Choi et al. Cybersecurity (2020) 3:15
https://doi.org/10.1186/542400-020-00055-5

Cybersecurity

SURVEY Open Access
Check for
updates

Using deep learning to solve computer
security challenges: a survey

Yoon-Ho Choi'?, Peng Liu'", Zitong Shang', Haizhou Wang', Zhilong Wang', Lan Zhang', Junwei Zhou?
and Qingtian Zou'

Abstract

Although using machine learning techniques to solve computer security challenges is not a new idea, the rapidly
emerging Deep Learning technology has recently triggered a substantial amount of interests in the computer security
community. This paper seeks to provide a dedicated review of the very recent research works on using Deep Learning
techniques to solve computer security challenges. In particular, the review covers eight computer security problems
being solved by applications of Deep Learning: security-oriented program analysis, defending return-oriented
programming (ROP) attacks, achieving control-flow integrity (CFl), defending network attacks, malware classification,
system-event-based anomaly detection, memory forensics, and fuzzing for software security.

Keywords: Deep learning, Security-oriented program analysis, Return-oriented programming attacks, Control-flow
integrity, Network attacks, Malware classification, System-event-based anomaly detection, Memory forensics, Fuzzing

for software security

Introduction

Using machine learning techniques to solve computer
security challenges is not a new idea. For example, in
the year of 1998, Ghosh and others in (Ghosh et al
1998) proposed to train a (traditional) neural network
based anomaly detection scheme(i.e., detecting anoma-
lous and unknown intrusions against programs); in the
year of 2003, Hu and others in (Hu et al. 2003) and Heller
and others in (Heller et al. 2003) applied Support Vec-
tor Machines to based anomaly detection scheme (e.g.,
detecting anomalous Windows registry accesses).

The machine-learning-based computer security
research investigations during 1990-2010, however, have
not been very impactful. For example, to the best of our
knowledge, none of the machine learning applications
proposed in (Ghosh et al. 1998; Hu et al. 2003; Heller et
al. 2003) has been incorporated into a widely deployed
intrusion-detection commercial product.

*Correspondence: pxI20@psu.edu
The Pennsylvania State University, Pennsylvania, USA
Full list of author information is available at the end of the article

@ Springer Open

Regarding why not very impactful, although researchers
in the computer security community seem to have differ-
ent opinions, the following remarks by Sommer and Pax-
son (Sommer and Paxson 2010) (in the context of intru-
sion detection) have resonated with many researchers:

e Remark A: “It is crucial to have a clear picture of what
problem a system targets: what specifically are the
attacks to be detected? The more narrowly one can
define the target activity, the better one can tailor a
detector to its specifics and reduce the potential for
misclassifications.” (Sommer and Paxson 2010)

e Remark B: “If one cannot make a solid argument for
the relation of the features to the attacks of interest,
the resulting study risks foundering on serious flaws.”
(Sommer and Paxson 2010)

These insightful remarks, though well aligned with the
machine learning techniques used by security researchers
during 1990-2010, could become a less significant concern
with Deep Learning (DL), a rapidly emerging machine
learning technology, due to the following observations.
First, Remark A implies that even if the same machine

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00055-5&domain=pdf
mailto: pxl20@psu.edu
http://creativecommons.org/licenses/by/4.0/

Choi et al. Cybersecurity (2020) 3:15

learning method is used, one algorithm employing a cost
function that is based on a more specifically defined tar-
get attack activity could perform substantially better than
another algorithm deploying a less specifically defined
cost function. This could be a less significant concern with
DL, since a few recent studies have shown that even if the
target attack activity is not narrowly defined, a DL model
could still achieve very high classification accuracy. Sec-
ond, Remark B implies that if feature engineering is not
done properly, the trained machine learning models could
be plagued by serious flaws. This could be a less significant
concern with DL, since many deep learning neural net-
works require less feature engineering than conventional
machine learning techniques.

As stated in NSCAI Intern Report for Congress (2019),
“DL is a statistical technique that exploits large quanti-
ties of data as training sets for a network with multiple
hidden layers, called a deep neural network (DNN). A
DNN is trained on a dataset, generating outputs, calcu-
lating errors, and adjusting its internal parameters. Then
the process is repeated hundreds of thousands of times
until the network achieves an acceptable level of perfor-
mance. It has proven to be an effective technique for image
classification, object detection, speech recognition, and
natural language processing—problems that challenged
researchers for decades. By learning from data, DNNs can
solve some problems much more effectively, and also solve
problems that were never solvable before”

Now let’s take a high-level look at how DL could make
it substantially easier to overcome the challenges identi-
fied by Sommer and Paxson (Sommer and Paxson 2010).
First, one major advantage of DL is that it makes learn-
ing algorithms less dependent on feature engineering.
This characteristic of DL makes it easier to overcome the
challenge indicated by Remark B. Second, another major
advantage of DL is that it could achieve high classification
accuracy with minimum domain knowledge. This charac-
teristic of DL makes it easier to overcome the challenge
indicated by Remark A.

Key observation. The above discussion indicates that
DL could be a game changer in applying machine learning
techniques to solving computer security challenges.

Motivated by this observation, this paper seeks to pro-
vide a dedicated review of the very recent research works
on using Deep Learning techniques to solve computer
security challenges. It should be noticed that since this

Phase | Phase I1 Phase 11T

Data
Preprocessing

Fig. 1 Overview of the four-phase workflow

Phase IV

Classifier
Learning

Representation
Learning

>

Page 2 of 32

paper aims to provide a dedicated review, non-deep-
learning techniques and their security applications are out
of the scope of this paper.

The remaining of the paper is organized as follows. In “A
four-phase workflow framework can summarize the exist-
ing works in a unified manner” section, we present a four-
phase workflow framework which we use to summarize
the existing works in a unified manner. In “A closer look at
applications of deep learning in solving security-oriented
program analysis challenges-A closer look at applications
of deep learning in security-oriented fuzzing” section, we
provide a review of eight computer security problems
being solved by applications of Deep Learning, respec-
tively. In “Discussion” section, we will discuss certain sim-
ilarity and certain dissimilarity among the existing works.
In “Further areas of investigation” section, we mention
four further areas of investigation. In “Conclusion section,
we conclude the paper.

A four-phase workflow framework can summarize
the existing works in a unified manner

We found that a four-phase workflow framework can pro-
vide a unified way to summarize all the research works
surveyed by us. In particular, we found that each work
surveyed by us employs a particular workflow when using
machine learning techniques to solve a computer secu-
rity challenge, and we found that each workflow consists
of two or more phases. By “a unified way’, we mean that
every workflow surveyed by us is essentially an instanti-
ation of a common workflow pattern which is shown in
Fig. 1.

Definitions of the four phases

The four phases, shown in Fig. 1, are defined as follows. To
make the definitions of the four phases more tangible, we
use a running example to illustrate each of the four phases.
Phase I.(Obtaining the raw data)

In this phase, certain raw data are collected.

Running Example: When Deep Learning is used to
detect suspicious events in a Hadoop distributed file sys-
tem (HDES), the raw data are usually the events (e.g., a
block is allocated, read, written, replicated, or deleted)
that have happened to each block. Since these events are
recorded in Hadoop logs, the log files hold the raw data.
Since each event is uniquely identified by a particular
(block ID, timestamp) tuple, we could simply view the raw
data as n event sequences. Here 7 is the total number
of blocks in the HDEFS. For example, the raw data col-
lected in Xu et al. (2009) in total consists of 11,197,954
events. Since 575,139 blocks were in the HDFS, there were
575,139 event sequences in the raw data, and on aver-
age each event sequence had 19 events. One such event
sequence is shown as follows:

Choi et al. Cybersecurity (2020) 3:15

081110 112428 31 INFO dfs.FSNamesystem:
BLOCK+ NameSystem.allocateBlock:
/user/root/rand/ temporary/ task 200811101
024 0001 _m 001649 0/

part-01649.blk -1033546237298158256
081110 112428 9602 INFO dfs.DataNode
SDataXceiver:

Receiving block blk_ {-}1033546237298158256
src: /10.250.13.240:54015
dest:/10.250.13.240:50010

081110 112428 9982 INFO dfs.DataNode$
DataXceiver:

Receiving block blk -1033546237298158256
src: /10.250.13.240:52837
dest:/10.250.13.240:50010

081110 112432 9982 INFO dfs.DataNode$
DataXceiver:

writeBlock blk_{—}1033546237298158256
received exception
java.ilo.IOException:Could not read

from stream

Phase II. (Data preprocessing)

Both Phase II and Phase III aim to properly extract and
represent the useful information held in the raw data col-
lected in Phase I. Both Phase II and Phase III are closely
related to feature engineering. A key difference between
Phase II and Phase III is that Phase III is completely dedi-
cated to representation learning, while Phase II is focused
on all the information extraction and data processing
operations that are not based on representation learning.

Running Example: Lets revisit the aforemen-
tioned HDEFS. Each recorded event is described by
unstructured text. In Phase II, the unstructured text
is parsed to a data structure that shows the event
type and a list of event variables in (name, value)
pairs. Since there are 29 types of events in the
HDES, each event is represented by an integer
from 1 to 29 according to its type. In this way, the
aforementioned example event sequence can be
transformed to:

22, 5, 5, 7

Phase III. (Representation learning)

As stated in Bengio et al. (2013), “Learning represen-
tations of the data that make it easier to extract useful
information when building classifiers or other predictors.”

Running Example: Lets revisit the same HDES.
Although DeepLog (Du et al. 2017) directly employed
one-hot vectors to represent the event types without rep-
resentation learning, if we view an event type as a word
in a structured language, one may actually use the word
embedding technique to represent each event type. It
should be noticed that the word embedding technique is a
representation learning technique.

Page 3 of 32

Phase IV. (Classifier learning)

This phase aims to build specific classifiers or other
predictors through Deep Learning.

Running Example: Let’s revisit the same HDES.
DeepLog (Du et al. 2017) used Deep Learning to
build a stacked LSTM neural network for anomaly
detection. For example, let’s consider event sequence
{22,5,5,5,11,9,11,9,11,9,26,26,26} in which each integer
represents the event type of the corresponding event in
the event sequence. Given a window size 4 = 4, the input
sample and the output label pairs to train DeepLog will
be: {22,5,5,5 — 11}, {5,5,5,11 — 9}, {5,5,11,9 — 11 }, and
so forth. In the detection stage, DeepLog examines each
individual event. It determines if an event is treated as nor-
mal or abnormal according to whether the event’s type is
predicted by the LSTM neural network, given the history
of event types. If the event’s type is among the top g pre-
dicted types, the event is treated as normal; otherwise, it
is treated as abnormal.

Using the four-phase workflow framework to summarize
some representative research works

In this subsection, we use the four-phase workflow
framework to summarize two representative works for
each security problem. System security includes many
sub research topics. However, not every research top-
ics are suitable to adopt deep learning-based methods
due to their intrinsic characteristics. For these security
research subjects that can combine with deep-learning,
some of them has undergone intensive research in recent
years, others just emerging. We notice that there are 5
mainstream research directions in system security. This
paper mainly focuses on system security, so the other
mainstream research directions (e.g., deepfake) are out-
of-scope. Therefore, we choose these 5 widely noticed
research directions, and 3 emerging research direction in
our survey:

1. In security-oriented program analysis, malware
classification (MC), system-event-based anomaly
detection (SEAD), memory forensics (MF), and
defending network attacks, deep learning based
methods have already undergone intensive research.

2. In defending return-oriented programming (ROP)
attacks, Control-flow integrity (CFI), and fuzzing,
deep learning based methods are emerging research
topics.

We select two representative works for each research
topic in our survey. Our criteria to select papers mainly
include: 1) Pioneer (one of the first papers in this field);
2) Top (published on top conference or journal); 3) Nov-
elty; 4) Citation (The citation of this paper is high); 5)
Effectiveness (the result of this paper is pretty good); 6)
Representative (the paper is a representative work for a

Choi et al. Cybersecurity (2020) 3:15

branch of the research direction). Table 1 lists the reasons
why we choose each paper, which is ordered according to
their importance.

The summary is shown in Table 2. There are three
columns in the table. In the first column, we listed
eight security problems, including security-oriented pro-
gram analysis, defending return-oriented programming
(ROP) attacks, control-flow integrity (CFI), defending net-
work attacks (NA), malware classification (MC), system-
event-based anomaly detection (SEAD), memory foren-
sics (MF), and fuzzing for software security. In the
second column, we list the very recent two represen-
tative works for each security problem. In the “Sum-
mary” column, we sequentially describe how the four
phases are deployed at each work, then, we list the
evaluation results for each work in terms of accuracy
(ACC), precision (PRC), recall (REC), F1 score (F1),
false-positive rate (FPR), and false-negative rate (FNR),
respectively.

Methodology for reviewing the existing works
Data representation (or feature engineering) plays an
important role in solving security problems with Deep
Learning. This is because data representation is a way to
take advantage of human ingenuity and prior knowledge
to extract and organize the discriminative information
from the data. Many efforts in deploying machine learn-
ing algorithms in security domain actually goes into the
design of preprocessing pipelines and data transforma-
tions that result in a representation of the data to support
effective machine learning.

In order to expand the scope and ease of applicability of
machine learning in security domain, it would be highly

Page 4 of 32

desirable to find a proper way to represent the data in
security domain, which can entangle and hide more or less
the different explanatory factors of variation behind the
data. To let this survey adequately reflect the important
role played by data representation, our review will focus
on how the following three questions are answered by the
existing works:

¢ Question 1: Is Phase II pervasively done in the
literature? When Phase II is skipped in a work, are
there any particular reasons?

¢ Question 2: [s Phase III employed in the literature?
When Phase 111 is skipped in a work, are there any
particular reasons?

¢ Question 3: When solving different security
problems, is there any commonality in terms of the
(types of) classifiers learned in Phase IV? Among the
works solving the same security problem, is there
dissimilarity in terms of classifiers learned in
Phase IV?

To group the Phase III methods at different appli-
cations of Deep Learning in solving the same security
problem, we introduce a classification tree as shown in
Fig. 2. The classification tree categorizes the Phase III
methods in our selected survey works into four classes.
First, class 1 includes the Phase III methods which do
not consider representation learning. Second, class 2
includes the Phase III methods which consider repre-
sentation learning but, do not adopt it. Third, class 3
includes the Phase III methods which consider and adopt
representation learning but, do not compare the per-
formance with other methods. Finally, class 4 includes

Table 1 List of criteria we used to choose representative work for each research topic

Order of Criteria for Paper Selection 1 2 3 4
RFBNN (Shin et al. 2015) Pioneer Top Novelty Citation
EKLAVYA (Chua et al. 2017) Top Novelty Citation N/A
ROPNN (Li et al. 2018) Pioneer Novelty Effectiveness N/A
HeNet (Chen et al. 2018) Effectiveness Novelty Citation N/A
Barnum (Yagemann et al. 2019) Pioneer Novelty N/A N/A
CFG-CNN (Phan et al. 2017) Representative N/A N/A N/A
50b(yte)-CNN(Millar et al. 2018) Novelty Effectiveness N/A N/A
PCNN (Zhang et al. 2019) Novelty Effectiveness N/A N/A
Resenberg (Rosenberg et al. 2018) Novelty Effectiveness Top Representative
DelaRosa (De La Rosa et al. 2018) Novelty Representative N/A N/A
Deeplog (Du et al. 2017) Pioneer Top Citation N/A
DeepMem (Song et al. 2018) Pioneer Top N/A N/A
NeuZZ (Shiand Pei 2019) Novelty Top Effectiveness N/A
Learn & Fuzz (Godefroid et al. 2017) Pioneer Novelty Top N/A

Choi et al. Cybersecurity

(2020) 3:15

Page 5 of 32

Table 2 Solutions using Deep Learning for eight security problems. The metrics in the Evaluation column include accuracy (ACQ),
precision (PRC), recall (REC), 1 score (Fy), false positive rate (FPR), and false negative rate (FNR)

Security Works Summary
Problem
Security Oriented RFBNN (Shin Phase | Phase |
Program Analysis €t al. 2015) Dataset comes from previous paper (Bao et al. 2014), They extract fixed-length sub-
(Shin et al. 2015; consisting of 2200 separate binaries. 2064 of the sequences (1000-byte chunks)
Chuaetal. 2017; binaries were for Linux, obtained from the coreutils, from code section of binaries,
Guo et al. 2019; binutils, and findutils packages. The remaining 136 Then, use “one-hot encoding”,
Xuetal. 2017) for Windows consist of binaries from popular open- which converts a byte into a
source projects. Half of the binaries were for x86, and ~ Z2°® vector.
the other half for x86-64.
Phase Il Phase IV Evaluation
N/A Bi-directional RNN ACC: 98.4% PRE:N/A
REC.0.97 F1:0.98
FPRN/A FNR:N/A
EKLAVYA Phase | Phase Il
(Chuaetal.
2017) They adopted source code from previous work (Shin Tokenizing the hexadecimal value of each instruction.
et al. 2015) as their rawdata, then obtained two
datasets by using two commonly used compilers: gcc
and clang, with different optimization levels ranging
from OO0 to O3 for both x86 and x64. They obtained
the ground truth for the function arguments by pars-
ing the DWARF debug information. Next, they extract
functions from the binaries and remove functions
which are duplicates of other functions in the dataset.
Finally, they match caller snipper and callee body.
Phase Il Phase IV Evaluation
Word2vec technique to compute word embeddings. RNN ACC:81.0% PRE:N/A
REC:N/A Fi:N/A
FPR:N/A FNR:N/A
Defending ROPNN (Li Phase | Phase ll
Eeturn Onepted etal.2018) The data is a set of gadget chains obtained from exist- Form one-hot vector for bytes.
rogramming : : h
Attacks (Li et al ing programs. A gadget searching tool, ROPGadget is
2018: Chen et ’ used to find available gadgets. Gadgets are chained
3l 20’] & Zhan based on whether the produced gadget chain is exe-
i ' 9 cutable on a CPU emulator. The raw data is repre-
etal.2019)) : :)
sented in hexadecimal form of instruction sequences.
Phase Il Phase IV Evaluation
N/A 1-D CNN ACC:99.9% PRE:0.99
REC:N/A £1:0.01
FPRIN/A FNR:N/A
HeNet (Chen Phasel Phase Il
etal.2018) Data is acquired from Intel PT, which is a processor Given the pixel sequences,
trace tool that can log control flow data. Taken Not- slice the whole sequence and
Taken (TNT) packet and Target IP (TIP) packet are the reshape to form sequences
two packets of interested. Logged as binary numbers, of images for neural network
information of executed branches can be obtained training.
from TNT, and binary executed can be obtained from
TIP. Then the binary sequences are transferred into
sequences of values between 0-255, called pixels,
byte by byte.
Phase Il Phase IV Evaluation
Word2vec technique to compute word embeddings. DNN ACC:98.1% PRE:0.99
REC:0.96 F1:0.97

FPR:0.01 FNR:0.04

Choi et al. Cybersecurity

(2020) 3:15

Page 6 of 32

Table 2 Solutions using Deep Learning for eight security problems. The metrics in the Evaluation column include accuracy (ACQ),
precision (PRC), recall (REC), F1 score (F7), false positive rate (FPR), and false negative rate (FNR) (Continued)

Security Works Summary
Problem
Achieving Barnum Phase | Phase ||
ﬁigtrstl Flow gaaglegg?g)h The raw data, which is the exact sequence of The raw instruction sequences are summarized
(Ya gem{;nn ’ instructions executed, was generated by combin- into Basic Blocks with IDs assigned and are then
at agll 2019: ing the program binary, get immediately before sliced into manageable subsequences with a fix
Phah etall the program opens a document, and Intel” PT window size 32, founded experimentally. Only
2017‘Zha.n trace. While Intel” PT built-in filtering options are sequences ending on indirect calls, jumps and
ot al ’20] g)g set to CR3 and current privilege level (CPL), which returns are analyzed, since control-flow hijacking
' only traces the program activity in the user space. attacks always occur there. The label is the next
BBID in the sequence.
Phase IlI Phase IV Evaluation
N/A LST™M ACCN/A%PRE:0.98
REC:1.00 F;:0.98
FPR:0.98 FNR:0.02
(CPFhG_CNtN | Phase | Phase Il
201a7? etal The raw data is instruction level control-flow Since each vertex of the CFG represents an
graph constructed from program assembly code instruction with complex information that could
by an algorithm proposed by the authors. While be viewed from different aspects, including
in the CFG, one vertex corresponds to one instruction name, type, operands etc, a vertex is
instruction and one directed edge corresponds represented as the sum of a set of real valued vec-
to an execution path from one instruction to tors, corresponding to the number of views (e.g.
another. The program sets for experiments are addq 32,%rsp is converted to linear combination
obtained from popular programming contest of randomly assigned vectors of addq value, reg).
CodeChief. The CFG is then sliced by a set of fixed size win-
dows sliding through the entire graph to extract
local features on different levels.
Phase IlI Phase IV Evaluation
N/A DGCNN with different numbers of views and with - ACC:84.1%PRE:N/A
or without operands
RECN/A F:N/A
FPRIN/A FNR:N/A
Defending 50b(yte)- Phase | Phase Il
Network CNN (Millar - -))
Attacks etal. 2018) Open dataset UNSW-NB15 is used. First, tcpdump The first 50 bytes of each network traffic flow
(Millar et al. ’ tool is utilised to capture 100 GB of the raw traffic are picked out and each is directly used as one
2018: (i.e. PCAP files) containing benign activities and 9 feature input to the neural network.
Zhan/g etal. types of attacks. The Argus, Bro-IDS (now called
2019 Yuan Zeek) analysis tools are then used and twelve
ot aI./201 7 algorithms are developed to generate totally 49
Varenne elt features with the class label. In the end, the total
al 2019 Vin number of data samples is 2,540,044 which are
otal. 2017: stored in CSV files.
Ustebay et Phase lll Phase IV Evaluation
al. 2019; N/A CNN with 2 hidden fully connected layers ACCN/A%PREN/A
Elkgéjmd RECN/A F1:093
2019) FPRIN/A FNR:N/A
FZChCN cal Phase | Phase Il
2012?9 et Open dataset CICIDS2017, which contains Extract a total of 1,168,671 flow data, including

benign and 14 types of attacks, is used. Back-
ground benign network traffics are generated by
profiling the abstract behavior of human interac-
tions. Raw data are provided as PCAP files, and
the results of the network traffic analysis using
CICFlowMeter are pvodided as CSV files. In the
end the dataset contains 3,119,345 data samples
and 83 features categorized into 15 classes (1
normal + 14 attacks).

12 types of attack activities, from original dataset.
Those flow data are then processed and visual-
ized into grey-scale 2D graphs. The visualization
method is not specified.

Phase Il

Phase IV

Evaluation

N/A

Parallel cross CNN.

ACC:N/A%PRE:0.99
RECN/A F1:0.99
FPRIN/A FNR:N/A

Choi et al. Cybersecurity

(2020) 3:15

Page 7 of 32

Table 2 Solutions using Deep Learning for eight security problems. The metrics in the Evaluation column include accuracy (ACC),
precision (PRC), recall (REC), f score (Fy), false positive rate (FPR), and false negative rate (FNR) (Continued)

Security Works Summary
Problem
Malware Rosenberg Phase | Phase Il
Classification (Rosenberg -
(De La Rosa etal. 2018) The andrqq dataset hals thellatest mal- LOQg sequences cause out of memory
etal. 2018; ware families and their variants, each during training LSTM model. So they
Saxe and with the same number of samples. use sliding window with fixed size and
Berlin 2015; The samples are labeled by VirusTotal. pad shorter sequences with zeros. One-
Kolosnjaji et Then Cuckoo Sandbox is used to extract hot encoding is applied to API calls.
al.2017: dynamic features (APl calls) and static For static features strings, they defined
McLaughlin features (string). To avoid some anti- a vector of 20,000 Boolean values indi-
etal. 2017; forensic sample, they applied YARA rule cating the most frequent Strings in the
Tobiyama et and removed sequences with less than entire dataset. If the sample contain one
al.2016; Dahl 15 API calls. After preprocessing and bal- string, the corresponding value in the
etal. 2013; ance the benign samples number, the vector will be assigned as 1, otherwise, 0.
Nix and dataset has 400,000 valid samples.
Zhang 2017; Phase Il Phase IV Evaluation
Kalash et al. N/A They used RNN, BRNN, LSTM, Deep ACC:983% PREN/A
2018; Cui et LSTM, BLSTM, Deep BLSTM, GRU, bi-
al. 2018; directional GRU, Fully-connected DNN,
David and 1D CNN in their experiments
gg]“gf‘yah“ RECN/A FN/A
Rosenberg et FPRN/A FNRN/A
al. 2018; Xu DelaRosa Phase | Phase |
etal.2018) (e?ilL;g{%s)a The windows dataset is from Reversing For bytes-level features, they used a slid-
’ Labs including XP, 7, 8, and 10 for both ing window to get the histogram of
32-bit and 64-bit architectures and gath- the bytes and compute the associated
ered over a span of twelve years (2006- entropy in a window; for basic features,
2018). They selected nine malware fam- they created a fixed-sized feature vec-
ilies in their dataset and extracted static tor given either a list of ASCIl strings,
features in terms of bytes, basic, and or extracted import and metadata infor-
assembly features. mation from the PE Header(Strings are
hashed and calculate a histogram of
these hashes by counting the occur-
rences of each value); for assembly fea-
tures, the disassembled code generated
by Radare2 can be parsed and trans-
formed into graph-like data structures
such as call graphs, control flow graph,
and instruction flow graph.
Phase IlI Phase IV Evaluation
N/A N/A ACC:90.1% PREN/A
REC:N/A Fi:N/A
FPR:IN/A FNR:N/A
System Deeplog Phase | Phase |l
Event Based (Duetal. - . :)
Anomaly 2017) Mpre thaq 24 million raw log entries The raw log entries are parsed to‘dlffer—
Detection with the size of 2412 MB are recorded ent log type using Spell(Du and Li 2016)
(Du etal. from the 203-node HDFS. Over 11 mil- which is based a longest common sub-
2017; Meng lion log entries with 29 types are parsed, sequence. There are total 29 log types in
etal 2019 which are further grouped to 575,061 HDFS dataset
Das et al. ' sessions according to block identifier.
2018: Brown These sessions are manually labeled as
etal. 2018; normal and abnormal by HDFS experts.
Zhang et al. Finally, the constructed dataset HDFS
2019: Bertero 575,061 sessions of logs in the dataset,
etal. 2017) among which 16,838 sessions were
labeled as anomalous
Phase IlI Phase IV Evaluation
Deeplog directly utilized one-hot vec- A stacked LSTM with two hidden LSTM ACCN/A% PRE:0.95
tor to represent 29 log key without rep- layers.
resent learning
REC096 F1:0.96

FPRIN/A

FNR:N/A

Choi et al. Cybersecurity

(2020) 3:15

Page 8 of 32

Table 2 Solutions using Deep Learning for eight security problems. The metrics in the Evaluation column include accuracy (ACQO),
precision (PRC), recall (REC), F1 score (Fy), false positive rate (FPR), and false negative rate (FNR) (Continued)

Security Works Summary
Problem
LogAnom Phase | Phase ll
(Meng et al. . - A
2019) LogAnom also used HDFS dataset, which is The raw log entries are parsed to different
same as Deeplog. log templates using FT-Tree (Zhang et al.
2017) according the frequent combinations
of log words. There are total 29 log templates
in HDFS dataset
Phase IlI Phase IV Evaluation
LogAnom employed Word2Vec to repre- Two LSTM layers with 128 neurons ACCN/A% PRE:0.97
sent the extracted log templates with more
semantic information
REC:094 F1:096
FPRN/A FNRN/A
Foensts Gompers. P! e
(Song et al. 200%? etal 400 memory dumps are collected on Win- Construct memory graph from memory
2018: Petrik dows 7 x86 SP1 virtual machine with simulat- ~ dumps, where each node represents a seg-
ot aI./2018' ing various random user actions and forcing ~ ment between two pointers and an edge is
Michalas alnd the OS to randomly allocate objects. The size created if two nodes are neighbor
Murray 2017; of each dumpis 1GB.
Dai et al. Phase Ill Phase IV Evaluation
2018) Each node is represented by a latent numeric ~ Fully Connected Network (FCN) with ReLU ~ ACCN/A% PRE:0.99
vector from the embedding network. layer.
REC0.99 F:099
FPR:0.01 FNR:0.01
MDMF Phase | Phase I
(Petrik et al. - - -
2018) Create a dataset of benign host Variousrepresentation for the memory snap-
memory snapshots running normal, non- shots including byte sequence and image,
compromised software, including software without relying on domain-knowledge of
that executes in many of the malicious snap- the OS.
shots. The benign snapshot is extracted from
memory after ample time has passed for the
chosen programs to open. By generating
samples in parallel to the separate malicious
environment, the benign memory snapshot
dataset created.
Phase Il Phase IV Evaluation
N/A Recurrent Neural Network with LSTM cells ACC:98.0% PREN/A
and Convolutional Neural Network com-
posed of multiple layers, including pooling
and fully connected layers. for image data
RECN/A Fi:N/A
FPR:N/A FNR:N/A
Fuzzing DeepMem Phase | Phase Il
(Wang et al. (Song et al.
2019;Shiand 2018) The raw data are about 63,000 non-binary ~ N/A
Pei 2019; PDF objects, sliced in fix size, extracted from
Bottinger et 534 PDF files that are provided by Windows
al. 2018; fuzzing team and are previously used for
Godefroid et prior extended fuzzing of Edge PDF parser.
a\,AZOW 7; Phase Il Phase IV Evaluation
Rajpal et al.
2017) N/A Char-RNN ACC:N/A% PREN/A
RECN/A F:093

FPRIN/A FNRN/A

Choi et al. Cybersecurity

(2020) 3:15

Page 9 of 32

Table 2 Solutions using Deep Learning for eight security problems. The metrics in the Evaluation column include accuracy (ACQ),
precision (PRC), recall (REC), 1 score (F1), false positive rate (FPR), and false negative rate (FNR) (Continued)

Security
Problem

Works

Summary

NEUZZ(Shi
and Pei
2019)

Phase |

Phase Il

For each program tested, the raw data is col-
lected by running AFL-2.52b on a single core
machine for one hour. The training data are byte
level input files generated by AFL, and the labels
are bitmaps corresponding to input files. For
experiments, NEUZZ is implemented on 10 real-
world programs, the LAVA-M bug dataset, and

N/A

the CGC dataset.

Phase Il

Phase IV Evaluation

N/A

NN ACCN/A%
RECN/A
FPR:N/A

PREN/A
F1:0.93
FNR:N/A

"Deep Learning metrics are often not available in fuzzing papers. Typical fuzzing metrics used for evaluations are: code coverage, pass rate and bugs

the Phase III methods which consider and adopt repre-
sentation learning and, compare the performance with
other methods.

In the remaining of this paper, we take a closer look at
how each of the eight security problems is being solved by
applications of Deep Learning in the literature.

A closer look at applications of deep learning in
solving security-oriented program analysis
challenges

Introduction

Recent years, security-oriented program analysis is widely
used in software security. For example, symbolic execu-
tion and taint analysis are used to discover, detect and
analyze vulnerabilities in programs. Control flow analysis,
data flow analysis and pointer/alias analysis are impor-
tant components when enforcing many secure strategies,
such as control flow integrity, data flow integrity and dol-
ing dangling pointer elimination. Reverse engineering was
used by defenders and attackers to understand the logic of
a program without source code.

In the security-oriented program analysis, there are
many open problems, such as precise pointer/alias anal-
ysis, accurate and complete reversing engineer, complex
constraint solving, program de-obfuscation, and so on.
Some problems have theoretically proven to be NP-hard,

and others still need lots of human effort to solve. Either
of them needs a lot of domain knowledge and experi-
ence from expert to develop better solutions. Essentially
speaking, the main challenges when solving them through
traditional approaches are due to the sophisticated rules
between the features and labels, which may change in dif-
ferent contexts. Therefore, on the one hand, it will take a
large quantity of human effort to develop rules to solve the
problems, on the other hand, even the most experienced
expert cannot guarantee completeness. Fortunately, the
deep learning method is skillful to find relations between
features and labels if given a large amount of training data.
It can quickly and comprehensively find all the relations
if the training samples are representative and effectively
encoded.

In this section, we will review the very recent four
representative works that use Deep Learning for security-
oriented program analysis. We observed that they focused
on different goals. Shin, et al. designed a model (Shin et
al. 2015) to identify the function boundary. EKLAVYA
(Chua et al. 2017) was developed to learn the function
type. Gemini (Xu et al. 2017) was proposed to detect sim-
ilarity among functions. DEEPVSA (Guo et al. 2019) was
designed to learn memory region of an indirect address-
ing from the code sequence. Among these works, we select
two representative works (Shin et al. 2015; Chua et al.

Phase III

no .
COHSIderatiOH

Fig. 2 Classification tree for different Phase Il methods. Here, consideration, adoption, and comparison indicate that a work considers
Phase Ill, adopts Phase Il and makes comparison with other methods, respectively

Choi et al. Cybersecurity (2020) 3:15

2017) and then, summarize the analysis results in Table 2
in detail.

Our review will be centered around three questions
described in “Methodology for reviewing the existing
works” section. In the remaining of this section, we will
first provide a set of observations, and then we provide the
indications. Finally, we provide some general remarks.

Key findings from a closer look

From a close look at the very recent applications using
Deep Learning for solving security-oriented program
analysis challenges, we observed the followings:

Observation 3.1: All of the works in our survey used
binary files as their raw data. Phase II in our survey
had one similar and straightforward goal — extracting
code sequences from the binary. Difference among
them was that the code sequence was extracted
directly from the binary file when solving problems in
static program analysis, while it was extracted from
the program execution when solving problems in
dynamic program analysis.

*QObservation 3.2: Most data representation methods
generally took into account the domain knowledge.
Most data representation methods generally took
into the domain knowledge, i.e., what kind of
information they wanted to reserve when processing
their data. Note that the feature selection has a wide
influence on Phase II and Phase III, for example,
embedding granularities, representation learning
methods. Gemini (Xu et al. 2017) selected function
level feature and other works in our survey selected
instruction level feature. To be specifically, all the
works except Gemini (Xu et al. 2017) vectorized code
sequence on instruction level.

Observation 3.3: To better support data
representation for high performance, some works
adopted representation learning.

For instance, DEEPVSA (Guo et al. 2019) employed a
representation learning method, i.e., bi-directional
LSTM, to learn data dependency within instructions.
EKLAVYA (Chua et al. 2017) adopted representation
learning method, i.e., word2vec technique, to extract
inter-instruciton information. It is worth noting that
Gemini (Xu et al. 2017) adopts the Structure2vec
embedding network in its siamese architecture in
Phase IV (see details in Observation 3.7). The
Structure2vec embedding network learned
information from an attributed control flow graph.
Observation 3.4: According to our taxonomy, most
works in our survey were classified into class 4.

To compare the Phase III, we introduced a
classification tree with three layers as shown in Fig. 2
to group different works into four categories. The

Page 10 of 32

decision tree grouped our surveyed works into four
classes according to whether they considered
representation learning or not, whether they adopted
representation learning or not, and whether they
compared their methods with others’, respectively,
when designing their framework. According to our
taxonomy, EKLAVYA (Chua et al. 2017), DEEPVSA
(Guo et al. 2019) were grouped into class 4 shown in
Fig. 2. Also, Gemini’s work (Xu et al. 2017) and Shin,
et al.’s work (Shin et al. 2015) belonged to class 1 and
class 2 shown in Fig. 2, respectively.

Observation 3.5: All the works in our survey explain
why they adopted or did not adopt one of
representation learning algorithms.

Two works in our survey adopted representation
learning for different reasons: to enhance model’s
ability of generalization (Chua et al. 2017); and to
learn the dependency within instructions (Guo et al.
2019). It is worth noting that Shin, et al. did not adopt
representation learning because they wanted to
preserve the “attractive” features of neural networks
over other machine learning methods — simplicity.
As they stated, “first, neural networks can learn
directly from the original representation with
minimal preprocessing (or “feature engineering”)
needed.” and “second, neural networks can learn
end-to-end, where each of its constituent stages are
trained simultaneously in order to best solve the end
goal.” Although Gemini (Xu et al. 2017) did not adopt
representation learning when processing their raw
data, the Deep Learning models in siamese structure
consisted of two graph embedding networks and one
cosine function.

*Qbservation 3.6: The analysis results showed that a
suitable representation learning method could
improve accuracy of Deep Learning models.
DEEPVSA (Guo et al. 2019) designed a series of
experiments to evaluate the effectiveness of its
representative method. By combining with the
domain knowledge, EKLAVYA (Chua et al. 2017)
employed t-SNE plots and analogical reasoning to
explain the effectiveness of their representation
learning method in an intuitive way.

Observation 3.7: Various Phase IV methods were
used.

In Phase IV, Gemini (Xu et al. 2017) adopted siamese
architecture model which consisted of two
Structure2vec embedding networks and one cosine
function. The siamese architecture took two
functions as its input, and produced the similarity
score as the output. The other three works (Shin et al.
2015; Chua et al. 2017; Guo et al. 2019) adopted
bi-directional RNN, RNN, bi-directional LSTM
respectively. Shin, et al. adopted bi-directional RNN

Choi et al. Cybersecurity (2020) 3:15

because they wanted to combine both the past and
the future information in making a prediction for the
present instruction (Shin et al. 2015). DEEPVSA
(Guo et al. 2019) adopted bi-directional RNN to
enable their model to infer memory regions in both
forward and backward ways.

The above observations seem to indicate the following
indications:

Indication 3.1: Phase III is not always necessary.
Not all authors regard representation learning as a
good choice even though some case experiments
show that representation learning can improve the
final results. They value more the simplicity of Deep
Learning methods and suppose that the adoption of
representation learning weakens the simplicity of
Deep Learning methods.

Indication 3.2: Even though the ultimate objective
of Phase III in the four surveyed works is to train a
model with better accuracy, they have different
specific motivations as described in Observation 3.5.
When authors choose representation learning, they
usually try to convince people the effectiveness of
their choice by empirical or theoretical analysis.
*Indication 3.3: Observation 3.7 indicates that
authors usually refer to the domain knowledge when
designing the architecture of Deep Learning model.
For instance, the works we reviewed commonly
adopt bi-directional RNN when their prediction
partly based on future information in data sequence.

Discussion

Despite the effectiveness and agility of deep learning-
based methods, there are still some challenges in devel-
oping a scheme with high accuracy due to the hier-
archical data structure, lots of noisy, and unbalanced
data composition in program analysis. For instance,
an instruction sequence, a typical data sample in pro-
gram analysis, contains three-level hierarchy: sequence—
instruction—opcode/operand. To make things worse, each
level may contain many different structures, e.g., one-
operand instructions, multi-operand instructions, which
makes it harder to encode the training data.

A closer look at applications of deep learning in
defending ROP attacks

Introduction

Return-oriented programming (ROP) attack is one of the
most dangerous code reuse attacks, which allows the
attackers to launch control-flow hijacking attack with-
out injecting any malicious code. Rather, It leverages
particular instruction sequences (called “gadgets”) widely
existing in the program space to achieve Turing-complete

Page 11 of 32

attacks (Shacham and et al. 2007). Gadgets are instruction
sequences that end with a RET instruction. Therefore,
they can be chained together by specifying the return
addresses on program stack. Many traditional techniques
could be used to detect ROP attacks, such as control-
flow integrity (CFI Abadi et al. (2009)), but many of them
either have low detection rate or have high runtime over-
head. ROP payloads do not contain any codes. In other
words, analyzing ROP payload without the context of the
program’s memory dump is meaningless. Thus, the most
popular way of detecting and preventing ROP attacks
is control-flow integrity. The challenge after acquiring
the instruction sequences is that it is hard to recognize
whether the control flow is normal. Traditional meth-
ods use the control flow graph (CFG) to identify whether
the control flow is normal, but attackers can design the
instruction sequences which follow the normal control
flow defined by the CFG. In essence, it is very hard to
design a CFG to exclude every single possible combi-
nation of instructions that can be used to launch ROP
attacks. Therefore, using data-driven methods could help
eliminate such problems.

In this section, we will review the very recent three rep-
resentative works that use Deep Learning for defending
ROP attacks: ROPNN (Li et al. 2018), HeNet (Chen et al.
2018) and DeepCheck (Zhang et al. 2019). ROPNN (Li et
al. 2018) aims to detect ROP attacks, HeNet (Chen et al.
2018) aims to detect malware using CFI, and DeepCheck
(Zhang et al. 2019) aims at detecting all kinds of code reuse
attacks.

Specifically, ROPNN is to protect one single program at
a time, and its training data are generated from real-world
programs along with their execution. Firstly, it generates
its benign and malicious data by “chaining-up” the nor-
mally executed instruction sequences and “chaining-up”
gadgets with the help of gadgets generation tool, respec-
tively, after the memory dumps of programs are cre-
ated. Each data sample is byte-level instruction sequence
labeled as “benign” or “malicious” Secondly, ROPNN will
be trained using both malicious and benign data. Thirdly,
the trained model is deployed to a target machine. After
the protected program started, the executed instruction
sequences will be traced and fed into the trained model,
the protected program will be terminated once the model
found the instruction sequences are likely to be malicious.

HeNet is also proposed to protect a single program. Its
malicious data and benign data are generated by collect-
ing trace data through Intel PT from malware and normal
software, respectively. Besides, HeNet preprocesses its
dataset and shape each data sample in the format of image,
so that they could implement transfer learning from a
model pre-trained on ImageNet. Then, HeNet is trained
and deployed on machines with features of Intel PT to
collect and classify the program’s execution trace online.

Choi et al. Cybersecurity (2020) 3:15

The training data for DeepCheck are acquired from
CFGs, which are constructed by dissembling the pro-
grams and using the information from Intel PT. After the
CFG for a protected program is constructed, authors sam-
ple benign instruction sequences by chaining up basic
blocks that are connected by edges, and sample malicious
instruction sequences by chaining up those that are not
connected by edges. Although a CFG is needed during
training, there is no need to construct CFG after the train-
ing phase. After deployed, instruction sequences will be
constructed by leveraging Intel PT on the protected pro-
gram. Then the trained model will classify whether the
instruction sequences are malicious or benign.

We observed that none of the works considered
Phase III, so all of them belong to class 1 according to
our taxonomy as shown in Fig. 2. The analysis results of
ROPNN (Li et al. 2018) and HeNet (Chen et al. 2018) are
shown in Table 2. Also, we observed that three works had
different goals.

Our review will be centered around three questions
described in “Methodology for reviewing the existing
works” section. In the remaining of this section, we will
first provide a set of observations, and then we pro-
vide the indications. Finally, we provide some general
remarks.

Key findings from a closer look

From a close look at the very recent applications using
Deep Learning for defending return-oriented program-
ming attacks, we observed the followings:

Observation 4.1: All the works (Li et al. 2018; Zhang
et al. 2019; Chen et al. 2018) in this survey focused on
data generation and acquisition.

In ROPNN (Li et al. 2018), both malicious samples
(gadget chains) were generated using an automated
gadget generator (i.e. ROPGadget (Salwant 2015)) and
a CPU emulator (i.e. Unicorn (Unicorn-The ultimate
CPU emulator 2015)). ROPGadget was used to extract
instruction sequences that could be used as gadgets
from a program, and Unicorn was used to validate
the instruction sequences. Corresponding benign
sample (gadget-chain-like instruction sequences)
were generated by disassembling a set of programs. In
DeepCheck (Zhang et al. 2019) refers to the key idea
of control-flow integrity (Abadi et al. 2009). It
generates program’s run-time control flow through
new feature of Intel CPU (Intel Processor Tracing),
then compares the run-time control flow with the
program’s control-flow graph (CFQG) that generates
through static analysis. Benign instruction sequences
are that with in the program’s CFG, and vice versa. In
HeNet (Chen et al. 2018), program’s execution trace
was extracted using the similar way as DeepCheck.

Page 12 of 32

Then, each byte was transformed into a pixel with an
intensity between 0-255. Known malware samples
and benign software samples were used to generate
malicious data benign data, respectively.
Observation 4.2: None of the ROP works in this
survey deployed Phase III.

Both ROPNN (Li et al. 2018) and DeepCheck (Zhang
et al. 2019) used binary instruction sequences for
training. In ROPNN (Li et al. 2018), one byte was used
as the very basic element for data pre-processing.
Bytes were formed into one-hot matrices and
flattened for 1-dimensional convolutional layer. In
DeepCheck (Zhang et al. 2019), half-byte was used as
the basic unit. Each half-byte (4 bits) was transformed
to decimal form ranging from 0-15 as the basic
element of the input vector, then was fed into a
fully-connected input layer. On the other hand,
HeNet (Chen et al. 2018) used different kinds of data.
By the time this survey has been drafted, the source
code of HeNet was not available to public and thus,
the details of the data pre-processing was not be
investigated. However, it is still clear that HeNet used
binary branch information collected from Intel PT
rather than binary instructions. In HeNet, each byte
was converted to one decimal number ranging from 0
to 255. Byte sequences was sliced and formed into
image sequences (each pixel represented one byte)
for a fully-connected input layer.

Observation 4.3: Fully-connected neural network
was widely used.

Only ROPNN (Li et al. 2018) used 1-dimensional
convolutional neural network (CNN) when extracting
features. Both HeNet (Chen et al. 2018) and
DeepCheck (Zhang et al. 2019) used fully-connected
neural network (FCN). None of the works used
recurrent neural network (RNN) and the variants.

The above observations seem to indicate the following
indications:

Indication 4.1:It seems like that one of the most
important factors in ROP problem is feature selection
and data generation.

All three works use very different methods to
collect/generate data, and all the authors provide very
strong evidences and/or arguments to justify their
approaches. ROPNN (Li et al. 2018) was trained by
the malicious and benign instruction sequences.
However, there is no clear boundary between benign
instruction sequences and malicious gadget chains.
This weakness may impair the performance when
applying ROPNN to real world ROP attacks. As
oppose to ROPNN, DeepCheck (Zhang et al. 2019)
utilizes CFG to generate training basic-block
sequences. However, since the malicious basic-block

Choi et al. Cybersecurity (2020) 3:15

sequences are generated by randomly connecting
nodes without edges, it is not guaranteed that all the
malicious basic-blocks are executable. HeNet (Chen
et al. 2018) generates their training data from
malware. Technically, HeNet could be used to detect
any binary exploits, but their experiment focuses on
ROP attack and achieves 100% accuracy. This shows
that the source of data in ROP problem does not need
to be related to ROP attacks to produce very
impressive results.

Indication 4.2: Representation learning seems not
critical when solving ROP problems using Deep
Learning.

Minimal process on data in binary form seems to be
enough to transform the data into a representation
that is suitable for neural networks. Certainly, it is
also possible to represent the binary instructions at a
higher level, such as opcodes, or use embedding
learning. However, as stated in (Li et al. 2018), it
appears that the performance will not change much
by doing so. The only benefit of representing input
data to a higher level is to reduce irrelevant
information, but it seems like neural network by itself
is good enough at extracting features.

Indication 4.3: Different Neural network
architecture does not have much influence on the
effectiveness of defending ROP attacks.

Both HeNet (Chen et al. 2018) and DeepCheck
(Zhang et al. 2019) utilizes standard DNN and
achieved comparable results on ROP problems. One
can infer that the input data can be easily processed
by neural networks, and the features can be easily
detected after proper pre-process.

It is not surprising that researchers are not very inter-
ested in representation learning for ROP problems as
stated in Observation 4.1. Since ROP attack is focus on the
gadget chains, it is straightforward for the researcher to
choose the gadgets as their training data directly. It is easy
to map the data into numerical representation with min-
imal processing. An example is that one can map binary
executable to hexadecimal ASCII representation, which
could be a good representation for neural network.

Instead, researchers focus more in data acquisition and
generation. In ROP problems, the amount of data is very
limited. Unlike malware and logs, ROP payloads normally
only contain addresses rather than codes, which do not
contain any information without providing the instruc-
tions in corresponding addresses. It is thus meaningless to
collect all the payloads. At the best of our knowledge, all
the previous works use pick instruction sequences rather
than payloads as their training data, even though they are
hard to collect.

Page 13 of 32

Discussion

Even though, Deep Learning based method does not face
the challenge to design a very complex fine-grained CFG
anymore, it suffers from a limited number of data sources.
Generally, Deep Learning based method requires lots of
training data. However, real-world malicious data for the
ROP attack is very hard to find, because comparing with
benign data, malicious data need to be carefully crafted
and there is no existing database to collect all the ROP
attacks. Without enough representative training set, the
accuracy of the trained model cannot be guaranteed.

A closer look at applications of deep learning in
achieving CFI

Introduction

The basic ideas of control-flow integrity (CFI) techniques,
proposed by Abadi in 2005 (Abadi et al. 2009), could
be dated back to 2002, when Vladimir and his fellow
researchers proposed an idea called program shepherd-
ing (Kiriansky et al. 2002), a method of monitoring the
execution flow of a program when it is running by enforc-
ing some security policies. The goal of CFI is to detect
and prevent control-flow hijacking attacks, by restricting
every critical control flow transfers to a set that can only
appear in correct program executions, according to a pre-
built CFG. Traditional CFI techniques typically leverage
some knowledge, gained from either dynamic or static
analysis of the target program, combined with some code
instrumentation methods, to ensure the program runs on
a correct track.

However, the problems of traditional CFI are: (1) Exist-
ing CFI implementations are not compatible with some of
important code features (Xu et al. 2019); (2) CFGs gen-
erated by static, dynamic or combined analysis cannot
always be precisely completed due to some open prob-
lems (Horwitz 1997); (3) There always exist certain level
of compromises between accuracy and performance over-
head and other important properties (Tan and Jaeger
2017; Wang and Liu 2019). Recent research has proposed
to apply Deep Learning on detecting control flow viola-
tion. Their result shows that, compared with traditional
CFI implementation, the security coverage and scalabil-
ity were enhanced in such a fashion (Yagemann et al
2019). Therefore, we argue that Deep Learning could be
another approach which requires more attention from CFI
researchers who aim at achieving control-flow integrity
more efficiently and accurately.

In this section, we will review the very recent three rep-
resentative papers that use Deep Learning for achieving
CFIL. Among the three, two representative papers (Yage-
mann et al. 2019; Phan et al. 2017) are already summarized
phase-by-phase in Table 2. We refer to interested readers
the Table 2 for a concise overview of those two papers.

Choi et al. Cybersecurity (2020) 3:15

Our review will be centered around three questions
described in Section 3. In the remaining of this section,
we will first provide a set of observations, and then we
provide the indications. Finally, we provide some general
remarks.

Key findings from a closer look

From a close look at the very recent applications using
Deep Learning for achieving control-flow integrity, we
observed the followings:

Observation 5.1: None of the related works realize
preventive! prevention of control flow violation.
After doing a thorough literature search, we observed
that security researchers are quite behind the trend of
applying Deep Learning techniques to solve security
problems. Only one paper has been founded by us,
using Deep Learning techniques to directly enhance
the performance of CFI (Yagemann et al. 2019). This
paper leveraged Deep Learning to detect document
malware through checking program’s execution
traces that generated by hardware. Specifically, the
CFI violations were checked in an offline mode. So
far, no works have realized Just-In-Time checking for
program’s control flow.

In order to provide more insightful results, in this
section, we try not to narrow down our focus on CFI
detecting attacks at run-time, but to extend our scope
to papers that take good use of control flow related
data, combined with Deep Learning techniques (Phan
et al. 2017; Nguyen et al. 2018). In one work,
researchers used self-constructed instruction-level
CFG to detect program defection (Phan et al. 2017).
In another work, researchers used lazy-binding CFG
to detect sophisticated malware (Nguyen et al. 2018).
Observation 5.2: Diverse raw data were used for
evaluating CFI solutions.

In all surveyed papers, there are two kinds of control
flow related data being used: program instruction
sequences and CFGs. Barnum et al. (Yagemann et al.
2019) employed statically and dynamically generated
instruction sequences acquired by program
disassembling and Intel Processor Trace.
CNNoverCFG (Phan et al. 2017) used self-designed
algorithm to construct instruction level control-flow
graph. Minh Hai Nguyen et al. (Nguyen et al. 2018)
used proposed lazy-binding CFQG to reflect the

behavior of malware DEC.
Observation 5.3: All the papers in our survey

adopted Phase II.
All the related papers in our survey employed Phase II
to process their raw data before sending them into

1\We refer readers to (Wang and Liu 2019) which systemizes the knowledge of
protections by CFI schemes.

Page 14 of 32

Phase III. In Barnum (Yagemann et al. 2019), the
instruction sequences from program run-time tracing
were sliced into basic-blocks. Then, they assigned
each basic-blocks with an unique basic-block ID
(BBID). Finally, due to the nature of control-flow
hijacking attack, they selected the sequences ending
with indirect branch instruction (e.g., indirect
call/jump, return and so on) as the training data. In
CNNoverCFG (Phan et al. 2017), each of instructions
in CFG were labeled with its attributes in multiple
perspectives, such as opcode, operands, and the
function it belongs to. The training data is generated
are sequences generated by traversing the attributed
control-flow graph. Nguyen and others (Nguyen et al.
2018) converted the lazy-binding CFG to
corresponding adjacent matrix and treated the matrix
as a image as their training data.

Observation 5.4: All the papers in our survey did
not adopt Phase III. We observed all the papers we
surveyed did not adopted Phase III. Instead, they
adopted the form of numerical representation
directly as their training data. Specifically, Barnum
(Yagemann et al. 2019) grouped the instructions into
basic-blocks, then represented basic-blocks with
uniquely assigning IDs. In CNNoverCFG (Phan et al.
2017), each of instructions in the CFG was
represented by a vector that associated with its
attributes. Nguyen and others directly used the
hashed value of bit string representation.
Observation 5.5: Various Phase IV models were
used. Barnum (Yagemann et al. 2019) utilized BBID
sequence to monitor the execution flow of the target
program, which is sequence-type data. Therefore,
they chose LSTM architecture to better learn the
relationship between instructions. While in the other
two papers (Phan et al. 2017; Nguyen et al. 2018),
they trained CNN and directed graph-based CNN to
extract information from control-flow graph and
image, respectively.

The above observations seem to indicate the following
indications:

Indication 5.1: All the existing works did not achieve
Just-In-Time CFI violation detection.

It is still a challenge to tightly embed Deep Learning
model in program execution. All existing work
adopted lazy-checking — checking the program’s
execution trace following its execution.

Indication 5.2: There is no unified opinion on how to
generate malicious sample.

Data are hard to collect in control-flow hijacking
attacks. The researchers must carefully craft malicious
sample. It is not clear whether the “handcrafted”

Choi et al. Cybersecurity (2020) 3:15

sample can reflect the nature the control-flow
hijacking attack.

*QObservation 5.3: The choice of methods in Phase II
are based on researchers’ security domain knowledge.

Discussion

The strength of using deep learning to solve CFI problems
is that it can avoid the complicated processes of develop-
ing algorithms to build acceptable CEGs for the protected
programs. Compared with the traditional approaches, the
DL based method could prevent CFI designer from study-
ing the language features of the targeted program and
could also avoid the open problem (pointer analysis) in
control flow analysis. Therefore, DL based CFI provides
us a more generalized, scalable, and secure solution. How-
ever, since using DL in CFI problem is still at an early age,
which kinds of control-flow related data are more effec-
tive is still unclear yet in this research area. Additionally,
applying DL in real-time control-flow violation detection
remains an untouched area and needs further research.

A closer look at applications of deep learning in
defending network attacks

Introduction

Network security is becoming more and more impor-
tant as we depend more and more on networks for our
daily lives, works and researches. Some common net-
work attack types include probe, denial of service (DoS),
Remote-to-local (R2L), etc. Traditionally, people try to
detect those attacks using signatures, rules, and unsuper-
vised anomaly detection algorithms. However, signature
based methods can be easily fooled by slightly chang-
ing the attack payload; rule based methods need experts
to regularly update rules; and unsupervised anomaly
detection algorithms tend to raise lots of false positives.
Recently, people are trying to apply Deep Learning meth-
ods for network attack detection.

In this section, we will review the very recent seven
representative works that use Deep Learning for defend-
ing network attacks. Millar et al. (2018); Varenne et al.
(2019); Ustebay et al. (2019) build neural networks for
multi-class classification, whose class labels include one
benign label and multiple malicious labels for different
attack types. Zhang et al. (2019) ignores normal network
activities and proposes parallel cross convolutional neural
network (PCCN) to classify the type of malicious net-
work activities. Yuan et al. (2017) applies Deep Learning
to detecting a specific attack type, distributed denial of
service (DDoS) attack. Yin et al. (2017); Faker and Dogdu
(2019) explores both binary classification and multi-class
classification for benign and malicious activities. Among
these seven works, we select two representative works
(Millar et al. 2018; Zhang et al. 2019) and summarize the
main aspects of their approaches regarding whether the

Page 15 of 32

four phases exist in their works, and what exactly do they
do in the Phase if it exists. We direct interested readers to
Table 2 for a concise overview of these two works.

Our review will be centered around three questions
described in “Methodology for reviewing the existing
works” section. In the remaining of this section, we will
first provide a set of observations, and then we provide the
indications. Finally, we provide some general remarks.

Key findings from a closer look

From a close look at the very recent applications using
Deep Learning for solving network attack challenges, we
observed the followings:

Observation 6.1: All the seven works in our survey
used public datasets, such as UNSW-NB15
(Moustafa and Slay 2015) and CICIDS2017 (IDS 2017
Datasets 2019).

The public datasets were all generated in test-bed
environments, with unbalanced simulated benign and
attack activities. For attack activities, the dataset
providers launched multiple types of attacks, and the
numbers of malicious data for those attack activities
were also unbalanced.

Observation 6.2: The public datasets were given
into one of two data formats, i.e., PCAP and CSV.
One was raw PCAP or parsed CSV format,
containing network packet level features, and the
other was also CSV format, containing network flow
level features, which showed the statistic information
of many network packets. Out of all the seven works,
(Yuan et al. 2017; Varenne et al. 2019) used packet
information as raw inputs, (Yin et al. 2017; Zhang et
al. 2019; Ustebay et al. 2019; Faker and Dogdu 2019)
used flow information as raw inputs, and (Millar et al.
2018) explored both cases.

Observation 6.3: In order to parse the raw inputs,
preprocessing methods, including one-hot vectors for
categorical texts, normalization on numeric data, and
removal of unused features/data samples, were
commonly used.

Commonly removed features include IP addresses
and timestamps. Faker and Dogdu (2019) also
removed port numbers from used features. By doing
this, they claimed that they could “avoid over-fitting
and let the neural network learn characteristics of
packets themselves”. One outlier was that, when
using packet level features in one experiment, (Millar
et al. 2018) blindly chose the first 50 bytes of each
network packet without any feature extracting
processes and fed them into neural network.
Observation 6.4: Using image representation
improved the performance of security solutions using
Deep Learning.

Choi et al. Cybersecurity (2020) 3:15

After preprocessing the raw data, while (Zhang et al.
2019) transformed the data into image
representation, (Yuan et al. 2017; Varenne et al. 2019;
Faker and Dogdu 2019; Ustebay et al. 2019; Yin et al.
2017) directly used the original vectors as an input
data. Also, (Millar et al. 2018) explored both cases
and reported better performance using image
representation.

Observation 6.5: None of all the seven surveyed
works considered representation learning.

All the seven surveyed works belonged to class 1
shown in Fig. 2. They either directly used the
processed vectors to feed into the neural networks, or
changed the representation without explanation. One
research work (Millar et al. 2018) provided a
comparison on two different representations (vectors
and images) for the same type of raw input. However,
the other works applied different preprocessing
methods in Phase II. That is, since the different
preprocessing methods generated different feature
spaces, it was difficult to compare the experimental
results.

Observation 6.6: Binary classification model showed
better results from most experiments.

Among all the seven surveyed works, (Yuan et al.
2017) focused on one specific attack type and only
did binary classification to classify whether the
network traffic was benign or malicious. Also, (Millar
et al. 2018; Ustebay et al. 2019; Zhang et al. 2019;
Varenne et al. 2019) included more attack types and
did multi-class classification to classify the type of
malicious activities, and (Yin et al. 2017; Faker and
Dogdu 2019) explored both cases. As for multi-class
classification, the accuracy for selective classes was
good, while accuracy for other classes, usually classes
with much fewer data samples, suffered by up to 20%
degradation.

Observation 6.7: Data representation influenced on
choosing a neural network model.

The above observations seem to indicate the following
indications:

Indication 6.1: All works in our survey adopt a kind
of preprocessing methods in Phase I, because raw
data provided in the public datasets are either not
ready for neural networks, or that the quality of data
is too low to be directly used as data samples.
Preprocessing methods can help increase the neural
network performance by improving the data samples’
qualities. Furthermore, by reducing the feature space,
pre-processing can also improve the efficiency of
neural network training and testing. Thus, Phase II

Page 16 of 32

should not be skipped. If Phase II is skipped, the
performance of neural network is expected to go
down considerably.

Indication 6.2: Although Phase III is not employed
in any of the seven surveyed works, none of them
explains a reason for it. Also, they all do not take
representation learning into consideration.
Indication 6.3: Because no work uses representation
learning, the effectiveness are not well-studied.

Out of other factors, it seems that the choice of
pre-processing methods has the largest impact,
because it directly affects the data samples fed to the
neural network.

Indication 6.4: There is no guarantee that CNN also
works well on images converted from network
features.

Some works that use image data representation use
CNN in Phase IV. Although CNN has been proven to
work well on image classification problem in the
recent years, there is no guarantee that CNN also
works well on images converted from network
features.

From the observations and indications above, we hereby
present two recommendations: (1) Researchers can try to
generate their own datasets for the specific network attack
they want to detect. As stated, the public datasets have
highly unbalanced number of data for different classes.
Doubtlessly, such unbalance is the nature of real world
network environment, in which normal activities are the
majority, but it is not good for Deep Learning. (Varenne
et al. 2019) tries to solve this problem by oversampling
the malicious data, but it is better to start with a bal-
anced data set. (2) Representation learning should be
taken into consideration. Some possible ways to apply rep-
resentation learning include: (a) apply word2vec method
to packet binaries, and categorical numbers and texts; (b)
use K-means as one-hot vector representation instead of
randomly encoding texts. We suggest that any change of
data representation may be better justified by explanations
or comparison experiments.

Discussion

One critical challenge in this field is the lack of high-
quality data set suitable for applying deep learning. Also,
there is no agreement on how to apply domain knowl-
edge into training deep learning models for network
security problems. Researchers have been using different
pre-processing methods, data representations and model
types, but few of them have enough explanation on why
such methods/representations/models are chosen, espe-
cially for data representation.

Choi et al. Cybersecurity (2020) 3:15

A closer look at applications of deep learning in
malware classification

Introduction

The goal of malware classification is to identify malicious
behaviors in software with static and dynamic features
like control-flow graph and system API calls. Malware
and benign programs can be collected from open datasets
and online websites. Both the industry and the academic
communities have provided approaches to detect malware
with static and dynamic analyses. Traditional methods
such as behavior-based signatures, dynamic taint tracking,
and static data flow analysis require experts to manually
investigate unknown files. However, those hand-crafted
signatures are not sufficiently effective because attackers
can rewrite and reorder the malware. Fortunately, neu-
ral networks can automatically detect large-scale malware
variants with superior classification accuracy.

In this section, we will review the very recent twelve
representative works that use Deep Learning for mal-
ware classification (De La Rosa et al. 2018; Saxe and
Berlin 2015; Kolosnjaji et al. 2017; McLaughlin et al.
2017; Tobiyama et al. 2016; Dahl et al. 2013; Nix and
Zhang 2017; Kalash et al. 2018; Cui et al. 2018; David
and Netanyahu 2015; Rosenberg et al. 2018; Xu et al.
2018). De La Rosa et al. (2018) selects three different
kinds of static features to classify malware. Saxe and Berlin
(2015); Kolosnjaji et al. (2017); McLaughlin et al. (2017)
also use static features from the PE files to classify pro-
grams. (Tobiyama et al. 2016) extracts behavioral feature
images using RNN to represent the behaviors of orig-
inal programs. (Dahl et al. 2013) transforms malicious
behaviors using representative learning without neural
network. Nix and Zhang (2017) explores RNN model
with the API calls sequences as programs’ features. Cui
et al. (2018); Kalash et al. (2018) skip Phase II by directly
transforming the binary file to image to classify the
file. (David and Netanyahu 2015; Rosenberg et al. 2018)
applies dynamic features to analyze malicious features. Xu
et al. (2018) combines static features and dynamic features
to represent programs’ features. Among these works, we
select two representative works (De La Rosa et al. 2018;
Rosenberg et al. 2018) and identify four phases in their
works shown as Table 2.

Our review will be centered around three questions
described in “Methodology for reviewing the existing
works” section. In the remaining of this section, we will
first provide a set of observations, and then we provide the
indications. Finally, we provide some general remarks.

Key findings from a closer look

From a close look at the very recent applications using
Deep Learning for solving malware classification chal-
lenges, we observed the followings:

Page 17 of 32

Observation 7.1: Features selected in malware
classification were grouped into three categories:
static features, dynamic features, and hybrid features.
Typical static features include metadata, PE import
Features, Byte/Entorpy, String, and Assembly
Opcode Features derived from the PE files (Kolosnjaji
et al. 2017; McLaughlin et al. 2017; Saxe and Berlin
2015). De La Rosa et al. (2018) took three kinds of
static features: byte-level, basic-level (strings in the
file, the metadata table, and the import table of the
PE header), and assembly features-level. Some works
directly considered binary code as static features (Cui
et al. 2018; Kalash et al. 2018).

Different from static features, dynamic features were
extracted by executing the files to retrieve their
behaviors during execution. The behaviors of
programs, including the API function calls, their
parameters, files created or deleted, websites and
ports accessed, etc, were recorded by a sandbox as
dynamic features (David and Netanyahu 2015). The
process behaviors including operation name and
their result codes were extracted (Tobiyama et al.
2016). The process memory, tri-grams of system API
calls and one corresponding input parameter were
chosen as dynamic features (Dahl et al. 2013). An API
calls sequence for an APK file was another
representation of dynamic features (Nix and Zhang
2017; Rosenberg et al. 2018).

Static features and dynamic features were combined
as hybrid features (Xu et al. 2018). For static features,
Xu and others in (Xu et al. 2018) used permissions,
networks, calls, and providers, etc. For dynamic
features, they used system call sequences.
Observation 7.2: In most works, Phase II was
inevitable because extracted features needed to be
vertorized for Deep Learning models.

One-hot encoding approach was frequently used to
vectorize features (Kolosnjaji et al. 2017; McLaughlin
et al. 2017; Rosenberg et al. 2018; Tobiyama et al.
2016; Nix and Zhang 2017). Bag-of-words (BoW) and
n-gram were also considered to represent features
(Nix and Zhang 2017). Some works brought the
concepts of word frequency in NLP to convert the
sandbox file to fixed-size inputs (David and
Netanyahu 2015). Hashing features into a fixed vector
was used as an effective method to represent features
(Saxe and Berlin 2015). Bytes histogram using the
bytes analysis and bytes-entropy histogram with a
sliding window method were considered (De La Rosa
et al. 2018). In (De La Rosa et al. 2018), De La Rosa
and others embeded strings by hashing the ASCII
strings to a fixed-size feature vector. For assembly
features, they extracted four different levels of

Choi et al. Cybersecurity (2020) 3:15

granularity: operation level (instruction-flow-graph),
block level (control-flow-graph), function level (call-
graph), and global level (graphs summarized). bigram,
trigram and four-gram vectors and n-gram graph
were used for the hybrid features (Xu et al. 2018).
Observation 7.3: Most Phase III methods were
classified into class 1.

Following the classification tree shown in Fig. 2, most
works were classified into class 1 shown in Fig. 2
except two works (Dahl et al. 2013; Tobiyama et al.
2016), which belonged to class 3 shown in Fig. 2. To
reduce the input dimension, Dahl et al. (2013)
performed feature selection using mutual
information and random projection. Tobiyama et al.
generated behavioral feature images using RNN
(Tobiyama et al. 2016).

Observation 7.4: After extracting features, two
kinds of neural network architectures, i.e., one single
neural network and multiple neural networks with a
combined loss function, were used.

Hierarchical structures, like convolutional layers,
fully connected layers and classification layers, were
used to classify programs (McLaughlin et al. 2017;
Dahl et al. 2013; Nix and Zhang 2017; Saxe and Berlin
2015; Tobiyama et al. 2016; Cui et al. 2018; Kalash et
al. 2018). A deep stack of denoising autoencoders was
also introduced to learn programs’ behaviors (David
and Netanyahu 2015). De La Rosa and others (De La
Rosa et al. 2018) trained three different models with
different features to compare which static features
are relevant for the classification model. Some works
investigated LSTM models for sequential features
(Nix and Zhang 2017; Rosenberg et al. 2018).

Two networks with different features as inputs were
used for malware classification by combining their
outputs with a dropout layer and an output layer
(Kolosnjaji et al. 2017). In (Kolosnjaji et al. 2017), one
network transformed PE Metadata and import
features using feedforward neurons, another one
leveraged convolutional network layers with opcode
sequences. Lifan Xu et al. (Xu et al. 2018) constructed
a few networks and combined them using a two-level
multiple kernel learning algorithm.

The above observations seem to indicate the following
indications:

Indication 7.1: Except two works transform binary
into images (Cui et al. 2018; Kalash et al. 2018), most
works surveyed need to adapt methods to vectorize
extracted features.

The vectorization methods should not only keep
syntactic and semantic information in features, but

Page 18 of 32

also consider the definition of the Deep Learning
model.

Indication 7.2: Only limited works have shown how
to transform features using representation learning.
Because some works assume the dynamic and static
sequences, like API calls and instruction, and have
similar syntactic and semantic structure as natural
language, some representation learning techniques
like word2vec may be useful in malware detection. In
addition, for the control-flow graph, call graph and
other graph representations, graph embedding is a
potential method to transform those features.

Discussion

Though several pieces of research have been done in
malware detection using Deep Learning, it’s hard to com-
pare their methods and performances because of two
uncertainties in their approaches. First, the Deep Learn-
ing model is a black-box, researchers cannot detail which
kind of features the model learned and explain why their
model works. Second, feature selection and representa-
tion affect the model’s performance. Because they do not
use the same datasets, researchers cannot prove their
approaches — including selected features and Deep Learn-
ing model — are better than others. The reason why few
researchers use open datasets is that existing open mal-
ware datasets are out of data and limited. Also, researchers
need to crawl benign programs from app stores, so their
raw programs will be diverse.

A closer look at applications of Deep Learning in
system-event-based anomaly detection
Introduction
System logs recorded significant events at various critical
points, which can be used to debug the system’s perfor-
mance issues and failures. Moreover, log data are available
in almost all computer systems and are a valuable resource
for understanding system status. There are a few chal-
lenges in anomaly detection based on system logs. Firstly,
the raw log data are unstructured, while their formats
and semantics can vary significantly. Secondly, logs are
produced by concurrently running tasks. Such concur-
rency makes it hard to apply workflow-based anomaly
detection methods. Thirdly, logs contain rich informa-
tion and complexity types, including text, real value, IP
address, timestamp, and so on. The contained informa-
tion of each log is also varied. Finally, there are massive
logs in every system. Moreover, each anomaly event usu-
ally incorporates a large number of logs generated in a
long period.

Recently, a large number of scholars employed deep
learning techniques (Du et al. 2017; Meng et al. 2019; Das

Choi et al. Cybersecurity (2020) 3:15

et al. 2018; Brown et al. 2018; Zhang et al. 2019; Bert-
ero et al. 2017) to detect anomaly events in the system
logs and diagnosis system failures. The raw log data are
unstructured, while their formats and semantics can vary
significantly. To detect the anomaly event, the raw log usu-
ally should be parsed to structure data, the parsed data
can be transformed into a representation that supports
an effective deep learning model. Finally, the anomaly
event can be detected by deep learning based classifier or
predictor.

In this section, we will review the very recent six repre-
sentative papers that use deep learning for system-event-
based anomaly detection (Du et al. 2017; Meng et al. 2019;
Das et al. 2018; Brown et al. 2018; Zhang et al. 2019; Bert-
ero et al. 2017). DeepLog (Du et al. 2017) utilizes LSTM
to model the system log as a natural language sequence,
which automatically learns log patterns from the normal
event, and detects anomalies when log patterns deviate
from the trained model. LogAnom (Meng et al. 2019)
employs Word2vec to extract the semantic and syntax
information from log templates. Moreover, it uses sequen-
tial and quantitative features simultaneously. Das et al.
(2018) uses LSTM to predict node failures that occur in
super computing systems from HPC logs. Brown et al.
(2018) presented RNN language models augmented with
attention for anomaly detection in system logs. LogRobust
(Zhang et al. 2019) uses FastText to represent semantic
information of log events, which can identify and handle
unstable log events and sequences. Bertero et al. (2017)
map log word to a high dimensional metric space using
Google’s word2vec algorithm and take it as features to
classify. Among these six papers, we select two represen-
tative works (Du et al. 2017; Meng et al. 2019) and summa-
rize the four phases of their approaches. We direct inter-
ested readers to Table 2 for a concise overview of these two
works.

Our review will be centered around three questions
described in “Methodology for reviewing the existing
works” section. In the remaining of this section, we will
first provide a set of observations, and then we pro-
vide the indications. Finally, we provide some general
remarks.

Key findings from a closer look

From a close look at the very recent applications using
deep learning for solving security-event-based anomaly
detection challenges, we observed the followings:

Observation 8.1: Most works of our surveyed papers
evaluated their performance using public datasets.

By the time we surveyed this paper, only two works in
(Das et al. 2018; Bertero et al. 2017) used their private
datasets.

Page 19 of 32

Observation 8.2: Most works in this survey adopted
Phase II when parsing the raw log data.

After reviewing the six works proposed recently, we
found that five works (Du et al. 2017; Meng et al.
2019; Das et al. 2018; Brown et al. 2018; Zhang et al.
2019) employed parsing technique, while only one
work (Bertero et al. 2017) did not.

DeepLog (Du et al. 2017) parsed the raw log to
different log type using Spell (Du and Li 2016) which
is based a longest common subsequence. Desh (Das
et al. 2018) parsed the raw log to constant message
and variable component. Loganom (Meng et al. 2019)
parsed the raw log to different log templates using
FT-Tree (Zhang et al. 2017) according to the frequent
combinations of log words. Andy Brown et al. (Brown
et al. 2018) parsed the raw log into word and
character tokenization. LogRobust (Zhang et al. 2019)
extracted its log event by abstracting away the
parameters in the message. Bertero et al. (2017)
considered logs as regular text without parsing.
Observation 8.3: Most works have considered and
adopted Phase I11.

Among these six works, only DeepLog represented
the parsed data using the one-hot vector without
learning. Moreover, Loganom (Meng et al. 2019)
compared their results with DeepLog. That is,
DeepLog belongs to class 1 and Loganom belongs to
class 4 in Fig. 2, while the other four works follow in
class 3.

The four works (Meng et al. 2019; Das et al. 2018;
Zhang et al. 2019; Bertero et al. 2017) used word
embedding techniques to represent the log data.
Andy Brown et al. (Brown et al. 2018) employed
attention vectors to represent the log messages.
DeepLog (Du et al. 2017) employed the one-hot
vector to represent the log type without learning. We
have engaged an experiment replacing the one-hot
vector with trained word embeddings.

Observation 8.4: Evaluation results were not
compared using the same dataset.

DeepLog (Du et al. 2017) employed the one-hot
vector to represent the log type without learning,
which employed Phase II without Phase III. However,
Christophe Bertero et al. (Bertero et al. 2017)
considered logs as regular text without parsing, and
used Phase III without Phase II. The precision of the
two methods is very high, which is greater than 95%.
Unfortunately, the evaluations of the two methods
used different datasets.

Observation 8.5: Most works empolyed LSTM in
Phase IV.

Five works including (Du et al. 2017; Meng et al.
2019; Das et al. 2018; Brown et al. 2018; Zhang et al.
2019) employed LSTM in the Phase IV, while Bertero

Choi et al. Cybersecurity (2020) 3:15

et al. (2017) tried different classifiers including naive
Bayes, neural networks and random forest.

The above observations seem to indicate the following
indications:

Indication 8.1: Phase II has a positive effect on
accuracy if being well-designed.

Since Bertero et al. (2017) considers logs as regular
text without parsing, we can say that Phase II is not
required. However, we can find that most of the
scholars employed parsing techniques to extract
structure information and remove the useless noise.
Indication 8.2: Most of the recent works use trained
representation to represent parsed data.

As shown in Table 3, we can find Phase III is very
useful, which can improve detection accuracy.
Indication 8.3: Phase II and Phase III cannot be
skipped simultaneously.

Both Phase II and Phase III are not required. However,
all methods have employed Phase II or Phase III.
Indication 8.4: Observation 8.3 indicates that the
trained word embedding format can improve the
anomaly detection accuracy as shown in Table 3.
Indication 8.5: Observation 8.5 indicates that most
of the works adopt LSTM to detect anomaly events.
We can find that most of the works adopt LSTM to
detect anomaly event, since log data can be
considered as sequence and there can be lags of
unknown duration between important events in a
time series. LSTM has feedback connections, which
can not only process single data points, but also
entire sequences of data.

As our consideration, neither Phase II nor Phase III
is required in system event-based anomaly detection.
However, Phase II can remove noise in raw data, and
Phase III can learn a proper representation of the data.
Both Phase II and Phase III have a positive effect on
anomaly detection accuracy. Since the event log is text
data that we can’t feed the raw log data into deep learn-
ing model directly, Phase II and Phase III can’t be skipped
simultaneously.

Table 3 Comparison between word embedding and one-hot
representation

Method FPT FN? Precision Recall F1-measure
Word Embedding 3680 219 96.069% 98.699% 97.366%
One-hot Vector * 711 705 95.779% 95.813% 95.796%
Deeplog 833 619 95% 96% 96%

TFP: false positive; 2FN: False negative;>Word Embedding: Log keys are embedded
by Continuous Bag of words;* One-hot Vector: We reproduced the results according
to Deeplog;’ Deeplog: Orignial results presented in the paper (Du et al. 2017).

Page 20 of 32

Discussion

Deep learning can capture the potentially nonlinear and
high dimensional dependencies among log entries from
the training data that correspond to abnormal events. In
that way, it can release the challenges mentioned above.
However, it still suffers from several challenges. For exam-
ple, how to represent the unstructured data accurately and
automatically without human knowledge.

A closer look at applications of deep learning in
solving memory forensics challenges

Introduction

In the field of computer security, memory forensics is
security-oriented forensic analysis of a computer’s mem-
ory dump. Memory forensics can be conducted against
OS kernels, user-level applications, as well as mobile
devices. Memory forensics outperforms traditional disk-
based forensics because although secrecy attacks can
erase their footprints on disk, they would have to appear
in memory (Song et al. 2018). The memory dump can be
considered as a sequence of bytes, thus memory foren-
sics usually needs to extract security semantic information
from raw memory dump to find attack traces.

The traditional memory forensic tools fall into two cat-
egories: signature scanning and data structure traversal.
These traditional methods usually have some limitations.
Firstly, it needs expert knowledge on the related data
structures to create signatures or traversing rules. Sec-
ondly, attackers may directly manipulate data and pointer
values in kernel objects to evade detection, and then it
becomes even more challenging to create signatures and
traversing rules that cannot be easily violated by mali-
cious manipulations, system updates, and random noise.
Finally, the high-efficiency requirement often sacrifices
high robustness. For example, an efficient signature scan
tool usually skips large memory regions that are unlikely
to have the relevant objects and relies on simple but easily
tamperable string constants. An important clue may hide
in this ignored region.

In this section, we will review the very recent four rep-
resentative works that use Deep Learning for memory
forensics (Song et al. 2018; Petrik et al. 2018; Michalas and
Murray 2017; Dai et al. 2018). DeepMem (Song et al. 2018)
recognized the kernel objects from raw memory dumps by
generating abstract representations of kernel objects with
a graph-based Deep Learning approach. MDMF (Petrik et
al. 2018) detected OS and architecture-independent mal-
ware from memory snapshots with several pre-processing
techniques, domain unaware feature selection, and a suite
of machine learning algorithms. MemTri (Michalas and
Murray 2017) predicts the likelihood of criminal activity
in a memory image using a Bayesian network, based on
evidence data artefacts generated by several applications.
Dai et al. (2018) monitor the malware process memory

Choi et al. Cybersecurity (2020) 3:15

and classify malware according to memory dumps, by
transforming the memory dump into grayscale images and
adopting a multi-layer perception as the classifier.

Among these four works (Song et al. 2018; Petrik et al.
2018; Michalas and Murray 2017; Dai et al. 2018), two rep-
resentative works (i.e., (Song et al. 2018; Petrik et al. 2018))
are already summarized phase-by-phase in Table 1. We
direct interested readers to Table 2 for a concise overview
of these two works.

Our review will be centered around the three questions
raised in Section 3. In the remaining of this section, we will
first provide a set of observations, and then we provide the
indications. Finally, we provide some general remarks.

Key findings from a closer look

From a close look at the very recent applications using
Deep Learning for solving memory forensics challenges,
we observed the followings:

Observation 9.1: Most methods used their own
datasets for performance evaluation, while none of
them used a public dataset.

DeepMem was evaluated on self-generated dataset by
the authors, who collected a large number of diverse
memory dumps, and labeled the kernel objects in
them using existing memory forensics tools like
Volatility. MDMF employed the MalRec dataset by
Georgia Tech to generate malicious snapshots, while
it created a dataset of benign memory snapshots
running normal software. MemTri ran several
Windows 7 virtual machine instances with
self-designed suspect activity scenarios to gather
memory images. Dai et al. built the Procdump
program in Cuckoo sandbox to extract malware
memory dumps. We found that each of the four
works in our survey generated their own datasets,
while none was evaluated on a public dataset.
Observation 9.2: Among the four works (Song et al.
2018; Michalas and Murray 2017; Petrik et al. 2018;
Dai et al. 2018), two works (Song et al. 2018; Michalas
and Murray 2017) employed Phase II while the other
two works (Petrik et al. 2018; Dai et al. 2018) did not
employ.

DeepMem (Song et al. 2018) devised a graph
representation for a sequence of bytes, taking into
account both adjacency and points-to relations, to
better model the contextual information in memory
dumps. MemTri (Michalas and Murray 2017) firstly
identified the running processes within the memory
image that match the target applications, then
employed regular expressions to locate evidence
artefacts in a memory image. MDMF (Petrik et al.
2018) and Dai et al. (2018) transformed the memory
dump into image directly.

Page 21 of 32

Observation 9.3: Among four works (Song et al.
2018; Michalas and Murray 2017; Petrik et al. 2018;
Dai et al. 2018), only DeepMem (Song et al. 2018)
employed Phase III for which it used an embedding
method to represent a memory graph.

MDMEF (Petrik et al. 2018) directly fed the generated
memory images into the training of a CNN model.
Dai et al. (2018) used HOG feature descriptor for
detecting objects, while MemTri (Michalas and
Murray 2017) extracted evidence artefacts as the
input of Bayesian Network. In summary, DeepMem
belonged to class 3 shown in Fig. 2, while the other
three works belonged to class 1 shown in Fig. 2.
Observation 9.4: All the four works (Song et al.
2018; Petrik et al. 2018; Michalas and Murray 2017;
Dai et al. 2018) have employed different classifiers
even when the types of input data are the same.
DeepMem chose fully connected network (FCN)
model that has multi-layered hidden neurons with
ReLU activation functions, following by a softmax
layer as the last layer. MDMEF (Petrik et al. 2018)
evaluated their performance both on traditional
machine learning algorithms and Deep Learning
approach including CNN and LSTM. Their results
showed the accuracy of different classifiers did not
have a significant difference. MemTri employed a
Bayesian network model that is designed with three
layers, i.e., a hypothesis layer, a sub-hypothesis layer,
and an evidence layer. Dai et al. used a multi-layer
perception model including an input layer, a hidden
layer and an output layer as the classifier.

The above observations seem to indicate the following
indications:

Indication 9.1: There lacks public datasets for
evaluating the performance of different Deep
Learning methods in memory forensics.

From Observation 9.1, we find that none of the four
works surveyed was evaluated on public datasets.
Indication 9.2: From Observation 9.2, we find that it
is disputable whether one should employ Phase II
when solving memory forensics problems.

Since both (Petrik et al. 2018) and (Dai et al. 2018)
directly transformed a memory dump into an image,
Phase I is not required in these two works. However,
since there is a large amount of useless information in
a memory dump, we argue that appropriate
prepossessing could improve the accuracy of the
trained models.

Indication 9.3: From Observation 9.3, we find that
Phase 111 is paid not much attention in memory
forensics.

Most works did not employ Phase III. Among the
four works, only DeepMem (Song et al. 2018)

Choi et al. Cybersecurity (2020) 3:15

employed Phase III during which it used embeddings
to represent a memory graph. The other three works
(Petrik et al. 2018; Michalas and Murray 2017; Dai et
al. 2018) did not learn any representations before
training a Deep Learning model.

Indication 9.4: For Phase IV in memory forensics,
different classifiers can be employed.

Which kind of classifier to use seems to be
determined by the features used and their data
structures. From Observation 9.4, we find that the
four works have actually employed different kinds of
classifiers even the types of input data are the same. It
is very interesting that MDMF obtained similar
results with different classifiers including traditional
machine learning and Deep Learning models.
However, the other three works did not discuss why
they chose a particular kind of classifier.

Since a memory dump can be considered as a sequence
of bytes, the data structure of a training data example
is straightforward. If the memory dump is transformed
into a simple form in Phase II, it can be directly fed
into the training process of a Deep Learning model, and
as a result Phase III can be ignored. However, if the
memory dump is transformed into a complicated form
in Phase II, Phase III could be quite useful in memory
forensics.

Regarding the answer for Question 3 at “Method-
ology for reviewing the existing works” section, it is
very interesting that during Phase IV different classifiers
can be employed in memory forensics. Moreover, MDMF
(Petrik et al. 2018) has shown that they can obtain sim-
ilar results with different kinds of classifiers. Neverthe-
less, they also admit that with a larger amount of train-
ing data, the performance could be improved by Deep
Learning.

Discussion

An end-to-end manner deep learning model can learn
the precise representation of memory dump automatically
to release the requirement for expert knowledge. How-
ever, it still needs expert knowledge to represent data
and attacker behavior. Attackers may also directly manip-
ulate data and pointer values in kernel objects to evade
detection.

A closer look at applications of deep learning in
security-oriented fuzzing

Introduction

Fuzzing of software security is one of the state of art tech-
niques that people use to detect software vulnerabilities.
The goal of fuzzing is to find all the vulnerabilities
exist in the program by testing as much program code

Page 22 of 32

as possible. Due to the nature of fuzzing, this tech-
nique works best on finding vulnerabilities in pro-
grams that take in input files, like PDF viewers
(Godefroid et al. 2017) or web browsers. A typical work-
flow of fuzzing can be concluded as: given several seed
input files, the fuzzer will mutate or fuzz the seed inputs
to get more input files, with the aim of expanding the
overall code coverage of the target program as it exe-
cutes the mutated files. Although there have already
been various popular fuzzers (Li et al. 2018), fuzzing
still cannot bypass its problem of sometimes redundantly
testing input files which cannot improve the code cov-
erage rate (Shi and Pei 2019; Rajpal et al. 2017). Some
input files mutated by the fuzzer even cannot pass the
well-formed file structure test (Godefroid et al. 2017).
Recent research has come up with ideas of applying
Deep Learning in the process of fuzzing to solve these
problems.

In this section, we will review the very recent four rep-
resentative works that use Deep Learning for fuzzing for
software security. Among the three, two representative
works (Godefroid et al. 2017; Shi and Pei 2019) are already
summarized phase-by-phase in Table 2. We direct inter-
ested readers to Table 2 for a concise overview of those
two works.

Our review will be centered around three questions
described in Section 3. In the remaining of this section,
we will first provide a set of observations, and then we
provide the indications. Finally, we provide some general
remarks.

Key findings from a closer look

From a close look at the very recent applications using
Deep Learning for solving security-oriented program
analysis challenges, we observed the followings:

Observation 10.1: Deep Learning has only been
applied in mutation-based fuzzing.

Even though various of different fuzzing techniques,
including symbolic execution based fuzzing (Stephens
et al. 2016), tainted analysis based fuzzing (Bekrar et
al. 2012) and hybrid fuzzing (Yun et al. 2018) have
been proposed so far, we observed that all the works
we surveyed employed Deep Learning method to
assist the primitive fuzzing — mutation-based fuzzing.
Specifically, they adopted Deep Learning to assist
fuzzing tool’s input mutation. We found that they
commonly did it in two ways: 1) training Deep
Learning models to tell how to efficiently mutate the
input to trigger more execution path (Shi and Pei
2019; Rajpal et al. 2017); 2) training Deep Learning
models to tell how to keep the mutated files compliant
with the program’s basic semantic requirement

Choi et al. Cybersecurity

(2020) 3:15

(Godefroid et al. 2017). Besides, all three works
trained different Deep Learning models for different
programs, which means that knowledge learned from
one programs cannot be applied to other programs.
Observation 10.2: Similarity among all the works in
our survey existed when choosing the training
samples in Phase L.

The works in this survey had a common practice, i.e.,
using the input files directly as training samples of the
Deep Learning model. Learn&Fuzz (Godefroid et al.
2017) used character-level PDF objects sequence as
training samples. Neuzz (Shi and Pei 2019) regarded
input files directly as byte sequences and fed them
into the neural network model. Rajpal et al. (2017)
also used byte level representations of input files as
training samples.

Observation 10.3: Difference between all the works
in our survey existed when assigning the training
labels in Phase I.

Despite the similarity of training samples researchers
decide to use, there was a huge difference in the
training labels that each work chose to use.
Learn&Fuzz (Godefroid et al. 2017) directly used the
character sequences of PDF objects as labels, same as
training samples, but shifted by one position, which is
a common generative model technique already
broadly used in speech and handwriting recognition.
Unlike Learn&Fuzz, Neuzz (Shi and Pei 2019) and
Rajpal’s work (Rajpal et al. 2017) used bitmap and
heatmap respectively as training labels, with the
bitmap demonstrating the code coverage status of a
certain input, and the heatmap demonstrating the
efficacy of flipping one or more bytes of the input file.
Whereas, as a common terminology well-known
among fuzzing researchers, bitmap was gathered
directly from the results of AFL. Heatmap used by
Rajpal et al. was generated by comparing the code
coverage supported by the bitmap of one seed file and
the code coverage supported by bitmaps of the
mutated seed files. It was noted that if there is
acceptable level of code coverage expansion when
executing the mutated seed files, demonstrated by
more “1”s, instead of “0”s in the corresponding
bitmaps, the byte level differences among the original
seed file and the mutated seed files will be
highlighted. Since those bytes should be the focus of
later on mutation, heatmap was used to denote the
location of those bytes.

Different labels usage in each work was actually due
to the different kinds of knowledge each work wants
to learn. For a better understanding, let us note that
we can simply regard a Deep Learning model as a
simulation of a “function”. Learn&Fuzz (Godefroid et
al. 2017) wanted to learn valid mutation of a PDF file

Page 23 of 32

that was compliant with the syntax and semantic
requirements of PDF objects. Their model could be
seen as a simulation of f(x,8) = y, where x denotes
sequence of characters in PDF objects and y
represents a sequence that are obtained by shifting
the input sequences by one position. They generated
new PDF object character sequences given a starting
prefix once the model was trained. In Neuzz (Shi and
Pei 2019), an NN(Neural Network) model was used
to do program smoothing, which simultated a
smooth surrogate function that approximated the
discrete branching behaviors of the target program.
f(x,0) = y, where x denoted program’s byte level
input and y represented the corresponding edge
coverage bitmap. In this way, the gradient of the
surrogate function was easily computed, due to NN’s
support of efficient computation of gradients and
higher order derivatives. Gradients could then be
used to guide the direction of mutation, in order to
get greater code coverage. In Rajpal and others” work
(Rajpal et al. 2017), they designed a model to predict
good (and bad) locations to mutate in input files
based on the past mutations and corresponding code
coverage information. Here, the x variable also
denoted program’s byte level input, but the y variable
represented the corresponding heatmap.
Observation 10.4: Various lengths of input files
were handled in Phase II.

Deep Learning models typically accepted fixed length
input, whereas the input files for fuzzers often held
different lengths. Two different approaches were
used among the three works we surveyed: splitting
and padding. Learn&Fuzz (Godefroid et al. 2017)
dealt with this mismatch by concatenating all the
PDF objects character sequences together, and then
splited the large character sequence into multiple
training samples with a fixed size. Neuzz (Shi and Pei
2019) solved this problem by setting a maximize
input file threshold and then, padding the
smaller-sized input files with null bytes. From
additional experiments, they also found that a modest
threshold gived them the best result, and enlarging
the input file size did not grant them additional
accuracy. Aside from preprocessing training samples,
Neuzz also preprocessed training labels and reduced
labels dimension by merging the edges that always
appeared together into one edge, in order to prevent
the multicollinearity problem, that could prevent the
model from converging to a small loss value. Rajpal
and others (Rajpal et al. 2017) used the similar
splitting mechanism as Learn&Fuzz to split their
input files into either 64-bit or 128-bit chunks. Their
chunk size was determined empirically and was
considered as a trainable parameter for their Deep

Choi et al. Cybersecurity (2020) 3:15

Learning model, and their approach did not require
sequence concatenating at the beginning.

Observation 10.5: All the works in our survey
skipped Phase II1.

According to our definition of Phase I1I, all the works
in our survey did not consider representation
learning. Therefore, all the three works (Godefroid et
al. 2017; Shi and Pei 2019; Rajpal et al. 2017) fell into
class 1 shown in Fig. 2.While as in Rajpal and others’
work, they considered the numerical representation
of byte sequences. They claimed that since one byte
binary data did not always represent the magnitude
but also state, representing one byte in values ranging
from 0 to 255 could be suboptimal. They used lower
level 8-bit representation.

The above observations seem to indicate the following
indications:

Indication 10.1: No alteration to the input files seems
to be a correct approach. As far as we concerned, it is
due to the nature of fuzzing. That is, since every bit of
the input files matters, any slight alteration to the
input files could either lose important information or
add redundant information for the neural network
model to learn.

Indication 10.2: Evaluation criteria should be chosen
carefully when judging mutation.

Input files are always used as training samples
regarding using Deep Learning technique in fuzzing
problems. Through this similar action, researchers
have a common desire to let the neural network mode
learn how the mutated input files should look like. But
the criterion of judging a input file actually has two
levels: on the one hand, a good input file should be
correct in syntax and semantics; on the other hand, a
good input file should be the product of a useful
mutation, which triggers the program to behave
differently from previous execution path. This idea of a
fuzzer that can generate semantically correct input file
could still be a bad fuzzer at triggering new execution
path was first brought up in Learn&Fuzz (Godefroid et
al. 2017). We could see later on works trying to solve
this problem by using either different training labels
(Rajpal et al. 2017) or use neural network to do
program smoothing (Shi and Pei 2019). We
encouraged fuzzing researchers, when using Deep
Learning techniques, to keep this problem in mind, in
order to get better fuzzing results.

Indication 10.3: Works in our survey only focus on
local knowledge. In brief, some of the existing works
(Shi and Pei 2019; Rajpal et al. 2017) leveraged the
Deep Learning model to learn the relation between
program’s input and its behavior and used the

Page 24 of 32

knowledge that learned from history to guide future
mutation. For better demonstration, we defined the
knowledge that only applied in one program as local
knowledge. In other words, this indicates that the local
knowledge cannot direct fuzzing on other programs.

Discussion

Corresponding to the problems conventional fuzzing has,
the advantages of applying DL in fuzzing are that DL’
learning ability can ensure mutated input files follow the
designated grammar rules better. The ways in which input
files are generated are more directed, and will, there-
fore, guarantee the fuzzer to increase its code coverage
by each mutation. However, even if the advantages can be
clearly demonstrated by the two papers we discuss above,
some challenges still exist, including mutation judgment
challenges that are faced both by traditional fuzzing tech-
niques and fuzzing with DL, and the scalability of fuzzing
approaches.

We would like to raise several interesting questions for
the future researchers: 1) Can the knowledge learned from
the fuzzing history of one program be applied to direct
testing on other programs? 2) If the answer to question
one is positive, we can suppose that global knowledge
across different programs exists? Then, can we train a
model to extract the global knowledge? 3) Whether it is
possible to combine global knowledge and local knowledge
when fuzzing programs?

Discussion

Using high-quality data in Deep Learning is important as
much as using well-structured deep neural network archi-
tectures. That is, obtaining quality data must be an impor-
tant step, which should not be skipped, even in resolving
security problems using Deep Learning. So far, this study
demonstrated how the recent security papers using Deep
Learning have adopted data conversion (Phase II) and data
representation (Phase III) on different security problems.
Our observations and indications showed a clear under-
standing of how security experts generate quality data
when using Deep Learning.

Since we did not review all the existing security papers
using Deep Learning, the generality of observations and
indications is somewhat limited. Note that our selected
papers for review have been published recently at one
of prestigious security and reliability conferences such
as USENIX SECURITY, ACM CCS and so on (Shin et
al. 2015)-(Das et al. 2018), (Brown et al. 2018; Zhang et
al. 2019), (Song et al. 2018; Petrik et al. 2018), (Wang
et al. 2019)-(Rajpal et al. 2017). Thus, our observations
and indications help to understand how most security
experts have used Deep Learning to solve the well-
known eight security problems from program analysis to
fuzzing.

Choi et al. Cybersecurity (2020) 3:15

Our observations show that we should transfer raw data
to synthetic formats of data ready for resolving security
problems using Deep Learning through data cleaning and
data augmentation and so on. Specifically, we observe that
Phases II and III methods have mainly been used for the
following purposes:

e To clean the raw data to make the neural network
(NN) models easier to interpret

e To reduce the dimensionality of data (e.g., principle
component analysis (PCA), t-distributed stochastic
neighbor embedding (t-SNE))

e To scale input data (e.g., normalization)

¢ To make NN models understand more complex
relationships depending on security problems (e.g.
memory graphs)

e To simply change various raw data formats into a
vector format for NN models (e.g. one-hot encoding
and word2vec embedding)

In this following, we do further discuss the question,
“What if Phase Il is skipped?", rather than the question, “Is
Phase III always necessary?". This is because most of the
selected papers do not consider Phase III methods (76%),
or adopt with no concrete reasoning (19%). Specifically,
we demonstrate how Phase II has been adopted according
to eight security problems, different types of data, vari-
ous models of NN and various outputs of NN models, in
depth. Our key findings are summarized as follows:

e How to fit security domain knowledge into raw data
has not been well-studied yet.

e While raw text data are commonly parsed after
embedding, raw binary data are converted using
various Phase II methods.

e Raw data are commonly converted into a vector
format to fit well to a specific NN model using
various Phase II methods.

e Various Phase II methods are used according to the
relationship between output of security problem and
output of NN models.

What if phase Il is skipped?

From the analysis results of our selected papers for review,
we roughly classify Phase II methods into the following
four categories.

e Embedding: The data conversion methods that
intend to convert high-dimensional discrete variables
into low-dimensional continuous vectors (Google
Developers 2016).

® Parsing combined with embedding: The data
conversion methods that constitute an input data
into syntactic components in order to test
conformability after embedding.

Page 25 of 32

® One-hot encoding: A simple embedding where each
data belonging to a specific category is mapped to a
vector of Os and a single 1. Here, the low-dimension
transformed vector is not managed.

e Domain-specific data structures: A set of data
conversion methods which generate data structures
capturing domain-specific knowledge for different
security problems, e.g., memory graphs (Song et al.
2018).

Findings on eight security problems

We observe that over 93% of the papers use one of the
above-classified Phase II methods. 7% of the papers do not
use any of the above-classified methods, and these papers
are mostly solving a software fuzzing problem. Specifi-
cally, we observe that 35% of the papers use a Category
1 (i.e. embedding) method; 30% of the papers use a Cat-
egory 2 (i.e. parsing combined with embedding) method;
15% of the papers use a Category 3 (i.e. one-hot encod-
ing) method; and 13% of the papers use a Category 4 (i.e.
domain-specific data structures) method. Regarding why
one-hot encoding is not widely used, we found that most
security data include categorical input values, which are
not directly analyzed by Deep Learning models.

From Fig. 3, we also observe that according to secu-
rity problems, different Phase II methods are used. First,
PA, ROP and CFI should convert raw data into a vector
format using embedding because they commonly collect
instruction sequence from binary data. Second, NA and
SEAD use parsing combined with embedding because raw
data such as the network traffic and system logs con-
sist of the complex attributes with the different formats
such as categorical and numerical input values. Third,
we observe that MF uses various data structures because
memory dumps from memory layout are unstructured.
Fourth, fuzzing generally uses no data conversion since
Deep Learning models are used to generate the new
input data with the same data format as the original raw
data. Finally, we observe that MC commonly uses one-
hot encoding and embedding because malware binary
and well-structured security log files include categori-
cal, numerical and unstructured data in general. These
observations indicate that type of data strongly influences
on use of Phase II methods. We also observe that only
MEF among eight security problems commonly transform
raw data into well-structured data embedding a special-
ized security domain knowledge. This observation indi-
cates that various conversion methods of raw data into
well-structure data which embed various security domain
knowledge are not yet studied in depth.

Findings on different data types
Note that according to types of data, a NN model works
better than the others. For example, CNN works well with

Choi et al. Cybersecurity (2020) 3:15 Page 26 of 32

PA ROP CFI NA

q T 100%
MC SEAD FUZZING

L6:7% 16:7%

\ 55
66.7%
\\ 83.4%
\\\\\

[Embedding
[Parsing & Embedding

Fig. 3 Statistics of Phase Il methods for eight security problems

One-hot
] None

] Other

images but does not work with text. From Fig. 4 for raw
binary data, we observe that 51.9%, 22.3% and 11.2% of
security papers use embedding, one-hot encoding and
Others, respectively. Only 14.9% of security papers, espe-
cially related to fuzzing, do not use one of Phase II meth-
ods. This observation indicates that binary input data
which have various binary formats should be converted
into an input data type which works well with a spe-
cific NN model. From Fig. 4 for raw text data, we also
observe that 92.4% of papers use parsing with embed-
ding as the Phase II method. Note that compared with
raw binary data whose formats are unstructured, raw text
data generally have the well-structured format. Raw text
data collected from network traffics may also have various
types of attribute values. Thus, raw text data are com-
monly parsed after embedding to reduce redundancy and
dimensionality of data.

Findings on various models of NN

According to types of the converted data, a specific NN
model works better than the others. For example, CNN
works well with images but does not work with raw text.
From Fig. 6b, we observe that use of embedding for DNN
(42.9%), RNN (28.6%) and LSTM (14.3%) models approx-
imates to 85%. This observation indicates that embedding
methods are commonly used to generate sequential input
data for DNN, RNN and LSTM models. Also, we observe
that one-hot encoded data are commonly used as input
data for DNN (33.4%), CNN (33.4%) and LSTM (16.7%)
models. This observation indicates that one-hot encoding
is one of common Phase II methods to generate numerical
values for image and sequential input data because many
raw input data for security problems commonly have the
categorical features. We observe that the CNN (66.7%)
model uses the converted input data using the Others

1] Binary
Text

100 = A
SIS .
&

60 - 51.9 g
E >
3} 40 - o
Q o
[oet 22.3
2 20 - l 149 11.2 .
0 ||
0 .
Embedding Parsing & Embdding One-hot None Others
Fig. 4 Statistics of Phase Il methods on type of data

Choi et al. Cybersecurity (2020) 3:15

methods to express the specific domain knowledge into
the input data structure of NN networks. This is because
general vector formats including graph, matrix and so on
can also be used as an input value of the CNN model.

From Fig. 5b, we observe that DNN, RNN and LSTM
models commonly use embedding, one-hot encoding
and parsing combined with embedding. For example,
we observe security papers of 54.6%, 18.2% and 18.2%
models use embedding, one-hot encoding and pars-
ing combined with embedding, respectively. We also
observe that the CNN model is used with various
Phase II methods because any vector formats such as
image can generally be used as an input data of the
CNN model.

Findings on output of NN models

According to the relationship between output of security
problem and output of NN, we may use a specific Phase II
method. For example, if output of security problem is
given into a class (e.g., normal or abnormal), output of NN
should also be given into classification.

Page 27 of 32

From Fig. 6a, we observe that embedding is commonly
used to support a security problem for classification
(100%). Parsing combined with embedding is used to
support a security problem for object detection (41.7%)
and classification (58.3%). One-hot encoding is used only
for classification (100%). These observations indicate that
classification of a given input data is the most common
output which is obtained using Deep Learning under
various Phase II methods.

From Fig. 6b, we observe that security problems, whose
outputs are classification, commonly use embedding
(43.8%) and parsing combined with embedding (21.9%)
as the Phase II method. We also observe that secu-
rity problems, whose outputs are object detection, com-
monly use parsing combined with embedding (71.5%).
However, security problems, whose outputs are data
generation, commonly do not use the Phase III meth-
ods. These observations indicate that a specific Phase II
method has been used according to the relationship
between output of security problem and use of NN
models.

Embedding Parsing & Embedding One-hot None Others
AT k> e Waann o
A% 1 S
I % % } % % 16 70/ o 2 H Ll T &
HYH paunn H Eﬁ:a:ﬁfEZI, 20%
bzt ‘:é F"#;FE%" SHH
16.7% T 16.7%
50% B N 66.7%
28.6% 8.4% T 83.4% 40%
A DNN [RNN [[] GNN [Combination
[CNN [0 LsT™ [] SNN 1 DBN

(a) Statistics of Phase II methods for eight security problems.

DNN CNN LSTM
1% \
25%
18.2% \
5
0y
18.2% 25% :25% il
66.7%
SNN Combination DBN
o0
X
& &K
% g8
< o
X RS
% RS
RS
RIS
50% 50% 2 e e e teoes
e RS
et RIS
K RS
&5 RS
00% R RIS
100% RIS
s
s
RIS
KRR
X

Embedding
Parsing & Embddding

[[] One-hot encoding Others

[[] None

O &

(b) Phase II methods over type of NN.

Fig. 5 Statistics of Phase Il methods for various types of NNs

Choi et al. Cybersecurity (2020) 3:15

Page 28 of 32

Embedding

41.7%
58.3%

100%

B Data Generation

Classification
6:3%
119.4%

43.8% ;w*% ‘

21.9%

[] Embedding

Fig. 6 Statistics of Phase Il methods for various output of NN

Parsing & Embddding One-hot encoding

100%

[Object Detection

(a) Output of NN over Phase II methods.

Object Detection

S143%

71.5%

[Tl One-hot encoding:] Others
[] Parsing & Embddding[[] None

(b) Phase II methods over output of NN.

Others

33.4%

v
60% 20% 66.7%

[0 Classification

Data Generation

()

100%

Further areas of investigation

Since any Deep Learning models are stochastic, each time
the same Deep Learning model is fit even on the same
data, it might give different outcomes. This is because
deep neural networks use random values such as random
initial weights. However, if we have all possible data for
every security problem, we may not make random predic-
tions. Since we have the limited sample data in practice,
we need to get the best-effort prediction results using
the given Deep Learning model, which fits to the given
security problem.

How can we get the best-effort prediction results
of Deep Learning models for different security prob-
lems? Let us begin to discuss about the stability of
evaluation results for our selected papers for review.
Next, we will elaborate the influence of security domain
knowledge on prediction results of Deep Learning mod-
els. Finally, we will discuss some common issues in
those fields.

How stable are evaluation results?

When evaluating neural network models, Deep Learn-
ing models commonly use three methods: train-test split;
train-validation-test split; and k-fold cross validation. A
train-test split method splits the data into two parts,
i.e., training and test data. Even though a train-test split
method makes the stable prediction with a large amount
of data, predictions vary with a small amount of data.
A train-validation-test split method splits the data into

three parts, i.e., training, validation and test data. Val-
idation data are used to estimate predictions over the
unknown data. k-fold cross validation has k different set of
predictions from k different evaluation data. Since k-fold
cross validation takes the average expected performance
of the NN model over k-fold validation data, the evalua-
tion result is closer to the actual performance of the NN
model.

From the analysis results of our selected papers
for review, we observe that 40.0% and 32.5% of the
selected papers are measured using a train-test split
method and a train-validation-test split method, respec-
tively. Only 17.5% of the selected papers are mea-
sured using k-fold cross validation. This observation
implies that even though the selected papers show
almost more than 99% of accuracy or 0.99 of F1
score, most solutions using Deep Learning might not
show the same performance for the noisy data with
randomness.

To get stable prediction results of Deep Learning models
for different security problems, we might reduce the influ-
ence of the randomness of data on Deep Learning models.
At least, it is recommended to consider the following
methods:

¢ Do experiments using the same data many time:
To get a stable prediction with a small amount of
sample data, we might control the randomness of
data using the same data many times.

Choi et al. Cybersecurity (2020) 3:15

e Use cross validation methods, e.g. k-fold cross
validation: The expected average and variance from
k-fold cross validation estimates how stable the
proposed model is.

How does security domain knowledge influence the
performance of security solutions using deep learning?
When selecting a NN model that analyzes an application
dataset, e.g., MNIST dataset (LeCun and Cortes 2010), we
should understand that the problem is to classify a hand-
written digit using a 28 x 28 black. Also, to solve the
problem with the high classification accuracy, it is impor-
tant to know which part of each handwritten digit mainly
influences the outcome of the problem, i.e., a domain
knowledge.

While solving a security problem, knowing and using
security domain knowledge for each security problem is
also important due to the following reasons (we label
the observations and indications that realted to domain
knowledge with “x):

Firstly, the dataset generation, preprocess and feature
selection highly depend on domain knowledge. Different
from the image classification and natural language pro-
cessing, raw data in the security domain cannot be sent
into the NN model directly. Researchers need to adopt
strong domain knowledge to generate, extract, or clean
the training set. Also, in some works, domain knowledge
is adopted in data labeling because labels for data samples
are not straightforward.

Secondly, domain knowledge helps with the selection
of DL models and its hierarchical structure. For exam-
ple, the neural network architecture (hierarchical and
bi-directional LSTM) designed in DEEPVSA (Guo et al.
2019) is based on the domain knowledge in the instruction
analysis.

Thirdly, domain knowledge helps to speed up the training
process. For instance, by adopting strong domain knowl-
edge to clean the training set, domain knowledge helps to
spend up the training process while keeping the same per-
formance. However, due to the influence of the random-
ness of data on Deep Learning models, domain knowledge
should be carefully adopted to avoid potential decreased
accuracy.

Finally, domain knowledge helps with the interpretability
of models’ prediction. Recently, researchers try to explore
the interpretability of the deep learning model in secu-
rity areas, For instance, LEMNA (Guo et al. 2018) and
EKLAVYA (Chua et al. 2017) explain how the predic-
tion was made by models from different perspectives.
By enhancing the trained models’ interpretability, they
can improve their approaches’ accuracy and security.
The explanation for the relation between input, hid-
den state, and the final output is based on domain
knowledge.

Page 29 of 32

Common challenges

In this section, we will discuss the common challenges
when applying DL to solving security problems. These
challenges as least shared by the majority of works, if
not by all the works. Generally, we observe 7 common
challenges in our survey:

1. The raw data collected from the software or system
usually contains lots of noise.

2. The collected raw is untidy. For instance, the
instruction trace, the Untidy data: variable length
sequences,

3. Hierarchical data syntactic/structure. As discussed in
Section 3, the information may not simply be
encoded in a single layer, rather, it is encoded
hierarchically, and the syntactic is complex.

4. Dataset generation is challenging in some scenarios.
Therefore, the generated training data might be less
representative or unbalanced.

5. Different for the application of DL in image
classification, and natural language process, which is
visible or understandable, the relation between data
sample and its label is not intuitive, and hard to
explain.

Availability of trained model and quality of dataset.

Finally, we investigate the availability of the trained model
and the quality of the dataset. Generally, the availability
of the trained models affects its adoption in practice, and
the quality of the training set and the testing set will affect
the credibility of testing results and comparison between
different works. Therefore, we collect relevant informa-
tion to answer the following four questions and shows the
statistic in Table 4:

1. Whether a paper’s source code is publicly available?

2. Whether raw data, which is used to generate the
dataset, is publicly available?

3. Whether its dataset is publicly available?

4. How are the quality of the dataset?

We observe that both the percentage of open source
of code and dataset in our surveyed fields is low, which
makes it a challenge to reproduce proposed schemes,
make comparisons between different works, and adopt
them in practice. Specifically, the statistic shows that 1)
the percentage of open source of code in our surveyed
fields is low, only 6 out of 16 paper published their model’s
source code. 2) the percentage of public data sets is low.
Even though, the raw data in half of the works are pub-
licly available, only 4 out of 16 fully or partially published
their dataset. 3) the quality of datasets is not guaranteed,
for instance, most of the dataset is unbalanced.

The performance of security solutions even using Deep
Learning might vary according to datasets. Traditionally,

Choi et al. Cybersecurity (2020) 3:15

Table 4 Analysis of the datasets and trained model

Page 30 of 32

Quiality of Dataset

Topic Paper Source Available Raw Data Available' Dataset Available 2
Sample Num Balance
PA RFNBNN [9] X v X N/A N/A
EKLAVYA [10] X v X N/A N/A
ROP ROPNN [11] X X X N/A N/A
HeNet [12] X X X N/A N/A
CFI Barnum [13] v X X N/A N/A
CFG-CNN [14] v v X N/A N/A
Network 50b(yte)-CNN [15] X v X 115835 X
PCCN [16] v v v 1168671 X
Malware Rosenber [17] X X X 500000 v
DelaRosa [18] X X X 100000 X
LogFvent Deeplog [8] p3 v/ P N/A X
LogAnom [41] X v p N/A X
MemoryFoensic DeepMem [19] v v v N/A X
MDMF [48] X X X N/A X
FUZZING NeuZZ [20] v X X N/A N/A
Learn & Fuzz X X X N/A N/A

T“Raw data” refers to the data that used to generate training set but cannot be feed into the model directly. For instance, a collection of binary files is raw file
2"Dataset” is the collection of data sample that can be feed in to the DL model directly. For instance, a collection of image, sequence

3"p” denotes that its source code or dataset is partially available to public

when evaluating different NN models in image classifi-
cation, standard datasets such as MNIST for recognizing
handwritten 10 digits and CIFAR10 (Krizhevsky et al.
2010) for recognizing 10 object classes are used for per-
formance comparison of different NN models. However,
there are no known standard datasets for evaluating NN
models on different security problems. Due to such a
limitation, we observe that most security papers using
Deep Learning do not compare the performance of differ-
ent security solutions even when they consider the same
security problem. Thus, it is recommended to generate
and use a standard dataset for a specific security prob-
lem for comparison. In conclusion, we think that there
are three aspects that need to be improved in future
research:

1. Developing standard dataset.
2. Publishing their source code and dataset.
3. Improving the interpretability of their model.

Conclusion

This paper seeks to provide a dedicated review of the very
recent research works on using Deep Learning techniques
to solve computer security challenges. In particular, the
review covers eight computer security problems being
solved by applications of Deep Learning: security-oriented
program analysis, defending ROP attacks, achieving
CFl, defending network attacks, malware classification,

system-event-based anomaly detection, memory foren-
sics, and fuzzing for software security. Our observations
of the reviewed works indicate that the literature of using
Deep Learning techniques to solve computer security
challenges is still at an earlier stage of development.

Acknowledgments
We are grateful to the anonymous reviewers for their useful comments and
suggestions.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
This work was supported by ARO W91T1NF-13-1-0421 (MURI), NSF
CNS-1814679, and ARO W91 1NF-15-1-0576.

Availability of data and materials
Not applicable.

Competing interests
PL is currently serving on the editorial board for Journal of Cybersecurity.

Author details
The Pennsylvania State University, Pennsylvania, USA. 2Pusan National
University, Busan, Republic of Korea. 3Wuhan University of Technology,
Wuhan, China.

Received: 11 March 2020 Accepted: 17 June 2020
Published online: 10 August 2020

References

Abadi M, Budiu M, Erlingsson U, Ligatti J (2009) Control-Flow Integrity
Principles, Implementations, and Applications. ACM Trans Inf Syst Secur
(TISSEC) 13(1):4

Choi et al. Cybersecurity (2020) 3:15

Bao T, Burket J, Woo M, Turner R, Brumley D (2014) BYTEWEIGHT: Learning to
Recognize Functions in Binary Code. In: 23rd USENIX Security Symposium
(USENIX Security 14). USENIX Association, San Diego. pp 845-860

Bekrar S, Bekrar C, Groz R, Mounier L (2012) A Taint Based Approach for Smart
Fuzzing. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation. IEEE. https://doi.org/10.1109/icst.2012.182

Bengio Y, Courville A, Vincent P (2013) Representation Learning: A Review and
New Perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798-1828

Bertero C, Roy M, Sauvanaud C, Tredan G (2017) Experience Report: Log
Mining Using Natural Language Processing and Application to Anomaly
Detection. In: 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE). IEEE. https://doi.org/10.1109/issre.2017.43

Brown A, Tuor A, Hutchinson B, Nichols N (2018) Recurrent Neural Network
Attention Mechanisms for Interpretable System Log Anomaly Detection.
In: Proceedings of the First Workshop on Machine Learning for Computing
Systems, MLCS'18. ACM, New York. pp 1:1-1:8

Bottinger K, Godefroid P, Singh R (2018) Deep Reinforcement Fuzzing. In: 2018
IEEE Security and Privacy Workshops (SPW), pages 116-122. [EEE. https://
doi.org/10.1109/spw.2018.00026

Chen L, Sultana S, Sahita R (2018) Henet: A Deep Learning Approach on Intel
® Processor Trace for Effective Exploit Detection. In: 2018 IEEE Security and
Privacy Workshops (SPW). IEEE. https://doi.org/10.1109/spw.2018.00025

Chua ZL, Shen S, Saxena P, Liang Z (2017) Neural Nets Can Learn Function
Type Signatures from Binaries. In: 26th USENIX Security Symposium
(USENIX Security 17). USENIX Association. pp 99-116. https://dl.acm.org/
doi/10.5555/3241189.3241199

Cui Z, Xue F, Cai X, Cao Y, Wang GG, Chen J (2018) Detection of Malicious Code
Variants Based on Deep Learning. IEEE Trans Ind Inform 14(7):3187-3196

Dahl GE, Stokes JW, Deng L, Yu D (2013) Large-scale Malware Classification
using Random Projections and Neural Networks. In: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
https://doi.org/10.1109/icassp.2013.6638293

Dai Y, LiH,Qian Y, Lu X (2018) A Malware Classification Method Based on
Memory Dump Grayscale Image. Digit Investig 27:30-37

Das A, Mueller F, Siegel C, Vishnu A (2018) Desh: Deep Learning for System
Health Prediction of Lead Times to Failure in HPC. In: Proceedings of the
27th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC '18. ACM, New York. pp 40-51

David OE, Netanyahu NS (2015) DeepSign: Deep Learning for Automatic
Malware Signature Generation and Classification. In: 2015 International
Joint Conference on Neural Networks (IJCNN). IEEE. https://doi.org/10.
1109/ijcnn.2015.7280815

De La Rosa L, Kilgallon S, Vanderbruggen T, Cavazos J (2018) Efficient
Characterization and Classification of Malware Using Deep Learning. In:
2018 Resilience Week (RWS). IEEE. https://doi.org/10.1109/rweek.2018.
8473556

Du M, Li F (2016) Spell: Streaming Parsing of System Event Logs. In: 2016 IEEE
16th International Conference on Data Mining (ICDM). IEEE. https://doi.
0rg/10.1109/icdm.2016.0103

Du M, Li F, Zheng G, Srikumar V (2017) DeepLog: Anomaly Detection and
Diagnosis from System Logs Through Deep Learning. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS"17. ACM, New York. pp 1285-1298

Faker O, Dogdu E (2019) Intrusion Detection Using Big Data and Deep
Learning Techniques. In: Proceedings of the 2019 ACM Southeast
Conference on ZZZ - ACM SE '19. ACM. pp 86-93. https://doi.org/10.1145/
3299815.3314439

Ghosh AK, Wanken J, Charron F (1998) Detecting Anomalous and Unknown
Intrusions against Programs. In: Proceedings 14th annual computer
security applications conference (Cat. No. 98Ex217). IEEE, Washington, DC.
pp 259-267

Godefroid P, Peleg H, Singh R (2017) Learn&Fuzz: Machine Learning for Input
Fuzzing. In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. https://doi.org/10.1109/ase.2017.
8115618

Google Developers (2016) Embeddings. https://developers.google.com/
machine-learning/crash-course/embeddings/video-lecture

Guo W, Mu D, Xu J, Su P, Wang G, Xing X (2018) Lemna: Explaining deep
learning based security applications. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
364-379. https://doi.org/10.1145/3243734.3243792

Page 31 of 32

Guo W, Mu D, Xing X, Du M, Song D (2019) {DEEPVSAY}: Facilitating Value-set
Analysis with Deep Learning for Postmortem Program Analysis. In: 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association,
Santa Clara, CA. pp 1787-1804. https://www.usenix.org/conference/
usenixsecurity 19/presentation/guo

Heller KA, Svore KM, Keromytis AD, Stolfo SJ (2003) One Class Support Vector
Machines for Detecting Anomalous Windows Registry Accesses. In:
Proceedings of the Workshop on Data Mining for Computer Security. |EEE,
Dallas, TX

Horwitz S (1997) Precise Flow-insensitive May-alias Analysis is NP-hard. ACM
Trans Program Lang Syst 19(1):1-6

Hu W, Liao Y, Vemuri VR (2003) Robust Anomaly Detection using Support
Vector Machines. In: Proceedings of the international conference on
machine learning. Citeseer, Washington, DC. pp 282-289

IDS 2017 Datasets (2019). https://www.unb.ca/cic/datasets/ids-2017.html

Kalash M, Rochan M, Mohammed N, Bruce NDB, Wang Y, Igbal F (2018)
Malware Classification with Deep Convolutional Neural Networks. In: 2018
9th IFIP International Conference on New Technologies, Mobility and
Security (NTMS). pp 1-5. https://doi.org/10.1109/NTMS.2018.8328749

Kiriansky V, Bruening D, Amarasinghe SP, et al. (2002) Secure Execution via
Program Shepherding. In: USENIX Security Symposium, volume 92, page
84. USENIX Association, Monterey, CA

Kolosnjaji B, Eraisha G, Webster G, Zarras A, Eckert C (2017) Empowering
Convolutional Networks for Malware Classification and Analysis. Proc Int Jt
Conf Neural Netw 2017-May:3838-3845

Krizhevsky A, Nair V, Hinton G (2010) CIFAR-10 (Canadian Institute for
Advanced Research). https://www.cs.toronto.edu/~kriz/cifar.html

LeCun'Y, Cortes C (2010) MNIST Handwritten Digit Database. http://yann.
lecun.com/exdb/mnist/

Li J, Zhao B, Zhang C (2018) Fuzzing: A Survey. Cybersecurity 1(1):6

LiX,Hu Z FuY, Chen P, Zhu M, Liu P (2018) ROPNN: Detection of ROP Payloads
Using Deep Neural Networks. arXiv preprint arXiv:1807.11110

McLaughlin N, Martinez Del Rincon J, Kang BJ, Yerima S, Miller P, Sezer S, Safaei
Y, Trickel E, Zhao Z, Doupe A, Ahn GJ (2017) Deep Android Malware
Detection. In: Proceedings of the 7th ACM Conference on Data and
Application Security and Privacy. pp 301-308. https://doi.org/10.1145/
3029806.3029823

Meng W, LiuY, Zhu Y, Zhang S, Pei D, Liu Y, Chen Y, Zhang R, Tao S, Sun P,
Zhou R (2019) Loganomaly: Unsupervised Detection of Sequential and
Quantitative Anomalies in Unstructured Logs. In: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence Organization.
https://doi.org/10.24963/ijcai.2019/658

Michalas A, Murray R (2017) MemTri: A Memory Forensics Triage Tool Using
Bayesian Network and Volatility. In: Proceedings of the 2017 International
Workshop on Managing Insider Security Threats, MIST '17, pages 57-66.
ACM, New York

Millar K, Cheng A, Chew HG, Lim C-C (2018) Deep Learning for Classifying
Malicious Network Traffic. In: Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer. pp 156-161. https://doi.org/10.1007/
978-3-030-04503-6_15

Moustafa N, Slay J (2015) UNSW-NB15: A Comprehensive Data Set for Network
Intrusion Detection Systems (UNSW-NB15 Network Data Set). In: 2015
Military Communications and Information Systems Conference (MilCIS).
IEEE. https://doi.org/10.1109/milcis.2015.7348942

Nguyen MH, Nguyen DL, Nguyen XM, Quan TT (2018) Auto-Detection of
Sophisticated Malware using Lazy-Binding Control Flow Graph and Deep
Learning. Comput Secur 76:128-155

Nix R, Zhang J (2017) Classification of Android Apps and Malware using Deep
Neural Networks. Proc Int Jt Conf Neural Netw 2017-May:1871-1878

NSCAI Intern Report for Congress (2019). https://drive.google.com/file/d/
1530rxnuGEjsUvIxWsFYauslwNeCEkvUb/view

Petrik R, Arik B, Smith JM (2018) Towards Architecture and OS-Independent
Malware Detection via Memory Forensics. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
CCS 18, pages 2267-2269. ACM, New York

Phan AV, Nguyen ML, Bui LT (2017) Convolutional Neural Networks over
Control Flow Graphs for Software defect prediction. In: 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence (ICTAI). IEEE.
pp 45-52. https://doi.org/10.1109/ictai.2017.00019

https://doi.org/10.1109/icst.2012.182
https://doi.org/10.1109/issre.2017.43
https://doi.org/10.1109/spw.2018.00026
https://doi.org/10.1109/spw.2018.00026
https://doi.org/10.1109/spw.2018.00025
https://dl.acm.org/doi/10.5555/3241189.3241199
https://dl.acm.org/doi/10.5555/3241189.3241199
https://doi.org/10.1109/icassp.2013.6638293
https://doi.org/10.1109/ijcnn.2015.7280815
https://doi.org/10.1109/ijcnn.2015.7280815
https://doi.org/10.1109/rweek.2018.8473556
https://doi.org/10.1109/rweek.2018.8473556
https://doi.org/10.1109/icdm.2016.0103
https://doi.org/10.1109/icdm.2016.0103
https://doi.org/10.1145/3299815.3314439
https://doi.org/10.1145/3299815.3314439
https://doi.org/10.1109/ase.2017.8115618
https://doi.org/10.1109/ase.2017.8115618
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://doi.org/10.1145/3243734.3243792
https://www.usenix.org/conference/usenixsecurity19/presentation/guo
https://www.usenix.org/conference/usenixsecurity19/presentation/guo
https://www.unb.ca/cic/datasets/ids-2017.html
https://doi.org/10.1109/NTMS.2018.8328749
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.1007/978-3-030-04503-6_15
https://doi.org/10.1007/978-3-030-04503-6_15
https://doi.org/10.1109/milcis.2015.7348942
https://drive.google.com/file/d/153OrxnuGEjsUvlxWsFYauslwNeCEkvUb/view
https://drive.google.com/file/d/153OrxnuGEjsUvlxWsFYauslwNeCEkvUb/view
https://doi.org/10.1109/ictai.2017.00019

Choi et al. Cybersecurity (2020) 3:15

Rajpal M, Blum W, Singh R (2017) Not All Bytes are Equal: Neural Byte Sieve for
Fuzzing. arXiv preprint arXiv:1711.04596

Rosenberg I, Shabtai A, Rokach L, Elovici Y (2018) Generic Black-box
End-to-End Attack against State of the Art API Call based Malware
Classifiers. In: Research in Attacks, Intrusions, and Defenses. Springer.
pp 490-510. https://doi.org/10.1007/978-3-030-00470-5_23

Salwant J (2015) ROPGadget. https://github.com/JonathanSalwan/ROPgadget

Saxe J, Berlin K (2015) Deep Neural Network based Malware Detection using
Two Dimensional Binary Program Features. In: 2015 10th International
Conference on Malicious and Unwanted Software (MALWARE). IEEE.
https://doi.org/10.1109/malware.2015.7413680

Shacham H, et al. (2007) The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In: ACM conference
on Computer and communications security, pages 552-561. https://doi.
org/10.1145/1315245.1315313

Shi D, Pei K (2019) NEUZZ: Efficient Fuzzing with Neural Program Smoothing.
IEEE Secur Priv

Shin ECR, Song D, Moazzezi R (2015) Recognizing Functions in Binaries with
Neural Networks. In: 24th USENIX Security Symposium (USENIX Security
15). USENIX Association. https://dl.acm.org/doi/10.5555/2831143.2831182

Sommer R, Paxson V (2010) Outside the Closed World: On Using Machine
Learning For Network Intrusion Detection. In: 2010 IEEE Symposium on
Security and Privacy (S&P). IEEE. https://doi.org/10.1109/5p.2010.25

Song W, Yin H, Liu C, Song D (2018) DeepMem: Learning Graph Neural
Network Models for Fast and Robust Memory Forensic Analysis. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS "18. ACM, New York. pp 606-618

Stephens N, Grosen J, Salls C, Dutcher A, Wang R, Corbetta J, Shoshitaishvili Y,
Kruegel C, Vigna G (2016) Driller: Augmenting Fuzzing Through Selective
Symbolic Execution. In: Proceedings 2016 Network and Distributed System
Security Symposium. Internet Society. https://doi.org/10.14722/ndss.2016.
23368

Tan G, Jaeger T (2017) CFG Construction Soundness in Control-Flow Integrity.
In: Proceedings of the 2017 Workshop on Programming Languages and
Analysis for Security - PLAS "17. ACM. https://doi.org/10.1145/3139337.
3139339

Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T, Yagi T (2016) Malware
Detection with Deep Neural Network Using Process Behavior. Proc Int
Comput Softw Appl Conf 2:577-582

Unicorn-The ultimate CPU emulator (2015). https://www.unicorn-engine.org/

Ustebay S, Turgut Z, Aydin MA (2019) Cyber Attack Detection by Using Neural
Network Approaches: Shallow Neural Network, Deep Neural Network and
AutoEncoder. In: Computer Networks. Springer. pp 144-155. https://doi.
0rg/10.1007/978-3-030-21952-9_11

Varenne R, Delorme JM, Plebani E, Pau D, Tomaselli V (2019) Intelligent
Recognition of TCP Intrusions for Embedded Micro-controllers. In:
International Conference on Image Analysis and Processing. Springer.
pp 361-373. https://doi.org/10.1007/978-3-030-30754-7_36

Wang Z, Liu P (2019) GPT Conjecture: Understanding the Trade-offs between
Granularity, Performance and Timeliness in Control-Flow Integrity. eprint
1911.07828, archivePrefix arXiv, primaryClass ¢s.CR, arXiv

Wang Y, Wu Z, Wei Q, Wang Q (2019) NeuFuzz: Efficient Fuzzing with Deep
Neural Network. IEEE Access 7:36340-36352

Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting Large-Scale
System Problems by Mining Console Logs. In: Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles SOSP ‘09. ACM,
New York. pp 117-132

Xu X, Liu C, Feng Q, Yin H, Song L, Song D (2017) Neural Network-Based Graph
Embedding for Cross-Platform Binary Code Similarity Detection. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM. pp 363-376. https://doi.org/10.1145/
3133956.3134018

Xu 'L, Zhang D, Jayasena N, Cavazos J (2018) HADM: Hybrid Analysis for
Detection of Malware 16:702-724

Xu X, Ghaffarinia M, Wang W, Hamlen KW, Lin Z (2019) CONFIRM: Evaluating
Compatibility and Relevance of Control-flow Integrity Protections for
Modern Software. In: 28th USENIX Security Symposium (USENIX Security
19), pages 1805-1821. USENIX Association, Santa Clara

Yagemann C, Sultana S, Chen L, Lee W (2019) Barnum: Detecting Document
Malware via Control Flow Anomalies in Hardware Traces. In: Lecture Notes
in Computer Science. Springer. pp 341-359. https://doi.org/10.1007/978-
3-030-30215-3_17

Page 32 of 32

Yin C, Zhu Y, Fei J, He X (2017) A Deep Learning Approach for Intrusion
Detection using Recurrent Neural Networks. IEEE Access 5:21954-21961

Yuan X, Li C, Li X (2017) DeepDefense: Identifying DDoS Attack via Deep
Learning. In: 2017 IEEE International Conference on Smart Computing
(SMARTCOMP). IEEE. https://doi.org/10.1109/smartcomp.2017.7946998

Yun |, Lee S, Xu M, Jang Y, Kim T (2018) QSYM : A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In: 27th USENIX Security Symposium
(USENIX Security 18), pages 745-761. USENIX Association, Baltimore

Zhang S, Meng W, Bu J, Yang S, Liu Y, Pei D, Xu J, Chen Y, Dong H, Qu X, Song L
(2017) Syslog Processing for Switch Failure Diagnosis and Prediction in
Datacenter Networks. In: 2017 IEEE/ACM 25th International Symposium on
Quality of Service (IWQoS). IEEE. https://doi.org/10.1109/iwqos.2017.
7969130

Zhang J, Chen W, Niu Y (2019) DeepCheck: A Non-intrusive Control-flow
Integrity Checking based on Deep Learning. arXiv preprint
arXiv:1905.01858

Zhang X, XuY, Lin Q, Qiao B, Zhang H, Dang Y, Xie C, Yang X, Cheng Q, Li Z,
Chen J, He X, Yao R, Lou J-G, Chintalapati M, Shen F, Zhang D (2019)
Robust Log-based Anomaly Detection on Unstable Log Data. In:
Proceedings of the 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, pages 807-817. ACM, New York

Zhang Y, Chen X, Guo D, Song M, Teng Y, Wang X (2019) PCCN: Parallel Cross
Convolutional Neural Network for Abnormal Network Traffic Flows
Detection in Multi-Class Imbalanced Network Traffic Flows. IEEE Access
7:119904-119916

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1007/978-3-030-00470-5_23
https://github.com/JonathanSalwan/ROPgadget
https://doi.org/10.1109/malware.2015.7413680
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://dl.acm.org/doi/10.5555/2831143.2831182
https://doi.org/10.1109/sp.2010.25
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1145/3139337.3139339
https://doi.org/10.1145/3139337.3139339
https://www.unicorn-engine.org/
https://doi.org/10.1007/978-3-030-21952-9_11
https://doi.org/10.1007/978-3-030-21952-9_11
https://doi.org/10.1007/978-3-030-30754-7_36
https://doi.org/10.1145/3133956.3134018
https://doi.org/10.1145/3133956.3134018
https://doi.org/10.1007/978-3-030-30215-3_17
https://doi.org/10.1007/978-3-030-30215-3_17
https://doi.org/10.1109/smartcomp.2017.7946998
https://doi.org/10.1109/iwqos.2017.7969130
https://doi.org/10.1109/iwqos.2017.7969130

	Abstract
	Keywords

	Introduction
	A four-phase workflow framework can summarize the existing works in a unified manner
	Definitions of the four phases
	Using the four-phase workflow framework to summarize some representative research works
	Methodology for reviewing the existing works

	A closer look at applications of deep learning in solving security-oriented program analysis challenges
	Introduction
	Key findings from a closer look
	Discussion

	A closer look at applications of deep learning in defending ROP attacks
	Introduction
	Key findings from a closer look
	Discussion

	A closer look at applications of deep learning in achieving CFI
	Introduction
	Key findings from a closer look
	Discussion

	A closer look at applications of deep learning in defending network attacks
	Introduction
	Key findings from a closer look
	Discussion

	A closer look at applications of deep learning in malware classification
	Introduction
	Key findings from a closer look
	Discussion

	A closer look at applications of Deep Learning in system-event-based anomaly detection
	Introduction
	Key findings from a closer look
	Discussion

	A closer look at applications of deep learning in solving memory forensics challenges
	Introduction
	Key findings from a closer look
	Discussion

	A closer look at applications of deep learning in security-oriented fuzzing
	Introduction
	Key findings from a closer look
	Discussion

	Discussion
	What if phase II is skipped?
	Findings on eight security problems
	Findings on different data types
	Findings on various models of NN
	Findings on output of NN models

	Further areas of investigation
	How stable are evaluation results?
	How does security domain knowledge influence the performance of security solutions using deep learning?
	Common challenges
	Availability of trained model and quality of dataset.

	Conclusion
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

