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Abstract

The functional encryption scheme designed using the lattice can realize fine-grained encryption and it can resist
quantum attacks. Unfortunately, the sizes of the keys and ciphertexts in cryptographic applications based on learning
with errors are large, which makes the algorithm inefficient. Therefore, we construct a functional encryption for inner
product predicates scheme by improving the learning with errors scheme of Agrawal et al. [Asiacrypt 2011], and its
security relies on the difficulty assumption of ring learning with errors. Our construction can reduce the sizes of the
keys and ciphertexts compared with the learning with errors scheme.
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Introduction
Traditional public key encryption is “all or nothing” in
accessing data, that is, a user can decrypt successfully
or know nothing about the plaintexts. While the presen-
tation of functional encryption (FE) (Boneh et al. 2011;
O’Neill 2010) breaks through the restriction which is lim-
ited to only one user and has a single decryption result,
and it can realize fine-grained encryption. As an exten-
sion of the traditional public key, the FE is the advanced
cryptographic paradigm.
Two typical examples of FE are attribute-based encryp-

tion (ABE) (Goyal et al. 2006; Wang et al. 2019; Yun et
al. 2018; Zhang and Wu 2017; Zhang et al. 2019) and
predicate encryption (PE) (Attrapadung and Imai 2009;
Agrawal et al. 2016; Boneh andWaters 2006; Blundo et al.
2010; Katz et al. 2008). In the (key-policy) ABE system, the
secret key s is related to a predicate g and each ciphertext
is related to an attribute I. A user who holds the secret key
s is able to decrypt successfully if and only if g(I) = 1. So
does for the PE system. However, there is an obvious dif-
ference between these two encryption systems. Namely,
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the attribute related with each ciphertext is revealed in the
ABE system, while the attribute is hidden in the PE system.
ABE is an application of fuzzy identity-based encryp-

tion (Sahai andWaters 2005). In the ABE system (Agrawal
et al. 2012; Ducas et al. 2014; Libert and Ţiţiu 2019; Yun
et al. 2018; Zhang and Wu 2017; Zhang et al. 2019), data
is encrypted on the basis of individual identity associated
with a series of attributes. Hence, ABE is applicable in
cloud storage to provide authorized data privacy. How-
ever, there are some issues to solve before applying ABE in
practice. For example, when user’s attributes are altered,
it is required for ABE supporting attribute revocation
to change user’s access privilege timely and effectively.
And in 2018, Liu et al. proposed a practical ABE scheme
which can solve the aforementioned issue (Liu et al. 2018).
ABE also has many other practical applications, such as
network privacy (Baden et al. 2009), health record access-
control (Camenisch et al. 2012), verifiable computation
(Parno et al. 2011), forward-secure messaging (Green and
Miers 2015) and so on.
In the PE system, the computation of inner product over

ZN about predicate was proposed by Katz et al. (2008)
where N is a composite number. They also provide a
construction about inner product predicate, called inner
product encryption (IPE). Due to flexibleness and use-
fulness of IPE, a number of researchers have proposed
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schemes about IPE (Agrawal et al. 2011; Abdalla et al.
2020; Abdalla et al. 2015; Chen et al. 2018; Okamoto and
Takashima 2015; Kurosawa and Phong 2017; Li et al. 2018;
Tseng et al. 2020; Wang et al. 2019; Xagawa 2013).
For example, Chen et al. proposed two IPE schemes

achieving both adaptive security and full attribute-hiding
in the prime-order bilinear group (Chen et al. 2018).
In 2018, Kwangsu et al. first proposed a two-input IPE
scheme in composite-order bilinear groups (LEE 2018).
And in 2019, Tomida et al. first constructed a multi-user
and multi-challenge IPE scheme, which is constructible
on a pairing-free group and secure under the matrix
decisional Diffie-Hellman (MDDH) assumption (Tomida
2020). While in a pairing-based IPE system, the algorithm
tends to be inefficient over computation since a lot of pair-
ings (linear to vector lengths) are used during decryption.
Therefore, in 2019, an IPE scheme proposed by Wei et al.
with adaptive security based on the dual system encryp-
tion method requires only six bilinear pairs to decrypt
(Wei and Gao 2019). In 2020, an IPE scheme proposed
by Tseng et al. needs only one pairing computation to
decrypt, which is themost efficient one in terms of the pri-
vate key length and the number of pairings computation
for decryption (Tseng et al. 2020).
As is known to all, compared with the conventional

cryptography (designed based on certain hard problems),
the lattice-based cryptography resists against the quan-
tum attacks. What’s more, a great number of lattice-based
cryptographic schemes are based directly on two average-
case problems, that is the small integer solution (SIS)
problem and LWE problem. These two problems have
been confirmed to support worst-case hardness guaran-
tees in security.
In 2011, Agrawal et al. proposed the first lattice-based

IPE scheme (Agrawal et al. 2011). To optimize the sizes of
the public parameters and the ciphertexts, Xagawa et al.
proposed an improved lattice-based IPE scheme (Xagawa
2013), Li et al. proposed an IPE scheme reducing the
size by a factor of log κ compared with the work of ref-
erence (Xagawa 2013), where κ is a security parameter
(Li et al. 2018), and Wang et al. proposed the first com-
pact IPE scheme from learning with errors (LWE) in 2018
(Wang et al. 2018). Those schemes are constructed on the
basis of the first lattice-based IPE scheme (Agrawal et al.
2011). In addition, Abdalla et al. constructed amulti-input
FE scheme combining the access control functionality of
ABE with the possibility of performing linear operations
on the encrypted data and built identity-based functional
encryption for inner products from lattices (Abdalla et al.
2020).
However, nearly all of IPE schemes based upon these

two problems will suffer from either large key size or small
message space. Although some researchers may improve
the sizes of keys and ciphertexts of IPE schemes based on

LWE problem to certain extent, they are still too large to
be practical.
To acquire more efficiency in computation and con-

fidence in security, we will provide a construction by
adapting the scheme based on LWE (Agrawal et al. 2011)
to ring-LWE (R-LWE). The R-LWE is an algebraic vari-
ant of LWE. In most practical applications, the n samples
from the LWE distribution can be replaced by a sample
from the R-LWE distribution, which will reduce the size
of the public key by a factor of n. As is mentioned above,
our construction is of theoretical value and practical sig-
nificance.

Our construction
Our approach. We construct a functional encryption
scheme for inner product predicates based on the R-
LWE problem building on the ideas and techniques of the
scheme in the reference (Agrawal et al. 2011). In our con-
struction, we generate the secret key associated with the
predicate g using of ring-SIS (R-SIS) and the ciphertext c
associated with the attribute I using of R-LWE. The user
then can decrypt successfully using the secret key when
g(I) = 1.
It is necessary to simulate an experiment during the

process of security proof, which allows the simulator to
answer secret key queries whenever g(I) = 0. Similarly,
just as the thought of proof in the reference (Agrawal
et al. 2011), we make use of m + 1 R-LWE instances
to generate a ciphertext that either decrypts correctly or
decrypts to a random element in the message spaceM in
this simulation. Therefore, we only need to use a weaker
security model (“weak attribute hiding”) in the security
proof.
Our contribution. In this paper, we present an IPE

scheme that is secure under the R-LWE hardness assump-
tion. The scheme is at its core based on the LWE scheme
of (Agrawal et al. 2011). Our scheme satisfies the slightly
weaker notion considered by Okamoto and Takashima
(2009) and Lewko et al. (2010).
Outline.The rest of the paper is organized as follows. In

“Predicate encryption”, we review some theoretical knowl-
edge about predicate encryption. In “Preliminaries”, we set
some notations and provide some preliminaries about lat-
tice theory and much more. In “A functional encryption
scheme for inner product predicates”, we describe con-
cretely an IPE scheme and prove the correctness and secu-
rity of the scheme. In “Conclusion” sections, we present
some concluding remarks.

Predicate encryption
Let κ be the security parameter for the rest of this paper
and let n = n(κ) be a power of two. We first recall
the following definition of predicate encryption proposed
by Katz et al. (2008), which is based on the definition
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of searchable encryption proposed by Boneh and Waters
(2006).

Definition 1 ((Katz et al. 2008), Definition 2.1). A (key-
policy) predicate encryption scheme for the class of
predicates G over the set of attributes � consists
of four probabilistic polynomial-time (PPT) algorithms
Setup, KeyGen, Enc, Dec such that:

• Setup: takes as input a security parameter κ and
outputs a set of public parameters PP and a master
secret key MK.

• KeyGen: takes as input the master secret key MK and
a (description of a) predicate g ∈ G. It outputs a key
skg .

• Enc: takes as input the public parameters PP, an
attribute I ∈ �, and a messagem in some associated
message spaceM. It returns a ciphertext C.

• Dec: takes as input a secret key skg and a ciphertext
C. It outputs either a messagem or the distinguished
symbol ⊥.

For correctness, we require that for all κ , (PP, MK) are
generated by Setup (1κ), for all g ∈ G, any key skg is gener-
ated by KeyGen(sk, g) and for all I ∈ �, any ciphertext C
is generated by Enc(PP, I,m):

• If g(I) = 1, then Dec
(
skg ,C

) = m.
• If g(I) = 0, then Dec

(
skg ,C

) =⊥ with all but
negligible probability.

In this paper, the correctness proof satisfies a different
correctness condition which is just as the correctness idea
of the LWE scheme (Agrawal et al. 2011): when C ←
Enc(PP, I,m) with probability 1, then m ← Dec(skg ,C) if
g(I) = 1, however, if g(I) = 0 then Dec

(
skg ,C

)
is com-

putationally indistinguishable from a uniformly random
element in the message spaceM.
Next, we introduce several notations of security about

the PE scheme. The basic concept of security is called
payload hiding. It will guarantee that the ciphertext
about the attribute I can hide all information asso-
ciated with the message, unless one holds a secret
key giving the explicit capability to decrypt. Namely,
the adversary A holding the keys skg1 , · · · , skgl can-
not get any information about the message encrypted
by any attribute I when satisfying g1(I) = · · · =
gl(I) = 0. A stronger notation of security is
called attribute hiding. It requires that the cipher-
text can hide all information associated with attribute
I except the part which is leaked explicitly by one
who holds the key. Namely, A who possesses the
keys only can obtain the values of g1(I), · · · , gl(I). The
last is an intermediate notion, weak attribute hid-
ing, in which attribute hiding is guaranteed to hold

only if A holds the keys that cannot recover the
message. And our scheme satisfies the weak attribute
hiding.

Definition 2 ((Katz et al. 2008), Definition 2.1). A pred-
icate encryption scheme with respect to G and � is
attribute hiding if for any PPT adversaries A, the advan-
tage of A in the following experiment is negligible in the
security parameter κ :

1. A (1κ) outputs I0, I1 ∈ �.
2. Setup(1κ ) is run to generate PP and MK, and the

adversary is given PP.
3. Amay adaptively request keys for any predicates

g1, · · · , gl ∈ G subject to the restriction that
gi(I0) = gi(I1) for all i. In response,A is given the
corresponding keys skgi ← KeyGen

(
MK, gi

)
.

4. A outputs two equal-length messagesm0 andm1. If
there is an i for which gi(I0) = gi (I1) = 1, then it is
required thatm0 = m1. A random bit b is chosen,
andA is given the ciphertext C ← Enc(PP, Ib,mb).

5. Amay continue to request keys for additional
predicates, subject to the same restrictions as before.

6. A outputs a bit b′, and succeeds if b′ = b. The
advantage ofA is the absolute value of the difference
between its success probability and 1/2.

By the above definition, we observe that there exists two
relations among the three notations of security. One is that
any scheme which is weak attribute hiding is payload hid-
ing, the other is that any scheme which is attribute hiding
is weak attribute hiding.

Preliminaries
Notation
If no special note, we use lowercase letters (e.g. a) to
express polynomials, bold lowercase letters (e.g. a) to
express vectors, bold capital letters (e.g. A) to express
matrices, the arrows

(
e.g. �v) to represent predicates or

attributes. If A is an m × n matrix and A′ is an m′ × n
matrix, then

[
A‖A′] represents an

(
m + m′) × n matrix

formed by concatenating A and A′. If a is a length m vec-
tor and a′ is a lengthm′ vector, then we denote

[
a|a′] as a

length
(
m + m′) vector which is concatenated by a and a′.

Suppose to denote S as a basis of lattice �, then S̃ denotes
the Gram-Schmidt orthogonalization of S.
For n = n(κ) ∈ Z

+, we let Rq = Zq[ x] /f (x) be the
integer polynomial ring modulo both f (x) and q, where q
is a prime and f ∈ Z[ x] is a monic degree n polynomial.
In particular, considering the security of our construc-
tion, we fix f (x) = xn + 1 in the rest of paper. For
a ∈ Rq, we denote ‖a‖ as the Euclidean norm of a vector
a = a0 + a1x + · · · + an−1xn−1 for ai ∈ Zq. We define
rotf (a) ∈ Rn×n

q as thematrix whose i-th row is given by the
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coefficients of the polynomial xi−1a mod f (x), for any
1 ≤ i ≤ n. Note that for a, b ∈ Rq, a · b = (

1, x, · · · , xn−1) ·
rotf (a)T ·(b0, b1, · · · , bn−1)

T = (a0, a1, · · · , an−1)·rotf (b)·(
1, x, · · · , xn−1)T . The specific form of rotf is given below:

rotf (a) =

⎡

⎢
⎢
⎢
⎣

a0 a1 · · · an−1
−an−1 a0 · · · an−2

...
...

. . .
...

−a1 −a2 · · · a0

⎤

⎥
⎥
⎥
⎦
.

Let A = rotf (a), then the set �⊥(A) ={
b ∈ Z

n|b · A = 0 mod q
}

is an n-dimensional lattice.
We extend that notation to the vector a ∈ Rm

q by applying
rotf component-wise. Namely, for a = (a1, a2, · · · , am),
rotf (a) = [

rotf (a1)‖rotf (a2)‖ · · · ‖rotf (am)
]
.

We define the norm of a matrix R ∈ {−1, 1}m×m to be
sup {‖Rx‖ : ‖x‖ = 1}. Then we recall the following result.

Lemma 1 ((Agrawal et al. 2011), Lemma A.1). Let R be
anm×mmatrix chosen at random from {−1, 1}m×m. Then
Pr
{
‖R‖ > 12

√
2m
}

< e−2m.

Lattice
Now we remind some definitions and properties of lattice
that we need to use in our system.
The m-dimension lattice � is generated by the set{ n∑

i=1
xibi | xi ∈ Z

}
for n linearly independent vectors

b1, · · · , bn ∈ R
m. That is to say, the lattice � is a full-rank

discrete additive subgroup of Rm. For a ∈ Rm
q ,u ∈ Rq, we

define the ring setting as follows:

�q(a) : =
{
e ∈ Rm

q : ∃s ∈ Rq, s.t. aTs = eT mod q
}
,

�⊥
q (a) : =

{
e ∈ Rm

q : aeT = 0 mod q
}
,

�u
q(a) : =

{
e ∈ Rm

q : aeT = u mod q
}
.

Next, we introduce the R-SIS (Lyubashevsky and Mic-
ciancio 2006; Peikert and Rosen 2006) and R-LWE
(Lyubashevsky et al. 2010; Stehlé et al. 2009) as the
ring-based variant of SIS and LWE respectively. They
have been proven to be at least as hard as the short-
est independent vectors problem (SIVP) and the deci-
sion version of the shortest vector problem (GapSVP).
And there exists a reduction from the search version
of R-LWE to the average-case decision R-LWE. If the
probability that for all the polynomial-time adversaries A
who solve the decision R-LWE is negligibly away from
1
2 , then we call that the decision R-LWE problem is
infeasible.

Definition 3 (Lyubashevsky andMicciancio 2006; Peikert
and Rosen 2006, R-SISq,m,β) Given a = (a1, · · · , am) ∈

Rm
q a vector of m uniformly random polynomials, find a

non-zero vector of small polynomial e = (e1, · · · , em) ∈
Rm
q such that aeT =

m∑

i=1
aiei = 0 mod q, and 0 ≤ ‖e‖ ≤ β .

Definition 4 (Lyubashevsky et al. 2010; Stehlé et al.
2009, R-LWE Distribution) For s ∈ Rq (the “secret”) and
an error distribution χ over Rq, a sample from the R-LWE
distribution As,χ over Rm

q × Rm
q is generated by choosing

a ← Rm
q uniformly at random, choosing η ← χm, and

outputting (a, s · a + η).

Definition 5 (Lyubashevsky et al. 2010; Stehlé et al.
2009, R-LWE Search). For s ∈ Rq and an error distribution
χ over Rq. The search of version of the R-LWE is defined as
follows: given access to arbitrarily many independent sam-
ples from As,χ for some arbitrary s ∈ Rq and η ∈ χm,
find s.

Gaussian distribution. We denote ρσ (a) as the stan-
dard n-dimensional Gaussian distribution with center 0
and the variance σ > 0, that is ρσ (a) = exp

(−π‖a‖2/σ 2).
For any σ ∈ R

+ and a lattice � as the subset of Zn,
we define the lattice Gaussian distribution as D�,σ (a) =
ρσ (a)
ρσ (�)

where ρσ (�) = ∑

a′∈�

ρσ

(
a′). What’s more, we

denote the error distribution 
 as the discrete Gaussian
distribution DZn,σ for some σ > 0. A sample from

 is a polynomial in Rq. We will use the following
property referring to the Gaussian distribution in our
construction.

Lemma 2 ((Micciancio and Regev 2004), Theorem 4.4)
Let n ∈ N. For any real number σ = ω

(√
log n

)
, we have

Pra←DZn ,σ

[‖a‖ > σ
√
n
] ≤ 2−n+1.

Sample algorithm
Now we introduce the following properties about sample
algorithms. The TrapGen algorithm (Lai et al. 2015) is to
generate the trapdoor for the R-LWE scheme. The algo-
rithm SampleLeft (Agrawal et al. 2010; Cash et al. 2010)
is used in our system, while the algorithm SampleRight
(Agrawal et al. 2010) is used in the simulation during the
proof of security.
We first recall the definition of the trapdoor in the ring

setting.

Definition 6 ((Lai et al. 2015), Definition 2) Let a ∈
Rm
q , g ∈ Rk

q. A g-trapdoor for a is a collection of lin-
early independent vectors of ring elements Ta ∈ R(m−k)×k

q

such that a
[
Ta
Ik

]
= hg for some non-zero ring element

h ∈ Rq. h is referred as the tag or label of the trapdoor. The
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quality of the trapdoor is measured by its largest singu-
lar value s1 (Ta), which is computed as the largest singular
value of the matrix obtained by interpretingTa as amatrix
in Z

(m−k)n×kn
q .

Theorem 1 ((Lai et al. 2015)) Let q,m, n, k be positive
integers with q ≥ 2 and m > k. There exists a PPT algo-
rithm TrapGen outputs a pair

(
a ∈ Rm

q ,Ta ∈ R(m−k)×k
q

)

such that a is statistically indistinguishable with the uni-
form distribution in Rm

q and the quality of the trapdoor Ta
is measured by its largest singular value s1 (Ta).

By applying the definition and properties of rotf to inter-
pret a polynomial vector into a type of integer matrix,
there are two efficient trapdoor delegation algorithms
given as follows referring to the literature (Agrawal et al.
2010).

Algorithm 1 SampleLeft(a, b,Ta,u, σ) (Agrawal et al.
2010)
Input: a vector a ∈ Rm

q with the trapdoor Ta, a vector b ∈
Rm
q ,

a polynomial u ∈ Rq and a Gaussian parameter σ .
Output: a vector e ∈ R2m

q satisfying a′eT = u, where a′ =
[a|b].

Lemma 3 ((Agrawal et al. 2010), Theorem 3) Let q >

2,m > 2 log q and σ > ‖T̃a‖ω
(√

log(2nm)
)
, then the

algorithm SampleLeft(a, b,Ta,u, σ ) outputs a vector e ∈
R2m
q distributed statistically close to D�u

q(a′),σ where a′ =
[a|b].

Algorithm 2 SampleRight(a, b,R,Tb,u, σ ) (Agrawal et
al. 2010)
Input: a vector a ∈ Rm

q , a polynomial u ∈ Rq, a vector
b ∈ Rm

q
with the trapdoor Tb, a matrix R ∈ {−1, 1}m×m and a
Gaussian parameter σ .
Output: a vector e ∈ R2m

q satisfying a′eT = u where
a′ =[a|aR + b].

Lemma 4 ((Agrawal et al. 2010), Theorem 4) Let q >

2,m > 1 and σ > ‖T̃b‖ · √
nm · ω(log nm), then the

algorithm SampleRight(a, b,R,Tb,u, σ ) outputs a vector
e ∈ R2m

q distributed statistically close to D�u
q(a′),σ where

a′ =[a|aR + b].

Universal hash function
For a hash function h, define δh(x, y) = 1 if h(x) =
h(y) and δh(x, y) = 0 otherwise for x, y ∈ X, x �= y.
That is, δh(x, y) = 1 if and only if the hashed values
of x and y collide. For a finite set H of hash functions,
define δH(x, y) = ∑

h∈H
δh(x, y). Hence, δH(x, y) counts the

number of hash functions in H under which x and y
collide.

Definition 7 ((Roşca et al. 2017)) A (finite) family H
of hash functions h : X → Y is universal if
Prh←U(H)

[
δh(x, y) = 1

] = 1/|Y |, for all x, y ∈ X, x �= y.

We will use the following variant of the leftover
hash lemma which is necessary when presenting our
construction.

Lemma 5 ((Roşca et al. 2017), Lemma 2.1) Let X,Y ,Z
denote finite sets and let H be a universal family of hash
functions h : X → Y . Let f : X → Z be arbitrary. Then
for any random variable T taking values in X, we have:
Δ((h, h(T), f (T)), (h,U(Y ), f (T))) ≤ 1

2
√

γ (T) · |Y | · |Z|,
where γ (T) = maxT ′∈X Pr

[
T = T ′].

Lemma 6 Let q be a prime. For R ∈ {−1, 1}m×m and a ∈
Rq, define �a : {−1, 1}m×m → Rm

q by the rule: �a(R) =
aR. Then {�a} is universal.

Proof We set a = (a1, · · · , am) and R = (
rij
)
where ai ∈

Rq and rij ∈ {−1, 1} for i, j ∈ {1, · · ·m}. Then

�a(R) = (a1, · · · , am)

⎛

⎜⎜
⎜
⎝

r11 r12 · · · r1m
r21 r22 · · · r2m
...

...
. . .

...
rm1 rm2 · · · rmm

⎞

⎟⎟
⎟
⎠

=
( m∑

i=1
airi1, · · · ,

m∑

i=1
airim

)

.

Obviously, we need to prove Pr
{( m∑

i=1
airi1, · · · ,

m∑

i=1
airim

)
= (y1, · · · , ym)

}
= 1

qnm for all

(y1, · · · , ym) ∈ Rm
q . Without loss of generality, we assume

that
m∑

i=1
airi1 �= 0. Then by linearity, it suffices to prove

that for all y1 ∈ Rq, Pr
{ m∑

i=1
airi1 = y1

}
= 1

qn .

We write ai as ai0 + ai1x + · · · + ai,n−1xn−1 and y1 as
y10 + y11x + · · · + y1,n−1xn−1 for aij, y1j ∈ Zq. Then we
calculate the following formula,
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m∑

i=1
airi1 =a1r11 + a2r21 + · · · + amrm1

=r11
n−1∑

j=0
a1jxj + · · · + rm1

n−1∑

j=0
amjxj

=
m∑

i=1
ri1ai0 + · · · +

m∑

i=1
ri1ai,n−1xn−1.

Since y1j ∈ Zq, it follows that Pr
{ m∑

i=1
ri1aij = y1j

}
= 1

q ,

which is equivalent to Pr
{ m∑

i=1
airi1 = y1

}
= 1

qn . Hence the

hash function family is universal.

A functional encryption scheme for inner product
predicates
In this section, we first describe a new predicate encryp-
tion scheme and prove its correctness and security. We
define our construction consisting of four PPT algorithms:
setup, key generation, encryption and decryption algo-
rithms. In this scheme, each secret key is associated with
a predicate vector �v ∈ Z

l
q (for some fixed l ≥ 2) and each

ciphertext is associated with an attribute vector �w ∈ Z
l
q.

The decryption algorithm involves a condition that will
decrypt successfully if and only if

〈�v, �w〉 = 0 (mod q).
Therefore, we define the predicate associated with the
secret key as g�v(�w) = 1 when satisfying

〈�v, �w〉 = 0
(mod q), and g�v

(�w) = 0 otherwise.

The construction
Let κ ∈ Z

+ and l be the length of predicate and attribute
vectors. Let m = m(κ , l), q = q(κ , l) and t = ⌊

log q
⌋
be

positive integers. Let α and σ be positive real Gaussian
parameters. Let the error distribution χ = ⌊

Dαq
⌉
denote

the discrete Gaussian distribution where each coefficient
is sampled from Dαq and then rounded to nearest integer.
The plaintext space is {0, 1}n, while the ciphertext space is
Rm
q ×

{
Rm
q

}l(t+1) × Rq.
FE.Setup

(
1κ , 1l

)
: Input a security parameter κ ∈ Z

+
and a parameter l, do the following:

1. Using the algorithm TrapGen to obtain a vector
a ∈ Rm

q together with the trapdoor Ta.
2. Choose l · (1 + t) uniformly random vectors

ai,γ ∈ Rm
q for i = 1, · · · , l and γ = 0, · · · , t.

3. Select a uniformly random polynomial u ∈ Rq.

Output the public parameters PP=
(
a,
{
ai,γ

}
i∈{1,··· ,l},

γ ∈ {0, · · · , t},u
)
and MK=Ta.

FE.KeyGen(PP, MK, �v): Input the public parameters PP,
the master secret key MK and a predicate vector �v ∈ Z

l
q,

do:

1. For i = 1, · · · , l, let v̂i be the integer in [ 0, q − 1],
which equals to vi mod q. Let the binary

decomposition of v̂i as v̂i =
t∑

γ=0
vi,γ · 2γ , where vi,γ

are in {0, 1}.
2. Define the vectors a′

�v :=
l∑

i=1

t∑

γ=0
vi,γ ai,γ and

a�v :=
[
a|a′

�v
]
.

3. Using the master secret key MK=Ta to compute e ←
SampleLeft

(
a,a′

�v,Ta,u, σ
)
. Then e is a vector in

R2m
q satisfying a�veT = u.

Output the secret key sk�v = e.
FE.Enc(PP, �w, m): Input the public parameters PP, an

attribute vector �w ∈ Z
l
q and a messagem, do:

1. Choose a uniformly random vector b ∈ Rm
q .

2. Choose a uniformly polynomial s ∈ Rq.
3. Select a noise vector η from χm and a noise term η

from χ .
4. Compute c0 = s · a + 2η.
5. For i = 1, · · · , l and γ = 0, · · · , t, do the following:

(a) Pick a random matrix Ri,γ ∈ {−1, 1}m×m.
(b) Calculate ci,γ ← s · (ai,γ + 2γwib

)+ 2η · Ri,γ .

6. Compute c′ = us + m + 2η.

Output the ciphertext CT=
(
c0,
{
ci,γ
}
i∈{1,··· ,l},γ∈{0,··· ,t} , c

′
)
.

FE.Dec(PP, CT, sk�v): Input the public parameters PP, a
secret key sk�v and a ciphertext CT, do:

1. Compute c�v =
l∑

i=1

t∑

γ=0
vi,γ ci,γ .

2. Let c = [c0|c�v].
Outputm′ ← (

c′ − e · cT mod f mod q
)

mod 2.
Next, we need to show that our construction is correct

for certain parameter choices and secure under R-LWE
hardness assumption. The specific proof is as follows.

The correctness
Lemma 7 Let the parameters q and α satisfy q >

16 (n + λnm) and α < 8
(√

n + λ
√
nm
)−1 where λ =(

1 + 12
√
2ml(t + 1)

)
σ
√
nm. When the FE.KeyGen algo-

rithm returns the secret key, FE.Enc encrypts with
probability 1 for all the plaintext m. If

〈�v, �w〉 =
0, then we have FE.Dec = m with overwhelming
probability.

Proof According to the decryption algorithm, we have,
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c�v =
l∑

i=1

t∑

γ=0
vi,γ ci,γ

=
l∑

i=1

t∑

γ=0
vi,γ

[
s · (ai,γ + 2γwib) + 2η · Ri,γ

]

=
l∑

i=1

t∑

γ=0
vi,γ sai,γ +

l∑

i=1

t∑

γ=0
vi,γ 2ηRi,γ , (1)

the last equation holds because of
〈�v, �w〉 = 0.

By the above formula, we obtain,

c = [c0|c�v]

=
⎡

⎣sa |
l∑

i=1

t∑

γ=0
vi,γ sai,γ

⎤

⎦+
⎡

⎣2η |
l∑

i=1

t∑

γ=0
vi,γ 2ηRi,γ

⎤

⎦

= s

⎡

⎣a |
l∑

i=1

t∑

γ=0
vi,γ ai,γ

⎤

⎦+
⎡

⎣2η |
l∑

i=1

t∑

γ=0
vi,γ 2ηRi,γ

⎤

⎦

= sa�v +
⎡

⎣2η |
l∑

i=1

t∑

γ=0
vi,γ 2ηRi,γ

⎤

⎦ .

According to Lemma 3, we can get a�veT = u and e·cT =

us + 2e ·
[

η |
l∑

i=1

t∑

γ=0
vi,γ η · Ri,γ

]T
.

Finally, according to the third step of the decryption
algorithm, we computem′ as

us + m + 2η − us − 2e

⎡

⎣η |
l∑

i=1

t∑

γ=0
vi,γ ηRi,γ

⎤

⎦

T

=m + 2

⎛

⎜
⎝η − e

⎡

⎣η |
l∑

i=1

t∑

γ=0
vi,γ ηRi,γ

⎤

⎦

T
⎞

⎟
⎠ . (2)

If

∥
∥
∥
∥
∥
∥
m + 2

⎛

⎝η − e
[

η |
l∑

i=1

t∑

γ=0
vi,γ ηRi,γ

]T⎞

⎠

∥
∥
∥
∥
∥
∥

< q/2,

centered reduction modulo q of c′ − e · cT given us

m+2

⎛

⎝η − e
[

η |
l∑

i=1

t∑

γ=0
vi,γ ηRi,γ

]T⎞

⎠ (over the integers).

Hence, in order to obtain m = m′, it suffices to certify∥∥
∥
∥
∥
∥
m + 2

⎛

⎝η − e
[

η |
l∑

i=1

t∑

γ=0
vi,γ η · Ri,γ

]T⎞

⎠

∥∥
∥
∥
∥
∥

< q/2.

We set e ∈ R2m
q as [e1|e2] for ei ∈ Rm

q . Then Eq. (2) can
be rewritten as

m + 2η −
⎡

⎣e1 · 2ηT + e2 ·
⎛

⎝
l∑

i=1

t∑

γ=0
vi,γRT

i,γ · 2ηT
⎞

⎠

⎤

⎦

=m + 2η −
⎡

⎣

⎛

⎝e1 + e2 ·
l∑

i=1

t∑

γ=0
vi,γRT

i,γ

⎞

⎠ · 2ηT
⎤

⎦ .

For η ∈ χ and η ∈ χm, we have ‖η‖ < αq
√
n + n

and ‖η‖ < αq
√
nm + nm with overwhelming

probability because of the Gaussian tail bound.
According to Lemma 1 and the triangle inequality,∥
∥
∥
∥
∥

(

e1 + e2 ·
l∑

i=1

t∑

γ=0
vi,γRT

i,γ

)

· 2ηT
∥
∥
∥
∥
∥

is not exceeding

2λ
(
αq

√
nm+nm

)
whereλ =

(
1+12

√
2ml(t + 1)

)
σ
√
nm.

Thus we have

∥
∥∥
∥
∥
m + 2η −

[(

e1 + e2 ·
l∑

i=1

t∑

γ=0
vi,γRT

i,γ

)

· 2ηT
]∥∥
∥∥
∥

<
√
n + 2

(
αq

√
n + n

) + 2λ
(
αq

√
nm + nm

)
<

q/2 with overwhelming probability when α and q satisfy
the condition in the lemma.

If
〈�v, �w〉 �= 0,

l∑

i=1

t∑

γ=0
2γ vi,γwis · b in the formula (1) is

unequal to 0. Since s ∈ Rq and b ∈ Rm
q are randomly cho-

sen in the formula (1), the decryption algorithm cannot
decrypt the message correctly.

The security
To demonstrate the security, we introduce several secu-
rity games to prove that the security of the scheme can be
reduced to the hardness of R-LWE problem.

Theorem 2 Suppose that m ≥ 3n log q. Then the above
predicate encryption scheme is weakly attribute hiding
under the R-LWE hardness assumption.

Before introducing these security games, we define a
simulation construction as following: alternative setup,
key generation, and encryption algorithms.
Sim.Setup

(
1κ , 1l, �w∗): Input a security parameter κ , a

parameter l and an attribute vector �w∗ ∈ Z
l
q, do the

following:

1. Select a uniformly random vector a ∈ Rm
q and

polynomial u ∈ Rq.
2. Using the algorithm TrapGen to obtain a vector

b∗ ∈ Rm
q with a trapdoor Tb∗ .

3. For i = 1, · · · , l and γ = 0, · · · , t, choose random
matrices R∗

i,γ ∈ {−1, 1}m×m and set
ai,γ ← aR∗

i,γ − 2γw∗
i b

∗.
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Output the public parameters and the master secret key
PP=

(
a,
{
ai,γ

}
i∈{1,··· ,l},γ∈{0,··· ,t} ,u

)
, MK=

(
�w∗,

{
R∗
i,γ

}

i∈{1,··· ,l},γ∈{0,··· ,t}, b∗,Tb∗
)
.

Sim.KeyGen(PP, MK, �v): Input the public parameters PP,
master secret key MK and a vector �v ∈ Z

l
q, do:

1. If
〈�v, �w〉 = 0, output ⊥.

2. For i = 1, · · · , l, let v̂i be the integer in [ 0, q − 1]
equals to vi mod q. Write the binary decomposition

of v̂i as v̂i =
t∑

γ=0
vi,γ · 2γ , where vi,γ are in {0, 1}.

3. Define the vectors a′
�v :=

l∑

i=1

t∑

γ=0
vi,γ ai,γ and

a�v :=
[
a|a′

�v
]
. Then it follows that

a�v =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

a | a
⎛

⎝
l∑

i=1

t∑

γ=0
vi,γ R∗

i,γ

⎞

⎠−
⎛

⎝
l∑

i=1

t∑

γ=0
2γ vi,γ w∗

i

⎞

⎠

︸ ︷︷ ︸
〈�v,�w∗〉

b∗

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

.

4. Generate e ←SampleRight
(

a,− 〈�v, �w∗〉 b∗,
l∑

i=1
t∑

γ=0
vi,γR∗

i,γ ,Tb∗ ,u, σ
)

.

Output the secret key sk�v = e.
Sim.Enc(PP, �w, m, MK): The algorithm is the same as the
FE.Enc algorithm, except:

1. In Step 1, the random vector b∗ ∈ MK is used to
replace the vector b.

2. In Step 5(a), the random matrices R∗
i,γ ∈ MK are

used to replace the matrices Ri,γ for i = 1, · · · , l and
γ = 0, · · · , t.

In order to prove Theorem 2, we consider a secu-
rity game against the adversary A that plays the weak
attribute hiding game as follows. The challenger C sam-
ples a bit b ← {0, 1} at the beginning of the game. A
outputs two attribute vectors �wb for b ∈ {0, 1}. C then
runs the FE.Setup and FE.KeyGen algorithms to answer
A’s queries, and it also generates the ciphertext using the
FE.Enc

(�wb,mb
)
and sends it to A. Finally A returns a bit

b′. Our construction is secure if there is no probability
polynomial time adversary A to output b′ = b with more
probability that is non-negligibly away from 1

2 .
Next, we define a series of games which are statisti-

cally or computationally indistinguishable with the above
security game against A. What’s more, according to the
simulation scheme, A can only request keys when the
predicate vector �v satisfies 〈�v, �wb

〉 �= 0 for b ∈ {0, 1}.

• Game 1: The challenger C runs the FE.Setup and
FE.KeyGen to answer the adversaryA’s key queries.
Then C computes the challenge ciphertext from
FE.Enc

(�w0,m0
)
and sends it toA.

• Game 2: The challenger C runs the
Sim.Setup

(�w∗ = �w0
)
and Sim.KeyGen to answer

A’s key queries. Then C computes the challenge
ciphertext from Sim.Enc

(�w0,m0
)
and sends it toA.

• Game 3: The challenger C runs the
Sim.Setup

(�w∗ = �w0
)
and Sim.KeyGen to answer

A’s key queries. Then C chooses uniformly the
challenge ciphertext from the ciphertext space and
sends it toA.

• Game 4: The challenger C runs the
Sim.Setup

(�w∗ = �w1
)
and Sim.KeyGen to answer

A’s key queries. Then C chooses uniformly the
challenge ciphertext from the ciphertext space and
sends it toA.

• Game 5: The challenger C runs the
Sim.Setup

(�w∗ = �w1
)
and Sim.KeyGen to answer

A’s key queries. Then C computes the challenge
ciphertext from Sim.Enc

(�w1,m1
)
and sends it toA.

• Game 6: The challenger C runs the FE.Setup and
FE.KeyGen to answerA’s key queries. Then C
computes the challenge ciphertext from
FE.Enc

(�w1,m1
)
and sends it toA.

Lemma 8 Assume that m ≥ 3n log q, then it follows that,

(a) At the view of the adversaryA, the Game 1 is
statistically indistinguishable with the Game 2.

(b) At the view of the adversaryA, the Game 5 is
statistically indistinguishable with the Game 6.

Proof We prove (a) only because we can prove (b) with
the same way.
Firstly, we demonstrate the public parameters and the

ciphertext output by the FE.Setup and FE.Enc algorithms
are statistically indistinguishable from those output by the
Sim.Setup and Sim.Enc algorithms. That is, for every i =
1, · · · , l and γ = 0, · · · , t, we need to argue the distribu-
tions of the set Ei,γ in Game 1 and Game 2 are statistically
indistinguishable, where Ei,γ as the set

(
a,
{
ai,γ , ci,γ

})
.

In Game 1, the vector a is selected from the TrapGen.
Then for all but a 2−�(κ) fraction of all a follow from
uniformly distribution over Rm

q . While in Game 2, the
vector a is sampled uniformly from Rm

q . Therefore, the dis-
tributions of a are statistically indistinguishable in both
games.
Next, we discuss the joint distributions

{
ai,γ , ci,γ

}
in

the both games. In Game 1, the vector ai,γ is sam-
pled uniformly from the Rm

q and ci,γ is equal to s ·(
ai,γ + 2γw∗

i b
∗)+2η ·R∗

i,γ , where R∗
i,γ is random indepen-

dently in {−1, 1}m×m for every i = 1, · · · l, γ = 0, · · · , t



Fang et al. Cybersecurity            (2020) 3:22 Page 9 of 11

and b∗ is uniformly selected from Rm
q . In Game 2, ai,γ

is calculated as aR∗
i,γ − 2γw∗

i b
∗, where R∗

i,γ is random
independently in {−1, 1}m×m for every i = 1, · · · l, γ =
0, · · · , t, and b∗ generated by TrapGen is statistically
close to uniformly random in Rm

q , ci,γ is equal to s ·(
aR∗

i,γ − 2γw∗
i b

∗ + 2γw∗
i b

∗) + 2η · R∗
i,γ where aR∗

i,γ −
2γw∗

i b
∗ is equal to the public parameter ai,γ .

Furthermore, according to Lemma 6, the function
�a

(
R∗
i,γ

)
= aR∗

i,γ is universal. Then it follows from
that the statistical distance of the following two distribu-

tions is at most 1
2

(
1

2m2 · q2nm
) 1

2 ≤ 1
2q

− 1
2nm by Lemma 5,

namely,
(
a,aR∗

i,γ , 2η · R∗
i,γ

)
≈s

(
a,ai,γ , 2η · R∗

i,γ

)
. Then

for every fixed vector b∗ and �w∗, it follows that(
a,aR∗

i,γ − 2γw∗
i b

∗, 2η · R∗
i,γ

)
≈s
(
a,ai,γ , 2η · R∗

i,γ

)
.

Since the matrix R∗
i,γ is chosen independently for every

i, γ , the joint distributions of these quantities for all i, γ
are also statistically close:

(
a,
{
aR∗

i,γ − 2γw∗
i b∗, 2η · R∗

i,γ

}

i,γ

)
≈s

(
a,
{
ai,γ , 2η · R∗

i,γ

}

i,γ

)
.

(3)

Next, we need to add two quantities which are statis-
tically indistinguishable to the both sides of the formula
(3). Then we can get the following by the conclusion that
applying any function to two statistically indistinguishable
ensembles produces statistically indistinguishable ensem-
bles, that is, for every i and γ :

⎛

⎜⎜
⎝a,

⎧
⎪⎪⎨

⎪⎪⎩
aR∗

i,γ − 2γw∗
i b

∗, s
(
aR∗

i,γ − 2γw∗
i b

∗ + 2γw∗
i b

∗)

︸ ︷︷ ︸
add term

+2ηR∗
i,γ

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠

≈s

⎛

⎜
⎝a,

⎧
⎪⎨

⎪⎩
ai,γ , s

(
ai,γ + 2γw∗

i b
∗)

︸ ︷︷ ︸
add term

+2ηR∗
i,γ

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠ .

By the above formula, the right side of the formula is the
public parameters and the challenge ciphertext in Game 1,
while the left side of the formula is the public parameters
and the challenge ciphertext in Game 2. Hence, the public
parameters and the challenge ciphertexts are statistically
indistinguishable at the both games.
To complete the proof, we show that the secret keys

output by Sim.KeyGen are statistically indistinguishable
from those output by FE.KeyGen when given the pub-
lic parameters and the challenge ciphertexts. In the two
games, the secret key e follows fromGaussian distribution
for Gaussian parameter σ , so the distributions of them
are statistically indistinguishable when σ is sufficiently
large.

Lemma 9 If the decision R-LWE problem is infeasible,
then it follows that:

(a) At the view of the adversaryA, the Game 2 is
computationally indistinguishable with the Game 3.

(b) At the view of the adversaryA, the Game 4 is
computationally indistinguishable with the Game 5.

Proof It suffices to prove (a). Given m + 1 R-LWE
instances

(
aj, yj

)
for j = 0, · · · ,m, in which we define

either yj = s · aj + 2ηj for s is sampled uniformly from Rq
and ηj is sampled from the discrete Gaussian χ , or yj ∈ Rq
is uniformly random. We denote c0 = (y1, · · · , ym).
We consider a variant experiment, in which the chal-

lenger C runs the Sim.Setup
(�w∗ = �w0

)
and let a =

(a1, · · · , am), u = a0. Then C answers the queries of A
using the Sim.KeyGen algorithm. Finally, for i = 1, · · · , l
and γ = 0, · · · , t, C computes c′ = y0 + m, ci,γ = c0R∗

i,γ
where R∗

i,γ ∈ MK and sends
(
c0,
{
ci,γ
}
, c′
)
toA.

In Game 2, we observe that for i = 1, · · · , l and γ =
0, · · · , t, the challenge ciphertext ci,γ using the Sim.Enc as
follows,
ci,γ = s ·

(
aR∗

i,γ − 2γw∗
i b

∗ + 2γw∗
i b

∗) + 2η · R∗
i,γ =

(s · a + 2η)R∗
i,γ .

When yj = s · aj + 2ηj, then ci,γ = c0R∗
i,γ in the vari-

ant experiment is identical to corresponding ciphertext in
Game 2.
On the other hand, when yj is uniformly random in

Rq, then the simulated ciphertext is
(
c0,
{
c0R∗

i,γ

}
, c′
)

for i = 1, · · · , l and γ = 0, · · · , t. By the Lemma 6,
we know that the function �c0 = c0R∗

i,γ is univer-
sal. Hence, by the variant of the leftover hash lemma
(see Lemma 5), the statistical distance between the dis-
tribution of

(
c0,
{
c0R∗

i,γ

}
, c′
)

with the uniform distri-

bution is bounded from 1
2q

− 1
2nm. While in the Game

3, the challenge ciphertext is selected uniformly from
the ciphertext space. Therefore, the ciphertexts in the
variant experiment and the Game 3 are statistically
indistinguishable.
So we draw the conclusion that the statistical distance

in the both games is negligible close under the hardness of
R-LWE problem.

Lemma 10 The Game 3 and the Game 4 are statistically
indistinguishable at the view of the adversaryA.

Proof The only difference between the Game 3 and the
Game 4 is the vector �w∗ which is used to calculate the pub-
lic parameter ai,γ = aR∗

i,γ − 2γw∗
i b

∗, where a and R∗
i,γ

are independent uniformly random samples. The function
�a : R∗

i,γ → aR∗
i,γ is universal according to Lemma 6.

For every i ∈ {1, · · · , l} and γ ∈ {0, · · · , t},
(
a,aR∗

i,γ

)
is
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statistically indistinguishable from (a,U) where U is uni-
formly random. For the value C = 2γw∗

i b
∗ associated

with the fixed b∗ and w∗
i , the distribution of U − C is also

uniformly random.
Therefore, we conclude that for all i = 1, · · · , l and

γ = 0, · · · , t, the distributions of ai,γ in the both games
are statistically indistinguishable.

Proof of Theorem 2. Based on the Lemmas 8, 9 and
10, the Game 1 and Game 6 are statistically indistinguish-
able under the R-LWE hardness assumption. It indicates
that there is no efficient adversary A that can win the
security experiment.

Conclusion
We have constructed a new functional encryption scheme
for inner product predicates from R-LWE problem. In our
construction, firstly, we use setup algorithm to generate
the public parameters and themaster secret key. Secondly,
we compute the secret key associated with the predicate
vector �v based on R-SIS problem using key generation
algorithm. Thirdly, we calculate the ciphertext associated
with the attribute vector �w based on R-LWE problem
using encryption algorithm. Finally, the user then can
decrypt successfully using the secret key when

〈�v, �w〉 = 0.
What’s more, the n samples from the LWE distribution

can be replaced by a sample from the R-LWE distribution,
which will reduce the size of the public key by a factor of
n. Hence, our scheme is more efficiency in computation
than the scheme of the reference (Agrawal et al. 2011).
Some questions still remain. For example, one direc-

tion is to improve the security of our construction
for researchers. Firstly, our scheme is secure under the
R-LWE hardness assumption. While Rosca et al. pro-
posed Middle-Product LWE (MP-LWE) problem as a
variant of the LWE problem and proved a reduction
from polynomial LWE to MP-LWE (Roşca et al. 2017).
Hence, it is a open question to construct functional
encryption schemes based onMP-LWE hardness assump-
tion. Secondly, our scheme is weakly attribute hiding
in security model. Therefore, we can try to construct
a functional encryption scheme that is fully attribute
hiding.
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