗). uski∗
was chosen by B and A · uski∗ = G · upki′ , so we have
Pr[uski∗ �= uski′ ]≥ 1

2 . Let z = uski∗ − uski′ , then
z �= 0 and Az = 0 mod q, so, the algorithm B could
solve the problem ring-SIS∞

n,m,q,1 with non-negligible
probability.

Theorem 7 Suppose that the ring-SIS∞
n,m,q,1 is difficult,

then the scheme in this paper is traceable in RO model.

Proof To finish the proof, we give the following game
firstly:
If there is a negligible function negl(λ), such that

Pr
[
ExptraceFDGS,A(λ)

]
= 1 ≤ negl(λ), then we say that the

scheme is traceable. In other words, If the adversary A
wins the game above, the signature generated byA is legit-
imate and it was traced to a revoked user or a legitimate
user without a valid proof �trace to it, and next, we will
explain that the probability of the fact that the adversary
A wins the game above is negligible.
Let (infoτ ,M,�) be a forged information by

the adversary A in the game ExptraceFDGS,A(λ),
then the challenger could extract the identity
(bin(i),�trace) by running the algorithm Trace.
Decompose the signature � into (�sign, c′

1, c′
2), where

�sign =
(
{CMTj}k′

j=1,CH , {RSPj}k′
j=1

)
, for (infoτ ,M,�) is

a legitimate signature, so {RSPj}k′
j=1 are valid responds

to {CMTj}k′
j=1,CH . Then we could extract a witness

ζ ′ = (
uski′ ,upki′ ,w′

τ , r′1, r′2
)
, which is similar to

Algorithm 4: ExptraceFDGS,A(λ)

(pp, (mpk,msk)) ← GKeyGen(λ),
HUL,CUL,BUL, SL = ∅.
(info, (opk, osk)) ← A(pp).
Return 0 ifA’s output is not well-formed, let
gpk = (pp,mpk, opk).
(M,�, τ) ←
AAddU,CreU,SenToM,RevealU,MReg,Sign,UpdateG(gpk).
Return 0 if Verify(gpk, infoτ ,M,�) = 0.
(i,�trace) ← Trace(gpk, osk, infoτ , reg,M,�).
Return 1 if IsActive(infoτ , reg, i) =⊥
∨Judge(gpk,upki, infoτ ,�trace,M,�) = 0 ∨ i = 0.
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the property of unforgeability, where w′
τ =(

bin(i′),w′
l,τ , · · · ,w′

1,τ

)
∈ {0, 1}l × ({0, 1}k)l, such that for

∀b ∈ {1, 2},∀j ∈ {0, l − 1}, we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

upki′ �= 0

uj,τ =
{
hA(uj+1,τ ,wj+1,τ ), if i′i+1 = 0
hA(wj+1,τ ,uj+1,τ ), if i′i+1 = 1

A · uski′ = G · upki′
c′
b =

(
c′b,1, c

′
b,2

)
= (B · r′b,Pb · r′b + ⌊ q2

⌉ · upki′
)

What we can learn from the correctness of the encryp-
tion scheme is that the ciphertext c′

1 could be decrypted
to upki′ , and we can learn from the correctness of the
algorithm Trace that upki is the plaintext obtained from
the ciphertext c′

1, so upki = upki′ with overwhelming
probability, and the probability that a valid signature be
traced to a revoked user is negligible. In fact, we can learn
from the security of Merkle hash tree that the probability
that the valid signature above be traced to a revoked user
with a valid proof �trace is negligible. Because of the fact
that the challenger has the legitimate witness to generate
a valid proof �trace, and we can learn from the perfect
completeness of the protocol that generates�trace that the
algorithm Judge would accepts �trace with probability 1.
In conclusion, the scheme in this paper is traceable.

Theorem 8 The scheme in this paper satisfies the prop-
erty of tracing soundness in RO model.

Proof To finish the proof, we give the following game
firstly:

Algorithm 5: Exptrace−sound
FDGS,A (λ)

pp ← GKeyGen(λ), CUL = ∅.
(info, (mpk,msk), (opk, osk)) ← A(pp).
Return 0 ifA’s output is not well-formed, let
gpk = (pp,mpk, opk).
(M,�, i0,�trace,i0 , i1,�trace,i1 , infoτ ) ←
ACreU,MReg(gpk).
Return 1 if for
b ∈ {0, 1},Verify(gpk, infoτ ,M,�) = 1 ∧ i0 �= i1 �=⊥
∧Judge(gpk,upkib , infoτ ,�trace,M,�) = 1.

Suppose that the information (M,�, i0,�trace,i0 , i1,
�trace,i1 , infoτ ) is the output of the adversary A in this
game, if the game Exptrace−sound

FDGS,A (λ) outputs 1 finally, i.e.
Judge(gpk,upkib , infoτ , �trace,M,�) = 1, i0 �= i1 �=⊥,
Verify(gpk, infoτ ,M,�) = 1, then we say that A wins.
Given a transcript �trace =

(
{CMTj}k′

j=1,CH , {RSPj}k′
j=1

)
,

the fact that the algorithm Judge outputs 1 indicates that
{RSPj}k′

j=1 are legitimate responds to {CMTj}k′
j=1,CH . For

any b ∈ {0, 1}, it is similarly to the property of unforgeabil-
ity, we could extract S1,b,E1,b, yb, such that

‖S1,b‖∞ ≤ β , |E1,b| ≤ β , ‖yb‖∞ ≤
⌈q
5

⌉

S�
1,b · B + E1,b = P1,b mod q

c1,2 − S�
1,b · c1,1 = yb +

⌊q
2

⌋
· upkib mod q

then we have
(
S�
1,0 − S�

1,1

)
· c1,1 = (y1 − y0) +

⌊q
2

⌋
· (upki1 − upki0 ) mod q

Suppose that upki1 �= upki0 , so ‖ ⌊ q2
⌋ · (upki1 −

upki0)‖∞ = ⌊ q2
⌋
, ‖y1 − y0‖∞ ≤ 2 · ⌈ q5

⌉
, and

‖(y1 − y0) +
⌊q
2

⌋
· (upki1 − upki0)‖∞ > 0

then S�
1,0 �= S�

1,1, we obtained two different solutions of
the function S�

1 · B + E1 = P1 mod q, which is contra-
dictory to the fact that there is at most one solution to the
ring-LWEn,m,q,X sample (B,P1). So, upki1 = upki0 with
overwhelming probability. In other words, the probability
of the fact that A wins is negligible, so the scheme in this
paper satisfies the property of tracing soundness.

Conclusion
In this paper, we give the first ring based full dynamic
group signature scheme, and improve the efficiency of it
mainly from the following three aspects: the size of pub-
lic/secret keys, the dynamic construction of the Merkle
hash tree, and the reuse of its leaves. These changes
help to reduce the computational complexity and space
complexity by leaps and bounds. In addition, we avoid
the adverse condition where the group managers gener-
ate their keys maliciously. Though we have tried a lot,
there is still a large space for improvement in the use of
zero-knowledge proof, and the problem of the delayed
verification of a signature is also not solved. Next, we
would like to focus on the two problems and do some
correlative works.
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