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Abstract

Many real world attacks often target the implementation of a cryptographic scheme, rather than the algorithm itself,
and a system designer has to consider new models that can capture these attacks. For example, if the key can be
tampered by physical attacks on the device, the security of the scheme becomes totally unclear. In this work, we
investigate predicate encryption (PE), a powerful encryption primitive, in the setting of tampering attacks. First, we
show that many existing frameworks to construct PE are vulnerable to tampering attacks. Then we present a new
security notion to capture such attacks. Finally, we take Attrapadung’s framework in Eurocrypt’14 as an example to
show how to “compile" these frameworks to tampering resilient ones. Moreover, our method is compatible with the
original pair encoding schemes without introducing any redundancy.
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Introduction
Predicate Encryption (PE) (Lewko et al. 2010; Okamoto
and Takashima 2009, 2010, 2012; Lewko andWaters 2010;
Katz et al. 2008) is a new paradigm of public-key encryp-
tion that supports fine-grained access control policy. In
PE, secret keys are associated with parameters X, cipher-
texts are associated with parameters Y and a secret key
can decrypt the ciphertext if and only if R(X,Y ) = 1,
where R is a predicate for X and Y. Identity-based encryp-
tion (IBE) is the simplest kind of PE where R is a equality
predicate. PE is powerful and broadly applicable, however,
constructing PE schemes and proving their security are
complex. Especially, constructing fully secure PE schemes
for complex predicates such as for regular languages is a
big challenge.
Wee (2014) and Attrapadung (2014) proposed generic

frameworks to construct PE schemes with new primi-
tives called predicate encodings or pair encodings respec-
tively (Here we focus on pair encodings, which are more
general) and proved the full security utilizing the power-
ful tool— dual system encryption introduced by Waters
Waters (2009) in composite-order groups. Limited by the
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inefficiency, Attrapadung (2016) and Agrawal and Chase
(2016) presented a similar generic framework in prime-
order groups. By far, constructing pair encoding schemes
instead of PE schemes for new predicates has significantly
simplified the process of designing and analyzing fully
secure PE schemes.
The traditional security requirement for PE— full secu-

rity (or called IND-CPA) assumes that the adversary only
has black-box access to the system and thus the master
key and secret keys are completely hidden from the adver-
sary. However, such assumption may not always hold in
practice. Many real world attacks often target the imple-
mentation of a cryptographic scheme, rather than the
algorithm itself, and a system designer has to consider
new models that can capture these attacks. For example,
if the key can be leaked via leakage attacks (Kocher 1996;
Kocher et al. 1999) or modified via tampering attacks
(Biham and Shamir 1997; Boneh et al. 1997; Agrawal et al.
2003) on the device, the security of the scheme becomes
totally unclear. In this work, we only focus on the latter.
The key could be a signing key of a signature scheme, a
decryption key of an encryption scheme, or the master
key of a PE scheme. In PE, the privacy of the master key is
the cornerstone of the PE security and it is fatal when the
master key is tampered.
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Tampering resilience (i.e., tampering attack security)1
was initiated by Bellare and Kohno (2003), whose tar-
gets were pseudorandom permutation (PRP) and pseudo-
random function (PRF). Later, Bellare, Cash, and Miller
(2011) generalized the concept to other cryptographic
primitives, including PKE, signature and IBE. Roughly
speaking, the tampering attacks allow the adversary to
modify the key of a cryptographic scheme and observe
the output under the falsified key. However, except IBE
(PE with a simple equality predicate), tampering attacks
were not considered for the complicated primitive, PE. In
this work, we try to investigate the problem, namely, PE
against tampering attacks.
Overall, from the practical perspective, our work can be

seen a stepping stone towards the practicality of PE, in
which tampering attacks are unavoidable. From the the-
oretical perspective, we show how to achieve tampering
resilience formore complicated primitives than previously
known.
Our Contributions. In this work, we focus on

the security of PE when the master key is tam-
pered and construct a generic fully secure PE frame-
work against tampering attacks. Our contributions are
three-fold.
First, we find that the existing generic PE frame-

works (Attrapadung 2014; 2016; Wee 2014; Agrawal and
Chase 2016; Chen et al. 2015) are vulnerable to tam-
pering attacks. Note that tampering attacks are out of
the scope of these work, so we did not disprove any
of the previous results. However, we’d like to show that
tampering attacks are powerful and one should consider
countermeasures.
Recall that the crux of constructing PE schemes in these

frameworks is designing appropriate encoding schemes.
One property of the encoding scheme is linearity, which
is important to the security proof but also can be a use-
ful tool to threaten the security of PE in the tampering
attack. Concretely, with the help of linearity, the adversary
is able to recover the secret key by choosing appropriate
tampering functions. Since these frameworks cover most
of the existing PE constructions, these PE schemes are
vulnerable to tampering attacks.
Second, we extend the full security notion for PE to

the setting of tampering attacks. We model tampering
attacks by providing the adversary with access a tamper-
ing oracle: the adversary is allowed to submit a tampering
function2 φ and receives secret keys generated under the
falsified master key φ(msk). The adversary can query the
tampering oracle adaptively and repeatedly. If all tamper-
ing functions appeared in the tampering oracle are the

1Tampering resilience is equivalent to related-key attacks (RKA) security
defined in earlier work (Bellare and Kohno 2003).
2A tampering function is also called a related-key derivation (RKD) function
(Bellare and Kohno 2003).

identity function, our definition is exactly the standard
model of full security.
Note that restrictions on tampering functions are nec-

essary, otherwise there are trivial tampering attacks. For
instance, if we allow the adversary to make any polyno-
mial of arbitrary tampering queries, the master key can be
recovered bit-by-bit, as shown by Gennaro et al. (2004).
Therefore, we need to either limit the type of tamper-
ing functions or limit the number of tampering queries to
bypass the impossibility of unrestricted tampering. And
since our attacks on existing PE frameworks are given
with linear functions, constant functions and affine func-
tions, here we confine tampering functions are algebraic
but allow any polynomial of tampering queries.
Finally, we present a generic, fully secure and tampering

resilient PE framework and prove its security within the
methodology of dual system encryption. Our main tool
is a new primitive called Tampering Resilient Function
(TRF). Intuitively, a function H is a tampering resilient
function if H(x) is random even given the output of H
applied to related inputs φ(x) where φ(x) �= x. We
take Attrapadung’s framework (Attrapadung 2014) as an
example to explain how to construct secure PE schemes
against tampering attacks. And, significantly, our costs are
comparable to those of the original framework.
We also give concrete constructions of TRF. Obviously,

the random oracle is a simple TRF. Whereas these frame-
works (Attrapadung 2014; 2016; Wee 2014; Agrawal
and Chase 2016; Chen et al. 2015) are proposed to con-
struct fully secure PE schemes in the standard model,
we expect to instantiate TRF without the random oracle.
With the help of other primitives such as the Non-
Malleable Key Derivation Function (NM-KDF), the con-
tinuous Non-Malleable Key Derivation Function (cNM-
KDF), the Tampering Resilient Pseudorandom Function
(TR-PRF)3 and the Correlated Input Secure Hash (CISH)
function, we obtain instantiations of TRF in the standard
model.
Our Technique. The reason why the existing PE frame-

works are insecure against tampering attacks is the key
malleability caused by the linearity of the underling pair
encoding schemes and it is nature to construct tamper-
ing resilient PE schemes by breaking the property. More
specifically, in the model of full security, secret keys SKX
for X that can decrypt the challenge ciphertext associated
Y ∗ are forbidden to query. However, the adversary in our
new security model can obtain secret keys SK′

X for such X
under the falsifiedmaster key except SKX generated under
the original master key. Using key malleability, a valid SKX
can be generated from SK′

X . Hence, we expect that SK′
X

are independent from SKX so that they are useless for the
adversary to break PE schemes.

3The TR-PRF is exactly the RKA-PRF (Bellare and Kohno 2003).
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Due to the above observation, we define a new primitive
TRF and utilize it mapping the master key before gen-
erating secret keys to achieve tampering resilience. The
property of TRF that the output H(x) is random even
given H(φ(x)) as long as φ(x) �= x ensures that the adver-
sary cannot utilize SK′

X to obtain the additional advantage.
In other words, the adversary cannot generate a prop-
erly distributed SKX correctly without the original master
key. Meanwhile, without the key malleability, we cannot
reduce the security of the modified PE schemes to the
original ones and need to prove using the dual system
encryption techniques.
Related Work. Since the seminal work of Bellare and

Kohno (2003), a lot of tampering resilient symmetric
and asymmetric cryptographic primitives were proposed
(Bellare and Cash 2010; Bellare et al. 2011, 2012, 2014;
Kalai et al. 2011; Liu and Lysyanskaya 2012; Wee 2012;
Damgård et al. 2013, 2015; Fujisaki and Xagawa 2016;
Faonio and Venturi 2016; Qin et al. 2015). Gennaro
et al. (2004) proved that it is impossible to construct
secure cryptographic primitives when the tampering
functions are arbitrary and the number of tampering
queries is unbounded. Hence, the key to construct secure
schemes is how to circumvent these restrictions.
One way is considering restricted tampering. By speci-

fying the type of tampering functions, there existed secure
PRF, PRP, PKE, symmetric encryption (SE) and signature
resilient to linear functions (Bellare and Cash 2010; Bel-
lare et al. 2011; Wee 2012), IBE resilient to affine and
polynomial functions (Bellare et al. 2012), IBE resilient
to invertible functions (Fujisaki and Xagawa 2015). By
restricting the number of tampering queries the adversary
is allowed to make, Damgård et al. (2013) proposed secure
PKE schemes and signatures resilient to arbitrary tamper-
ing functions. In addition, with the bounded tampering
resilient model, Faonio and Venturi (2016) gave the first
signature construction in the standard model and the first
CCA-secure PKE without NIZK.
Another way to bypass the impossibility is taking advan-

tage of extra mechanisms, such as key-updating mech-
anisms and self-destruct mechanisms (Kalai et al. 2011;
Gennaro et al. 2004; Fujisaki and Xagawa 2016).
Most of above work focused on SE and PKE except the

one by Bellare et al. (2012). They proposed similar tam-
pering attacks on Boneh-Franklin IBE scheme (Boneh and
Franklin 2001) and Waters IBE scheme (Waters 2005) but
repaired IBE schemes in a different way from ours. To an
extent, the reason for such tampering attacks on PE or
IBE is due to the key malleability property of the origi-
nal schemes. Bellare et al. (2012) employed the property
together with a component called collision resistant iden-
tity renaming to reduce tampering resilience of the new
schemes to the base ones in the black-box way. How-
ever, the way no longer works in the standard model. Our

strategy is to destroy the key malleability property directly
to prove tampering resilience of new schemes. Moreover,
the master public key of modified PE schemes (Bellare
et al. 2012) depends on the tampering function form. If
tampering functions are complex, such as high-degree
polynomials, the master public key is huge. However in
our work, we only add a function to map the master key
without bringing any redundant elements to the original
schemes. Finally, our framework can apply to PE schemes
more than IBE schemes.

Preliminary
In this section, we present some basic notations and
definitions that are used in our construction.
Notations. If S is a set, let |S| denote the number of its

elements, and x $←− S denotes that x is uniformly sam-
pled from S. Let Un denote the uniform distribution over
{0, 1}n. Denote [ n] the set {1, 2, . . . , n}. A bold face let-
ter represents a vector (e.g. a), and an uppercase letter
represents a matrix (e.g. A). For vectors a = (a1, . . . , an)
and b = (b1, . . . , bn), we denote dot product as a · b =
(a1b1, . . . , anbn). Let ga be the vector

(
ga1 , . . . , gan

)
. We

denote negl(λ) a negligible function of λ.

Tampering resilient function
In this section, we introduce a new primitive called Tam-
pering Resilient Function (TRF), which will be used as a
main tool of our tampering resilient PE schemes. Intu-
itively, a function H is a tampering resilient function if the
output H(x) is still random even if the adversary obtains
outputs of H(φ(x)) with some φ(x) �= x.

Definition 1 (Tampering Resilient Function) Let F =
{φ|φ : {0, 1}n → {0, 1}n} be any family of functions. Say
H = {

H|H : {0, 1}n → {0, 1}k} is a family of tamper-

ing resilient functions if for ∀x $←− Un,φ
$←− F , H $←−

H,φ(x) �= x, the following two distributions are indistin-
guishable:

{H(x), H(φ(x))} and {y, H(φ(x))}
where y $←− Uk.

Composite order bilinear groups
Let (G,GT ) be cyclic groups of composite order N =
p1p2p3, where p1, p2, p3 are distinct primes. A bilinear
group generator G takes as input a security parameter
λ and outputs a description (G,GT , e,N) where e is an
efficiently computable bilinear map. Let Gpi denote the
subgroup of G of order pi and gi denote a random gen-
erator of Gpi . Each element h ∈ G can be written as
h = ga1 g

b
2g

c
3. The bilinear map e satisfies the following

properties:

• Non-degenerate: For all generators g ofG, e(g, g) �= 1.
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• Bilinear: For all a, b ∈ ZN , e
(
ga, gb

) = e(g, g)ab.
• Orthogonality: For g ∈ Gpi , h ∈ Gpj where i �= j,

e(g, h) = 1 ∈ GT .

We will take advantage of the following three Subgroup
Decision (SD) Assumptions (Waters 2009; Lewko and
Waters 2010) to prove the security of our construction.

Definition 2 (SD1) The SD1 problem is to guess β ∈
{0, 1}, given (

paramG, g1, g3,Tβ

)
, where

GSD1
β (λ) : paramG = (G,GT ,N , e) $←− G(λ),

u, v $←− ZN , g1
$←− Gp1 , g2

$←− Gp2 , g3
$←− Gp3 ,

T0 = gu1 ,T1 = gu1 g
v
2,

returnD = (
paramG, g1, g3,Tβ

)
.

Definition 3 (SD2) The SD2 problem is to guess β ∈
{0, 1}, given (

paramG, g1, g3, gu1 g
z
2, g

v
2g

ρ
3 ,Tβ

)
, where

GSD2
β (λ) : paramG = (G,GT ,N , e) $←− G(λ),

u, v, z, ρ,w, κ , δ $←− ZN , g1
$←− Gp1 , g2

$←− Gp2 , g3
$←− Gp3 ,

T0 = gw1 g
δ
3,T1 = gw1 g

κ
2 g

δ
3,

returnD = (
paramG, g1, g3, gu1 g

z
2, g

v
2g

ρ
3 ,Tβ

)
.

Definition 4 (SD3) The SD3 problem is to guess β ∈
{0, 1}, given (

paramG, g1, g2, g3, gα
1 g

u
2 , g

s
1g

v
2,Tβ

)
, where

GSD3
β (λ) : paramG = (G,GT ,N , e) $←− G(λ),

u, v, s,α $←− ZN , g1
$←− Gp1 , g2

$←− Gp2 , g3
$←− Gp3 ,

T0 = e(g1, g1)αs,T1
$←− GT ,

returnD = (
paramG, g1, g2, g3, gα

1 g
u
2 , g

s
1g

v
2,Tβ

)
.

To construct the tampering resilient PE framework, we
additional define a variant of SD3, which is called TRF-
SD3, to handle tampering queries in the security proof.
Let H : {0, 1}n → ZN be a tampering resilient function
and φi : ZN → ZN be an algebraic tampering function.

Definition 5 (TRF-SD3) The TRF-SD3 problem is to
guess β ∈ {0, 1}, given

(
paramG, g1, g2, g3, g

H(φi(α))
1 gu2 ,

gH(α)
1 gu2 , gs1gv2,Tβ

)
, where

GSD3
β (λ) : paramG = (G,GT ,N , e) $←− G(λ),

u, v, s,α $←− ZN , g1
$←− Gp1 , g2

$←− Gp2 , g3
$←− Gp3 ,

T0 = e(g1, g1)H(α)s,T1
$←− GT ,

return D =
(
paramG, g1, g2, g3, g

H(φi(α))
1 gu2 , g

H(α)
1 gu2 , g

s
1g

v
2,Tβ

)
.

Due to the property of TRF, H(φi(α)) is indepen-
dent from H(α). Thus, if SD3 holds in G, so does
TRF-SD3.

Dual system predicate encryption
We consider the predicate family R = {Rκ }κ∈Nc for some
constant c, where Rκ : X ×Y → {0, 1} is a predicate map-
ping a key parameter X ∈ X and a ciphertext parameter
Y ∈ Y to {0, 1}. The family index κ = (n1, n2, ...) speci-
fies the description of a predicate of Rκ ∈ R and the first
entry n1 in κ specifies the domain. In this work, we omit κ

and write RN for simplicity when its domain is ZN . We say
that R is domain-transferable4 if for p that divides N, then
there exist two maps f1 : XN → Xp, f2 : YN → Yp such
that for all X ∈ XN ,Y ∈ YN :

• Completeness. If RN (X,Y ) = 1 then Rp(f1(X),
f2(Y )) = 1.

• Soundness. If RN (X,Y ) = 0, then Rp(f1(X),
f2(Y )) = 0. Otherwise there exists an algorithm
which can output a non-trivial factor F such that
p|F , F|N .

A predicate encryption (PE) for a predicate R con-
sists of four algorithms: Setup, KeyGen, Encrypt,
Decrypt, while a dual system PE scheme addition-
ally have three algorithms, SetupSF, KeyGenSF and
EncryptSF. Note that the last three algorithms are not
parts of the PE scheme, they are only needed for security
purposes.

Setup(λ) → (MSK, PP). The setup algorithm takes in a
security parameter λ and outputs a public parameter PP
and a master key MSK.
KeyGen(MSK,X) → SKX . The key generation algorithm
takes in a master key MSK and a parameter X, then it
outputs a normal secret key SKX .
Encrypt(PP,Y ,M) → CTY . The encryption algorithm
takes in a public parameter PP, a messageM and a param-
eter Y, and outputs a normal ciphertext CTY .
Decrypt(CTY , SKX) → M. The decrypt algorithm takes
in a ciphertext CTY and a secret key SKX , and outputs a
messageM if R(X,Y ) = 1 for X and Y.
SetupSF(λ) → (MSK, PP). The semi-functional setup
algorithm takes in a security parameter λ and outputs
a public parameter PP, a master key MSK and some
parameters used to generate semi-functional keys and
ciphertexts.
KeyGenSF(MSK,X) → SKX . The semi-functional key
generation algorithm takes in a master key MSK and a
parameter X, then it outputs a semi-functional secret key
SKX .

4The property is required for predicates whose domains are composite-order,
such as the predicates in Attrapadung’s framework (Attrapadung 2014).
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EncryptSF(PP,Y ,M) → CTY. The semi-functional
encryption algorithm takes in a public parameter
PP, a message M and a parameter Y, and outputs a
semi-functional ciphertext CTY .
Correctness. We require the correctness condition

holds that for all X ∈ X ,Y ∈ Y , if R(X,Y ) = 1, we have
Decrypt(Encrypt(PP,Y ,M),KeyGen(MSK,X)) = M.

Security model
In this work, we consider the situation where the adver-
sary has unexpected power to tamper with the master
key and it is not captured by the standard full security
notion for PE. In this section, we extend the full security
notion to the setting of tampering attacks by providing the
adversary an additional tampering oracle. Informally, in
our new model, besides secret keys generated under the
original master key, the adversary is also allowed to obtain
secret keys generated under the falsifiedmaster key, which
is derived from the original master key with the tampering
function chosen by the adversary adaptively.
Note that restrictions on tampering functions are nec-

essary, otherwise there are trivial tampering attacks. For
instance, as shown by Gennaro et al. (2004), if the adver-
sary is allowed to make any polynomial of arbitrary
tampering queries, the master key may be recovered bit-
by-bit. Therefore, we need to either limit the type of
tampering functions or limit the number of tampering
queries to bypass the impossibility of unrestricted tam-
pering. And since our attacks on existing PE frameworks
are given with linear functions, constant functions and
affine functions, here we confine tampering functions are
algebraic but allow any polynomial of tampering queries.
Denote the tampering functions by φ : MSK →

MSK. An PE scheme 	 is secure against such tampering
functions if for all PPT adversariesA it holds that

AdvtrpeA,	(λ) = |Pr
[
ExptrpeA,	(λ) = 1

]
− 1

2
| ≤ negl(λ).

where the game ExptrpeA,	(λ) is defined blow. The adver-
sary A may adaptively make (unbounded) polynomially
many key generation queries to the tampering oracle and
receive secret keys generated under the falsified master
key φ(MSK) both in Phase 1 and Phase 2. Key genera-
tion queries for X where R(X,Y ∗) = 1 (Y ∗ is the target
parameter) under the original master key are forbidden.
The restriction is natural, otherwise the adversary can get
secret keys that can decrypt the challenge ciphertext to
win the security game directly. We use a table L to record
X in key generation queries under the original master key.
Notice that if all the tampering functions appeared in the
key generation queries are the identity functions, our def-
inition is exactly the model of full security (i.e. IND-CPA
security).

ExptrpeA,	(λ):

Setup. In this phase, the challenger runs (MSK, PP)

← Setup(λ) and gives PP to the adversaryA. Besides, the
challenger should initialize the list L.

Phase 1. In this phase, A is allowed to make key
generation queries under the falsified master key
with algebraic tampering functions. Upon receiv-
ing a parameter X and a tampering function φi,
the challenger runs SKX ← KeyGen(MSK′,X) in
which MSK′ = φi(MSK) and returns SKX to A. If
φi is the identity function, the challenger adds X
to L.

Challenge. The adversary submits two messages M0,M1
and a challenge parameter Y ∗ with the restriction
R(X,Y ∗) = 0 for ∀X ∈ L. The challenger flips an unbiased
coin b $←− {0, 1} and runs CT∗

Y ∗ ← Encrypt(PP,Y ∗,Mb).
Then it returns CT∗

Y ∗ .

Phase 2. In this phase, the challenger answers key gener-
ation queries in the same way as in Phase 1.

Guess. A outputs b′ ∈ {0, 1}. If b′ = b, the output of the
game is 1.
A weaker security definition is non-adaptively (or

selectively) tampering resilient in which the tampering
functions are fixed in advance. That is, the adversary
must submit a set of tampering functions before seeing
the public parameters. Since the Assumption TRF-SD3
depends on tampering functions, we are only able to
construct PE schemes against non-adaptive tampering
attacks.

Tampering attacks on existing PE frameworks
Wee (2014) and Attrapadung (2014) proposed generic
frameworks for fully secure PE constructions via notions
called predicate encodings or pair encodings respectively
in composite-order bilinear groups. Later, similar frame-
works in prime-order groups were also proposed (Chen
et al. 2015; Attrapadung 2016; Agrawal and Chase 2016).
These frameworks are generic in the sense that they can
be applied to almost arbitrary predicate R.
In this section, we show these frameworks are not

secure against master-key tampering attacks. Note that
tampering attacks are beyond the scope of the security
model in these work, so we did not disprove any of the pre-
vious results. For simplicity, we take Attrapadung’s frame-
work (Attrapadung 2014) as an example to illustrate our
attacks in the subsequent parts, but these attacks are also
applicable for other frameworks (Wee 2014; Attrapadung
2016; Agrawal and Chase 2016; Chen et al. 2015).
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Pair encoding scheme: syntax
Recall that a pair encoding scheme (Attrapadung 2014)
for predicate family R consists of four deterministic algo-
rithms as follows:

• Param(κ) → n. The algorithm takes in κ and
outputs an integer n, which specifies the dimension
of the common variable h = (h1, . . . , hn).

• Enc1(X) → (k = (k1, . . . , km1);m2). The algorithm
takes in a key parameter X and outputs a sequence of
polynomials k and the dimension of the variable
r = (r1, . . . , rm2). {ki}i∈[m1] is a linear combination of
the master key α and variables r,h.

ki = aiα +
∑

j∈[m2]
ai,jrj +

∑

j∈[m2],l∈[n]
ai,l,jhlrj

• Enc2(Y ) → (c = (c1, . . . , cw1);w2). The algorithm
takes in a ciphertext parameter Y and outputs a
sequence of polynomials c and the dimension of the
variable s = (s, s1, . . . , sw2). {ci}i∈[w1] is a linear
combination of variables s,h.

ci = bis+
∑

j∈[w2]
bi,jsj+

∑

l∈[n]
b′
i,lhls+

∑

j∈[w2],l∈[n]
bi,l,jhlsj

• Pair(X,Y ) → E. The algorithm takes in X,Y and
outputs E ∈ Z

m1×w1
N .

Correctness. For any X ∈ X ,Y ∈ Y , let (k;m2) ←
Enc1(X), (c;w2) ← Enc2(Y ),E ← Pair(X,Y ), if
R(X,Y ) = 1, the correctness of the pair encoding scheme
is required to satisfy the following equation:

kEcT = αs.

It is obvious that the syntax of pair encoding implies
the following two properties: parameter-vanishing and
linearity.

(Parameter-Vanishing) k(α, 0,h) = k(α, 0, 0)

(Linearity) k(α1, r1,h) + k(α2, r2,h) = k(α1 + α2, r1 + r2,h)

c(s1,h) + c(s2,h) = c(s1 + s2,h)

When proving the security of PE, parameter-vanishing
and linearity make it possible to switch normal cipher-
texts and keys to semi-functional ones indistinguishably.
However, linearity also makes PE vulnerable to tampering
attacks. The detailed attacks is provided in the subsequent
sections.

Pair encoding scheme: security definition
Our construction is compatible with previous pair encod-
ing schemes (Attrapadung 2014; Wee 2014; Attrapadung
2016; Agrawal and Chase 2016; Chen et al. 2015). There
are two security notions in the pair encoding scheme
(Attrapadung 2014)—perfectly master-key hiding security

and computationally master-key hiding security. Here we
recall the security definitions as follows.
Perfectly Master-key Hiding Security. The pair

encoding scheme P is perfectly master-key hiding
(PMH) if the following two distributions are identi-
cal. If R(X,Y ) = 0, let n ← Param(κ), (k;m2) ←
Enc1(X), (c;w2) ← Enc2(Y ):
c(s,h), k(0, r,h) and c(s,h), k(α, r,h) where

the probability is taken over α
$←− ZN ,h

$←− Z
n
N , r

$←−
Z
m2
N , s $←− Z

w2+1
N .

Computationally Master-key Hiding Security. We
define two computational security notions: selectively
master-key hiding security (SMH) and co-selectively
master-key hiding security (CMH) in a bilinear group
generator G through the following game template
ExpG,b,A,G for the flavor G ∈ {SMH,CMH}. It takes as
input the security parameter λ and does the experiment
with the adversaryA = (A1,A2) as follows:

ExpG,b,A,G(λ) :
(G,GT , e,N , p1, p2, p3) ← Gλ,

g1
$←− Gp1 , g2

$←− Gp2 , g3
$←− Gp3 ,

α
$←− ZN , n ← Param(κ),h $←− Z

n
N ,

st ← AO1
G,b,α,h(·)

1 (g1, g2, g3),

b′ ← AO2
G,b,α,h(·)

2 (st),

where st denotes the state information and the oracles
O1 andO2 are defined below:

• Selective Security.O1 can be queried once whileO2

can be queried many times.

– O1
SMH,b,α,h(Y

∗): Run (c;w2) ← Enc2(Y ∗) and

pick s $←− Z
w2+1
N . Return C ← gc(s,h)

2 .
– O2

SMH,b,α,h(X): If R(X,Y ∗) = 1, return ⊥.
Else, run (k;m2) ← Enc1(X) and pick r
$←− Z

m2
N . Return K ←{

gk(0,r,h)
2 if b = 0
gk(α,r,h)
2 if b = 1

.

• Co-selective Security. BothO1 andO2 can be
queried only once.

– O1
CMH,b,α,h(Y

∗): Run (k;m2) ← Enc1(X) and

pick r $←− Z
m2
N . Return

K ←
{
gk(0,r,h)
2 if b = 0
gk(α,r,h)
2 if b = 1

.

– O2
CMH,b,α,h(X): If R(X,Y ∗) = 1, return ⊥.
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Else, run (c;w2) ← Enc2(Y ∗) and pick s
$←− Z

w2+1
N . Return C ← gc(s,h)

2 .

For a PPT adversary A, we define the advantage of the
A in the security game ExpG,b,A,G for the flavor G ∈
{SMH,CMH} as:
AdvGA(λ)= ∣∣Pr

[
ExpG,0,A,G = 1

] − Pr
[
ExpG,1,A,G = 1

]∣∣

A pair encoding scheme P is selectively (resp. co-
selectively) master-key hiding in G if AdvSMH

A (λ) (resp.
AdvCMH

A (λ)) is negligible in λ. If both hold, we say P is
doubly selectively master-key hiding.

Review Attrapadung’s framework (Attrapadung 2014)
With the pair encoding scheme, the PE framework in
Attrapadung (2014) is given below:
Setup(λ) → (MSK, PP). Run (G,GT , e,N , p1, p2, p3)
$←− G(λ). Pick g1

$←− Gp1 , g3
$←− Gp3 . Run n ← Param(κ).

Choose h $←− Z
n
N and α

$←− ZN . The public key is
PP = (

g1, g3, gh1 , e(g1, g1)α
)

and the master key is
MSK = α.

KeyGen(MSK,X) → SKX . Run (k;m2) ← Enc1(X).
Pick r $←− Z

m2
N ,R3

$←− Z
m1
p3 . Output the secret key SKX as

follows:

SKX = gk(α,r,h)
1 · R3.

Encrypt(PP,Y ,M) → CTY . Run (c;w2) ← Enc2(Y ).
Pick s = (s, s1, . . . , sw2)

$←− Z
w2+1
N . Output the secret key

CTY = (C0,C1) as follows:

C0 = gc(s,h)
1 ,C1 = e(g1, g1)αsM.

Decrypt(CTY , SKX) → M. Check whether R(X,Y ) =
1. If yes, run E ← Pair(X,Y ). ComputeM as follows:

M = C1

e(SKE
X ,C0)

.

Tampering attacks on Attrapadung’s framework
In the setting of tampering attacks, the adversary is
allowed to tamper the master key and gets secret keys
generated under the falsified master key. We show that
Attrapadung’s framework (Attrapadung 2014) is not tam-
pering resilient by specifying particular tampering func-
tions. The master key is an exponent α ∈ ZN . Suppose
the tampering function is linear, w.l.o.g. msk′ = φ(α) =
tα. Having access to the key generation oracle under the
falsified master key φ(α), the adversary obtains

SK′
X = gk(tα,r,h)

1 · R3,

where each polynomial ki of k(tα, r,h) is a linear combi-
nation of the master key α and variables r,h. Because of
the linearity of α and r in k, we are able to get a properly

distributed secret key SKX = gkX(α,r′,h)
1 under the origi-

nal master key α with a new randomness r′ = t−1r by
raising SK′

X to t−1. In this way the adversary can win the
security game because he can get secret keys for X where
R(X,Y ∗) = 1 and Y ∗ is used in the challenge ciphertext.
Besides the linear functions, Attrapadung’s framework

(Attrapadung 2014) is not secure against other alge-
braic functions. Suppose the tampering function is affine,
w.l.o.g. msk′ = φ(α) = tα + c. With a call to the key gen-
eration oracle for X under the falsified master key φ(α)

where R(X,Y ∗) = 1, the adversary obtains

SK′
X,aff = gk(tα+c,r,h)

1 · R3.

Raising SK′
X,aff to t−1 resulting a secret key SKX,aff =

gkX (α+t−1c,r′,h)
1 under the original master key α with a new
randomness r′ = t−1r. Decrypt the challenge ciphertext
using SKX,aff, the adversary obtains

e(SKE
X,aff,C0) = e(g1, g1)(α+t−1c)s.

Then the adversary continues to make a key generation
call for X with a constant tampering function φ(α) = t−1c
and obtains

SKX,con = gk(t−1c,r,h)
1 · R3.

After decrypting with SKX,con, the adversary is able to
compute e(g1, g1)t

−1cs. Thus, combining an affine function
and a constant function, the adversary is able to recover
e(g1, g1)αs to decrypt the challenge ciphertext.

Remark 1 Although the master key in other frameworks
(Wee 2014; Chen et al. 2015; Attrapadung 2016; Agrawal
and Chase 2016) is a group element in the form of gα

1
where g1 is the generator of a prime-order group or a
prime-order subgroup of composite-order groups, similar
tampering attacks still exist. Suppose the tampering func-
tion is a simple polynomial, w.l.o.g. msk′ = φ(gα

1 ) = gtα1 .
The remaining parts are the same.

Note that Bellare et al. (2012) presented similar tam-
pering attacks on Boneh-Franklin IBE scheme (Boneh and
Franklin 2001) andWaters IBE scheme(Waters 2005). The
cause of such tampering attacks is a paradoxical property
called key malleability, which means that there is a simu-
lator can transform a secret key generated by the original
master key to one generated by the falsified master key.
On the one hand, key malleability allows us to reduce
the security of the tampering resilient PE to the secu-
rity of base one in the black-box way, as Bellare et al. did
(Bellare et al. 2012). But on the other hand, we can also
derive properly distributed secret keys from those under
the falsified master key to break the security of schemes
and that is the reason for above tampering attacks. Bel-
lare et al. took advantage of key malleability together with
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another component called identity renaming scheme to
prove tampering resilience of new IBE schemes. In con-
trast, we destroy the property to construct secure PE
schemes. In the next section, we show how to construct
tampering resilient PE schemes.

Our generic tampering resilient PE framework
In this section, we propose a secure and generic PE
framework from pair encoding against algebraic tamper-
ing functions, which is a slightly modified version of the
original one. The only thing we alter is the way the master
key used. That is, we keep the master key unchanged, but
before using it, we first add a function to map the master
key and use the mapped key to generate public parame-
ters and secret keys. Next we will explain how to use the
idea to fix Attrapadung’s framework (Attrapadung 2014)
to achieve tampering resilience.

Generic construction
LetH = {{0, 1}n → ZN } be a family of tampering resilient
functions. Denote by P = (Param,Enc1,Enc2,Pair) a
pair encoding scheme for predicate family R. The PE
framework is given as follows:
Setup(λ) → (MSK, PP). Run (G,GT , e,N , p1, p2, p3)

$←−
G(λ). Pick g1

$←− Gp1 , g3
$←− Gp3 . Run n ← Param(κ).

Choose h $←− Z
n
N and α

$←− ZN . Choose H
$←− H. The pub-

lic key is PP = (
g1, g3, gh1 , e(g1, g1)H(α), H

)
and the master

key is MSK = α.
KeyGen(MSK,X) → SKX . Run (k;m2) ← Enc1(X).

Pick r $←− Z
m2
N ,R3

$←− Z
m1
p3 . Output the secret key SKX as

follows:

SKX = gk(H(α),r,h)
1 · R3. (1)

Encrypt(PP,Y ,M) → CTY . Run (c;w2) ← Enc2(Y ).
Pick s = (

s, s1, . . . , sw2

) $←− Z
w2+1
N . Output the ciphertext

CTY = (C0,C1) as follows:

C0 = gc(s,h)
1 ,C1 = e(g1, g1)H(α)sM. (2)

Decrypt(CTY , SKX) → M. Check whether R(X,Y ) =
1. If yes, run E ← Pair(X,Y ). ComputeM as follows:

M = C1

e(SKE
X ,C0)

.

Correctness. Due to the correctness of the pair encoding
scheme, for R(X,Y ) = 1, we have

e
(
SKE

X ,C0
)

= e
((

gk(H(α),r,h)
1 · R3

)E
, gc(s,h)

1

)

= e(g1, g1)kEc
T

= e(g1, g1)H(α)s

Semi-functional Algorithms. We additionally define
semi-functional algorithms used in the security proof.

SetupSF(λ) → (MSK, PP, g2, ĥ). The algorithm is the
same as Setup except it additionally outputs a generator
g2

$←− Gp2 and a semi-functional parameter ĥ $←− Z
n
N .

KeyGenSF(MSK,X, g2, ĥ, type, α̂) → SKX . Run
(k;m2) ← Enc1(X). Pick r, r̂ $←− Z

m2
N ,R3

$←− Z
m1
p3 .

Output the secret key SKX depending on the input type
t ∈ {1, 2, 3} as follows:

SKX =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
gk(H(α),r,h)
1 · gk(0,r̂,ĥ)

2 · R3

)
if t = 1 (3)

(
gk(H(α),r,h)
1 · gk(α̂,r̂,ĥ)

2 · R3

)
if t = 2 (4)

(
gk(H(α),r,h)
1 · gk(α̂,0,0)

2 · R3
)

if t = 3 (5)

EncryptSF(PP,Y ,M, g2, ĥ) → CTY . Run (c;w2) ←
Enc2(Y ). Pick s = (s, s1, . . . , sw2), ŝ = (ŝ, ŝ1, . . . , ŝw2)

$←−
Z
w2+1
N . Output the ciphertext CTY = (C0,C1) as follows:

C0 = gc(s,h)
1 · gc(ŝ,ĥ)

2 ,C1 = e(g1, g1)H(α)sM. (6)

Security proof
If the pair encoding scheme P is doubly selectively master-
key hiding and the family H is tampering resilient, the
above framework is fully secure and tampering resilient
against algebraic tampering functions. More precisely, we
present the following theorem.

Theorem 1 Suppose that a pair encoding scheme P for
predicate R is selectively and co-selectively master-key hid-
ing, the Subgroup Decision Assumptions are intractable

Table 1 Games in the security proof

Gres : Replace the restriction RN(X , Y∗) = 0 with Rp2 (X , Y
∗) = 0.

G0: (MSK, PP, g2, ĥ) ← SetupSF(λ)

CT∗
Y ← EncryptSF

(
PP, Y∗ ,Mb , g2, ĥ

)

Gk,1: α̂j
$←− ZN , SKj ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

KeyGenSF
(
φi(α), Xj , g2, 0, 3, α̂j

)
if j < k

KeyGenSF
(
φi(α), Xj , g2, ĥ, 1, 0

)
if j = k

KeyGen
(
φi(α), Xj

)
if j > k

Gk,2: α̂j
$←− ZN , SKj ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

KeyGenSF
(
φi(α), Xj , g2, 0, 3, α̂j

)
if j < k

KeyGenSF
(
φi(α), Xj , g2, ĥ, 2, α̂j

)
if j = k

KeyGen
(
φi(α), Xj

)
if j > k

Gk,3: α̂j
$←− ZN , SKj ←

⎧
⎨

⎩
KeyGenSF

(
φi(α), Xj , g2, 0, 3, α̂j

)
if j ≤ k

KeyGen
(
φi(α), Xj

)
if j > k

Gq1+1: SKj ← KeyGenSF(φi(α), Xj , g2, ĥ, 1, 0)

Gq1+2: α̂
$←− ZN

SKj ← KeyGenSF
(
φi(α), Xj , g2, ĥ, 2, α̂

)

Gq1+3: SKj ← KeyGenSF
(
φi(α), Xj , g2, 0, 3, α̂

)

Gfinal : M
$←− M, CT∗

Y ← EncryptSF
(
PP, Y∗ ,M, g2, ĥ

)
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Fig. 1 Proof profile

in G and H is a family of tampering resilient functions.
Also suppose that P is domain-transferable. The frame-
work above is fully secure and non-adaptively tamper-
ing resilient with algebraic tampering functions. For any
PPT adversary A, there exist adversaries B1, . . . ,B6 with
almost the same running time as A such that for any
security parameter λ:

AdvtrpeA (λ) ≤ 2AdvSD1
B1 (λ) + (2q1 + 3)AdvSD2

B2 (λ)

+ AdvTRF−SD3
B3

(λ) + q1AdvCMH
B4 (λ)

+ AdvSMH
B5 (λ) + qallAdvTRFB6 (λ)

where q1, q2 is the number of key generation queries in
Phase 1 and Phase 2 respectively and qall = q1 + q2.

The proof is similar to that of Attrapadung’s framework
(Attrapadung 2014), except the adversary in our secu-
rity definition is allowed to receive secret keys generated
under the falsified master key even for parameters X sat-
isfy R(X,Y ∗) = 1 where Y ∗ is used in the challenge
ciphertext. We define a sequence of games and complete
the proof of Theorem 1 by proving the indistinguisha-
bility between adjacent games. Each game is defined as
follows and the difference compared with the previous one
is given in Table 1.
Greal: The original game.
Gres: Replace the restriction RN (X,Y ∗) = 0 with
Rp2(X,Y ∗) = 0.
G0: The normal challenge ciphertext is modified to be
semi-functional type.
Gk,t : The k-th queried secret is modified to be semi-
functional of type-t where k ∈[ 1, q1] , t ∈ {1, 2, 3}.
Gq1+t : All secret keys queried in Phase 2 are modified to

be semi-functional of type-t where t ∈ {1, 2, 3}.
Gfinal: The semi-functional challenge ciphertext is modi-
fied to the ciphertext of a random message.
We provide a proof profile in Fig. 1, including all the

assumptions and security definitions used in the proof
(To clarity, TRF is used throughout the proof and only
two places are marked in the figure). The key is to prove
that additional secret keys under the falsified master key
won’t help the adversary break the security of PE. We
sketch the proof idea here. Divide these secret keys into
two cases. For X that R(X,Y ∗) = 0, tampering resilience
follows from the master-key hiding of the underlying pair
encoding scheme P directly. For X that R(X,Y ∗) = 1, the
adversary is able to compute e(g1, g1)H(φ(α))s with the help
of the correctness of P. However, the tampering function
φ cannot be the identity function in this case so that the
adversary still cannot recover the masking e(g1, g1)H(α)s

used in the ciphertext from e(g1, g1)H(φ(α))s due to the
property of the tampering resilient function H.
Let AdviA denote the advantage of A in Gi. Notice

that the advantage of A in Gfinal Adv
final
A is 0 since the

challenge ciphertext in the final game is independent
of Mb. The complete proof of Theorem 1 is given in
Appendix.
In addition, if the underlying pair encoding scheme P is

perfectly master-key hiding, we get the following theorem.

Theorem 2 Suppose that a pair encoding scheme P
for predicate R is perfectly master-key hiding, the Sub-
group Decision Assumptions are intractable in G and H
is a family of tampering resilient functions. Also suppose
that P is domain-transferable. The framework above is
fully secure and non-adaptively tampering resilient with

Table 2 A comparison of TRF based on different primitives

Primitives TRF description Reference Assumption Tampering times Tampering function

(c)NM-KDF H(x) = f (x) (Faust et al. 2014) - One-Time Bounded-degree polynomial

f : X → Y
(Qin et al. 2015) DDH Continual Bounded-degree polynomial

TR-PRF H(x) = fx(c) (Bellare and Cash 2010) DDH Continual Group-induced function

f : K × X → Y where c ← X is public

DLIN Continual Group-induced function

CISH H(x) = fk(x) (Goyal et al. 2011) q-DHI Continual Bounded-degree polynomial

f : K × X → Y where k ← K is public
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Table 3 Theoretical analysis of TRF

Reference Description Assumption Size of PP Cost of evaluation

(Faust et al. 2014)** - f : Zt
p × Z

t
p → ZN t|Zp| -

(Qin et al. 2015)*** DDH f : Hn×n × Z
n
p → H

n 2|Zp| + (n2 + 1)|H| 2n2Exp

(Bellare and Cash 2010) DDH f : Zn+1
p × {0, 1}n → H (n + 1)|Zp| + |H| 1Exp

DLIN f : (Z2×2
p )n+1 × {0, 1}n → H 4(n + 1)|Zp| + |H| 1Exp

(Goyal et al. 2011) q-DHI f : Zp × Zp → H |Zp| + |H| 1Exp

*
H is a group of prime order p over ZN . |Zp| and |H| denote the size of an element in Zp andH, respectively. Exp denotes a modular exponentiation inH

**Here we consider the simplest t-wise independent hash function f = ∑t−1
i=0 aixi mod p mod N where a

$←− Zp
***Only partial PP of OT-LF is considered here

algebraic tampering functions. For any PPT adversary A,
there exist adversaries B1, . . . ,B4 with almost the same
running time asA such that for any security parameter λ:

AdvtrpeA (λ) ≤ 2AdvSD1
B1 (λ) + (2qall + 1)AdvSD2

B2 (λ)

+ AdvTRF−SD3
B3

(λ) + qallAdvTRFB4 (λ)

Instantiations of tampering resilient functions
Tampering Resilient Function (TRF) is an important
building block for our tampering resilient PE framework.
In this section, we present several instantiations of TRF. A
function H is a tapering resilient function if the output is
random even when the adversary sees outputs of related
inputs. A simple construction of TRF is the random ora-
cle. But the existing PE frameworks based on the dual
system encryption technique are designed to construct
fully secure PE schemes without the random oracle, we’d
better instantiate TRF in the standard model. A compari-
son of TRF based on different cryptographic primitives is
given in Table 2.
TRF based on (c)NM-KDF. Faust et al. (2014) intro-

duced a notion called Non-Malleable Key Derivation
Function (NM-KDF) for tampering function family F ,
which uses randomness x to derive y = f (x) in such a way
that, even x is tampered to a different value x′ = φ(x),
y′ = f (x′) does not reveal any information about y. The
definition is almost the same as ours of TRF. Since we
want to give our tampering resilient PE framework in a
unified way, we define a new primitive TRF to cover cur-
rent similar notions. Faust et al. (2014) proposed a simple
construction of NM-KDF based on a t-wise indepen-
dent hash function but the construction is secure against
one-time tampering attacks. Soon after, Qin et al. (2015)
extended the notion to continuous NM-KDF (cNM-KDF)
in which unbounded polynomially tampering queries are
allowed. They also present constructions of cNM-KDF
for any polynomials of bounded degree under the stan-
dard assumptions, e.g., DDH and DCR. Applying these
constructions to our PE framework, we obtain tampering
resilient PE framework for the same class of tampering
functions.

TRF based on TR-PRF. Tampering Resilient Pseudo-
random Function (TR-PRF) was first formalized by Bel-
lare and Kohno (2003), in which the adversary can observe
the input-output of the PRF not just under the target key
k, but under others keys φ1(k), . . . ,φq(k) derived from k in
adversary-specified ways. Later, Bellare and Cash (2010)
gave the first construction of TR-PRF (based on the Naor-
Reingold PRF) whose security is proven under the DDH
assumption for group-induced functions5. They also pro-
vided a construction (based on Lewko-Waters PRF) under
the DLIN assumption for similar tampering functions.
Combining TR-PRF with our PE framework, we obtain
secure PE schemes against tampering attacks, in which
the key of TR-PRF is the master key and the input is a
public randomness. Because of the restricted range of TR-
PRF, we can only obtain tampering resilient PE schemes
for linear or group-induced functions6.
TRF based on CISH Functions. Another way of con-

structing TRF is based on Correlated Input Secure Hash
(CISH) functions introduced by Goyal et al. (2011), which
can be interpreted as a dual version of TR-PRF. Specifi-
cally, a CISH function f with the key k ensures that the
output fk(x) is random even given the hash values of
multiple correlated inputs (fk(φ1(x)), ..., fk(φq(x))), where
functions φi are chosen by the adversary. Compare with
TRF, the CISH function has an extra key k. In our PE
framework with TRF based on the CISH function, the key
k is part of the public parameters and the input is the
master key. Goyal et al. (2011) give a concrete construc-
tion of the CISH function for a large class of polynomial
functions of bounded degree under the variant of q-
Diffie Hellman Inversion (q-DHI) assumption. However,
the construction is only non-adaptively secure, that is,
the adversary must submit functions φi at the begin of
the game. This makes our PE framework non-adaptively
tampering resilient as well.

5A function φ = a ∗ d is a group-induced function if the operation ∗
corresponds to the component-wise multiplication on Z

∗
p .

6Recent work (Matsuda and Schuldt 2018) provided a TR-PRF construction
for arbitrary tampering functions satisfying collision-resistance and
output-unpredictability for a bounded number of falsified keys. Since the
construction is incompatible with our security model, we omit it here.
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Fig. 2 ZN where N is prime. a The time of generating PP b The time of evaluation

Performance Evaluation. We give a concrete analysis
of the performance of TRF, which is the only additional
primitive in our tampering resilient PE compared with
the original PE schemes. Table 3 presents the public
parameters (PP) size and evaluation efficiency of TRF the-
oretically. Since module exponentiation offers the main
cost, we ignore other computations, such as addition
and multiplication. In addition, it should be pointed out
the construction of cNM-KDF employs three primitives:
one-time lossy filter (OT-LF), pairwise independent hash
function (i.e. t = 2) and one-time signature (OT-Sig) and
here we only present costs of OT-LF based on DDH
and pairwise independent hash function, but even so, the
performance of TRF based on cNM-KDF is the worst.
As shown in Table 3, almost all of TRF need additional
public parameters except TRF based on NM-KDF in

Faust et al. (2014), which only allows one-time tampering
query, however. In general, storage overhead and com-
putation overhead introduced by TRF are negligible
compared to PE schemes. Hence, the efficiency of our
TR-PE schemes is comparable to that of original PE
schemes.
To evaluate the practical performance of TRF, we

implement TRF with DDH-based TR-PRF in Bellare and
Cash (2010) and TRF with q-DHI based CISH in Goyal
et al. (2011). The output of both TRF is H, a prime-
order group over ZN . Since TRF can apply to PE in both
composite-order (N = p1p2p3) and prime-order (N is a
prime larger than p) groups, we set N composite or prime
accordingly and both cases are tested here.
Our experiments are conducted on an Intel Core(TM)

i7-4790 CPU@3.6GHz and 12 GB RAM. The prime order

64 96 128 160 192 224 256
0

50

100

150

200

250

300

350

400

450

The length of the prime order of group

T
he

 ti
m

e 
of

 g
en

er
at

in
g 

pu
bl

ic
 p

ar
am

et
er

s 
(m

s)

 

 
CISH
RKA−PRF

64 96 128 160 192 224 256
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

The length of the prime order of group

T
he

 ti
m

e 
of

 e
va

lu
at

io
n 

(m
s)

 

 
CISH
RKA−PRF

Fig. 3 ZN where N is composite. a The time of generating PP b The time of evaluation



Liu et al. Cybersecurity            (2019) 2:22 Page 12 of 20

p influences computational cost. We set the length of p
increasing from 64 to 256, and repeat each instance 5
times for group generation and 5000 times for function
evaluation, then take the average. As depicted in Figs. 2a
(Figs. 3a) and 2b (3b), we show the time of generating
PP and evaluation when N is prime (N is composite) and
the time is given in milliseconds. The most-consuming
operation is generating group, specifically generating the
prime-order generator, which takes about 100 ms in case
of |p| = 256 when N is prime, while the evaluation opera-
tion only takes less than 1 ms. Even when N is composite,
the runtime of TRF is on the order of milliseconds. Over-
all, TRF is practical that has little impact on the efficiency
of PE.

Further directions
In this work we explore the security of PE frameworks
against tampering attacks on the master key. In our
tampering resilient model, the tampering functions are
restricted to algebraic functions and the number of tam-
pering queries is unbounded. In practice, algebraic tam-
pering functions may not describe specific attacks and
constructing tampering resilient PE schemes with broader
classes of tampering functions is an important direction.
Besides, in PE there are two type of keys: the master
key and secret keys. Compared to the master key, secret
keys are more vulnerable to tampering attacks because
we may store the master key in tamper-proof hardware
which is expensive for secret keys. How to design secure
PE schemes in this case is another direction of our further
work.

Appendix
Proof of Theorem 1
Lemma1 For any adversaryA can distinguishGamereal

from Gameres, there exists an adversary B, such that for
any security parameter λ,

∣∣
∣AdvrealA − AdvresA

∣∣∣ ≤ AdvSD1
B +

AdvSD2
B .

Proof The proof is the same as that in Attrapadung
(2014) which reduced to the soundness of domain-
transferability. If the adversaryA can distinguishGameres
from Game0, then we can find a factor of N to break the
assumption SD1 or SD2.

Lemma 2 For any adversaryA can distinguish Gameres
fromGame0, there exists an adversary B, such that for any
security parameter λ, |AdvresA − Adv0A| ≤ AdvSD1

B .

Proof We will build a PPT adversary B against Assump-
tion SD1 with the help of an adversary A. B is given
D = (

paramG, g1, g3,Tβ

)
and will simulate eitherGameres

or Game0 with D.

Setup. B chooses h $←− Z
n
N ,α

$←− ZN , H
$←− H and

computes the public key PP = (
g1, g3, gh1 , e(g1, g1)H(α)

)
and

the master key MSK = α. Then B gives PP to A. Let
g2 be an unknown random generator of Gp2 . B implicitly
sets ĥ mod p2 = h mod p2. ĥ is properly distributed
and is independent from h mod p1 due to the Chinese
Remainder Theorem.
Phase 1. In this phase, B answers all key generation

queries and tampering queries fromAwith themaster key
and sending (tampered) normal secret keys toA.
Challenge. In this phase, A submits two messages

M0,M1 and the challenge parameter Y ∗. B flips an unbi-
ased coin b $←− {0, 1} and runs (c;w2) ← Enc2(Y ∗). Then
it picks s′ = (

s′, s′1, . . . , s′w2

) $←− Z
w2+1
N and computes the

challenge ciphertext CT∗
Y ∗ = (C0,C1) as follows:

C0 = Tc(s′,h)
β ,C1 = e(Tβ , g1)H(α)s′Mb.

B sendsA the challenge ciphertext CT∗
Y ∗ .

Phase 2. B answers key generations from A as same as
in Phase 1.

• If β = 0,

C0 = guc(s
′,h)

1 = gc(us
′,h)

1 ,C1 = e(g1, g1)H(α)us′Mb.

CT∗
Y ∗ is a properly distributed and normal ciphertext

where s = us′ mod p1 is uniform. In this case, B has
properly simulated Gameres.

• If β = 1,

C0 = guc(s,ĥ)
1 gvc(s,ĥ)

2 = gc(us
′,ĥ)

1 gc(vs
′,ĥ)

2 ,

C1 = e
(
gu1 g

v
2, g1

)H(α)s′ Mb = e(g1, g1)H(α)us′Mb.

CT∗
Y ∗ is a properly distributed and semi-functional

ciphertext where ĥ = h mod p2 and ŝ = vs′
mod p2 are uniform and independent from h, s due
to the Chinese Remainder Theorem. In this case, B
has properly simulated Game0. Hence,A can
distinguish Gameres from Game0 with negligible
probability, otherwise B can break Assumption SD1.

Lemma 3 For any adversary A can distinguish
Gamek−1,3 from Gamek,1, there exists an adver-
sary B, such that for any security parameter λ,
|Advk−1,3

A − Advk,1A | ≤ AdvSD2
B .

Proof We will build a PPT adversary B against Assump-
tion SD2 with the help of an adversary A. B is given
D = (

paramG, g1, g3, gu1 g
z
2, g

v
2g

ρ
3 ,Tβ

)
and will simulate

either Gamek−1,3 or Gamek,1 with D.
Setup. B chooses h $←− Z

n
N ,α

$←− ZN , H
$←− H and

computes the public key PP = (
g1, g3, gh1 , e(g1, g1)H(α)

)
and
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the master key MSK = α. Then B gives PP to A. Let
g2 be an unknown random generator of Gp2 . B implicitly
sets ĥ mod p2 = h mod p2. ĥ is properly distributed
and is independent from h mod p1 due to the Chinese
Remainder Theorem.
Phase 1. In this phase, B answers all key generation

queries and tampering queries from A in the following
way:

• j < k: In this case, B generates type-3 semi-functional
secret keys under the falsified master key. Upon
receiving X and a tampering function φi, B runs
(k;m2) ← Enc1(X) and picks
r $←− Z

m2
N ,R3

$←− Z
m1
p3 , α̂′ $←− ZN . Then it computes

the secret key:

SKX = gk(H(φi(α)),r,h)
1 · (

gv2g
ρ
3
)k(α̂′,0,0) · R3.

SKX is a properly distributed and type-3
semi-functional secret key under the falsified master
key φi(α) where α̂ = vα̂′ is uniform.

• j = k: Upon receiving X and a tampering function φi,
B runs (k;m2) ← Enc1(X) and picks
r′, r̂′ $←− Z

m2
N ,R3

$←− Z
m1
p3 . Then it computes the secret

key:

SKX = gk(H(φi(α)),r′,h)
1 · (Tβ)k(0,r̂′,h) · R3.

• j > k: In this phase, B generates normal secret keys
under the falsified master key. Upon receiving X and
a tampering function φi, B runs (k;m2) ← Enc1(X)

and picks r,R3
$←− Z

m1
p3 . Then it computes the secret

key:

SKX = gk(H(φi(α)),r,h)
1 · R3.

Challenge. In this phase, A submits two messages
M0,M1 and the challenge parameter Y ∗. B flips an unbi-
ased coin b $←− {0, 1} and runs (c;w2) ← Enc2(Y ∗). Then
it picks s′ = (

s′, s′1, . . . , s′w2

) $←− Z
w2+1
N and computes the

challenge ciphertext CT∗
Y ∗ = (C0,C1) as follows:

C0 = (gu1 g
z
2)

c(s′,h) = gc(us
′,h)

1 gc(zs
′,h)

2 ,

C1 = e((gu1 g
z
2), g1)

H(α)s′Mb = e(g1, g1)H(α)us′Mb.

B sendsA the challenge ciphertext CT∗
Y ∗ , which is a prop-

erly distributed and semi-functional ciphertext where ŝ =
zs′ mod p2 is uniform and independent from s = us′
mod p1 due to the Chinese Remainder Theorem.
Phase 2. In this phase, B answers all key generation

queries from A with the falsified master key and sending
normal secret keys toA.

• If β = 0,

SKX = gk(H(φi(α)),r′,h)
1 · (

gw1 g
δ
3
)k(0,r̂′,h) · R3

= gk(H(φi(α)),r′+wr̂′,h)
1 · R′

3.

SKX is a properly distributed and normal secret key
under the falsified master key φi(α) where
r = r′ + wr̂′ mod p1 is uniform. In this case, B has
properly simulated Gamek−1,3.

• If β = 1,

SKX = gk(H(φi(α)),r′,h)
1 · (

gw1 g
κ
2 g

δ
3
)k(0,r̂′,h) · R3

= gk(H(φi(α)),r′+wr̂′,h)
1 · gk(0,κ r̂′,h)

2 · R′
3.

SKX is a properly distributed and type-1
semi-functional secret key under the falsified master
key φi(α) where r̂ = κ r̂′ mod p2 is uniform and
independent from r = r′ + wr̂′ mod p1. In this case,
B has properly simulated Gamek,1. Hence,A can
distinguish Gamek−1,3 from Gamek,1 with negligible
probability, otherwise B can break Assumption SD2.

Lemma 4 For any adversaryA can distinguish Gamek,1
from Gamek,2, there exists an adversary B, such that for
any security parameter λ, |Advk,1A − Advk,2A | ≤ AdvCMH

B +
AdvTRFB .

If the adversary A can distinguish Gamek,1 from
Gamek,2, we can build a PPT adversary B against the
CMH security of the pair encoding scheme P or the
TRF family H. Denote K∗ by the challenge secret key.
Define F as the event that K∗ is generated under the
original master key and ¬F as the event that K∗ is
generated under the falsified master key. In order to
complete the proof of Lemma 4, it suffices to prove
Claims 1 and 2.

Claim 1 For any adversary A can distinguish Gamek,1
from Gamek,2, there exists an adversary B, such that for
any security parameter λ,

∣∣∣Advk,1A − Advk,2A

∣∣∣ ≤ AdvCMH
B ,

conditioned on F occurs.

Proof Wewill build a PPT adversary B against the CMH
security of the pair encoding scheme P with the help of an
adversaryA. B is given (g1, g2, g3) and will simulate either
Gamek,1 or Gamek,2.
Setup. B chooses h $←− Z

n
N ,α

$←− ZN , H
$←− H and com-

putes the public key PP = (
g1, g3, gh1 , e(g1, g1)H(α)

)
and the

master key MSK = α. Then B gives PP toA.
Phase 1. In this phase, B answers all key generation
queries and tampering queries from A in the following
way:
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• j < k: In this case, B generates type-3 semi-functional
secret keys under the falsified master key. Upon
receiving X and a tampering function φi, B runs
(k;m2) ← Enc1(X) and picks
r $←− Z

m2
N ,R3

$←− Z
m1
p3 , α̂

$←− ZN . Then it computes the
secret key:

SKX = gk(H(φi(α)),r,h)
1 · gk(α̂,0,0)

2 · R3.

SKX is a properly distributed and type-3
semi-functional secret key under the falsified master
key φi(α).

• j = k: Upon receiving Xk , B makes a key query to its
challenger and receives back Tβ = gk(β ,r̂,ĥ)

2 . Then B
runs (k;m2) ← Enc1(Xk) and picks
r $←− Z

m2
N ,R3

$←− Z
m1
p3 . It computes the secret key:

SKX = gk(H(α),r,h)
1 · Tβ · R3.

• j > k: In this phase, B generates normal secret keys
under the falsified master key. Upon receiving X and
a tampering function φi, B runs (k;m2) ← Enc1(X)

and picks r,R3
$←− Z

m1
p3 . Then it computes the secret

key:

SKX = gk(H(φi(α)),r,h)
1 · R3.

Challenge. In this phase, A submits two messages
M0,M1 and the challenge parameter Y ∗ such that for all
X ∈ L,R(X,Y ∗) = 0. This query can be made since
R(Xk ,Y ∗) = 0 when the event F occurs. Bmakes a cipher-
text query to its challenger and receives back D = gc(ŝ,ĥ)

2 .
Then B flips an unbiased coin b $←− {0, 1} and runs
(c;w2) ← Enc2(Y ∗). Then it picks s = (s, s1, . . . , sw2)

$←−
Z
w2+1
N and computes the challenge ciphertext CT∗

Y ∗ =
(C0,C1) as follows:

C0 = gc(s,h)
1 · D,C1 = e(g1, g1)H(α)sMb.

B sendsA the challenge ciphertext CT∗
Y ∗ , which is a prop-

erly distributed and semi-functional ciphertext.
Phase 2. In this phase, B answers all key generation
queries from A with the falsified master key and sending
normal secret keys toA.

• If β = 0,

SKX = gk(H(α),r,h)
1 · gk(0,r̂,ĥ)

2 · R3.

SKX is a properly distributed and type-1
semi-functional secret key under the original master
key α. In this case, B has properly simulated Gamek,1.

• If β = 1,

SKX = gk(H(α),r,h)
1 · gk(α̂,r̂,ĥ)

2 · R3.

SKX is a properly distributed and type-2
semi-functional secret key under the original master
key α. In this case, B has properly simulated
Gamek,2. Hence,A can distinguish Gamek,1 from
Gamek,2 with negligible probability, otherwise B can
break the CMH security of P.

Claim 2 For any adversary A can distinguish Gamek,1
from Gamek,2, there exists an adversary B, such that for
any security parameter λ, |Advk,1A − Advk,2A | ≤ AdvTRFB ,
conditioned on ¬F occurs.

Proof We will build a PPT adversary B against the fam-
ily of tampering resilient functions H with the help of an
adversaryA. B is given (g1, g2, g3) and will simulate either
Gamek,1 or Gamek,2.
Setup. B chooses h $←− Z

n
N ,α

$←− ZN , H
$←− H and com-

putes the public key PP = (
g1, g3, gh1 , e(g1, g1)H(α)

)
and the

master key MSK = α. Then B gives PP toA.
Phase 1. In this phase, B answers all key generation
queries and tampering queries from A in the following
way:

• j < k: In this case, B generates type-3 semi-functional
secret keys under the falsified master key. Upon
receiving X and a tampering function φi, B runs
(k;m2) ← Enc1(X) and picks
r $←− Z

m2
N ,R3

$←− Z
m1
p3 , α̂

$←− ZN . Then it computes the
secret key:

SKX = gk(H(φi(α)),r,h)
1 · gk(α̂,0,0)

2 · R3.

SKX is a properly distributed and type-3
semi-functional secret key under the falsified master
key φi(α).

• j = k: Upon receiving Xk and a tampering function
φi, B runs (k;m2) ← Enc1(Xk) and picks
r, r̂ $←− Z

m2
N ,R3

$←− Z
m1
p3 , ĥ

$←− Z
n
N . It computes

Tβ ←
{
gk(H(φi(α)),r,h)
1 · gk(0,r̂,ĥ)

2 if β = 0
gk(H(φi(α)),r,h)
1 · gk(α,r̂,ĥ)

2 if β = 1
and the secret key:

SKX = Tβ · R3.

• j > k: In this phase, B generates normal secret keys
under the falsified master key. Upon receiving X and
a tampering function φi, B runs (k;m2) ← Enc1(X)

and picks r,R3
$←− Z

m1
p3 . Then it computes the secret

key:

SKX = gk(H(φi(α)),r,h)
1 · R3.
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Challenge. In this phase, A submits two messages
M0,M1 and the challenge parameter Y ∗. B flips an unbi-
ased coin b $←− {0, 1} and runs (c;w2) ← Enc2(Y ∗). Then
it picks s = (s, s1, . . . , sw2), ŝ

$←− Z
w2+1
N and computes

D ← gc(ŝ,ĥ)
2 and the challenge ciphertext CT∗

Y ∗ = (C0,C1)
as follows:

C0 = gc(s,h)
1 · D,C1 = e(g1, g1)H(α)sMb.

B sendsA the challenge ciphertext CT∗
Y ∗ , which is a prop-

erly distributed and semi-functional ciphertext.
Phase 2. In this phase, B answers all key generation
queries from A with the falsified master key and sending
normal secret keys toA.

• If β = 0,

SKX = gk(H(φi(α)),r,h)
1 · gk(0,r̂,ĥ)

2 · R3.

SKX is a properly distributed and type-1 semi-
functional secret key under the falsified master key
φi(α). In this case, B has properly simulated Gamek,1.

• If β = 1,

SKX = gk(H(φi(α)),r,h)
1 · gk(α̂,r̂,ĥ)

2 · R3.

SKX is a properly distributed and type-2 semi-
functional secret key under the falsified master key
φi(α). In this case, B has properly simulated Gamek,2.

In this case, R(Xk ,Y ∗) = 1 (Here φi(α) �= α), SKX can
be used to decrypt the challenge ciphertext and the adver-
sary will get e(g1, g1)H(φi(α))s or e(g1, g1)H(φi(α))se(g2, g2)α̂ŝ.
Due to the property ofH, e(g1, g1)H(φi(α))s is still a random
element in GT given e(g1, g1)H(α)sMb, meaning that both
secret keys cannot decrypt correctly. Hence,A can distin-
guish Gamek,1 from Gamek,2 with negligible probability,
otherwise B can break the TRF familyH.

Lemma 5 For any adversaryA can distinguishGamek,2
from Gamek,3, there exists an adversary B, such that for
any security parameter λ, |Advk,2A − Advk,3A | ≤ AdvSD2

B .

Proof We will build a PPT adversary B against Assump-
tion SD2 with the help of an adversary A. B is given
D = (

paramG, g1, g3, gu1 g
z
2, g

v
2g

ρ
3 ,Tβ

)
and will simulate

either Gamek,2 or Gamek,3 with D.
Setup. B chooses h $←− Z

n
N ,α

$←− ZN , H
$←− H and com-

putes the public key PP = (g1, g3, gh1 , e(g1, g1)H(α)) and the
master key MSK = α. Then B gives PP to A. Let g2 be
an unknown random generator of Gp2 . B implicitly sets
ĥ mod p2 = h mod p2. ĥ is properly distributed and is
independent from h mod p1 due to the Chinese Remain-
der Theorem.
Phase 1. In this phase, B answers all key generation

queries and tampering queries from A in the following
way:

• j < k: In this case, B generates type-3 semi-functional
secret keys under the falsified master key. Upon
receiving X and a tampering function φi, B runs
(k;m2) ← Enc1(X) and picks
r $←− Z

m2
N ,R3

$←− Z
m1
p3 , α̂′ $←− ZN . Then it computes

the secret key:

SKX = gk(H(φi(α)),r,h)
1 · (gv2g

ρ
3 )k(α̂′,0,0) · R3.

SKX is a properly distributed and type-3
semi-functional secret key under the falsified master
key φi(α) where α̂ = vα̂′ is uniform.

• j = k: Upon receiving X and a tampering function φi,
B runs (k;m2) ← Enc1(X) and picks
r′, r̂′ $←− Z

m2
N , α̂′ $←− ZN ,R3

$←− Z
m1
p3 . Then it computes

the secret key:

SKX = gk(H(φi(α)),r′,h)
1 ·(gv2gρ

3 )k(α̂′,0,0) ·(Tβ)k(0,r̂′,h) ·R3.
• j > k: In this phase, B generates normal secret keys

under the falsified master key. Upon receiving X and
a tampering function φi, B runs (k;m2) ← Enc1(X)

and picks r,R3
$←− Z

m1
p3 . Then it computes the secret

key:

SKX = gk(H(φi(α)),r,h)
1 · R3.

Challenge. In this phase, A submits two messages
M0,M1 and the challenge parameter Y ∗. B flips an unbi-
ased coin b $←− {0, 1} and runs (c;w2) ← Enc2(Y ∗). Then
it picks s′ = (s′, s′1, . . . , s′w2)

$←− Z
w2+1
N and computes the

challenge ciphertext CT∗
Y ∗ = (C0,C1) as follows:

C0 = (gu1 g
z
2)

c(s′,h) = gc(us
′,h)

1 gc(zs
′,h)

2 ,

C1 = e((gu1 g
z
2), g1)

H(α)s′Mb = e(g1, g1)H(α)us′Mb.
B sendsA the challenge ciphertext CT∗

Y ∗ , which is a prop-
erly distributed and semi-functional ciphertext where ŝ =
zs′ mod p2 is uniform and independent from s = us′
mod p1 due to the Chinese Remainder Theorem.
Phase 2. In this phase, B answers all key generation
queries from A with the falsified master key and sending
normal secret keys toA.

• If β = 0,

SKX = gk(H(φi(α)),r′,h)
1 · (gv2g

ρ
3 )k(α̂′,0,0) · (gw1 g

δ
3)

k(0,r̂′,h) · R3

= gk(H(φi(α)),r′+wr̂′,h)
1 · gk(vα̂′,0,0)

2 · R′
3.

SKX is a properly distributed and type-3
semi-functional secret key under the falsified master
key φi(α) where r = r′ + wr̂′ mod p1 and α̂ = vα̂′
are uniform. In this case, B has properly simulated
Gamek,3.



Liu et al. Cybersecurity            (2019) 2:22 Page 16 of 20

• If β = 1,

SKX = gk(H(φi(α)),r′,h)
1 · (

gv2g
ρ
3
)k(α̂′,0,0) · (

gw1 g
κ
2 g

δ
3
)k(0,r̂′,h) · R3

= gk(H(φi(α)),r′+wr̂′,h)
1 · gk(vα̂′,κ r̂′,h)

2 · R′
3.

SKX is a properly distributed and type-2
semi-functional secret key under the falsified master
key φi(α) where r̂ = κ r̂′ mod p2 and ĥ = h
mod p2 are uniform and independent from
r = r′ + wr̂′ mod p1 and h. In this case, B has
properly simulated Gamek,2. Hence,A can
distinguish Gamek,2 from Gamek,3 with negligible
probability, otherwise B can break Assumption SD2.

Lemma 6 For any adversary A can distinguish
Gameq1,3 from Gameq1+1, there exists an adver-
sary B, such that for any security parameter λ,
|Advq1,3A − Advq1+1

A | ≤ AdvSD2
B .

Proof We will build a PPT adversary B against Assump-
tion SD2 with the help of an adversary A. B is given
D = (

paramG, g1, g3, gu1 g
z
2, g

v
2g

ρ
3 ,Tβ

)
and will simulate

either Gameq1,3 or Gameq1+1 with D.
Setup. B chooses h $←− Z

n
N ,α

$←− ZN , H
$←− H and com-

putes the public key PP = (g1, g3, gh1 , e(g1, g1)H(α)) and the
master key MSK = α. Then B gives PP to A. Let g2 be
an unknown random generator of Gp2 . B implicitly sets
ĥ mod p2 = h mod p2. ĥ is properly distributed and is
independent from h mod p1 due to the Chinese Remain-
der Theorem.
Phase 1. In this phase, B answers all key generation
queries and tampering queries fromA by generating type-
3 semi-functional secret keys under the falsified master
key. Upon receivingX and a tampering function φi,B runs
(k;m2) ← Enc1(X) and picks r $←− Z

m2
N ,R3

$←− Z
m1
p3 , α̂′ $←−

ZN . Then it computes the secret key:

SKX = gk(H(φi(α)),r,h)
1 · (gv2g

ρ
3 )k(α̂′,0,0) · R3.

SKX is a properly distributed and type-3 semi-functional
secret key under the falsified master key φi(α) where α̂ =
vα̂′ is uniform.
Challenge. In this phase,A submits twomessagesM0,M1
and the challenge parameter Y ∗. B flips an unbiased coin
b $←− {0, 1} and runs (c;w2) ← Enc2(Y ∗). Then it picks
s′ = (s′, s′1, . . . , s′w2)

$←− Z
w2+1
N and computes the challenge

ciphertext CT∗
Y ∗ = (C0,C1) as follows:

C0 = (gu1 g
z
2)

c(s′,h) = gc(us
′,h)

1 gc(zs
′,h)

2 ,

C1 = e((gu1 g
z
2), g1)

H(α)s′Mb = e(g1, g1)H(α)us′Mb.

B sends A the challenge ciphertext CT∗
Y ∗ , which is a

properly distributed and semi-functional ciphertext
where ŝ = zs′ mod p2 is uniform and independent from
s = us′ mod p1 due to the Chinese Remainder Theorem.
Phase 2. In this phase, B answers all key generation
queries from A with the falsified master key. Upon
receiving X and a tampering function φi, B runs
(k;m2) ← Enc1(X) and picks r′, r̂′ $←− Z

m2
N ,R3

$←− Z
m1
p3 .

Then it computes the secret key:

SKX = gk(H(φi(α)),r′,h)
1 · (Tβ)k(0,r̂′,h) · R3.

• If β = 0,

SKX = gk(H(φi(α)),r′,h)
1 · (gw1 g

δ
3)

k(0,r̂′,h) · R3

= gk(H(φi(α)),r′+wr̂′,h)
1 · R′

3.

SKX is a properly distributed and normal secret key
under the falsified master key φi(α) where
r = r′ + wr̂′ mod p1 is uniform. In this case, B has
properly simulated Gameq1,3.• If β = 1,

SKX = gk(H(φi(α)),r′,h)
1 · (gw1 g

κ
2 g

δ
3)

k(0,r̂′,h) · R3

= gk(Hφi(α)),r′+wr̂′,h)
1 · gk(0,κ r̂′,h)

2 · R′
3.

SKX is a properly distributed and type-1
semi-functional secret key the falsified master key
φi(α) where r̂ = κ r̂′ mod p2 is uniform and
independent from r = r′ + wr̂′ mod p1. In this case,
B has properly simulated Gameq1+1. Hence,A can
distinguish Gameq1,3 from Gameq1+1 with negligible
probability, otherwise B can break Assumption SD2.

Lemma 7 For any adversary A can distinguish
Gameq1+1 from Gameq1+2, there exists an adver-
sary B, such that for any security parameter λ,∣∣∣Advq1+1

A − Advq1+2
A

∣∣∣ ≤ AdvSMH
B + AdvTRFB .

If the adversary A can distinguish Gameq1+1 from
Gameq1+2, we can build a PPT adversary B against the
SMH security of the pair encoding scheme P or the TRF
familyH. Denote K∗ by the challenge secret key. Define F
as the event that K∗ is generated under the original mas-
ter key and ¬F be the event that K∗ is generated under
the falsified master key. In order to complete the proof of
Lemma 7, it suffices to prove Claim 3, and 4.

Claim 3 For any adversaryA can distinguishGameq1+1
from Gameq1+2, there exists an adversary B, such that
for any security parameter λ,

∣∣∣Advq1+1
A − Advq1+2

A

∣∣
∣ ≤

AdvSMH
B , conditioned on F occurs.
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Proof We will build a PPT adversary B against the SMH
security of the pair encoding scheme P with the help of an
adversaryA. B is given (g1, g2, g3) and will simulate either
Gameq1+1 or Gameq1+2.
Setup. B chooses h $←− Z

n
N ,α

$←− ZN , H
$←− H and com-

putes the public key PP = (
g1, g3, gh1 , e(g1, g1)H(α)

)
and the

master key MSK = α. Then B gives PP toA.
Phase 1. In this phase, B answers all key generation
queries and tampering queries fromA by generating type-
3 semi-functional secret keys under the falsified master
key. Upon receivingX and a tampering function φi,B runs
(k;m2) ← Enc1(X) and picks r $←− Z

m2
N ,R3

$←− Z
m1
p3 . Then

it computes the secret key:

SKX = gk(H(φi(α)),r,h)
1 · gk(α̂,0,0)

2 · R3.

SKX is a properly distributed and type-3 semi-functional
secret key under the falsified master key φi(α).
Challenge. In this phase,A submits twomessagesM0,M1
and the challenge parameter Y ∗. B makes a ciphertext
query to its challenger and receives backD = gc(ŝ,ĥ)

2 . Then
B flips an unbiased coin b $←− {0, 1} and runs (c;w2) ←
Enc2(Y ∗). Then it picks s = (s, s1, . . . , sw2)

$←− Z
w2+1
N and

the challenge ciphertext CT∗
Y ∗ = (C0,C1) as follows:

C0 = gc(s,h)
1 · D,C1 = e(g1, g1)H(α)sMb.

B sendsA the challenge ciphertext CT∗
Y ∗ , which is a prop-

erly distributed and semi-functional ciphertext.
Phase 2. In this phase, upon receiving Xj and a tamper-
ing function φi, B makes a key query to its challenger and
receives back Tβ = gk(β ,r̂,ĥ)

2 . This query can be made since
R(Xj,Y ∗) = 0. B runs (k;m2) ← Enc1(Xk) and picks

r $←− Z
m2
N ,R3

$←− Z
m1
p3 . It computes the secret key:

SKX = gk(H(α),r,h)
1 · Tβ · R3.

• If β = 0,

SKX = gk(H(α),r,h)
1 · gk(0,r̂,ĥ)

2 · R3.

SKX is a properly distributed and type-1
semi-functional secret key under the original master
key α. In this case, B has properly simulated Gq1+1.

• If β = 1,

SKX = gk(H(α),r,h)
1 · gk(α̂,r̂,ĥ)

2 · R3.

SKX is a properly distributed and type-2
semi-functional secret key under the original master
key α. In this case, B has properly simulated Gq1+2.
Hence,A can distinguish Gameq1+1 from Gameq1+2
with negligible probability, otherwise B can break the
SMH security of P.

Claim 4 For any adversaryA can distinguishGameq1+1
from Gameq1+2, there exists an adversary B, such that for
any security parameter λ, |Advq1+1

A −Advq1+2
A | ≤ AdvTRFB ,

conditioned on ¬F occurs.

Proof We will build a PPT adversary B against the fam-
ily of tampering resilient functions H with the help of an
adversaryA. B is given (g1, g2, g3) and will simulate either
Gameq1+1 or Gameq1+2.
Setup. B chooses h $←− Z

n
N ,α

$←− ZN , H
$←− H and com-

putes the public key PP = (g1, g3, gh1 , e(g1, g1)H(α)) and the
master key MSK = α. Then B gives PP toA.
Phase 1. In this phase, B answers all key generation
queries and tampering queries fromA by generating type-
3 semi-functional secret keys under the falsified master
key. Upon receivingX and a tampering function φi,B runs
(k;m2) ← Enc1(X) and picks r $←− Z

m2
N ,R3

$←− Z
m1
p3 . Then

it computes the secret key:

SKX = gk(H(φi(α)),r,h)
1 · gk(α̂,0,0)

2 · R3.

SKX is a properly distributed and type-3 semi-functional
secret key under the falsified master key φi(α).
Challenge. In this phase,A submits twomessagesM0,M1
and the challenge parameter Y ∗. B flips an unbiased coin
b $←− {0, 1} and runs (c;w2) ← Enc2(Y ∗). Then it picks
s = (s, s1, . . . , sw2)

$←− Z
w2+1
N , ĥ $←− Z

n
N and computesD ←

gc(ŝ,ĥ)
2 and the challenge ciphertext CT∗

Y ∗ = (C0,C1) as
follows:

C0 = gc(s,h)
1 · D,C1 = e(g1, g1)H(α)sMb.

B sendsA the challenge ciphertext CT∗
Y ∗ , which is a prop-

erly distributed and semi-functional ciphertext.
Phase 2. In this phase, upon receiving Xj and a tam-
pering function φi, B runs (k;m2) ← Enc1(Xk) and
picks r, r̂ $←− Z

m2
N ,R3

$←− Z
m1
p3 . It computes Tβ ←

{
gk(H(φi(α)),r,h)
1 · gk(0,r̂,ĥ)

2 if β = 0
gk(H(φi(α)),r,h)
1 · gk(α,r̂,ĥ)

2 if β = 1
and the secret key:

SKX = Tβ · R3.

• If β = 0,

SKX = gk(H(φi(α)),r,h)
1 · gk(0,r̂,ĥ)

2 · R3.

SKX is a properly distributed and type-1 semi-
functional secret key under the falsified master key
φi(α). In this case, B has properly simulated Gq1+1.

• If β = 1,

SKX = gk(H(φi(α)),r,h)
1 · gk(α̂,r̂,ĥ)

2 · R3.

SKX is a properly distributed and type-2
semi-functional secret key under the falsified master
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key φi(α). In this case, B has properly simulated
Gameq1+2.

In this case, R(Xk ,Y ∗) = 1 (Here φi(α) �= α), SKX can
be used to decrypt the challenge ciphertext and the adver-
sary will get e(g1, g1)H(φi(α))s or e(g1, g1)H(φi(α))se(g2, g2)α̂ŝ.
Because of property of H, e(g1, g1)H(φi(α))s is still a ran-
dom element in GT given e(g1, g1)H(α)sMb, meaning that
both secret keys cannot decrypt correctly. Hence, A can
distinguish Gameq1+1 from Gameq1+2 with negligible
probability, otherwise B can break the TRF familyH.

Lemma 8 For any adversary A can distinguish Gq1+2
from Gq1+3, there exists an adversary B, such that for any
security parameter λ, |Advq1+2

A − Advq1+3
A | ≤ AdvSD2

B .

Proof We will build a PPT adversary B against Assump-
tion SD2 with the help of an adversary A. B is given
D = (

paramG, g1, g3, gu1 g
z
2, g

v
2g

ρ
3 ,Tβ

)
and will simulate

either Gq1+2 or Gq+1+3 with D.
Setup. B chooses h $←− Z

n
N ,α

$←− ZN , H
$←− H and com-

putes the public key PP = (g1, g3, gh1 , e(g1, g1)H(α)) and the
master key MSK = α. Then B gives PP to A. Let g2 be
an unknown random generator of Gp2 . B implicitly sets
ĥ mod p2 = h mod p2. ĥ is properly distributed and is
independent from h mod p1 due to the Chinese Remain-
der Theorem.
Phase 1. In this phase, B answers all key generation
queries and tampering queries fromA by generating type-
3 semi-functional secret keys under the falsified master
key. Upon receivingX and a tampering function φi,B runs
(k;m2) ← Enc1(X) and picks r $←− Z

m2
N ,R3

$←− Z
m1
p3 , α̂′ $←−

ZN . Then it computes the secret key:

SKX = gk(H(φi(α)),r,h)
1 · (gv2g

ρ
3 )k(α̂′,0,0) · R3.

SKX is a properly distributed and type-3 semi-functional
secret key under the falsified master key φi(α) where α̂ =
vα̂′ is uniform.
Challenge. In this phase, A submits two messages

M0,M1 and the challenge parameter Y ∗. B flips an unbi-
ased coin b $←− {0, 1} and runs (c;w2) ← Enc2(Y ∗). Then
it picks s′ = (s′, s′1, . . . , s′w2)

$←− Z
w2+1
N and computes the

challenge ciphertext CT∗
Y ∗ = (C0,C1) as follows:

C0 = (
gu1 g

z
2
)c(s′,h) = gc(us

′,h)
1 gc(zs

′,h)
2 ,

C1 = e((gu1 g
z
2), g1)

H(α)s′Mb = e(g1, g1)H(α)us′Mb.

B sendsA the challenge ciphertext CT∗
Y ∗ , which is a prop-

erly distributed and semi-functional ciphertext where ŝ =
zs′ mod p2 is uniform and independent from s = us′
mod p1 due to the Chinese Remainder Theorem.
Phase 2. In this phase, B answers all key generation

queries fromAwith the falsified master key. At the begin-
ning,B picks α̂′ $←− ZN . Upon receivingX and a tampering
function φi, B runs (k;m2) ← Enc1(X) and picks r′, r̂′ $←−
Z
m2
N ,R3

$←− Z
m1
p3 . Then it computes the secret key:

SKX = gk(H(φi(α)),r′,h)
1 · (gv2g

ρ
3 )k(α̂′,0,0) · (Tβ)k(0,r̂′,h) · R3.

• If β = 0,

SKX = gk(H(φi(α))r′,h)
1 · (gv2g

ρ
3 )k(α̂′,0,0) · (gw1 g

δ
3)

k(0,r̂′,h) · R3

= gk(H(φi(α)),r′+wr̂′,h)
1 · gk(vα̂′,0,0)

2 · R′
3.

SKX is a properly distributed and type-3 semi-
functional secret key under the falsified master key
φi(α) where r = r′ + wr̂′ mod p1 and α̂ = vα̂′ are
uniform. In this case, B has properly simulated Gq1+3

• If β = 1,

SKX = gk(H(φi(α)),r′,h)
1 · (gv2g

ρ
3 )k(α̂′,0,0) · (gw1 g

κ
2 g

δ
3)

k(0,r̂′,h) · R3

= gk(H(φi(α)),r′+wr̂′,h)
1 · gk(vα̂′,κ r̂′,h)

2 · R′
3.

SKX is a properly distributed and type-2
semi-functional secret key under the falsified master
key φi(α) where r̂ = κ r̂′ mod p2 and ĥ = h
mod p2 are uniform and independent from
r = r′ + wr̂′ mod p1 and h. In this case, B has
properly simulated Gq+2. Hence,A can distinguish
Gq+2 from Gq1+3 with negligible probability,
otherwise B can break Assumption SD2.

Lemma 9 For any adversary A can distinguish Gq1+3
from Gfinal, there exists an adversary B, such that
for any security parameter λ,

∣
∣∣Advq1+3

A − AdvfinalA

∣∣∣ ≤
AdvTRF−SD3

B .

Proof We will build a PPT adversary B against
the Assumption TRF-SD3 with the help of an adver-
sary A. B is given D =

(
paramG, g1, g2, g3, g

H(α)
1 gu2 ,

gH(φi(α))
1 gu2 , g

s
1g

v
2,Tβ

)
and will simulate either Gq1+3 or

Gfinal with D.

Setup. B chooses h $←− Z
n
N , H

$←− H and computes the
public key PP = (g1, g3, gh1 , e(g1, g

H(α)
1 gu2 ) = e(g1, g1)H(α)).

Then B gives PP toA.
Phase 1. In this phase, B answers all key generation
queries and tampering queries fromA by generating type-
3 semi-functional secret keys under the falsified master
key. Upon receivingX and a tampering function φi,B runs
(k;m2) ← Enc1(X) and picks r $←− Z

m2
N ,R3

$←− Z
m1
p3 , α̂′ $←−
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ZN . Then it computes the secret key 7:

SKX =
(
gH(φi(α))
1 gu2

)k(1,0,0) · gk(0,r,h)
1 · gk(α̂′,0,0)

2 · R3.

SKX is a properly distributed and type-3 semi-functional
secret key under the falsified master key φi(α) where α̂ =
u + α̂′ is uniform.
Challenge. In this phase,A submits twomessagesM0,M1
and the challenge parameter Y ∗. B flips an unbiased coin
b $←− {0, 1} and runs (c;w2) ← Enc2(Y ∗). Then it picks
s′ = (s′, s′1, . . . , s′w2)

$←− Z
w2+1
N and computes the challenge

ciphertext CT∗
Y ∗ = (C0,C1) as follows:

C0 = (gs1g
v
2)

c(s′,h) = gc(ss
′,h)

1 gc(vs
′,h)

2 ,C1 = TβMb.

B sendsA the challenge ciphertext CT∗
Y ∗ .

Phase 2. In this phase, B answers all key generation
queries fromAwith the falsified master key. At the begin-
ning, B picks α̂′ $←− ZN . Upon receiving X, B runs
(k;m2) ← Enc1(X) and picks r,R3

$←− Z
m1
p3 . Then it

computes the secret key:

SKX =
(
gH(φi(α))
1 gu2

)k(1,0,0) · gk(0,r,h)
1 · gk(α̂′,0,0)

2 · R3.

SKX is a properly distributed and type-3 semi-functional
secret key under the falsified master key φi(α) where α̂ =
u + α̂′ is uniform.

• If β = 0,

C0 = gc(ss
′,h)

1 gc(vs
′,h)

2 ,C1 = e(g1, g1)H(α)sMb

CT∗
Y ∗ is a properly distributed and semi-functional

ciphertext where ŝ = vs′ mod p2 is uniform and
independent from s = ss′ mod p1 due to the
Chinese Remainder Theorem. In this case, B has
properly simulated Gq1+3.

• If β = 1,

C0 = gc(ss
′,h)

1 gc(vs
′,h)

2 ,C1 = T1Mb

CT∗
Y ∗ is a properly distributed, semi-functional and

random ciphertext. In this case, B has properly
simulated Gfinal.

Although A is allowed to make key generation queries
for X where R(X,Y ∗) = 1, he receives secret keys
under the falsified master key φi(α) and φi cannot be
the identity function. If A attempts to decrypt, he can
only get e(g1, g1)H(φi(α))s. Due to property of the tamper-
ing resilient function, H(α) is independent from H(φi(α))

when φi(α) �= α. That is, these secret keys are use-
less for A. Hence, A can distinguish Gq+3 from Gfinal

7Since the tampering functions φi are given before the security game, the
challenger can generate properly distributed secret keys under the falsified
master key with gH(φi(α))

1 gu2 received from the Assumption TRF-SD3.

with negligible probability, otherwise B can break the
Assumption TRF-SD3.
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