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Abstract

Reading text in images automatically has become an attractive research topic in computer vision. Specifically,
end-to-end spotting of scene text has attracted significant research attention, and relatively ideal accuracy has been
achieved on several datasets. However, most of the existing works overlooked the semantic connection between the
scene text instances, and had limitations in situations such as occlusion, blurring, and unseen characters, which result
in some semantic information lost in the text regions. The relevance between texts generally lies in the scene images.
From the perspective of cognitive psychology, humans often combine the nearby easy-to-recognize texts to infer the
unidentifiable text. In this paper, we propose a novel graph-based method for intermediate semantic features
enhancement, called Text Relation Networks. Specifically, we model the co-occurrence relationship of scene texts as a
graph. The nodes in the graph represent the text instances in a scene image, and the corresponding semantic
features are defined as representations of the nodes. The relative positions between text instances are measured as
the weights of edges in the established graph. Then, a convolution operation is performed on the graph to aggregate

the word spotting task.

semantic information and enhance the intermediate features corresponding to text instances. We evaluate the
proposed method through comprehensive experiments on several mainstream benchmarks, and get highly
competitive results. For example, on the SCUT-CTW1500, our method surpasses the previous top works by 2.1% on

Keywords: Scene text spotting, Graph convolutional network, Visual reasoning

Introduction

Automatically spotting text in images has attracted signif-
icant research attention in not only academic communi-
ties, but also industries, owing to its extensive applications
in cybersecurity such as confidentiality checking, public
opinion analysis, and computer forensics. Text spotting
is customarily the first step to obtain the semantic text
in images. In the confidentiality checking and computer
forensics tasks, spotted text can be used as a crucial
foundation for judging the security of files or computer
systems. In public opinion analysis tasks, texts in images
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are crucial to analyze the themes and emotional trends of
community activities, which provide valuable references
for maintaining public safety.

Previously, scene text spotting can be further decom-
posed as text detection and text recognition. Among
them, text detection aims to localize text instances (words
or text lines) in images. Then text recognition crops text
regions from images and then decodes image patches
into textual content. The aforementioned procedure is
straightforward and simple, but it overlooks the synergy
between sub-tasks and can be suffering from sub-optimal.
Furthermore, handling detection and recognition sepa-
rately gives rise to computational redundancy in feature
extraction.

Fortunately, end-to-end text spotting models (Liu et al.
2018; Liu et al. 2019a; Feng et al. 2019; Qiao et al. 2020;
Lyu et al. 2018) have been available to address the above
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drawbacks, by handling detection and recognition with
an end-to-end trainable neural network. An end-to-end
text spotting framework can be roughly divided into three
parts: shared feature backbone, detector, and recognizer.
The detector and recognizer are jointly trained, hence the
whole model can handle both tasks in a single inference
step. Nevertheless, the diversity and imperfection of scene
texts lead to those spotting remains challenging. On one
hand, the diversity of scene texts comes from changes in
shape or style, such as varying orientations and curving.
In recent years, various works on end-to-end text spotting
of arbitrary shaped text (Liu et al. 2019a; Feng et al. 2019;
Qiao et al. 2020; Lyu et al. 2018) have achieved relatively
ideal accuracy on several established datasets (Ch'ng and
Chan 2017; Liu et al. 2019b). On the other hand, most of
the existing works did not consider the imperfection of
the scene text and had limitations in situations that cause
loss of semantic information in scene text regions, such
as blurring, occlusion, and unseen characters. Therefore,
handling imperfect text remains an open problem in scene
text spotting.

Intuitively, The relevance between texts generally lies
in the scene images. As shown in Fig. 1, “COFFEE”
and “CAFE’, “FITNESS” and “CENTER’, “HARBOR” and
“WHARF’, etc., these relevant words appear in the same
scene. From the perspective of cognitive psychology, when
human beings encounter texts that cannot be recognized,
they often combine the nearby easy-to-recognize texts to
infer the unidentifiable text. Inspired by the above intu-
ition, our work aims to model the co-occurrence of scene
texts, to aggregate semantic information from neighbour
regions of text instances, and to enhance the intermedi-
ate semantic features of the recognition branch for better
recognition performance.

In this paper, we propose a novel graph-based method
for intermediate semantic features enhancement in end-
to-end text spotting, called Text Relation Networks (TRN).
We model the co-occurrence relationship of scene texts
as a graph. The nodes in the graph represent the text
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instances in a scene image. The relative spatial positions
between text instances and the high-order semantic fea-
tures corresponding to the text instances are defined as
the weights of edges and the representations of nodes
in the graph structure, respectively. Then, a convolution
operation is performed on the graph to aggregate seman-
tic information and enhance the intermediate seman-
tic features. TRN substantially improves the recognition
accuracy on the end-to-end task, without a significant
increase in the time complexity. Comprehensive exper-
iments on three mainstream benchmarks show highly
competitive results. Specially, on the SCUT-CTW1500,
our method surpasses the previous top methods by 2.1%
on the word spotting task. In addition, the method can
be plugged into most of the existing text spotting frame-
work without any need for additional labeled data. We also
apply our method to a concrete security appraisal task,
sensitive keywords checking, and evaluate the effective-
ness of our method in the text-rich parade scenario and
text-poor cover page scenario.

In summary, the main contributions of this paper are as
follows:

e We propose a novel graph-based intermediate
semantic features enhancement method for scene
text spotting, called Text Relation Networks. The
method substantially improves the performance on
the end-to-end task, while increasing negligible time
complexity.

e We plug the TRN into a simple end-to-end text
spotting model. The model achieves competitive
results on several mainstream benchmarks.

e To the best of our knowledge, this is the first work
that handles scene text spotting, by modeling the
co-occurrence relationship between text instances
and enhancing intermediate semantic features with a
graph-based model.

The rest parts of this paper are organized as follows: The
related works are reviewed in “Related works” section. For

Fig. 1 Examples of real scene text images from Total-Text
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the methodology, We pose an overview of the proposed
framework and describe in detail the main components
of the proposed method in “Method” section, i.e. text
detection branch, text relation networks, and text recogni-
tion branch. The experiments are presented and analyzed
in “Experiments” section. Finally, the conclusion and the
future work are envisaged in “Conclusion” section.

Related works

In recent years, research on scene text has received
extensive attention from the research community. In this
section, we will briefly review existing work on scene text
spotting, graph convolutional neural networks, and visual
reasoning.

Scene text spotting

Initially, works such as (Liao et al. 2017) and (Liao et al.
2018) split the text spotting process into two separate
stages: text detection and text recognition. They firstly
crop text regions from the scene image consulting the
results of the detector, then input the patches into the
recognizer for recognition.

Recently, in (Liu et al. 2018; Qin et al. 2019; Wang et
al. 2020; Lyu et al. 2018; Xing et al. 2019), end-to-end
methods which localize and recognize text in a unified
model have been proposed. In (Liu et al. 2018), the detec-
tor outputs rotated rectangles and then uses a CTC-based
recognizer, though it can not handle the curved texts (Shi
et al. 2016). Aiming at spotting the arbitrary-shaped text,
(Qin et al. 2019; Wang et al. 2020; Lyu et al. 2018; Xing
et al. 2019) are proposed. In (Qin et al. 2019), the text
instances are detected by the detector based on (He et
al. 2017) in mask format, recognized by a Long short-
term memory (LSTM) decoder with attention (Luong et
al. 2015). In Wang et al. (2020), the detector localizes a set
of points on the boundary of each text instance and rec-
ognizes texts based on (Shi et al. 2018). (Lyu et al. 2018;
Xing et al. 2019) tackle text detection and recognition
via instance segmentation, but need extra character-level
annotations for training, and hence with a high computa-
tional cost. Among them, (Liu et al. 2018; Qin et al. 2019;
Wang et al. 2020) follow the same paradigm: text region
features are extracted based on results from the detector,
and are input into the subsequent recognizer.

The above methods focus on handling the diversity of
scene text, such as rotating and curving. However, these
works impractically assume the perfection of the scene
text and perform poorly in situations with the loss of
semantic information, such as blurring and occlusion.

Graph convolutional neural networks

Graph Convolutional Neural Networks (GCNs) are the
generalization of convolutional neural networks (CNNs)
to graphs. Advances in this direction are generally
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categorized as spectral and spatial approaches. Specially,
Spectral approaches define the convolution operation
in the Fourier domain, then perform convolutions in
the spectral domain as multiplications in the Euclidean
domain (Kipf and Welling 2016; Defferrard et al. 2016).
Spatial approaches define the convolutions on the graph,
performing patch operation on spatially close neigh-
bours (Bronstein et al. 2017; Monti et al. 2017). For
instance, (Monti et al. 2017) proposes a general for-
mulation of spatial approaches MoNet. It uses a mix-
ture of Gaussian as the patch operator. (Velickovi¢
et al. 2017) proposes graph attention network (GAT),
incorporating the attention mechanism into the signal
propagation step.

The aforementioned works represent the nodes in
a graph as 1-dimensional vectors, rather than 3-
dimensional feature maps. For this reason, the methods
cannot directly handle 3-dimensional feature maps, which
are used in mainstream computer vision tasks frequently.
Moreover, it will lead to extensive cost of the amount
of calculation, if we simply flatten 3-dimensional feature
maps into 1-dimensional feature vectors.

Visual reasoning

Visual reasoning aims to gather the spatial and seman-
tic information in images, and performs reasoning for the
results of specific tasks. Semantic connection between
instances is important information for visual reasoning,
which is difficult to be represented accurately in Euclidean
space, though being natural with a graph. Obviously,
GCNs are feasible for extracting features from graphs
effectively.

The examples of using GCN in visual reasoning can be
found in many computer vision tasks, such as visual ques-
tion answering (VQA), object detection, and interaction
detection. For VAQ, (Teney et al. 2017) proposes to pro-
duce a graphical representation of an image conditioned
on a question, and performs convolution operation based
on MoNet to get the feature for answer classification. For
object detection, (Xu et al. 2019) models the proposals in
the Faster R-CNN (Ren et al. 2015) as nodes in a graph
and enhances the feature for bounding box regression
and classification by fusing semantic features of regions
of interest (Rols). For interaction detection, GCN can be
used for message passing between humans and objects
(Qi et al. 2018). According to the above works, GCNs are
excellent aggregators of information on the graph struc-
tures which can effectively leverage the semantic and
spatial relevance of instances.

Specifically, in Teney et al. (2017); Xu et al. (2019), the
detectors are able to perform better bounding box regres-
sion and classification, utilizing contexts aggregated from
neighbouring proposals. However, the number of propos-
als is fixed in a two-stage detector, therefore the methods



Jiang et al. Cybersecurity (2021) 4:7

cannot adapt to the dynamic change in the number of
nodes.

Method

In this section, we propose the framework of our text spot-
ting model in detail. The framework consists of four parts:
shared backbone, text detection branch, text relation net-
works (TRN), and recognition branch.

Architecture
As illustrated in Fig. 2, the overall architecture of the
proposed text spotting model can be described as follows:

e We apply the ResNet-50 (He et al. 2016) with feature
pyramid networks (FPN) (Lin et al. 2017) as the
shared backbone.

e The text detection branch is based on Mask R-CNN,
which predicts the text bounding boxes and the
corresponding text instance segmentation masks.

® The text relation networks (TRN), learn a
region-to-region undirected graph for detected text
instances, aggregate visual features and semantic
features in the recognition branch, and output the
enhanced semantic features.

¢ In the text recognition branch, Rol features from the
shared backbone are encoded into semantic features
by the encoder, and the decoder decodes the
enhanced features from TRN into text sequences.

Text detection branch

In the text detection branch, we follow the standard Mask
R-CNN (He et al. 2017) implementation. Firstly, a region
proposal network (RPN) is used to predict proposals of
text instances. Secondly, the text proposals are then fed
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into three prediction heads: a classification head to dis-
tinguish whether the region is text instance or not, a
regression head of bounding boxes to predict coordinates
of bounding boxes, and a mask prediction head to predict
segmentation masks corresponding to text instance.

Following the recommendation in He et al. (2017), we
use hyper-parameters of anchors in the RPN as follow-
ing: five scales (32, 64, 128, 256, 512) corresponding to five
stages in FPN (Py, P3, Py, P5, P), and three aspect ratios
(0.5,1.0,2.0) in each stage. In the classification head and
regression head, 7 x 7 Rol features are fed in, Aiming
at archiving better performance in mask prediction, Rol
Align is adopted to extract Rol features, and to preserve
more accurate location information. In the mask predic-
tion head, 14 x 14 Rol features are input, and the output
size is 28 x 28. Non-maximum suppression (NMS) is
adopted to remove highly overlapping proposals with an
intersection-over-union (IoU) threshold set to 0.7, then
2000 proposals are fed into the following prediction heads.
We also adopt NMS to the predicted bounding boxes in
the inference stage, the top 1000 boxes are sent to the
mask prediction head.

Text relation networks

Aiming at improving the recognition performance of
scene text by aggregating information from neighbour text
instances and enhancing the corresponding intermediate
semantic feature, we propose a graph-based semantic fea-
tures enhancement method, called Text Relation Networks
(TRN).

The co-occurrence relationship of scene texts is mod-
eled as an undirected graph. The undirected graph is
formulated as G = {N, ¢}, where A is the set of nodes
corresponding to text instances in the image, and ¢;; €
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¢ are the edges encoding the co-occurrence relationship
between two text instances.

As shown in Fig. 3, the TRN consists of three parts:
merge layer (MergeLayer), spatially adaptive graph learner
(SAGL), and graph feature pyramid network (GFPN). In
order to learn the connections between text instances not
only at the visual level but also at the semantic level,
the sub-sampled visual features and the semantic features
are concatenated and input into a 3 x 3 convolutional
layer called “MergeLayer”. Then the merged features are
obtained as the input for the following parts. The SAGL
can learn a sparse adjacency matrix from the merged fea-
tures. In the Graph Feature Pyramid Network (GFPN), the
merged features corresponding to the graph produced by
the SAGL, are aggregated and fused from their neighbors
using a graph CNN approach designed for 3-dimensional
feature maps (named “2D-GCN”). And the output fea-
tures from two 2D-GCN layers are merged in a pyramid
style, like (Lin et al. 2017). Subsequently, the output fea-
tures from GFPN are fed into a decoder of the recognition
branch.

Spatially adaptive graph learner

Following the aforementioned formulation of a graph, The

adjacency matrix ¢ € R"*"™ needs to be defined, where

ny is the number of text regions produced by the detection

branch, then the node neighbourhood can be identified.
At first, the merged features with the size of

(ny, ¢, H, W) are input into a 3 x 3 convolutional layer
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and a fully-connected layer, where the output sizes are
(1, ce, H, W) and (n,, D,), respectively, ¢, = HEBW.

At this point, the merged features are encoded into
embedding feature vectors f, € RPe. Then the visual
embedding feature vectors are input into two fully-
connected layers of size Dj,. And the vectors are concate-
nated to an embedding feature matrix F, € R”*Ph, Thus,

the adjacency matrix ¢ can be defined as following:

(1)

Nevertheless, not all text instances are highly corre-
lated with the others, and the redundant edges will lead
to greater computation cost. Thus, in the SAGL, a sparse
neighbourhood system for each node is needed. For each
row of the adjacency matrix, we only keep the Nignpour
elements with the highest response value. The process can
be formulated as: Neighbour; = TopNeighpour(€:). SAGL
keeps only Nyeighpour neighbours with the strongest con-
nection for each node and determines the edges of the
graph G.

&‘:FeFE, Si,jZfel fé.

Graph feature pyramid network

With the sparse undirected graph given by SAGL, the
representations of nodes and the patch operations in the
graph are defined. In the GFPN, in order to aggregate
sufficient efficacious semantic information from neigh-
bouring text regions, firstly, the merged semantic features
F, € RuxemxHxW are subsampled by a 3 x 3 convo-
lutional layer and a 2 x 2 max-pooling layer, and the
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representations Fg € R7*%t xF of nodes N are then
obtained.

Inspired by Monti et al. (2017); Teney et al. (2017); Xu
et al. (2019), we introduce a graph CNN approach named
“2D-GCN’; which performs directly in the graph domain
and heavily relies on the spatial relationships. Moreover,
we use a pairwise pseudo-coordinate function u(i,j) to
capture pairwise spatial relationships. For each node i,
u(i,j) will return the corresponding coordinate of node j.
u(i,j) is defined as the following polar function: u(i,j) =
(d, 0), where d and 0 are the distance and the angle of two
bounding box centers ([ x;, y:], [ %}, y;])

Inspired by Monti et al. (2017), K Gaussian kernels with
convolutional layers are applied as the patch operations in
the learned graph, which can be formulated as:

1
wi(u(i, j)) =eXP<—2(u(iJ) — ) "B Wi, ) —Mk)> )

o= Y wiwl)fe, 3)
jeNeighbour;
fi(i) = Conv2D(f* (i), (4)

where wi(u(i,))) is the k-th Gaussian kernel, px and Xg
are learnable mean and covariance, ffgg (i) is aggregated
feature of one kernel, and Conv2D() is a 3 x 3 convolu-
tional layer of which input and output channel size are cg
and %%, respectively.

Then we concatenate f; (i) into f! € R%> %% and input
the features into a 3 x 3 convolutional layer to merge the
output features from kernels. As shown in Fig. 3, following
two 2D-GCN layers, we resize and concatenate the pro-
duced features in a pyramid style, as in Lin et al. (2017), so
that the GFPN can effectively aggregate and fuse seman-
tic information from neighbours not only in the graph
domain but also in the spatial domain.

Text recognition branch

The text recognition branch encodes Rol features and
decodes the enhanced features from TRN into text
sequences. We use a Gate Recurrent Unit (GRU)
model (Cho et al. 2014) with Bahdanau-style atten-
tion (Luong et al. 2015) as the decoder. The parameters are
shown in Table 1, where “GRU with Attention” stands for
attentional GRU decoder, and N, represents the size of
the decoded charset. We set the size of decoded charset in
our experiments to 97, which corresponds to digits (0-9),
English characters (a-z/A-Z), one category representing
all other symbols (Chinese characters and special sym-
bols), and an end-of-sequence symbol. We also adopt the
Rol Masking (Qin et al. 2019) to enhanced semantic fea-
tures, and flatten the features to F e R™>*(HxW)x256
Then the attention model translates F into a text symbol
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Table 1 The architecture of the recognition branch

Part Type Parameters(kernel Out channels
size, stride,
padding)

Encoder conv_gn_relu x 5 [3,1,1] 256

Encoder max-pool x 1 [2,2,0] 256

Encoder conv_gn_relu x 1 [3,1,1] 256

TRN SAGL + GFPN 3,1,1] 256

Decoder  GRU with Attention [3,1,1] 256

Decoder  fully-connected Nchar

sequence ¥y = (¥1,...,y1), where T is the length of the
label sequence. At the ¢ step, the prediction distribution
over possible labels is formulated as the following:

POty - 5 ¥i—1,F) = Softmax(W,g: + b,), (5)

where Wo and b, are learnable parameters, and g; is GRU
output at time step ¢. At each time step, GRU takes the
output y;_1, hidden state s;_; of previous time step ¢t — 1
and context ¢;. One time step of GRU is calculated accord-
ing to the following: (g:,s:) = GRU (¥t—1,8t—1,Ct)- ¢t is
a weighted sum of the flattened features F, allowing the
decoder focusing on features critical at the current time
step. ¢; is calculated according to following:

n
Ct = Zat,iFh (6)
i=1
exp(es
;= p(et,) )

Z;’:l exp(es;)

e = W, tanh(Wys;—1 + VE; + b), (8)

where W,, Wi, V, and b are learnable parameters.
The loss function of the text recognition branch can be
formulated as:

L
1
Lyecog = T E log p(y¢ly1, .. .5 ye-1,F). )
t=1

Combined with detection loss, the full multi-task loss
function is formulated as:

L = Leetect + *Lrecogs (10)

Lietect = Lrpn + aLyepn + IBLmaslo (11)

where the detection loss L. is the same as the origi-
nal Mask R-CNN paper (He et al. 2017). Hyper-parameter
A, o, and B control the trade-off between the losses. In
addition, A, o, and B are set to 1 in our experiments.

Experiments
In order to evaluate the effectiveness of our proposed
method on arbitrary-shaped text spotting, we conduct
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extensive experiments on three popular scene text
benchmark datasets: a straight text dataset ICDAR
2015, and two curved text datasets Total text and
SCUT-CTW1500. In this section, first, the datasets used
for training and testing, and the experiment settings are
described. Next, our method is evaluated on the three
benchmarks and compared with other state-of-the-art
methods. Then, we further analyze the performance of
our method by performing ablation studies and visualiza-
tion. Finally, The proposed method is applied to sensitive
keywords checking of images, and evaluated in multiple
scenarios.

Datasets

SynthText

SynthText dataset (Gupta et al. 2016) is a synthetic
dataset with around 800000 images. The texts in this
dataset are multi-oriented. And the text instances are
annotated with rotated bounding boxes in word-level and
character-level, as well as transcriptions.

ICDAR 2015

ICDAR 2015 dataset (Karatzas et al. 2015) focuses on
detection and recognition of multi-oriented scene text
in natural images. There are 1000 images for training
and 500 for testing in the dataset, which are annotated
with quadrangles and corresponding transcriptions only
at word-level.

Total-Text

Total-Text dataset (Ch'ng and Chan 2017) is a crucial
arbitrarily-shaped scene text benchmark, which contains
horizontal, multi-oriented, and curved text in the images.
There are 1255 training images and 300 test images in the
Total-Text. The images are annotated with polygons
and corresponding transcriptions at the word level. Most
of the images in the Total - Text contain a large amount
of regular text (horizontal text or multi-oriented text) and
at least one curved text.

SCUT-CTW1500
SCUT-CTW1500 dataset (Liu et al. 2019b) is a challeng-
ing dataset for detection and recognition of curved text
which consisting of 1000 training images and 500 test
images. The text instances in SCUT-CTW1500 are labeled
by polygons with 14 vertices and corresponding tran-
scriptions. The dataset contains both Latin and non-Latin
(such as Chinese characters) characters. Moreover, the
images are annotated at text-line level, and also include
some document-like text, so that several small texts may
be stacked together and hard to be detected accurately.
Aiming at selecting a suitable dataset to learn rele-
vance between scene texts, we counted the distribution of
the number of text instances contained in ICDAR 2015,
Total-Text, and SCUT-CTW1500, ignoring the “DO
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NOT CARE” text instances. Compared to Total-Text
and SCUT-CTW1500, as shown in Fig. 4, there are a
large number of images with few valid text instances
in ICDAR 2015. Therefore, it is more appropriate to
explore the semantic connection between text instances
on Total-Text and SCUT-CTW1500.

Experiment settings

The shared backbone is pre-trained on the ImageNet
dataset (Deng et al. 2009). We adopt a multi-step strategy
to the training stage, which includes two steps: firstly, the
model is pre-trained on SynthText dataset, then, scene
images from the real world are adopted to fine-tune the
network.

During the training phase, the batch size is set to 3 for all
experiments. In the text detection branch, the batch size
of RPN, Fast R-CNN (classification head and regression
head share the same input features) and mask prediction
are 512, 256, and 64, respectively. To train the detection
branch, TRN, and the recognition branch jointly, the batch
sizes of the three modules are set to be equivalent. In the
SAGL, we set the dimension of embedding vectors D, to
1024, following linear layers in size of 512 and N = 4
neighbours of each node are retained. In the GFPN, we
set hidden state channels of nodes cg to 128, and we use
two graph convolution layers with the same hidden state
channels for reasoning in the graph. In the pre-training
stage, the shorter side of all input images is resized to
800, keeping the aspect ratio. In the fine-tuning stage, data
augmentation is applied. First, shorter sides of images are
resized to three sizes (600, 800, 1000) randomly. Next, we
adopt random cropping, making sure that no text is cut.
The training images are collected from ICDAR 2013,
ICDAR 2015, Total-Text, and SCUT-CTW1500.

Our model is optimized with the SGD with weight decay
of 0.0001 and momentum of 0.9. During pre-training, we
train our model for 600k iterations, with an initial learn-
ing rate of 0.004, and decay learning rate to 0.0004 and
0.00004 at the 200k and 400k iteration, respectively. In the
fine-tuning stage, the initial learning rate is set to 0.0004
and then is decreased to a tenth at the 100k and 200k
iteration. The fine-tuning process is finished at the 300k
iteration. We implement our method using Pytorch and
run all experiments with 3 NVIDIA 2080 Ti GPUs. The
model is trained parallel and evaluated on a single GPU,
and the training process takes about 6 days to finish.

Experimental results on straight text

To validate the superior performance of our method on
the oriented straight scene text, we conduct experiments
on ICDAR 2015. During the testing phase, we scale the
shorter sides of the images to 1000. In the detection task,
a predicted bounding box is taken as a true positive only
if the IoU with the closest ground-truth is larger than 0.5.
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Fig. 4 The numbers of text instances contained in the images in the three datasets

In the end-to-end task, the prediction is considered as a
true positive only if the detection matched and predicted
transcription is identical to the corresponding ground-
truth. For a fair comparison, images of MLT2017 are not
used for training, following settings in Lyu et al. (2018).

Table 2 Resultson ICDAR 2015
Method

Detection End-to-End

P R F S w G
EAST(Zhou et al. 2017) 833 783 80.7 - - -

TextBoxes++(Liao et 87.2 76.7 81.7 733 65.9 519
al.2018)

He et al.(He et al. 87.0 86.0 870 820 77.0 630
2018)
TextNet(Sun et al. 89.4 854 874 78.7 74.9 60.5
2018)

FOTS(Liu et al. 2018) 910 852 88.0 80.1 759 608

Mask TextSpotter(Lyu 91.6 81.0 86.0 79.3 73.0 624
etal.2018)

det-baseline 933 752 833 - - -
e2e-baseline 94.2 76.7 84.6 75.6 69.6 61.0
model with TRN 95.2 761 846 787 742 67.5

The entries in boldface mean that the best performances for different
measurements are obtained by compared works

As shown in Table 2, the proposed models get competitive
performance. “S’, “W’ and “G” stands for recognition
with strong, weak, and generic lexicon respectively. Prac-
tically, on the ICDAR 2015 benchmark, our method
outperforms previous methods in terms of the detection
precision and F-measure of end-to-end recognition with
general lexicon by 3.6% and 4.5%, respectively.

Experimental results on curved text

Our proposed method focuses on arbitrary-shaped
scene text, so we evaluate the proposed method on
two curved scene text benchmarks: Total-Text and
SCUT-CTW1500. During the testing phase, we scale the
shorter sides of the images to 1000, and assess the perfor-
mance of our model in three tasks: detection, end-to-end
recognition, and word spotting.

The performance on Total-Text is given in Table 3.
“None” means recognition without any lexicon, and
“Full” lexicon contains all words in the test set. Our
method achieves comparable performance on both detec-
tion and end-to-end recognition. Specifically, our method
surpasses the previous works (Lyu et al. 2018; Feng et
al. 2019) by 3.8% and 13.2% in the precision of detection
and F-measure of end-to-end recognition with none lex-
icon respectively. For the SCUT-CTW1500 dataset, the
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Table 3 Results on Total-Text
Method

Detection End-to-End
P R F Full

None

TotalText baseline (Ch'ng 40.0 33.0
and Chan 2017)

Textboxes (Liao et al. 2017) 62.1 455 525 489 36.3

Mask TextSpotter (Lyu et al. 87.0 80.2 834 718 529
2018)

36.0 - -

TextDragon (Feng et al. 85.6 757 80.3 748 488
2019)

det-baseline 885 83.2 85.7 - -
e2e-baseline 90.1 84.3 87.1 71.6 57.8

model with TRN 90.8 831 86.7 748 62.0

The entries in boldface mean that the best performances for different
measurements are obtained by compared works

performance is reported in Table 4. Our model achieves
state-of-the-art performance on the word spotting task.

Concluded from the results, the improvement over
other methods gives credit to the following points: 1)
Compared with previous works, benefiting from enhanc-
ing intermediate semantic features of the recognition
branch with TRN, our model is able to capture the seman-
tic correlation between text instance and its neighbours,
and aggregate semantic features from related neighbours,
then achieve better performance. 2) Compared with seg-
mentation based methods (Lyu et al. 2018), the attention-
based decoder in our recognition branch can capture
the relationship between characters of a text instance
and global semantic information, which can significantly
promote performance on the recognition task. However,
the segmentation based methods predict the characters
separately, ignoring the relationship between them. 3)
The performance on the detection task can be improved
implicitly, due to better performance in the recognition
branch and shared backbone.

Ablation study

To confirm the effectiveness of our end-to-end frame-
work and TRN, we conduct several ablation experiments.
Based on the analysis of datasets in “Datasets” section,
we perform the experiments with the Total-Text test
set in this section, which is one of the most important

Table 4 Results on CTW1500. * represents the results are from
official end-to-end leaderboard

Method Wordspotting-Hmean
TextPerceptron*(Qiao et al. 2020) 570
ABCNet*(Liu et al. 2019a) 573
e2e-baseline 57.5

model with TRN 59.4
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Table 5 Ablation study for time consumption and space
consumption of TRN

Method Delta-params FPS
e2e-baseline - 7.2(0.0)
model with TRN +4.5M 6.8(-0.4)

arbitrarily-shaped dataset, and has moderate difficulty in
above mentioned three real-world datasets. The results
are shown in Tables 3, 5, and 6, and the details are
discussed as follows.

Ablation study on the end-to-end manner

To confirm the influence of the recognition branch on the
detection task, we build a detection baseline model named
“det-baseline” In the “det-baseline’, we remove
the recognition branch and the TRN from our original
model, and train the model only on the detection task. As
shown in Table 3, our text spotting model outperforms the
“det-baseline” by 1.0% F-measure and 2.3% precision
on text detection. The result shows that, in virtue of jointly
optimizing and shared backbone, the end-to-end manner
is able to improve performance on the detection task.

Ablation study on the TRN

To evaluate the effectiveness of the proposed TRN,
we train an end-to-end baseline model named
“e2e-baseline”. In the “e2e-baseline’, we remove
the TRN module from our text spotting model, and train
the model with the same setting. Qualitative examples are
shown in Fig. 5, where the results from “e2e-baseline”
are placed at the top, and the results from the model with
TRN are put at the bottom. Moreover, we also consider
the runtime per image and the size of the parameters
of our models. The results in Tables 2, 3 and 5 show
that TRN is able to significantly improve the end-to-end
results, while exerting only 5.6% time complexity and
4.5M space consumption. We conduct experiments to
confirm the hyper-parameter setting, as shown in Table 6,
the size of neighbourhood Njignpour = 4 is the opti-
mal setting on the Total-Text, “F-measure” means
F-measure scores of end-to-end recognition with full
lexicon on Total-Text with different size of neigh-
bourhood. Practically, we share the same setting on the
other datasets.

Visualization
In order to evaluate the effectiveness of our method intu-
itively, in this section, we visualize the results from our

Table 6 Ablation study for size of neighborhoods on Total-Text
Neighbour size 1 2 3 4 5 6
7160 7358 7436  74.81 74.67

F-measure 74.71

The entries in boldface mean that the best performances for different
measurements are obtained by compared works

The entries in boldface mean that the best performances for different
measurements are obtained by compared works
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Fig. 5 Qualitative recognition results of the “e2e-baseline” and our text spotting model

method on the above-mentioned benchmarks: ICDAR
2015, Total-Text, and SCUT-CTW1500. The results
from the visualization are illustrated in Figs. 6 and 7.

In Fig. 7, the red rectangles and green polygons are
predicted bounding boxes and masks from the detection
branch respectively. The centers of bounding boxes are
plotted and connected by the learned graph edges from
the SAGL in the TRN. The thickness of lines stands for
the strength of the graph edge weights. For the concise-
ness of figures, we choose one detected text instance
from each image randomly, and only visualize graph edges
corresponding to the neighbourhoods of the text instance.

As shown in Figs. 6 and 7, our method can accu-
rately detect and recognize most of the arbitrarily-shaped
scene text in the aforementioned real-world datasets. In

virtue of the TRN, our method could discover seman-
tic connections between text instances and fuse seman-
tic information from neighbours, then achieve better
performance on several complicated text instances. For
example, in Fig. 7, in the bottom right figure, text
instances with similar appearance characteristics (e.g.
font, color) or the same textual content are connected.
Their intermediate semantic features thus are shared and
enhanced. Furthermore, in the other two figures, text
instances with semantic connection or co-occurrence are
connected e.g. “HARBOR” and “FISHING”; “HARBOR”
and “WHARF”; “CRAWFISH” and “SEAFOOD’ ’ and
“CRAWFISH” and “CRAB” The correct learned edges help
the successful graph reasoning thus lead to better spotting
performance.

Fig. 6 Examples of text spotting results of our text spotting model on the three datasets
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Fig. 7 Visualization of results from our text spotting model with edges learned by TRN

Practical applications

In this subsection, we apply our method to a con-
crete security appraisal task, sensitive keywords checking,
which is a critical step for public opinion analysis and
file confidentiality checking. Our method is evaluated
in two different scenarios, text-rich parade scenario and
text-poor cover page scenario.

We collect a series of representative images from the
two scenarios from Internet, and perform the keywords
checking task. Firstly, the text instances in images are
spotted with our model which trained at the proposed
experiment settings. Afterwards, the spotted texts are
then compared with each keyword, and the text with a
string similarity higher than 0.65 with keywords will be
hit, otherwise it will be passed.

As shown in Fig. 8, in the top two figures which are from
the text-rich parade scenario, our method can spot most
of the text instances in images, and hit the keywords with
our string similarity based matching strategy. In the bot-
tom two figures of text-poor cover page, the text instances
are spotted accurately, and the corresponding keywords
are hit subsequently. Our method is effective on keywords
checking, and shows sufficient robustness to different
scenarios, text-rich parade scenario and text-poor cover
page scenario. In practical applications, our method can
prevent the revelation of sensitive or confidential infor-

mation, and contribute to maintaining content security in
cyberspace.

Conclusion

Humans generally combine the nearby easy-to-read texts
to infer the unidentifiable text. In other words, the seman-
tic relevance between scene texts contains vital infor-
mation for reading of imperfect texts, and hence, the
utilization of semantic relevance between text instances is
essential for more accurate text spotting.

In this work, we propose a novel graph-based interme-
diate semantic features enhancement method for scene
text spotting, called Text Relation Networks (TRN). In
the TRN, the co-occurrence relationship of scene texts
is modeled as a sparse undirected graph. Subsequently,
the intermediate features corresponding to text instances
are enhanced by performing convolution operation on
the constructed graph. TRN is able to easily plugged into
existing end-to-end text spotting frameworks. Our sim-
ple text spotting model with TRN achieves highly com-
petitive results on the end-to-end task, compared with
popular methods with more compact structures. In the
future, we would like to explore the relevance between
text instances at a deeper semantic level, and the detec-
tion branch can also be predigested in a single-stage

style.
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147

3

Source: Source: http://zjrb.zjol.com.cn/html/2007 -
http://news.sohu.com/20070319/n248806765_1.shtml 01/29/content_56428.htm

Keywords: WAR IRAQ Keywords: WAR IRAQ

Hit Words: WAR WAR FIRAD-IRAQ-0.67 WAR Hit Words: IRAO-IRAQ-0.75 IRAQ WAR WAR WAR WAR

Passed Words: THE NOW SUP NOW CRIMES LOW Passed Words: THE NOW SUP NOW CRIMES LOW FOR OFIRAO
FOR OFIRAO US IMPEACH IS BUSH OUT OUT STOP US IMPEACH IS BUSH OUT OUT STOP

Source: www.quanjing.com Source: www.16pic.com

Keywords: SECRET CLASSIFIED FILES Keywords: SECRET CLASSIFIED FILES
Hit Words: SECRET Hit Words: FILES CLASSIFIED

Passed Words: NO TOP Passed Words: -

Fig. 8 Keywords checking results from our method in the parade scenario and cover page scenario
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