Ibor et al. Cybersecurity (2020) 3:14
https://doi.org/10.1186/s42400-020-00053-7

Cybersecurity

RESEARCH Open Access

Conceptualisation of Cyberattack prediction

. . Crsaten,
with deep learning
Ayei E. Ibor"", Florence A. Oladeji?, Olusoji B. Okunoye? and Obeten O. Ekabua'

Abstract

The state of the cyberspace portends uncertainty for the future Internet and its accelerated number of users.
New paradigms add more concerns with big data collected through device sensors divulging large amounts
of information, which can be used for targeted attacks. Though a plethora of extant approaches, models and
algorithms have provided the basis for cyberattack predictions, there is the need to consider new models and
algorithms, which are based on data representations other than task-specific techniques. Deep learning, which

is underpinned by representation learning, has found widespread relevance in computer vision, speech
recognition, natural language processing, audio recognition, and drug design. However, its non-linear
information processing architecture can be adapted towards learning the different data representations of
network traffic to classify benign and malicious network packets. In this paper, we model cyberattack
prediction as a classification problem. Furthermore, the deep learning architecture was co-opted into a new
model using rectified linear units (ReLU) as the activation function in the hidden layers of a deep feed
forward neural network. Our approach achieves a greedy layer-by-layer learning process that best represents
the features useful for predicting cyberattacks in a dataset of benign and malign traffic. The underlying
algorithm of the model also performs feature selection, dimensionality reduction, and clustering at the initial
stage, to generate a set of input vectors called hyper-features. The model is evaluated using CICIDS2017 and
UNSW_NBI15 datasets on a Python environment test bed. Results obtained from experimentation show that
our model demonstrates superior performance over similar models.

Keywords: Cyberattacks, Prediction, Deep learning, Python, Dimensionality reduction

Introduction

The expansion in the attack landscape has affected a
huge number of resources in the cyberspace. Accord-
ing to Sharafaldin et al. (2018a) and Sharafaldin et al.
(2018b), attacks involving Botnets, Bruteforce, SQL
Injection, Denial of Service (DoS), Infiltration, Heart-
bleed and Distributed Denial of Service (DDoS) are
having tremendous adverse effect on the security of
network topologies. Other evolving attacks include
analysis, backdoor, exploits, fuzzers, generic, recon-
naissance, shellcode, and forms (Moustafa and Slay
2016; Janarthanan and Zargari 2017). Similarly,

* Correspondence: ayeiibor@gmail.com
'Department of Computer Science, University of Calabar, Calabar, Nigeria
Full list of author information is available at the end of the article

@ Springer Open

Tobiyama et al. (2016) and Pai et al. (2017) agree that
malign users are developing new techniques that are
able to evade network defenses while compromising
the internal structure of networks. The accessibility to
big data also adds more concerns to the security of
data and other digital assets. Though recent re-
searches have tilted towards the modeling of cyberat-
tack prediction, it has become increasingly difficult to
identify a single approach that solves the problem of
cyberattacks in recent times.

Most approaches in the literature rely on task spe-
cific algorithms, thus requiring the need for an ap-
proach that relies more on representation learning.
That is, an approach that can learn different attack
classes from raw data instead of depending on pre-
programmed tasks. Dong and Wang (2016), Erfani

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00053-7&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ayei.ibor@gmail.com

Ibor et al. Cybersecurity (2020) 3:14

et al. (2016), Gulli and Pal (2017), Shone et al. (2018)
and Marcus (2018) argue that representation learning
can be helpful for extracting the intrinsic features of
a dataset in order to generalise on the test cases. In
this sense, our model extracts the intrinsic features of
network traffic to generate a cascade of concepts for
learning the representation of different attack
scenarios.

Furthermore, we optimised the accuracy of the
model by combining unsupervised and supervised
learning to predict 16 attack types in two different
datasets as shown in Tables 1 and 2. We evaluated
our model for accuracy, false positive rate, precision
rate, recall rate, F-measure and entropy in a python
environment test bed. Results of experimentation
show high prediction accuracy and very low false
positive rate for all attack types. Furthermore, we
benchmarked our model with similar models to
clearly show that it is superior for the prediction of
cyberattacks.

Review of related literature

This section introduces the most recent researches in
cyberattack detection and prediction with deep learn-
ing models in order to establish the relevance of the
proposed approach. The extant literature discussed

Page 2 of 14

public datasets such as KDD99, NSL-KDD and most
recently, CICIDS2017 datasets. The modeling of
cyberattack detection and prediction systems is fast
tilting towards deep learning models. This is based on
the fact that these models tend to learn the represen-
tations of data instead of the traditional Machine
Learning (ML) algorithms, which assume that data is
static (Folino and Sabatino 2016; Goodfellow et al.
2016).

For the purpose of clarity, a neural network (NN) is a
mathematical model of the information processing and
network structure of the human brain. It is a connec-
tionist system consisting of many neurons in layers for
communicating signals. A Deep Neural Network (DNN)
is a neural network with several hidden layers (Cho,
2014). A DNN typically learns data representations ra-
ther than perform task specific functions. In learning
data representations, a DNN relies on several layers of
non-linear information processing. These layers can be
adapted for supervised or unsupervised automatic fea-
ture learning and abstraction on several architectures
such as deep neural networks, deep belief networks and
recurrent neural networks (Deng and Yu 2014; LeCun
et al. 2015; Schmidhuber 2015).

Shen et al. (2018) proposed an attack prediction ap-
proach called Tiresias xspace. This approach was

here will also highlight researches that benchmarked based on a Recurrent Neural network (RNN) to
Table 1 Evolving Attacks in the CICIDS2017 Dataset
Attack Description Number of Instances
Class Train Test
Benign Normal network traffic 4003 1000
Brute force This attack is used for password cracking as well as the discovery of hidden pages 5000 1708
and content in a web application
Heartbleed The heartbleed attack emanates from a bug in the OpenSSL cryptography library, 6 5
which is an implementation of the Transport Layer Security (TLS) protocol
Botnet This attack uses a number of devices connected over the Internet to circumvent 1500 466
and exploit vulnerable machines
DoS The Denial of Service (DoS) attack temporarily or indefinitely disrupts services on 8000 3936
a host machine connected to the Internet. These services then become unavailable
to the intended users for the period of the attack
DDoS Usually results from a botnet of compromised machines flooding the bandwidth or 95,000 32,538
resources of a victim machine
Web Includes SQL injection, Cross-Site Scripting (XSS) and Brute force over HTTP: 1600 580
SQL injection is a code injection technique that is used to attack data-driven applications.
An attacker can create a string of SQL commands in order to force the database to divulge
its contents.
XSS attack allows attackers to inject client-side scripts into web pages, which are viewed
by other users.
Brute force over HTTP enables an attacker to try a list of passwords to find the administrator’s
password.
Infiltration This is an attack that exploits the vulnerability of a software in order to execute a backdoor on 700 281

the victim’s machine. This can lead to attacks such as IP Sweep, port scan and service enumerations.

Ibor et al. Cybersecurity (2020) 3:14

Table 2 Evolving Attacks in the UNSW_NB15 dataset

Page 3 of 14

Attack Class Description Number of Instances

Train Test
Normal Benign traffic 56,000 37,000
Analysis Can be a port scan or spam 2000 677
Backdoor Bypassing a secured authentication to have access to a machine 1746 583
DoS See Table 1 12,264 4089
Exploits Exploitation of a vulnerability in a piece of software 33,393 11,132
Fuzzers Feeding a network with randomly generated data to cause it to malfunction 18,184 6062
Generic An attack on block ciphers 40,000 18,871
Reconnaissance An attack that extracts information about a user or network 10,491 3496
Shellcode Exploitation of a software vulnerability using a small piece of code as payload 1133 378
Worms An attack that can replicate itself across multiple connected systems or networks 130 44

predict the possibility of imminent attacks on a host
machine using preceding observations. In Nguyen
et al. (2018), an approach that used deep learning to
detect and isolate cyberattacks in mobile clouds was
studied. The approach achieved an accuracy of
97.11% by applying the greedy layer-wise learning al-
gorithm using Restricted Boltzmann Machine (RBM)
for pre-training to perform non-linear transformation
on its input vectors. The model is then fine-tuned
using labeled data to achieve trained weights suitable
for detecting attacks.

Similarly, Rhode et al. (2018) predicted the state of
an executable code as either malicious or benign with
Recurrent Neural Networks (RNNs). The model
depended on a short snapshot of behavioural data to
obtain a 94% accuracy within the first 5 s of execu-
tion and an accuracy of 96.01% during the first 20 s
of execution on unseen test set. In Aksu and Aydin
(2018), Deep Learning with Support Vector Machine
(SVM) algorithm is used to introduce an Intrusion
Detection System (IDS) that could detect port scan
attempts on a host machine. The approach was evalu-
ated using the CICIDS2017 dataset and reported an
accuracy rate of 97.80% for the deep learning model
and 69.79% for SVM.

In the same sense, Al-Qatf et al. (2018) proposed a
deep learning approach for feature learning and di-
mensionality reduction. The model could reduce
training and testing time and also enhanced the at-
tack prediction accuracy of SVM. Sparse autoencoder
was used to build the model for unsupervised pre-
training and the transformed feature space was fed
into the SVM algorithm to detect attacks. The model
reported good detection accuracy for the KDD99 and
NSL-KDD datasets. Rezvy et al. (2019) applied a deep
autoencoded dense neural network algorithm to
detect attacks on Fifth Generation (5G) and IoT

networks. The paper presented a 2-step detection ap-
proach with deep autoencoders used for unsupervised
pre-training to reduce high dimensional data to low-
dimensional representation. The next stage performs
supervised classification with a deep neural network
to achieve good performance with an accuracy of
99.9%. However, this approach is not applied to larger
attack types, and it is difficult to ascertain its per-
formance when exposed to current evolving attacks.

An approach called scale-hybrid-IDS-AlertNet was
proposed by Vinayakumar et al. (2019). The approach
can be used to monitor network traffic in real time in
order to indicate the presence of anomalies representing
attacks in network traffic. Scale-hybrid-IDS-AlertNet
leveraged distributed and parallel machine learning algo-
rithms with a diversity of optimisation techniques for
handling a huge number of network and host-level
events. Kasongo and Sun (2019) presented an IDS for
detecting attacks on wireless networks. The popularity
of wireless networks and ease of use has come with
many security issues similar to those that affect conven-
tional wired networks. To this effect, the paper discussed
the application of a feed forward deep neural network
for achieving an effective IDS using NSL-KDD dataset
for evaluation.

Zhang et al. (2019) presented a technique that com-
bined the effect of improved Genetic Algorithm (GA)
and Deep Belief Network (DBN) to develop an adap-
tive model for detecting attacks on IoT. The model
was simulated and evaluated using the NSL-KDD
dataset to recognise attacks and reported the highest
accuracy of 99.45% for DoS attacks. In the GA-DBN
model, GA was used to select an optimal network
structure through multiple iterations on the attack
dataset. The DBN then deploys the optimal network
structure for the classifying of attacks thus enhancing
the classification accuracy.

Ibor et al. Cybersecurity (2020) 3:14

Materials and method

Datasets

The CICIDS2017 dataset is a time-based dataset gen-
erated over a 5 day period. It has 80 features with 13
attack types and 1 benign (or normal) traffic (Shara-
faldin et al. 2018a; Sharafaldin et al. 2018b; and Shar-
afaldin et al. 2018c).. These 13 attack types were
classified into 7 broad attack types by Panigrahi and
Borah (2018). The 7 broad attack classes are dis-
cussed in Table 1. The CICIDS2017 dataset has attack
diversity, complete network configuration, complete
traffic, labelled dataset, heterogeneity, and feature set.
It has been used as the benchmark dataset for attack
prediction and detection systems (Chadza et al., 2019;
Faker and Dogdu, 2019; Vinayakumar et al. 2019;
Gharib et al. 2016; Yin et al. 2017; Kasongo and Sun
2019), and several other works.

Similarly, the UNSW_NB15 dataset is a time-based
dataset generated over a 16-h period for the training set,
and 15-h period for the test set. It has 9 attack types and
49 features (Moustafa and Slay 2015), and also a bench-
mark dataset for evaluating intrusion prediction and de-
tection systems (Moustafa and Slay 2016; Janarthanan
and Zargari 2017). An overview of the evolving attacks
in the CICIDS2017 and UNSW_NB datasets is given in
Tables 1 and 2.

Page 4 of 14

The model is trained with the training set, validated
and tested with the test set for all experiments.

Methodology

The attack data undergoes two learning processes. First,
unsupervised learning is used to perform feature engin-
eering and clustering. Unsupervised pre-training is sig-
nificant for solving the problem of spontaneous
classification in order to improve the process of extract-
ing valuable information, which will serve as input to the
DNN.

For the second stage, supervised deep learning is used
to train the model for making predictions on test data.
The model performs cascaded learning based on a deep
feed forward neural network with h-hidden dense layers
and a Softmax layer for classifying network attacks into
one of the classes listed in Tables 1 and 2. The entre
prediction process is modeled as a multi-label classifica-
tion problem.

The proposed model
The architecture of the proposed approach is depicted
in Fig. 1.

The components of the model in Fig. 1 include:

i. Network Traffic Capture

L

— s

Network | 52

Traffic

h 4

+— S

Tram set e
—» Binarisation
Dataset ¥ Automatic Feature
Test set Standardization ———»

Engineering

L »s

Cascaded Learning

with[iNN
oy
g B 8 &
E B9 8w
" LI
E B e 8 =

Fig. 1 Architecture of the Proposed Deep Learning Model

" ——* Prediction Analysis

6._ s b

Cluster
Labels

O

\
Predicted Aftacks

Ibor et al. Cybersecurity (2020) 3:14

The first component represents the capture of network
traffic from different sources across the network perim-
eter. Each source, S; 1<i<n, generates network traffic
(malign or benign), which is simulated using the
CICIDS2017 and UNSW _NB15 datasets.

ii. Dataset

The dataset, which represents the captured network
traffic is further split into the train and test sets for
evaluating the performance of our model. In the dataset,
each row represents an input vector defined as x;, 1 <i <
n while each input vector consists of m number of fea-
tures denoted by f,,.. These features can include the des-
tination port, flow duration, total forward packets, total
backward packets, protocol type, service state, and so
on. Therefore, we defined an input vector in terms of its
features as given in eq. 1.

Xi = |f17f27"'7fm| (1)

iii. Normalisation

To achieve an error-free prediction, the captured net-
work traffic is normalised. The normalisation process
comes in 2 forms. First, the input vectors are used as
rows while the features are used as columns to create an
n x m matrix. This matrix is processed with all categor-
ical values converted to nominal values using label en-
coders. This is followed by the multi-label Binarisation
of all class labels y;.

Secondly, the dataset is scanned for missing values in
order to standardise the range of continuous initial vari-
ables or features. In this way, each variable or feature
will contribute equally to the analysis of the modeled
dataset. Patro and Sahu (2015) assert that standardisa-
tion or Z-score normalisation also involves transforming
the dataset to comparable scales in order to achieve un-
biased results.

Mathematically, a balanced dataset of inputs vectors is
created by subtracting the mean and dividing by the
standard deviation of each variable or feature in the
dataset as given in eq. 2.

xX-X

Z= 2)

o

Where x is the original samples in the dataset, X is
the mean, and ¢ is the standard deviation of the sam-
ples. Eq. 2 is relevant for enhancing the convergence
speed of the optimisation algorithm. We used an n x
m matrix to represent the normalised dataset as
shown in eq. 3.

Page 5 of 14

X111 X12... X1m
D= X21 X22... Xom (3)
Xul Xp2eero Xum

iv. Feature Engineering

At stage 4, feature engineering is performed on the
dataset using Principal Component Analysis (PCA).
This generates a set of p uncorrelated principal com-
ponents from the correlated feature set. PCA has
been used in recent studies for feature engineering
such as the works of Ibrahimi and Ouaddane (2017),
Moustafa et al. (2017), and Wang et al. (2017). In a
dataset, it is likely that some of the features or vari-
ables in the dataset will be highly correlated in such
a way that they contain redundant information. Thus,
it is a good practice, when modeling predictive prob-
lems, to remove linear correlations among features in
a dataset. In this sense, PCA is used to reduce the
feature space while still maintaining the variability in
the dataset (Lakhina et al. 2010).

Given the dataset, D, with n-instances and m-fea-
tures or variables, PCA generates min(n-1|,m) dis-
tinct principal components, which can be used to
reconstruct the target output. In this way, the large
dataset of connection vectors is easily represented by
projecting it on more than one dimensional vector
(De la Hoz et al. 2015). The transformed low-
dimensional representation is based on the preserva-
tion of the variance of the dataset, and the ranking of
the principal components. That is, the first principal
component contains the largest possible variance, and
this threshold decreases with each succeeding princi-
pal component as given in eq. (4).

d = D(min(n-1),m) (4)

v. Clustering

The Expectation Maximisation algorithm (EM) is
used to generate k number of clusters from the di-
mensionally reduced dataset. With clustering, the
training of the model is improved by automatically
categorising attack data. This can be useful in the
early steps of an attack. EM performs clustering by
initialising the mean and variance as the parameters
for k probability distributions. The algorithm then al-
ternates between the 2-step iterative processes as
follows:

a. Expectation Step (E-Step): the probabilities
required in the M-Step are computed using
the current estimates of the distribution
parameters

Ibor et al. Cybersecurity (2020) 3:14

b. Maximisation Step (M-Step): the distribution
parameters with respect to maximum likelihood
estimators are then recomputed using the
probabilities from the E-Step.

The shape of the cluster changes as these parameters
are recomputed iteratively until the k-clusters are gener-
ated. Therefore, representing the EM algorithm as 6, we
have eq. (5).

di = 6(di) = 0(x,7) (5)

Where, dy is the clustered dataset by applying the EM
algorithm 6 on d, k represents the generated number of
clusters on d. Since the dataset is 2-dimensional with the
instances as a matrix, and the class labels as a vector, vy,
fitting x and y into the EM algorithm will generate a
function O(x,y), to match the instances (data points) to
the class labels prior to input to the DNN, which is par-
ticularly significant for supervised learning. The k™ clus-
ter in dj is represented as y*.

Given the statistical model that generates a set x, of
observed data, a set of unobserved latent data or missing
values y, and a vector of unknown parameters o. Assum-
ing that there is a likelihood function defined as L(6, %,
y) = p(x, y| 0)the maximum likelihood estimate of the
unknown parameters is obtained by maximizing the
marginal likelihood of the observed data.

The clusters are then created by using y as a latent
variable indicating membership in one of a set of groups
as follows:

i) The observed data points x may be discrete or
continuous. Associated with each data point may be
a vector of observations.

Page 6 of 14

ii) The missing values (or latent variables) y are
discrete, drawn from a fixed number of values,
and with one latent variable per observed unit.

iii) The parameters are continuous, and are of two
kinds: Parameters that are associated with all
data points, and those associated with a specific
value of a latent variable (i.e., associated with all
data points, which corresponding latent variable
has that value).

This approach is also used in Dubois et al. (2011) for
analysing bioequivalence crossover trials. The clusters
(4".) generated based on the membership of the latent
variable are then fed into the DNN for supervised learn-
ing and classification.

vi. Cascaded Learning with Supervised DNN

Cascaded learning is performed at each layer of the
DNN. Each layer passes its information to the next layer
through the DNN without feedback connections. The
model is trained using the constructed k-clusters and
cluster labels, generated with the EM algorithm. A Feed
Forward (FF) DNN with 5 layers (1 input layer, 3 hidden
dense layers (h,1<i<3), and 1 output layer) is used.
The DNN is shown in Fig. 2.

vii. Prediction Module

The DNN learns a compressed representation of
each cluster x#* in the hidden layers. At the output
layer, the Softmax function is used to classify this
compressed representation. In reality, the Softmax
function partitions the output such that the total sum
is 1, which is equivalent to a categorical probability
distribution (Agarap 2018). Thus, the final layer

Fig. 2 The Deep Feed Forward Neural Network of the Model

https://en.wikipedia.org/wiki/Latent_variables

Ibor et al. Cybersecurity (2020) 3:14

comprises a single neuron for each of the attack clas-
ses. Each attack class yields a value between 0 and 1,
which is inferred as a probability. The sum of the
probability of the output is 1.

To compute the probability of an attack, we applied
the Softmax function to each cluster class value as
shown in eq. (6).

ek

y = Softmax(y;) = W (6)
with 7 as the predicted class. We made predictions
using equation (6), and the range of ¥ (0, 1) indicates the
accuracy of predictions. Next, we analysed the predic-
tions made by the model with the help of a confusion
matrix, and then computed the following evaluation
metrics based on the work of Milenkoski et al. (2015):

a) Accuracy of Prediction (ACC): the rate of
instances of attacks or normal connections
predicted correctly. This is calculated as:

P+ TN
ACC = T T IN T EN - P @)

Where,

TP is True Positive: correct positive prediction; TN
is True Negative: correct negative prediction; FN is
False Negative: incorrect negative prediction and FP is
False Positive: incorrect positive prediction.

b) False Positive Rate (FPR): the rate of instances of
attacks predicted as normal connections or vice
versa denoted by:

FP
FPR= ———
TN + FP
c¢) Precision Rate (PR): the fraction of relevant
instances in the dataset given as:

TP

PR=——
TP + FP

©)

d) Recall Rate (RR): the retrieved relevant instances
over the total amount of relevant instances. RR
calculated as shown in equation (10):

P

RR=—"
TP + FN

(10)

e) F-Measure (F-Score or F1): a measure of the
accuracy of the model computed as the weighted
harmonic mean of the precision and recall of the
model. F-measure is denoted by:

Page 7 of 14

PR.RR

Fl=2x——
PR + RR

(11)

f) Cross Entropy (E): a measure of the performance
of a classification model whose output is a
probability value between 0 and 1. That is,

E= —Z:l:lyil‘)g(j’i) (12)

In equation (12), n is the number of classes, y is the true
class value and y is the predicted class value. A good
model will have E that is 0 or close to 0. The consideration
of the value of E is used to assess the efficiency of the
model, i.e. E <0.15 is used as the benchmark for determin-
ing good performance by the model. The accuracy of pre-
diction is interpreted by comparing each output from the
Softmax layer with its corresponding true value. That is,
the true values are one-hot-encoded such that a value of
one (1) appears in the column corresponding to the cor-
rect attack class, otherwise a value of zero (0) is shown.

Underlying algorithm of the model

The model’s underlying algorithm is given in Algorithm 1.

Algorithm 1:
1. Initialise all parameters and variables

Initialise number of input vectors as: x; = |fy, for e, fml ;1< i< n
Split the dataset D, to obtain the train and test sets with x instances and y labels: D = D(x, y)
Generate principal components from D: d = D(min(n — 1), m)
Generate k clusters from d: dj, = 6(d;,) = 0(x,y)
For k = I to numberofClusters

Assign clusters labels: y, = 0 (u¥)

QAN

if (i==1) return inputLayer units
5) return outputLayer units

Jj=jt1
return h' as hidden layers units
end For
9. i=1
10. Repeat

if(i==1) units = 750 for h*
if(i==2) units = 500 for h*
if(i==3) units = 250 for h*
i=i+1
Until (i>j)
11. Forn =1 to epochs
Train model on train set

Validate and test model with test set
¥

Predict attacks using ¥ = Softmax(y,) = an .
k=

end For o
12. Return ¥ as the predicted attack class

Feature ranking

The model was trained using the EM generated number
of clusters (k-clusters) based on the features in the data-
set. The k-clusters were formed from a feature space
with a reduced dataset, d, using PCA. PCA generated p-
principal components, representing a compressed fea-
ture space as mentioned in Vasan and Surendiran
(2016). With PCA, the variance in the data was opti-
mised to generate the representative subset of features
for training the model.

Ibor et al. Cybersecurity (2020) 3:14

After training the model with the train set, it was
able to generalise to an out-of-sample (test) data
while deriving an accurate estimate of model predic-
tion performance.

Testbed of the experiments

We implemented the DNN using a TensorFlow back-
end in Python 3.6 on an Ubuntu 18.04 64-bit operat-
ing system with Keras and ScikitLearn libraries (Abadi
et al. 2016; Gulli and Pal 2017; Hackeling 2017). The
system properties of the machine used for experimen-
tation are shown in Table 3.

Experimental results and discussion

The experimental results for this implementation are
discussed in this section. The tuning of the hyper-
parameters for the deep neural network and the pre-
dictions made at the completion of the execution of
the Python code used for the implementation are pre-
sented. Furthermore, the performance of the model is
benchmarked against state-of-the-art approaches and
findings show that the proposed model outperforms
other models in terms of accuracy and false positive
rate.

Configuration and tuning of Hyperparameters

The DNN performed computations on the trans-
formed feature space, which is basically comprised of
numeric values. In each layer, the feature space is
compressed and abstract features for the optimal rep-
resentation of the original dataset are learned, trans-
formed and passed on to subsequent layers in a
cascaded learning technique. To achieve the required
accuracy, the DNN must have an adequate number of
layers. Similarly, each layer must have an adequate
number of neurons in order to be able to represent
the different output classes during predictions.

In a DNN, hyperparameter tuning helps the model
to generalise on the training data while finding the
distinctions between the output classes (Rhode et al.
2018). It is noteworthy to mention that there are sev-
eral ways the hyperparameters of the DNN can be
configured and tuned. During the experiments, differ-
ent configurations were chosen and tested. In tuning
the model, it was found that a depth of 3 hidden
layers produced the best results.

Table 3 System Properties of the Implementation Machine

Host Operating System Ubuntu 18.04
Processor Intel® Core™ i3 6100U CPU @2.30 GHz 2.30GHz
RAM 4.00GB

System Type 64-bit Operating System, x-64 based processor

Page 8 of 14

Additionally, the number of neurons per layer and the
number of epochs for training the model were randomly
chosen. Through this random search process, the hyper-
parameter values for the optimal performance of the
model were chosen. Subsequently, the hyperparameters
that generated the best performance of the model are
summarised in Table 4.

Training and testing of the model
The model was trained and tested with 500 iterations or
epochs. The visualisation of the pre-trained samples for
the dataset is illustrated in Fig. 3.

The training of the model was based on three se-
quence of processes as mentioned in Kasongo and Sun
(2019). These processes include:

i. Forward propagation, in which case, each layer
passes information to the next layer

ii. Back propagation of the error computed during the
cascaded learning process

iii. The update of the weights and biases across the
DNN.

The update of all the weights and biases was based
on a backpropagation algorithm, which is optimised
with stochastic gradient descent (SGD) and an Adam
updater. A standard categorical cross-entropy loss
function is used at the output layer. This loss func-
tion measures the model’s classification performance
whose output is a probability value within the range
of 0 and 1. When the predicted probability diverges
from the actual value, the value of cross-entropy loss
increases, and then tends towards 0 as the predicted
probability converges to the actual value. A cross-
entropy loss of 0 implies a perfect model.

The model is trained with an initial learning rate
of 0.1. A lower learning rate of 0.01 was subse-
quently introduced to test the model’s predictions
over the training and test data. However, the opti-
misation took a longer time due to the tiny steps to-
wards the minimum of the loss function. It is
important to note that choosing the appropriate
learning rate is significant for achieving optimal

Table 4 Hyperparameters for Optimal Model Performance

Hyperparameter Experimented Selected
Values Configuration

Number of hidden dense 1t0 10 3

layers

Neurons per layer 100 to 1000 750, 500, 250

Number of epochs 10 to 500 500

Batch Size 32, 64,128 64

Learning Rate (Ir) 0.0001, 0.01, 0.1,0.2, 0.3 0.01, 0.1

Ibor et al. Cybersecurity (2020) 3:14

Page 9 of 14

le8

Visualisation of the Pre-trained Samples

3.0

T

0 20000 40000 60000

Fig. 3 Visualisation of the Pre-trained Samples

80000 100000 120000 140000

predictions. This is because a high learning rate may
result in the training not converging, or even diver-
ging. Consequently, changes in weights can be large
enough to allow the optimizer overshoot the mini-
mum and make the loss worse.

At the end of the training phase, the performance of
the model was evaluated and tested using out-of-sample
(or test) data. The results obtained are presented in the
next section.

Discussion of results

For each training, validation and testing phase, the
performance of the model was recorded using such
metrics as Accuracy, Recall Rate, Precision Rate, F-
measure and Cross Entropy for the modeled datasets
and selected learning rate. The results obtained are
shown in Table 5 for the CICIDS2017 dataset and in
Table 6 for the UNSW_NBI15 dataset. From Tables 5
and 6, the model demonstrated good stability for the
16 attack and two benign (or normal) classes in both
datasets, thus showing a significant improvement over
any existing model.

All attack classes in the CICIDS2017 dataset were pre-
dicted with an accuracy of more than 0.99 or 99% with
values of E close to 0.

Similarly, the 9 attack classes in the UNSW_NB15
dataset were predicted with the highest accuracy of
99.92% for Worms, and the lowest accuracy of 81.68
for Analysis. The values of E were also very low, an
indication of a good predictive model. The Accuracy
and Cross Entropy Loss curves for the CICIDS2017
and UNSW_NBI15 datasets are depicted in Figs. 4
and 5.

As shown in Figs. 4 and 5, there is no significant
deviation between the train and test curves showing
that the model is able to learn a representation of
the attack clusters from the raw attack data. These
visualisations were produced by plotting the accur-
acy and cross entropy loss of the model against the
number of epochs during the training and testing
phases of the experimentation. For both datasets,
the model predicted the attacks and benign (or nor-
mal) traffic in the datasets accurately. This shows
that our model has a strong modeling ability, and

Table 5 Performance Metrics of the Model for CICIDS2017 Dataset using Ir=0.1

Metrics Benign DDoS DoS Web attack Bruteforce Heartbleed Botnet Infiltration
ACC 99.98 99.82 99.93 99.98 99.93 100.0 99.95 99.93

PR 99.99 99.99 99.94 99.98 99.95 100.0 99.99 99.94

RR 99.99 99.97 99.99 100.0 99.99 100.0 99.96 99.93

F1 99.99 99.98 99.97 99.99 99.97 100.0 99.97 99.96

E 0.000064 0.000064 0.000598 0.000234 0.000534 0.0 0.000149 0.000064

Ibor et al. Cybersecurity (2020) 3:14

Page 10 of 14

Table 6 Performance Metrics of the Model for UNSW_NB15 Dataset using Ir=0.1

Metrics Normal Analysis Back Door DoS Exploits Fuzzers Generic Recon Shell code Worms
ACC 89.46 81.68 98.71 91.41 85.10 90.76 98.78 96.94 99.29 99.92
PR 99.18 82.02 99.97 99.79 96.41 93.74 99.82 99.21 99.87 100.0
RR 93.69 99.79 98.74 91.60 89.91 97.69 99.32 97.87 9942 99.93
F1 96.36 90.03 99.35 95.52 93.05 95.67 99.57 98.54 99.64 99.96
E 0.00818 0.16261 0.00025 0.00206 0.03526 0.06058 0.00181 0.00788 0.00130 0.00005

yields very high accuracy for predicting multi-class
attacks.

In Table 7, the overall performance of the model is
shown. The model showed improved performance for
all the 16 attack and two benign classes used. Our
model was able to learn more abstract features of the
dataset during the training phase at each layer to
make better generalisations for predicting the mod-
eled attack and benign traffic while minimising the
cross entropy loss, and false positive rate.

Furthermore, a Precision-Recall analysis is performed
by plotting the Precision Rate (PR) on the x-axis against
the Recall Rate (RR) on the y-axis, to ascertain the stabil-
ity of the model in making predictions. The PR-RR Ana-
lysis is represented in Fig. 6. This plot shows very high
stability, and affirm the suitability of the proposed model
for multi-class predictions.

Comparison of results

In our model, we used unsupervised and supervised
learning techniques to achieve very high accuracy in the
prediction of cyberattacks. From the results obtained
during experimentation, our model demonstrated more
than 99% prediction accuracy for 9 of the 16 attack

classes, and more than 90% prediction accuracy for 14 of
the 16 attack classes in both datasets. The benign classes
were also predicted with very high accuracy, thus the
negligible FPR achieved. This is clearly indicated by the
test plots of Figs. 4 and 5. Similarly, the cross entropy
loss of the model indicates that our model is a good
classifier. The FPR, which is used as the prediction error
of the model was minimal, implying that only a few in-
stances of the benign and attack data were misclassified
or predicted incorrectly. We benchmarked the results of
experimentation of our model against extant state-of-
the-art techniques in deep learning as shown in Table 8.
This comparison shows that our model outperforms ex-
tant approaches as illustrated in Fig. 7.

As shown in Table 8, our model achieved an overall
accuracy of 99.99%, and FPR of 0.00001. The approach
of Rezvy et al. (2019) also demonstrated good perform-
ance with an accuracy of 99.9%. However, this approach
is applied to only three attack types in one dataset,
which is not substantial for measuring performance on
most evolving attack types due to the complexity in ana-
lysing and predicting them. Consequently, our model
demonstrated significant improvement over existing
models for cyberattack prediction.

Accuracy of the Model

1.000 A

0.975 1

0.950 A

0.925 1

Accuracy

0.900 1

0.875 1

0.850 1

— ftrain
— test

0.825 1

200 300 400 500

Epoch

100

Loss

Fig. 4 Accuracy and Cross Entropy Loss of the Model for CICIDS2017 Dataset

Cross Entropy Loss of the Model

—— train
—— test

1.0 A

0.8

0.6

0.4 4

024 |

0.0

T T T T
200 300 400 500

Epoch

100

Ibor et al. Cybersecurity (2020) 3:14 Page 11 of 14
s
Accuracy of the Model Cross Entropy Loss of the Model
2.0 4 — train
0.8 'WV'W' 'WWWH‘]’F‘"*FMM - — test
0.7 1 L6+
144
>
£ 812
g -
€
05 4 1.0+
0.8 1
0.4 1
» 0.6 1 b
— tain M@m U\Jdlﬂsm
— test 04 4
0'3 g T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch
Fig. 5 Accuracy and Cross Entropy Loss of the Model for the UNSW_NB15 Dataset

Conclusion

We introduced a new approach to cyberattack predic-
tion never used in any previous work. We showed
that by clustering the attack data using an unsuper-
vised learning approach prior to classification and
prediction of attacks, we can achieve very high pre-
diction accuracy suitable for the current cyberspace.
Though there are numerous approaches in the litera-
ture for the same problem, our approach demon-
strated that it is possible to use one trained model
and topology to effectively predict multiple attacks,
especially at the early stages of the attack. The com-

Table 7 Overall Performance of the Model for Ir=0.1

Epochs 500
Metrics

ACC 99.99761
FPR 0.00003
PR 99.97223
RR 100

Fl 99.98611
E 0.00028

bination of techniques used in this work is novel, and
can be very useful for current embedded systems,
which do not require very complicated design. Fur-
thermore, we evaluated the model using CICIDS2017
and UNSW _NB15 datasets as the benchmarked data-
sets. These datasets have large sets of connection vec-
tors of evolving attacks, which enabled us to tune the
model to learn different attack types to make accurate
predictions. Finally, we obtained a prediction accuracy
of 99.99% for most of the modeled attack types, thus
outperforming extant approaches for the same prob-
lem domain.

Table 8 Performance Comparison of the Proposed Model with
Extant State-of-the-Art Approaches

Approach Accuracy False Positive Rate
Proposed Model 99.99% 0.00001

Rezvy et al. (2019) 99.9% 0.1

Vinayakumar et al. (2019) 93.5% 6.45

Kasongo and Sun (2019) 99.54% 043

Zhang et al. (2019) 99.45% 0.54

Ibor et al. Cybersecurity (2020) 3:14 Page 12 of 14

Precision - Recall Analysis
10 T T T T T

99.99 - —

99.98 —

99.97 —

99.96 b

Recall Rate (RR)

99.95 1~ _

99.931~ _

| | | | | |
99.
:!’}5.94 99.95 99.96 99.97 99.98 99.99 100 100.01

Precision Rate (PR)

Fig. 6 Precision — Recall Analysis of the Proposed Model
.

Performance Comparison of the Proposed
Model with Extant State-of-the-art

Approaches
102.00%
100.00%
98.00%
96.00%
94.00%
92.00%
90.00%
Proposed Rezvyetal, Vinayakumar et Kasongo and Sun Zhang et al.,
Approach (2019) al., (2019) (2015) (2019)

Fig. 7 Visualising the Accuracy of the Proposed Model against other Approaches
A\

Ibor et al. Cybersecurity (2020) 3:14

Acknowledgements
Not applicable.

Authors’ contributions

This work is the original idea of the first author. The work was supervised by
the second and third authors, while the fourth author served as an adviser.
All experimentations and reporting were performed by the first author, and
validated for correctness and relevance by the second and third authors. The
authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials

CICIDS2017 Dataset is available at https://www.unb.ca/cic/datasets/ids-2017.
html while the UNSW_NB15 dataset is available at https.//www.unsw.adfa.
edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

Competing interests
The authors declare that there are no competing interests in this research
work.

Author details
'Department of Computer Science, University of Calabar, Calabar, Nigeria.
’Department of Computer Sciences, University of Lagos, Lagos, Nigeria.

Received: 19 October 2019 Accepted: 12 April 2020
Published online: 17 June 2020

References

Abadi, M,, Barham, P., Chen, J,, Chen, Z, Davis, A, Dean, J, .. and Kudlur, M.
(2016). Tensorflow: a system for large-scale machine learning. In 12th
{USENIX} symposium on operating systems design and implementation
({OSD1} 16)(pp. 265-283)

Agarap AF (2018) Deep learning using rectified linear units (ReLU). arXiv preprint
arXiv:1803.08375

Aksu D, and Aydin MA. (2018). Detecting port scan attempts with comparative
analysis of deep learning and support vector machine algorithms. In 2018
International Congress on Big Data, Deep Learning and Fighting Cyber
Terrorism (IBIGDELFT). IEEE, Ankara, pp. 77-80

Al-Qatf M, Lasheng Y, Al-Habib M, Al-Sabahi K (2018) Deep learning approach
combining sparse autoencoder with SYM for network intrusion detection.
IEEE Access 6:52843-52856

Chadza T, Kyriakopoulos KG, Lambotharan S. (2019). Contemporary Sequential
Network Attacks Prediction using Hidden Markov Model. In 2019 17th
International Conference on Privacy, Security and Trust (PST). Fredericton:
IEEE (pp. 1-3).

Cho K (2014) Foundations and advances in deep learning.Taxonomy, and future
directions. Comput Commun 107:30-48

De la Hoz E, De La Hoz E, Ortiz A, Ortega J, Prieto B (2015) PCA filtering and
probabilistic SOM for network intrusion detection. Neurocomputing 164:71-
81

Deng L, Yu D (2014) Deep learning: methods and applications. Foundations and
Trends® in Signal Processing 7(3-4):197-387

Dong B, Wang X. (2016). Comparison deep learning method to traditional
methods using for network intrusion detection. In 2016 8th IEEE International
Conference on Communication Software and Networks (ICCSN). IEEE, Beijing,
pp. 581-585.

Dubois A, Lavielle M, Gsteiger S, Pigeolet E, Mentré F (2011) Model-based
analyses of bioequivalence crossover trials using the stochastic
approximation expectation maximisation algorithm. Stat Med 30(21):2582-
2600

Erfani SM, Rajasegarar S, Karunasekera S, Leckie C (2016) High-dimensional and
large-scale anomaly detection using a linear one-class SYM with deep
learning. Pattern Recogn 58:121-134

Faker O, Dogdu E. (2019). Intrusion detection using big data and deep learning
techniques. In Proceedings of the 2019 ACM Southeast Conference - ACMSE.
Kennesaw: 2019:86-93.

Folino G, Sabatino P (2016) Ensemble based collaborative and distributed
intrusion detection systems: a survey. J Netw Comput Appl 66:1-16

Page 13 of 14

Gharib A, Sharafaldin |, Lashkari AH, Ghorbani AA (2016) An evaluation framework
for intrusion detection dataset. In 2016 international conference on
information science and security (ICISS). IEEE, Pattaya, pp 1-6.

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MT Press, Cambridge.

Gulli A, Pal S (2017) Deep learning with Keras. Packt Publishing Ltd, Birmingham.

Hackeling G (2017). Mastering machine learning with scikit-learn. Packt Publishing
Ltd, Birmingham.

Ibrahimi K, Ouaddane M (2017) Management of intrusion detection systems
based-KDD99: analysis with LDA and PCA. In 2017 international conference
on wireless networks and Mobile communications (WINCOM). Rabat, IEEE, pp
1-6.

Janarthanan T, Zargari S (2017). Feature selection in UNSW-NB15 and KDDCUP'99
datasets. In 2017 IEEE 26th international symposium on industrial electronics
(ISIE). IEEE, Edinburgh, pp 1881-1886.

Kasongo SM, Sun Y (2019) A deep learning method with filter based feature
engineering for wireless intrusion detection system. IEEE Access 7:38597—
38607

Lakhina S, Joseph S, Verma B (2010) Feature reduction using principal
component analysis for effective anomaly-based intrusion detection on NSL-
KDD

LeCun, Y, Bengio, Y, and Hinton, G, 2015. Deep learning. Nature, 521(7553), 436

Marcus, G. (2018). Deep learning: a critical appraisal. arXiv preprint arXiv:1801.
00631

Milenkoski A, Vieira M, Kounev S, Avritzer A, Payne BD (2015) Evaluating
computer intrusion detection systems: a survey of common practices. ACM
Comput Surv (CSUR) 48(1):12

Moustafa N, Slay J (2015). UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). In 2015 military
communications and information systems conference (MilCIS). IEEE,
Canberra, pp 1-6.

Moustafa N, Slay J (2016) The evaluation of network anomaly detection systems:
statistical analysis of the UNSW-NB15 data set and the comparison with the
KDD99 data set. Inf Secur J 25(1-3):18-31

Moustafa N, Slay J, Creech G (2017). Novel geometric area analysis technique for
anomaly detection using trapezoidal area estimation on large-scale networks.
IEEE Transactions on Big Data. 5(4):481-94.

Nguyen KK, Hoang DT, Niyato D, Wang P, Nguyen D, and Dutkiewicz E. (2018).
Cyberattack detection in mobile cloud computing: a deep learning
approach. In 2018 IEEE wireless communications and networking conference
(WCNQ). IEEE, Barcelona, pp. 1-6.

Pai S, Di Troia F, Visaggio CA, Austin TH, Stamp M (2017) Clustering for malware
classification. J Comput Virol Hacking Tech 13(2):95-107

Panigrahi R, Borah S (2018) A detailed analysis of CICIDS2017 dataset for
designing intrusion detection systems. Int J Eng Technol 7(3.24):479-482

Patro, S, and Sahu, K. K. (2015). Normalization: a preprocessing stage. arXiv
preprint arXiv:1503.06462

Rezvy S, Luo Y, Petridis M, Lasebae A, Zebin T (2019) An efficient deep learning
model for intrusion classification and prediction in 5G and loT networks. In
2019 53rd Annual Conference on Information Sciences and Systems (CISS).
IEEE, Baltimore, pp 1-6.

Rhode M, Burnap P, Jones K (2018) Early-stage malware prediction using
recurrent neural networks. Comput Secur 77:578-594

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural
Netw 61:85-117

Sharafaldin I, Gharib A, Lashkari AH, Ghorbani AA (2018a) Towards a reliable
intrusion detection benchmark dataset. Softw Netw 2018(1):177-200

Sharafaldin |, Lashkari AH, and Ghorbani AA. (2018b). Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In
Proceedings of the 4th International Conference on Information Systems
Security and Privacy (ICISSP 2018). Funchal: pp. 108-116.

Sharafaldin I, Lashkari AH, Ghorbani AA (2018c) A detailed analysis of the
CICIDS2017 data set. In international conference on information systems
security and privacy. Springer, Cham, pp 172-188

Shen Y, Mariconti E, Vervier PA, Stringhini G (2018) Tiresias. Proceedings of the
2018 ACM SIGSAC conference on computer and communications security -
CCS "18. https://doi.org/10.1145/3243734.3243811

Shone N, Ngoc TN, Phai VD, Shi Q (2018) A deep learning approach to network
intrusion detection. IEEE Trans Emerg Topics Comput Intell 2(1):41-50

Tobiyama S, Yamaguchi Y, Shimada H, lkuse T, Yagi T (2016) Malware detection
with deep neural network using process behavior. In 2016 IEEE 40th annual
computer software and applications conference (COMPSAQ). IEEE 2:577-582

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://doi.org/10.1145/3243734.3243811

Ibor et al. Cybersecurity (2020) 3:14

Vasan KK, Surendiran B (2016) Dimensionality reduction using principal
component analysis for network intrusion detection. Perspect Sci 8:510-512

Vinayakumar R, Alazab M, Soman KP, Poornachandran P, Al-Nemrat A,
Venkatraman S (2019) Deep learning approach for intelligent intrusion
detection system. IEEE Access 7:41525-41550

Wang H, Gu J, Wang S (2017) An effective intrusion detection framework based
on SVM with feature augmentation. Knowl-Based Syst 136:130-139

Yin C, Zhu Y, Fei J, He X (2017) A deep learning approach for intrusion detection
using recurrent neural networks. leee Access 5:221954-21961

Zhang Y, Li P, Wang X (2019) Intrusion detection for loT based on improved
genetic algorithm and deep belief network. IEEE Access 7:31711-31722

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 14 of 14

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Introduction
	Review of related literature
	Materials and method
	Datasets
	Methodology
	The proposed model
	Underlying algorithm of the model
	Feature ranking
	Testbed of the experiments

	Experimental results and discussion
	Configuration and tuning of Hyperparameters
	Training and testing of the model
	Discussion of results

	Comparison of results
	Conclusion
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

