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Abstract

SOHO (small office/home office) routers provide services for end devices to connect to the Internet, playing an
important role in cyberspace. Unfortunately, security vulnerabilities pervasively exist in these routers, especially in the
web server modules, greatly endangering end users. To discover these vulnerabilities, fuzzing web server modules of
SOHO routers is the most popular solution. However, its effectiveness is limited due to the lack of input specification,
lack of routers’ internal running states, and lack of testing environment recovery mechanisms. Moreover, existing
works for device fuzzing are more likely to detect memory corruption vulnerabilities.

In this paper, we propose a solution ESRFuzzer to address these issues. It is a fully automated fuzzing framework for
testing physical SOHO devices. It continuously and effectively generates test cases by leveraging two input semantic
models, i.e., KEY-VALUE data model and CONF-READ communication model, and automatically recovers the testing
environment with power management. It also coordinates diversified mutation rules with multiple monitoring
mechanisms to trigger multi-type vulnerabilities. With the guidance of the two semantic models, ESRFuzzer can work
in two ways: general mode fuzzing and D-CONF mode fuzzing. General mode fuzzing can discover both issues which
occur in the CONF and READ operation, while D-CONF mode fuzzing focus on the READ-op issues especially missed
by general mode fuzzing.

We ran ESRFuzzer on 10 popular routers across five vendors. In total, it discovered 136 unique issues, 120 of which
have been confirmed as 0-day vulnerabilities we found. As an improvement of SRFuzzer, ESRFuzzer have discovered
35 previous undiscovered READ-op issues that belong to three vulnerability types, and 23 of them have been
confirmed as 0-day vulnerabilities by vendors. The experimental results show that ESRFuzzer outperforms
state-of-the-art solutions in terms of types and number of vulnerabilities found.
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Introduction

More and more end devices, such as laptops, pads, smart-
phones, smart-home devices, and wearable devices, are
used in social life. They are usually connected to the Inter-
net through small office and home office (SOHO) routers.
Asaresult, SOHO routers are in a prominent position that
isolates end users from external Internet (Chen et al. 2016)
and processes end users’ all traffic. The security of SOHO
routers is much more critical than ever.

Unfortunately, the security vulnerabilities pervasively
exist in SOHO routers (CERT 2016), (Khandelwal 2018).
According to a recent report (ACI 2018), 83% of popu-
lar routers contain vulnerable code. These vulnerabilities
are one of the essential exploiting targets by adversaries.
In 2018, Cisco Talos found malware VPNFilter targeted
to Linksys, MikroTik, NETGEAR, and TP-Link network-
ing equipments, which are all SOHO routers, and infected
at least 500,000 devices in at least 54 countries (Largent
and New VPNFilter malware targets at least 500K net-
working devices worldwide 2018). Besides, the leading
exploit acquisition platform Zerodium (2015) has added
the requirement for routers in 2018. Therefore, discover-
ing vulnerabilities in SOHO routers becomes significantly
important.

A typical architecture of the SOHO router is shown
on the right side of Fig. 1. As network equipment, the
SOHO router provides networking service, e.g., routing,
for the end devices connected to it. More importantly, it
also leverages web services for administration and config-
uration, due to its lack of user interface, e.g., keyboard,
video, mouse. These web services are provided by some
widely used protocols, e.g., HyperText Transfer Protocol
(HTTP). We call these protocols as management proto-
cols in this paper.

A typical management protocol is implemented by
embedding a web server (backend) into the original
device. Usually, web servers in different routers are cus-
tomized by device vendors and are more vulnerable.
Recent works (Costin et al. 2016), (Chen et al. 2016),
(Chen et al. 2018) shown that most of the SOHO router
vulnerabilities identified are be associated with web ser-
vices, such as command injection vulnerabilities in PHP
server-side scripts and memory corruption vulnerabilities
in processing mobile application web requests. Therefore,
this paper also focuses on discovering vulnerabilities of
the web server of the SOHO router.

Fuzz testing (i.e., fuzzing) is considered to be a
powerful technique to discover vulnerabilities. How-
ever, there is little research on fuzzing web server of
SOHO router (FWSR), except IoTFuzzer (Chen et al.
2018), an app-based fuzzing framework. With the help
of the program logic of mobile APP that could con-
trol the device, the approach produces meaningful test
cases and triggers device bugs. Although it has partially
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solved the problems of FWSR, in general, FWSR remains
challenging.

Challenge 1: Fuzzing Dedicated System

As an embedded device, the function of the SOHO
router is dedicated and cannot be extended easily. There-
fore, the internal running state cannot be acquired directly
during fuzzing, and its normal running is hard to restore
when the device is made to be stuck during testing. These
make it difficult for FWSR continuously and effectively.
Although fuzzing based on emulation is a promising way
to obtain internal executing information that can guide
fuzzing, it is limited in emulating various routers in full-
system mode. (See “Related work” section)

Challenge 2: Analyzing Input Semantics

The input of web server is accordant with standard pro-
tocols, e.g., HyperText Transfer Protocol (HTTP), how-
ever, their internal data that encode the exchanging infor-
mation are in various formats across routers. Without
investigating the format of the internal data and informa-
tion exchanging process, FWSR is not effective in terms of
code coverage.

Challenge 3: Discovering Multi-type Vulnerabilities

As aforementioned, the web server is almost customized
by vendors from the frontend to the backend. Therefore
not only web vulnerabilities, such as command injec-
tion and cross-site scripting, but also memory corruption,
should be discovered by FWSR. Unfortunately, different
types of vulnerability need to be triggered by different pay-
loads, as well as monitored by different methods. Such
requirements make the design of FWSR more difficult.

Our Approach.

In the preliminary version of this paper, we propose
an automatic fuzzing framework SRFuzzer (Zhang et al.
2019) for FWSR based on physical devices to address
the above challenges. It drives the fuzzing process con-
tinuously by automatic seed generation and automatic
power control. To model the input semantics, it lever-
ages two models to constrain test cases, i.e., the KEY-
VALUE data model (K-V model for short) to describe
the format of internal data of requests, and the CONEF-
READ communication model (C-R model for short) to
describe the temporal sequence of requests. Moreover,
our framework coordinates different mutation rules with
multiple monitoring mechanisms to effectively trigger
four types of vulnerabilities, i.e., vulnerabilities of mem-
ory corruption, command injection, cross-site scripting
(XSS) and information disclosure. To the best of our
knowledge, it is the first whole-process fully-automatic
framework for FWSR. Furthermore, by a little human
effort on collecting web requests and monitoring run-
ning state, it could outperform fully-automatic fuzzing.
We have implemented a prototype of our solution
SRFuzzer and deployed it in a real-world environment. To
evaluate its effectiveness and generality, we ran SRFuzzer
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on 10 popular routers across 5 vendors. Benefit from the
comprehensive new monitoring method, we have got 208
unique exceptional behaviors. Almost half of the excep-
tional behaviors are confirmed as 101 unique issues that
belong to the aforementioned four vulnerability types.
After responsible disclosing vulnerabilities to the corre-
sponding vendors, we obtained total 97 assigned IDs, i.e.,
43 CVE! IDs, 52 PSV? IDs and 2 CNVD? IDs*.

According to the CONF-READ model and previously
discovered issues, the vulnerability triggered in a CONF
operation (CONF-op issue) can always be triggered with
only one request, while the vulnerability triggered in a
READ operation (the READ-op issue for short) needs two
requests. This is because READ-op issues are related to a
proper CONF operation which is related to the same k-v
pairs. For a vulnerable k-v pair, only its mutated value is
configured by a CONF operation, then the vulnerability
could be triggered in a READ operation. SRFuzzer triggers
the READ-op issue by crafting a multi-phase communi-
cation. However, this method could miss some issues if
the vulnerable k-v pair is not configured in the previous
CONF operation. Obviously, the CONF operation limits
the detection of READ-op issues for the lack of a proper
configuration.

Besides the explicit way to execute the CONF operation
with crafted requests through the official way by manage-
ment protocol, we found an implicit way to achieve it by
using the “backup and restore configuration” feature of the
device. This feature usually provides convenience to users
to restore a misconfigured or new device. The configura-
tion of SOHO routers always contains a set of key-value
pairs and can exist in many ways, such as NVRAM or
a database. It also can export as a file from the device
for backup or configuration restore. We found out the
configuration restoration can be treated as a set of CONF

LCommon Vulnerabilities and Exposures.

2Vulnerability identifications of assigned by the vendor NETGEAR.
3China Nation Vulnerability Database.

*All CVE IDs, PSV IDs, and CNVD IDs are listed in the appendix.

operations and always with weak security checks during
our research by reverse-engineering firmware implemen-
tation. In other words, a specially crafted configuration
file can execute the CONF operation for arbitrary k-v pairs
with no or few validity checks comparing with the pre-
vious CONF operation of SRFuzzer. Besides, we can also
use the command (“Motivation” section shows an exam-
ple) to achieve the same result in some devices to obtain
the shell. We call them Direct CONF operation (D-CONF
operation) in order to distinguish it from the normal
CONF operation. With D-CONF operation, we can detect
READ-op issues more efficiently and accurately.

In this paper, we present ESRFuzzer (short for
an Enhanced SOHO Router Fuzzing Framework), an
enhancement of SRFuzzer, to improve the effectiveness of
SRFuzzer in three major aspects:

(i) Besides generating the seed for general mode fuzzing
through the web page by crawlers, ESRFuzzer can
generate seeds for D-CONF operation by parsing
READ handlers of the backend and obtaining related
k-v pairs of a READ handler through static program
analysis.

(i) It proposes a novel D-CONF mode fuzzing, guided by
the enhanced CONF-READ model, to specifically
trigger the READ-op issue by configuring the k-v pair
directly with D-CONF operation. In this mode of
fuzzing, the ESRFuzzer can focus on triggering
READ-op issues without care of the construction of
corresponding CONF operations.

(iii) Based on the cooperation of D-CONF operation and
READ operation, several previously missed issues can
be detected efficiently and accurately. These issues
contain memory corruption, command injection, and
stored cross-site scripting.

We have implemented ESRFuzzer as a prototype tool
by integrating the above improvements into SRFuzzer
and deployed it in a real-world environment. To eval-
uated its effectiveness, we ran ESRFuzzer on 7 routers
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which support the D-CONF mode fuzzing from the
10 routers SRFuzzer had tested. With the help of the
novel fuzzing method, we have discovered 35 previ-
ous undiscovered issues that belong to 3 vulnerability
types.

In summary, this paper makes the following main
improvements:

e We analyze the implementation of the “backup and
restore configuration” feature of several popular
SOHO routers of different vendors by reverse
engineering. Then we find out the D-CONF
operation to execute the CONF operation for
arbitrary k-v pairs with no or few validity checks.

e We extend the C-R model with the Direct CONF
operation and propose a novel method to discover
more issues triggered in READ operation, while these
issues could be missed in the traditional method.

e We extend the SRFuzzer by supporting D-CONF
mode fuzzing, which contains the Direct CONF
operation and corresponding READ operation to find
more READ-op issues automatically.

o We evaluated ESRFuzzer over 7 real-world SOHO
routers in D-CONF mode fuzzing. In total, it
successfully discovered 35 confirmed issues
previously missed. After we manually completed all
of the PoCs and reported them, 23 issues have been
confirmed as 0-day vulnerabilities by vendors.

This paper is organized as follows: “Motivation” section
presents our motivations and insights to overcome the
challenges. “Detailed design” section overviews ESR-
Fuzzer and describes the detailed design. “Experiment
and evaluation” section introduces the experiments and
evaluation. “Case study” section describe an interesting
and concrete real-world case. The shortcomings of our
framework and related work are discussed in “namerefsec-
tion5” and “Related work” sections. At last, we concludes
in “Conclusion” section.

Motivation

The design goal of ESRFuzzer is to build an automatic
fuzzing framework for FWSR and to find as many vul-
nerabilities as possible. It is straightforward to build the
framework based on firmware emulation. However, such a
solution is extremely hard in general because of the diver-
sity in various dedicated component built-in routers. We
argue that it would be a general framework to automat-
ically fuzz the physical SOHO router directly, while it is
still challenging.

In this section, we first introduce the vulnerabilities
we focus on as well as the assumptions of our environ-
ment. Then we summarize design challenges in fuzzing
real-world routers automatically as well as in depth.
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We analyze the root cause of the router vulnerabili-
ties based on C-R and K-V models with a motivating
example.

Scope and assumptions

Besides networking services, web services are also embod-
ied into SOHO routers for the sake of administration and
configuration. They are usually provided by standard pro-
tocols, including HyperText Transfer Protocol (HTTP),
Simple Object Access Protocol (SOAP), Universal Plug
and Play (UPnP) and more. These protocols are imple-
mented by vendors and are used to set Wi-Fi password,
to find end devices, etc. We call these protocols as man-
agement protocols and focus on HTTP protocol in this
paper. Moreover, we suppose SOHO routers use built-
in WAN/LAN web services, other than mobile-to-web
services (Chen et al. 2018), as their default settings.

A typical management protocol implementation of a
SOHO router consists of three major parts, i.e., a fron-
tend, a backend, and a database. The frontend shows the
current settings of the router and guides the user for con-
figuration. The backend parses the requests received from
the frontend and configures related services. The database
stores the current configuration in several places, such
as NVRAM, databases, and configuration files. Figure 2
describes the workflow of these parts in terms of CONF
and READ operations.

There are three operations in the workflow: Normal
CONF operation (CONF operation), READ operation
and Direct CONF operation (D-CONF operation). Dur-
ing Normal CONF operation, the request generated in the
frontend will be parsed by CONF handler of the back-
end. During READ operation, the READ handler of the
backend generates the corresponding information that is
displayed in the frontend. These two operations are com-
mon in almost all SOHO routers. There is also a special
CONF operation called Direct CONF operation. In this
way, the configuration can be set through shell command
or restore configuration feature without being processed
by the CONF handler.

Both the Normal CONF operation and D-CONF opera-
tion can config the device database which can be read by
READ operation. However, the Normal CONF operation
is more general than D-CONF operation among almost
all devices while the D-CONF operation can operate more
accurately.

Figure 2 also shows four typical types of vulnerabili-
ties in the workflow. Vulnerabilities of memory corruption
and command injection often occur in the backend, while
XSS often occurs in the frontend. Information disclosure
vulnerability may occur in both the frontend and backend.
Different types of vulnerability can be triggered by vari-
ous causes, e.g., memory corruption is usually triggered
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by improper user’s input handling. Information disclosure
in this paper refers to the access of privileged data with-
out appropriate permission. The other two vulnerabilities
are common web vulnerabilities, and most XSS issues are
stored XSS in routers.

Automating the whole fuzzing process
The most important steps for automating the FWSR are
input generation and running restoration.

As aforementioned, the web server is implemented dif-
ferently across device vendors, which means the format of
the request to each server is also different. So we choose
mutation-based fuzzing since it is hard to adopt general
generation-based fuzzing. In order to automatically col-
lect seeds, which is essential for mutation-based fuzzing,
we design a crawler to get as many requests as possible.
Meanwhile, interactions with web services should be care-
fully dealt with to keep the server running. These requests
are mutated by specific rules, which will be discussed
in “Fuzzing in depth” section, and are fed to a physical
SOHO router.

Once a specific testcase makes the server failure, ESR-
Fuzzer should observe the occurrence and drive the
fuzzing into the next test. Normally, it is relatively trivial
to restart or resume a crashed process when fuzzing soft-
ware on a standard computer system. On the contrary, it
is not easy to reset or restart a stuck SOHO router without
human interference. The router falls into “zombie” state
during the fuzzing process mainly for two reasons. Firstly,
there might be no response sent back when the process
of the web server is crashed by a malformed request.
Secondly, self-protection mechanism of some devices will
forbid the access to the web server if specific exceptional
conditions are met.

In order to restart the web server automatically, we
leverage power control equipment to manage the SOHO
router. Specifically, we use the smart plug which is widely
used nowadays. Each smart plug powers a router and is
controlled by ESRFuzzer. It is connected to ESRFuzzer

through Wi-Fi. Once ESRFuzzer has monitored a stuck
router, it sends the plug restarting command by plug’s
internal APIs, and consequently restarts the device. Then
the web server could be recovered from the crashed state.

Fuzzing in depth

Coverage-guided fuzzing techniques, such as AFL
(Zalewski 2014), have largely enhanced the traditional
mutation-based fuzzing. Due to the requirement of
instrumentation on code, they are infeasible for real-
world dedicated devices. Moreover, the root cause of the
vulnerabilities of routers is data inconsistency during
the request processing, which makes the effectiveness
of FWSR hardly be improved by those techniques. We
design a KEY-VALUE data model and a CONF-READ
communication model to describe the semantics of
requests, i.e., the format of internal data in requests and
the relations between different requests, and to guide the
design of mutation rules. A motivating example which
contains 3 vulnerabilities is presented to illustrate these
models in a more concrete manner.

Motivating Example. To illustrate the design chal-
lenges of mutation rules, we present a configuration pro-
cess for network time protocol (NTP) by HTTP requests.
The left half of Fig. 1 shows the general process, and Fig. 3
shows the backend handling procedures related to the
process.

There are usually three steps to configure the NTP
option of a router:

(i) The administrator of router sends an HTTP GET
request to access the configuration web page through
a URL, e.g., “http://192.168.0.1/apply.cgi/NTP_
debug.htm”. He/she also gets the current domain
name of ntpserverl, which is used by
read_ntpserverl () shown in Line 9-13 of
Fig. 3. We call this process READ operation.

(ii) The administrator modifies the domain name by
sending an HT'TP POST request. The new domain
name of ntpserverl is submitted and stored into
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char buf[0x100];
char * ntp

int conf ntpserverl(char * input) {

read from request("ntpserverl",

input) ;

if(|strle1’1(ntp) > Ox80|')_

g WwWN =

7 'system (buf) ;
8 return O;
}

9 int read ntpserverl () {

|//use varaiable "ntp" to build configuration command.l
6 |sprintf(buf, "/bin/config set ntpserver=%s.", ntp);
i//command injection occurs. |

//the length of info is no more than 0x80.

10 char |[info[0x501k
11 char * ntp = get config("ntpserverl");
L/stack=based. overflow occurs._.._.._.._.._.. .
12 I |sprir1tf(info, "ntpserver=%s", ntp) ;I
i //potential cross-site scripting occurs.
13 Lshow_info_in_frontend(in fo);
14

FEUTTR 0T T T T T T T T T T e -
}

The insufficent check of value of
"ntp" causes a command
injection.

A

Thelength of "ntp" may larger
than the length of "info",
causes a stack-based overflow.

There are no check or encode of the value of "ntp", if the "info" variable
directly shows on the frontend, a cross-site scripting issue will be triggered.

Fig. 3 Backend Handlers Code Snippet of READ and CONF Operation for NTP configuration

the database through the backend procedure

conf ntpserverl (). We call this process CONF
operation.

He/She checks whether the newly submitted domain
name is configured correctly by another READ
operation.

(iii)

However, there are 3 different types of vulnerability in
this code snippet. We will explain these issues with KEY-
VALUE data model and CONF-READ communication
model.

KEY-VALUE Data Model. Supposing configuration
process is now in CONF operation and the raw request is
shown on top half of Fig. 4. The backend deals with the
request as shown in Line 3, 6, 7 of Fig. 3 and a command
injection issue occurs. Function conf ntpserverl (),
a CONF handler in the backend, would match the
string “ntpserverl” from the request then get a domain
name. The domain name is used as an argument of
/bin/config command which would be executed
by system() in turn. However, there would be a
command injection if the request contains a string like
“ntpserverl=;reboot;’, and the shell command “reboot;”

would be invoked after
command.

The input triggering this vulnerability requires two con-
ditions, i.e., the string “ntpserver1="keeps unchanged and
the format of config command keeps valid. Therefore,
performing the randomized mutation on raw requests to
generate test cases is probably meaningless in this case.

In order to generate meaningful test cases in both READ
and CONF operation, we design the KEY-VALUE data
model to describe the constraints on a single request. Each
request should be composed of key-value pairs (k-v pairs
for short), of which the key stands for the variable name
like “ntpserverl” and keeps unchanged. The value could
be assigned to the variable, so it should be consistent with
the type requirement of the key. For example, if a key
requires “domain name’, the value should be precisely a
domain name. Although raw requests might be in other
data formats, e.g. JSON and XML, the model still works
well.

We describe the consistency between key and value
by labeling attributes on the k-v pair according to the
value. We summarize three types of attributes: number,
fixed string and variable string. These attributes guide the

executing /bin/config
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POST /apply.cgi?/NTP_debug.htm HTTP/1.1

Host: 192.168.66.1

Connection: keep-alive

Raw
Request Conte.nt—Length: 209 ' .

submit_flag=ntp_debug&conflict_wanlan=8& time.testl.com

&ntpserver2=time.test2.com&ntpadjust=0&hidden_ntpserver=GMT8&h

idden_dstflag=0&hidden_select=33&dif_timezone=0&time_zone=GMT-

a 8&ntp_type=0&pri_ntp=

. v

URL: http://FUZZING_IP/apply.cgi?/NTP_debug.htm

METHOD: POST

Tuple SET:
key value attributes

Seed submit flag ntp debug fixed str, variable str
conflict wanlan variable str
ntpserverl time.testl.com variable str
hidden dstflag 0 number, variable str
hidden select 33 number, variable str
(I
Fig. 4 Parsing raw request to seeds

mutation of the value of a k-v pair. As a result, after pars-
ing k-v pairs from the raw requests and labeling them, the
seeds can be generated more effectively.

CONEF-READ Communication Model. When the user
access frontend to get the current NTP configuration, the
READ operation will call the read ntpserverl(), a
READ handler in the backend, to get the corresponding
configuration from the device database.

A stack-based overflow issue is shown in
Line 12 of Fig. 3. This issue exists in function
read ntpserverl (), which does not check the
length of ntp before using it. To notice that, the value of
ntp is set in Line 3 of function conf ntpserverl (),
and its length constraint is inconsistent with the length
of info variable. Therefore, the vulnerability could be
triggered when reading a malformed domain name from
the database, which is set in Line 7, with length between
0x50 and 0x80.

The last vulnerability is a cross-site scripting. This issue
exists in Line 12 and 13. We assue that the above stack-
based overflow is not triggerred in Line 12. And the
variable info get the value of ntpserver, then it is
passed to the function show _info in frontend().
Because there are no filter or encode protection mecha-
nism for XSS issues, the info variable can cause a stored
XSS issue.

In such a situation, a single request is not enough to trig-
ger the vulnerability, so we design the CONF-READ com-
munication model to form multiple-requests test input.
This model consists of two related operations, i.e., CONF

operation and READ operation. In CONF operation, the
requests of setting or modifying the configurations of
devices are constructed, while in READ operation, the
requests of getting the corresponding configurations are
also constructed.

In general, making CONF operation through the HTTP
request is the most common way to modify the con-
figuration of devices, so the vulnerability triggered in
the READ operation relies on the proper CONF opera-
tion. However, there are several extra methods to execute
the CONF operation to modify arbitrary k-v pairs. In
this case, if we use the D-CONF operation which exe-
cutes the /bin/config command directly to set the
ntpserver k-v pair, the stack-based overflow issue and XSS
issue above can be triggered more easily without depend-
ing on the previous normal CONF operation which calls
the conf ntpserverl () handler. Figure 5 shows a
D-CONF operation example through the root shell of a
device to configure the device database. By calling the
/bin/config program, Line 7 configures the value of
variable ntpserver with the value that can trigger this
XSS issue.

/ # /bin/config --help
Usage:
config show
config get name
config set name=value
config unset name
/ # /bin/config ntpserver="<
/ # /bin/config ntpserver
ntpserver="<script>alert (\"xss\")</script>"

Fig. 5 Code Snippet of D-CONF Operation

cript>alert (\"xss\")</script>"

VU UEWN
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Lessons learned. In light of the analysis of the con-
figuration workflow in Fig. 2 and the motivating exam-
ple, we conclude the root cause of the vulnerability
as data inconsistency. The value inconsistent with key
ntpserverl causes the command injection which is
triggered at CONF operation and the cross-site scripting
which is triggered as READ operation. Meanwhile, the
length inconsistent between conf ntpserverl () and
read _ntpserverl () causes the memory corruption
which is triggered at READ operation.

In the C-R model, we can see there are two major meth-
ods to complete a CONF operation. One usually uses
HTTP requests to set the k-v pairs in a special web page
and it is also the most common method to configure
the device. However, the other one can arbitrarily mod-
ify all configurations. For easy distinction, we call the first
method as normal CONF operation and the other one as
Direct CONF operation. With normal CONF operation,
ESRFuzzer can fuzz the device in a general mode and in
D-CONF mode with D-CONF operation.

By coupling the K-V model with the C-R model, ESR-
Fuzzer could reveal data inconsistencies in both k-v paired
data and temporally related requests. Therefore, it is capa-
ble of detecting deep bugs in the web server of the SOHO
router.

Discovering multi-type vulnerabilities

Discovering and triggering multi-type vulnerabilities at
either CONF or READ operation, is necessary yet dif-
ficult in this fuzzing framework. As aforementioned in
“Fuzzing in depth” section, we can design various of muta-
tion rules according to the K-V model. Especially for
the value with “variable string” attribute, we design dif-
ferent mutation rules to trigger exceptional behaviors of
overflow, NULL-pointer dereference, command injection,
format string and stored XSS respectively. In addition, we
design two modes of fuzzing to fit for the different scene-
rio: general mode fuzzing and D-CONF mode fuzzing.
General mode fuzzing aims at both the issues of CONF
and READ operation, and we establish different types
of communications to trigger the vulnerabilities which
occur in either CONF or READ operation. D-CONF mode
fuzzing focuses on the READ operation issues for the
devices that support this mode fuzzing.

Once a vulnerability is triggered in a device, there will
be some exceptional behaviors such as a backend crash,
an abnormal response or executing an unexpected com-
mand. To monitor the vulnerability in the backend, it is
insufficient to use liveness check (Muench et al. 2018), a
most common method for monitoring dedicated devices.
The method monitors the exceptional behaviors by only
checking the connection state. In fact, the normal con-
nection state (such as status code 200 in HTTP) does not
always indicate the normal behavior, e.g., triggering an
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injected command execution can also return the correct
connection state.

We design two general monitoring mechanisms to catch
the exceptional behaviors, i.e., a response-based monitor
and a proxy-based monitor. The response-base moni-
tor checks not only connection states but also response
contents that might include extra information. The proxy-
based monitor receives the network accesses from the
target router. Inspired by the conclusion of (Chen et al.
2018), we also design an optional signal-based monitor. It
could catch more memory corruptions (i.e., silent memory
corruptions (Muench et al. 2018)) at the cost of implanting
a compiled executable into the device. By coupling muta-
tion rules with monitoring mechanisms, we can detect
multi-type vulnerabilities.

Detailed design

In this section, we present the detailed design of ESR-
Fuzzer. As shown in Fig. 6, ESRFuzzer consists of six
modules to work coordinately. Once connecting to the
router, it collects the valid seeds by the seed generator
module and Config generator. Then it feeds the seeds into
the mutator module to generate mutated requests based
on various mutation rules. Finally, ESRFuzzer triggers and
monitors the exceptional behaviors by the collaboration of
the mutator, the monitor and the power control module.
The orange module and submodule are used for the gen-
eral mode fuzzing while the blue modules are used for the
D-CONF mode fuzzing.

1. Seed Generator. To generate the initial test cases,
i.e., seeds, for mutation and CONF operation, the
Seed Generator collects raw requests by the Request
Collector submodule and parses them into k-v pairs.
Then it labels all k-v pairs with attributes, which
could guide mutation later. The Request Collector
submodule is composed of two parts, a general
crawler as the default setting to collect requests
automatically, and an optional passive crawler to
collect more requests by interacting with users.

2. Config Generator. Seed Generator is a way to
generate the seed of general mode fuzzing, however,
there are several ways to execute D-CONF operation
such as NVRAM configuration mechanism. NVRAM
is widely used in the embedded device to store the
device configuration and it consists of various k-v
pairs (Chen et al. 2016). NVRAM configuration can
be configured in several ways: “config” or “nvram”
series program in device, “backup and restore
configuration” feature in web, etc. With this
mechanism, the D-CONF operation can be operated
effectively. For devices that use this mechanism,
Config Generator can obtain all k-v pairs configs and
store them into the database.
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Fig. 6 Overview of ESRFuzzer

3. Mutator. The Mutator generates mutated requests

and triggers vulnerabilities for the SOHO router
through the cooperation of two submodules, i.e., the
Mutation Selector and the Pattern Selector.

Guided by the K-V model, mutation rules are
selected and applied to the value of each k-v pair,
according to the attributes of the k-v pair and the
vulnerability type being discovered. In the Pattern
Selector submodule, the types and the sequence of
requests are decided based on the C-R model.

The Pattern Selector could generate the
communication request for the traditional fuzzing
mode. It can generate one single request with the
type of either CONF operation or READ operation.
While, it could also generate a sequence of requests,
e.g., a READ operation after a CONF operation. In
the meanwhile, for the D-CONF mode fuzzing, it
could also generate the mutation configurations and
commit them to devices as D-CONF operations.
Then it generates the corresponding READ
operation for triggering the vulnerability.

. Monitor. In order to collaborate with the Mutator
module tightly and to monitor more exceptional
behaviors, the Monitor module consists of two
common monitors, a response-based monitor and a
proxy-based monitor. The response-based one could
usually monitor three types of vulnerability, i.e.,
memory corruption, XSS and information disclosure.
To notice that, for information disclosure
vulnerability, it monitors the response of a target
URL without enough access permission. The
proxy-based monitor is used for command injection
and XSS vulnerabilities. In addition, an optional
signal-based monitor is also provided to catch deeper

memory corruptions. It is developed based on ptrace
syscall and could monitor the signal such as
SIGSEGV and SIGABRT.

5. Power Control. For the purpose of fuzzing the
physical router continuously, a Power Control
module is introduced. It is supported by a smart plug
to control the power of the device. This module is
controlled by the Monitor module. If the backend
service is stuck into a “zombie” state, i.e., no
response, a control command would be sent to the
plug, then the device would be restarted.

6. Configuration. In order to improve the fuzzing
efficiency, we also provide custom configurations for
individual modules. All these configurations are
optional. We configure the IP address of the default
portal for the general crawler. We also provide
mutation enhancement techniques for values with
variable string attribute to trigger more exceptional
behaviors. In order to ease the deployment of the
signal-based monitor, we develop an implanting
toolkit for the routers. With this toolkit, we can place
the signal-based monitor into the device
automatically.

Seed generation
This module aims at generating the seed for the following
general mode fuzzing. We use the Request Generator to
collect the raw requests then store them into the Request
Database. Finally, we leverage the Key-Value parser to
parse the requests into k-v pairs with attribute labeling.
As we mentioned in “Fuzzing in depth” section, a typical
CONEF operation is the second step of a web communica-
tion, as shown in Fig. 4. The Request Collector submodule
aims at repeating this step and captures raw requests
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by two crawlers. By default, ESRFuzzer uses a general
crawler to collect the requests automatically. However, the
collection effects can be improved by the passive crawler.

The general crawler uses the default URL as an input,
then it fills the web page automatically by parsing the
input elements of the web page. In the meanwhile, it iden-
tifies all URLSs of the page and then fills them recursively
like a traditional crawler. It also stores the requests into the
request database. In case of interaction during crawling,
such as providing specific information, ESRFuzzer ran-
domly select data from a predefined database to continue
crawling.

The passive crawler is a semi-automatic toolkit which
opens a web page and waits for the user input to fill the
web page. After submitting the configuration, the passive
crawler stores the requests into the request database and
prepares for the next web page. Such a crawler is usually
used to generate seeds from web pages with user input,
such as the login page.

In addition, to collect the raw requests as many as possi-
ble and to facilitate the later attribute labeling procedure,
both crawlers fill the same web page ten times.

As aforementioned, the K-V model describes the man-
agement protocol in a fine-grained manner. However,
we can dig more information from the k-v pairs for
deeper fuzzing. The KEY-VALUE parser analyzes the raw
requests and split them into k-v pairs. Meanwhile, it labels
the attributes of all k-v pairs according to their values.

There are two features in the value handling procedure
of the backend. Firstly, the value is usually handled as a
variable string, and the backend parses the crucial infor-
mation to build related configuration. Secondly, there are
always some validity checks, such as to judge whether a
value is a number or a fixed string. As a result, if a fixed
string is mutated, the check cannot be passed and the code
protected by this check becomes unreachable. Therefore,
we label a k-v pair with three type attributes, i.e., num-
ber, fixed string, and variable string. The attributes of a
k-v pair determine the mutating rules applied to the k-v
pair. By default, all k-v pairs are labeled with an attribute
“variable string” Algorithm 1 shows the attribute labeling
process for k-v pairs.

In summary, Seed Generator converts each unique raw
request to several seeds. Each seed contains the URL and
the set of data tuples, each of which contains a key, a value
and attributes. Figure 4 shows the converting process from
a raw request to the seeds.

Config generation

This module aims at generating the seed for the fol-
lowing D-CONF mode fuzzing. There are two steps to
obtain the seed: (i) Getting all k-v pairs in the NVRAM
through the shell command like “nvram show”. (ii) Getting
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Algorithm 1 Labeling Attribute Algorithm.

Input: A set of k-v pairs P, each pair p contains p.key and
p-value;

Output: A set of tuple 7, each tuple ¢ contains ¢.key,
t.value and t.attributes

1. T <0

2. forall pin P do

3: t<p

4 if t.value is a number then

5: add_attribute(t.attributes, “number”)

6 end if

7 if t.value does not change in various raw requests
then

8: add_attribute(t.attributes, “fixed string”)

9: end if
10: add_attribute(t.attributes, “variable string”)
11: T.append(z)
12: end for
return T

the mapping of the k-v pair and corresponding backend
handler.

Backing to the Fig. 3 in “Motivation” section.
read ntpserverl() get the value of NVRAM
variable “ntpserverl” by calling the get config()
function. In this case, we know when the backend hanlder
read_ntpserverl () is called, the “ntpserverl” will be
loaded and the configuration will be processed. So if the
“ntpserverl” NVRAM variable is configured by the D-
CONF operation, ESRFuzzer can craft a READ operation
that calls the read ntpserverl () function to trigger
the overflow and cross-site scripting issue.

To understand backend handler and corresponding k-v
pairs, ESRFuzzer will analyze the backend program which
can be obtained by binwalk (devttys0 2013). There are two
typical features to help the analysis. Firstly, backend han-
dlers are always stored in a function pointer array in the
data section of the backend program. And they are always
called indirectly. So we can linear scan the data section
of a program and get all backend handlers. Secondly, as
Chen (Chen et al. 2016) said, the backend program usu-
ally call the NVRAM-related functions (nvram_ get (),
nvram_set (), etc.) by using a shared library named
libnvram. so. What’s more, the NVRAM-related func-
tions use the k-v pair which is the same as the NVRAM
variable as their arguments. So we can know what k-v
pairs are loaded by a read handler through scanning the
reference of NVRAM-related functions. For different ven-
dors or devices, there could be a minor difference between
the library or function name, but it is not important. Algo-
rithm 2 shows the D-CONF seed generation algorithm.
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Algorithm 2 Algorithm for D-CONF Seed Generation.

Algorithm 3 Mutation Algorithm for each Seed.

Input: The backend program BP, all set of k-v pairs P;
Output: A set of D-CONF seed DSeed, each element
dseed contains a backend handler handler and a set of k-v
pairs Py;

1: DSeed < ()

2: H < parse_handlers_from_binary(BP)

3: for all handler in H do

4 tmp_set < ()

5 Py < parse_keys_from_handler(handler)
6 for all k in P do
7: if has_this_key(P, k) then
8: tmp_set.append(k, P[k])
9 else
10: tmp_set.append(k, “”) > Set empty value
for the key that is not in P
11: end if
12: end for

13: dseed < (handler, tmp_set)
14: DSeed.append(dseed)
15: end for

return DSeed.

Mutation
From “Fuzzing in depth” section, we know the most cru-
cial factor to trigger the vulnerability is the mutated value.
There are two guidances to build mutation rules. Firstly,
the root cause of the vulnerabilities is data inconsistency,
especially for the variable string. So how to mutate the
value of each k-v tuple is more important. Secondly, there
are obvious differences between different types of vul-
nerability, so mutation rules should trigger exceptional
behaviors according to the type of vulnerability.
Algorithm 3 shows the mutation algorithm for each
seed. We separate the mutation of tuples and URL because
it is inefficient to mutate them together. To mutate seeds,
we select random number of tuples from each seed.
According to the attributes of each tuple, we mutate its
value with a related mutation rule. The mutation rules
for number and fixed string attributes are simple, while
for variable string, there are five mutation rules to trigger
different types of exception behavior:

1. For Overflow: To trigger the overflow vulnerability,
this framework usually duplicates the original value
several times. If the key with an empty value, it
assigns the key with a random number of payloads
selected from a predefined database.

2. For NULL-pointer dereference: For the key with
the non-empty value, this framework provides the
empty value to trigger the potential NULL-pointer
dereference vulnerability.

Input: A single seed S which contains the U/RL and the
set of tuple, T};; Mutation option option;

Output: A mutated seed S,;;

Require: The set of mutation rules for variable strings, Ry;

1: Sm )
2. if option is “TUPLE” then
3: T, < select_from_set(T),, random(n)).
4 foralltin T, do
5 attr < select_from_set(t.attributes, 1)
6: if attr is “number” then
7 t.value < mutate_number(t.value).
8 end if
9 if attr is “variable string” then
10: rule < select_from_set(Ry, 1)
11: t.value < mutate(t.value, rule).
12: end if > Do nothing for “fixed string” attribute
13: Sm-Tyltkey] <t
14 end for
15: else
16: Sy.-URL < mutate_ URL(URL)
17: end if
return S,,.

3. For Command Injection: To cooperate with the
proxy-based monitor, ESRFuzzer constructs the
value with the malformed payloads which are based
on built-in tools such as ping or wget. If a
command injection is triggered, these payloads will
connect to the outside proxy-based monitor which
contains a proxy server. If this monitor catches the
requests sent from the router, it collects the detailed
information about the exceptional behavior. It can
also help to locate the vulnerability efficiently for the
follow-up analysis.

4. For Stored XSS: There are two rules to construct
the payloads for XSS. The most common payload
contains the malformed JavaScript code to eject a
message box. If the response-based monitor catches
the message box that contains the string prefix with
“xss_", it records the exception and locates the
vulnerability tuple. The other payload constructed
for the proxy-based monitor is similar to the rule for
command injection, e.g., “< script >(new
Image()).src= "http://PROXY_\SERVER/
MUTATION_KEY_INFO/" </script>".

5. For Format String: To trigger the format string
vulnerability in a monitorable way, this framework
usually concatenates the duplicated “%s” format
string to the original value. Bacause in printf() family
of functions, the “%s” type field will take the next
argument of the stack and print it as a string. So if
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malformed duplicated “%s” format string is injected,
the format string vulnerability will cause a crash.

For all mutation rules of variable string, we also use
special characters, e.g., “;; “$’, whitespace characters, and
all kinds of quotation marks, to trigger more excep-
tional behaviors. These special characters can help to
bypass the validity checks in the backend. For exam-
ple, the inet addr (const char xcp) function only
extracts the part of a string before the first whitespace
to check whether it is a valid IP address. Therefore, a
value with the form “IP+Whitespace+Additional String” is
wrongly considered as a valid IP address. For the 3rd and
4th mutation rules, we encode the key into the mutation
value to assist in locating the exactly k-v pair.

For the URL mutation, this framework generates URLs
containing special paths or sensitive file paths such as
“/etc/passwd” or “/etc/shadow” beyond the permission
when fuzzing. If a malformed URL can be accessed with a
normal response, the response-based monitor will report
it as an exceptional behavior.

Table 1 shows how these rules are applied to the moti-
vating example illustrated in Fig. 4. The original values
are “http://DEVICE_IP/apply.cgi?/NTP_debug.htm” and
“time.test1l.com”.

Triggering the exceptional behavior

For the general mode fuzzing, the common fuzzing
method is to monitor the response status after sending
a mutation packet. There is always one communication
in this procedure. However, it is only useful for vulnera-
bilities that occur in CONF operation of the C-R model.
We also need to trigger the vulnerabilities that occur in
READ operation. To overcome this limitation, we trigger a
READ operation after a CONF operation immediately. We
also separate the request phases and monitoring methods.
Moreover, we rollback CONF operation with the original
value after each communication cycle.

Table 1 Example of Mutation Rules for Variable Strings

Section Mutation Rule Example of

Mutated Value

time.test1.comtime.test1.com...
(repeat 20 times)

ntpserverl Overflow

NULL-pointer
dereference

(empty value)

Command Injec- time.test1.com";wget
tion http://PROXY_SERVER/ntpserver1;

Cross-site  script- time.test1.com”;<
ing script >alert(xss_ntpserver1’)</script>

Format String time.test1.com%s%5%5%5%5%5%5%5%5%s

URL http://DEVICE_IP/apply.cgi?/NTP_debug.htm/././etc/passwd
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For the D-CONF mode fuzzing, the D-CONF opera-
tion can be executed directly by “nvram set” series com-
mand. In this way, the command shell of the device is
required. As aforementioned, the D-CONF operation can
not trigger any issues without a corresponding READ
operation. According to the mapping of device handlers
and NVRAM variables obtained by Algorithm 2, ESR-
Fuzzer can craft a proper READ operation to trigger
issues.

Monitoring the exceptional behavior

As we mentioned in “Fuzzing in depth” section, because
“liveness check” is limited to the valid information from
the response, it can hardly monitor various types of vul-
nerability nor catch deeper exceptional behaviors such
as memory corruptions that occur in the subprocess. To
make up for its limitation, we expand the liveness check
into a response-based monitor. Moreover, we design the
proxy-based monitor and the signal-based monitor to
improve the monitoring performance in depth. Figure 7
shows three typical monitoring mechanisms with their
monitoring scopes.

1. Response-based monitor: Besides liveness check,
analyzing the response content of the communication
can monitor XSS issues that triggered in the frontend.
We craft the payload for each key to mutate during
CONF operation and analyze the response content
during the separated READ operation. Then we can
locate the crucial keys that trigger the exceptional
behaviors easily. Moreover, information disclosure
can also be monitored by judging the response status.

2. Proxy-based monitor: For command injection and
XSS issues, the Mutator module crafts malformed
payloads to request the server of router outside. We
build a monitoring server in the local network where
the router can approach. So we can detect command
injection and XSS issues when the monitoring server
is accessed by the router. By cooperating with the
crafted payload, the proxy-based monitor can
efficiently locate the vulnerable URL and the crucial
k-v pairs that trigger the exceptional behaviors.

3. Signal-based monitor: For the memory
corruptions, the most common signals are SIGSEGV
and SIGABRT. These two signals always occur when
a process even though a subprocess crashes. So
monitoring these signals can catch more true positive
exceptional behaviors with less false positives. For
Linux-based routers, we can develop the monitor
based on ptrace syscall.

Although the signal-based monitor can monitor the
memory corruption more widely and accurately than
the response-based one, it requires permission to
implant a binary into the router, which is not always
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the case. So only the devices that satisfy the
permission requirement can take advantage of this
monitor. There are three ways to acquire this
permission, i.e., through debug shell, exploiting
known vulnerability such as command injection, and
connecting the built-in serial port. We also develop
an implant toolkit to put an executable into the
device automatically.

Because three monitors work individually, we have to syn-
chronize requests and exceptional behaviors for them. We
record a timestamp for each request and a timestamp
for each exceptional behavior, to make sure the request
related to an exceptional behavior.

Experiment and evaluation

Implementation

We have implemented the automatic fuzzing framework
modularly. For the Seed Generator module, we imple-
mented a general crawler and a passive crawler both
with Selenium (Selenium 2004). For the Config Gen-
erator module, we use IDA python script to generate
the D-CONF seed. For the Monitor module, we imple-
mented the three types of monitors independently. Specif-
ically, the signal-based monitor is implemented in C with
strace (strace 2000) and is implanted into devices by
the help of device feature, known vulnerabilities or the
serial port if possible. It is cross-compiled with Build-
root (buildroot 2001) as a statically linked binary. Now,
it supports multiple architectures, including x86, x86-64,
ARM32 (LE), ARM32 (BE), MIPS32 (BE) and MIPS32
(LE).

In order to restart the device when it hangs, ESRFuzzer
firstly monitors the device status by trying to establish the
TCP connections to the target device repeatedly. Then it
restarts the device by the Power Control module if the
TCP connection could not be established normally sev-
eral times. We implemented this module based on the

Mi Smart Plug (Mi Smart Plug 2015) with the help of
python-miio (rytilahti 2018) protocol.

Experiment setting

In the experiment, we selected 10 devices from five
different vendors to test. All of them support the
general mode fuzzing, while 7 of them support the
D-CONF mode fuzzing. Table 2 shows their informa-
tion. The 5th column of the table shows the meth-
ods, to acquire permission to implant signal-based
monitor, supported by each device. The last column
shows the D-CONF mode fuzzing support of each
device.

Except signal-based monitor, all modules of ESRFuzzer
were deployed on Ubuntu 16.04. It connected the router
by cable and a Mi Smart plug via a stable wireless con-
nection. Figure 8 shows the topology of the experiment
network. ESRFuzzer fuzzed each device continuously for
40 hours with general mode fuzzing and 20 hours with
D-CONF mode fuzzing because the convenient D-CONF
operation executed more quickly. During the fuzzing pro-
cess, it would restart the device if the Power Control
module does not receive any response for more than six
minutes.

Overall experiment result

In total, as Table 3 shows, we confirmed total 136 unique
issues for general mode fuzzing (101) and D-CONF mode
fuzzing (35). The number of seeds that collected for gen-
eral mode Fuzzing and D-CONF mode fuzzing are given
in columns 2-3. What’ more, we manually complete all
of the PoCs. For memory corruption, the PoC can cause
the backend crash or hijack its control flow. For com-
mand injection, the PoC can execute a shell command
such as “reboot”. For XSS, the PoC can eject a message box
in the browser with the content “Hello, XSS” For infor-
mation disclosure, the PoC can disclose some sensitive
information.
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Table 2 Information of Routers under Fuzzing
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ID VENDOR PRODUCT ARCHITECTURE SIGNAL-BASED MONITOR D-CONF SUPPORT
1 NETGEAR Orbi ARM32 (LE) Device Feature, Serial Port Support

2 NETGEAR Insight* ARM32 (LE) Not Support Not Support
3 NETGEAR WNDR-4500v3 MIPS32 (BE) Device Feature, Serial Port Support

4 NETGEAR R8500 ARM32 (LE) Device Feature, Serial Port Support

5 NETGEAR R7800 ARM32 (LE) Device Feature, Serial Port Support

6 TP-Link TL-WVR900G MIPS32 (BE) Not Support Not Support
7 Mercury Mer450 MIPS32 (BE) Not Support Not Support
8 Tenda G3 ARM32 (LE) Existed Vulnerability Support

9 Tenda AC9 ARM32 (LE) Existed Vulnerability Support

10 Asus RT-AC1200 MIPS32 (LE) Device Feature Support

“Insight is short for “Insight Managed Smart Cloud Wireless Access Point”

After reported to the related vendors under the respon-
sible disclosure policy, 120 of 136 unique issues have been
confirmed by their vendors as our discovery, 11 of the rest
16 issues are under assessing process , 1 issue has been
reported by others and the vendor considered the rest
4 issues as device design and won'’t fix them. These 120
vulnerabilities are assigned official IDs, including 43 CVE
IDs®, 73 PSV IDs® and 4 CNVD IDs.

Furthermore, we evaluated the impact of 120 offi-
cially confirmed vulnerabilities from their CVSS version 3
scores (NVD 2015) and their effects, which are shown in
Fig. 9. We use the official four rankings based on CVSS
scores to show the severity of the vulnerabilities. Specifi-
cally, more than one-fifth of issues (25/120) are at a high
severity level. Vulnerabilities newly founded in D-CONF
mode fuzzing are almost all at a medium severity level.
We also counted the number of issues for four categories
according to their effects, i.e., escalation of privilege (EoP),
scripts execution, denial of service (DoS), and information
disclosure. The majority of issues fall into EoP category,
since we can craft their PoCs to hijack the control flow to
execute a command of the low-level system, and hence we
escalate the web-management privilege to the root priv-
ilege. Almost all PoCs can compromise the target device
with one single message.

Besides, the D-CONF mode fuzzing aims at detect-
ing the READ-op issues, and the shell permission is
a convenient way to automatic the fuzzing procedure.
Although the security levels are almost READ-op issues
all medium priority especially found by D-CONF fuzzing,
these issues are also harmful in some scenarios. For exam-
ple, for a device that does not support a debug shell or
we have no existing vulnerabilities, we can find a READ-

5We haven't disclosed all of the CVE IDs on the oss-security mailing list after
being assigned, so not all of them can be found through the Internet now.
6The vendor hasn'’t listed all vulnerabilities on its security advisory yet, which
causes several of the PSV IDs cannot be found through the vendor security
advisory now.

op issue through D-CONF mode fuzzing with a device
shell obtained by a serial port. Thus, we can obtain
the root shell with this issue with restore configuration
(CONF operation) and related READ operation. Actually,
this method is significantly different from by serial port
because it neither needs to disassemble a real device nor
welds the pins. Attackers could escalate the privilege and
obtain the root shell remotely if they obtain permission
to trigger the READ-op issue. This issue can improve the
security priority of the whole cyber-attack chain, which
is also the reason that vendors treat them as issues with
medium priority.

Confirmed issues

General mode fuzzing can test the SOHO router in a gen-
eral way for both issues that occurred in CONF operation
or READ operation. During the general mode fuzzing, we
totally confirmed 101 unique issues and 97 of these issues
have been confirmed by their vendors, including 43 CVE
IDs, 52 PSV IDs and 2 CNVD IDs. Their details are shown
in Table 4.

For each device, the number of issues for each afore-
mentioned type (i.e, MEM for memory corruptions,
CMD for command injections, XSS for cross-site script-
ing, and INFO for information disclosure) grouped by
two triggering phases (i.e., CONF and READ) is given
in columns 2-7. Among the 101 confirmed issues, 48
issues are memory corruptions (47.52%) while the other
includes 39 command injection issues (38.61%), 9 XSS
issues (8.91%) and 5 information disclosure issue (4.95%).
There are 67.33% of issues triggered in CONF operation
and 32.67% in READ operation. All of the five devices
that are confirmed more than ten issues were discov-
ered with multiple types of vulnerabilities, except for TL-
WVRI00G. After analyzing its implementation, we have
found that its backend is implemented by Lua language,
which could avoid memory corruption.
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Table 3 Overall Confirmed Issues of Fuzzing

Product General Mode Seed D-CONF Mode Seed General Mode Issues D-Conf Mode Issues Total Issues
Orbi 216 314 2 9 11
Insight 108 N/A 1 N/A 1
WNDR-4500v3 188 266 16 0 16
R8500 208 503 13 4 17
R7800 232 295 24 8 32
TL-WVRI00G 176 N/A 25 N/A 25
Mer450 91 N/A 2 N/A 2
G3 98 92 5 4 9
AC9 111 83 12 5 17
RT-AC1200 168 225 1 5 6
SUM 1596 1778 101 35 136
80 Severity Statistic Based on CVSS Score Impact Statistic
75 - = MEM gg ] = MEM
70 CcMD 75 4 CMD
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Fig. 9 Impact of Assigned Vulnerabilities
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Table 4 Confirmed Issues and their Types of General Mode

Fuzzing
PRODUCT CONF READ SUM
MEM CMD MEM CMD XSS INFO
Orbi 0 0 0 0 1 1 2
Insight 0 1 0 0 0 0 1
WNDR-4500v3 6 2 7 0 0 1 16
R8500 9 0 0 0 3 1 13
R7800 0 8 10 0 5 1 24
TL-WVR900G 0 24 0 1 0 0 25
Mer450 0 2 0 0 0 0 2
G3 5 0 0 0 0 0 5
AC9 11 0 0 1 0 0 12
RT-AC1200 0 0 0 0 0 1 1
SUM 31 37 17 2 9 5 101

D-CONF mode fuzzing can execute the CONF oper-
ation without any backend check that exists in general
mode fuzzing. So it can find some new issues easily.
During the D-CONF mode fuzzing procedure, we totally
confirmed 35 new unique issues. After being reported
to the related vendors under the responsible disclosure
policy, 23 of 35 issues have been confirmed by their ven-
dors and assigned official IDs, including 21 PSV IDs and 2
CNVD IDs. What’s more, 1 command injection issue has
been reported by others. Details of these confirmed issues
are shown in Table 5.

Among the 35 confirmed issues, 12 issues are mem-
ory corruption (34.29%), 4 issues are command injection
(11.43%) and 19 issues are XSS (54.29%). Comparing this
result with general mode fuzzing, there are two obvious
conclusions:

1. Command injection issues less likely occur in
READ operation. The command injection are both
the least issue in READ operation issues discovered
by general and D-CONF mode fuzzing. This shows

Table 5 Confirmed Issues and Their Types of D-CONF Mode

Fuzzing
PRODUCT READ SUM
MEM CMD XSS
Orbi 0 0 9 9
WNDR-4500v3 0 0 0 0
R8500 2 0 2 4
R7800 0 3 5 8
G3 4 0 0 4
AC9 4 1 0 5
RT-AC1200 2 0 3 5
SUM 12 4 19 35
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that the command injection issue usually occurs in
CONF operation for the reason that the
configuration operation is always executed during
the procedure of CONF operation.

2. D-CONF mode fuzzing can trigger XSS issues
more easily. In D-CONF mode fuzzing, XSS issues
account for 54.29% of the whole confirmed issues,
while it only accounts for 27.27% of the confirmed
READ operation issues in general mode issues.
Comparing to other types of vulnerability, the
payload of XSS contains more special characters and
it is more complex. So in general mode fuzzing, the
CONF operation are more likely to filter the payload
and the value cannot be set successfully. D-CONF
operation removes this obstacle so XSS issues can be
triggered more easily.

Effect of monitors

The distribution of different confirmed issues caught by
different monitors of General Mode fuzzing are shown
in Table 6. We can observe that most of the confirmed
issues (77.23%) are caught by the response-based monitor
and the proxy-based monitor, showing the effectiveness
of these device-independent monitors. We also find addi-
tional 23 issues are caught by the signal-based monitor,
showing its ability to discover deep memory corruption
vulnerabilities. To notice that, signal-based monitor can
catch much more issues for WNDR-4500v3 and R7800. It
is caused by their special implementation. In their back-
ends, they create subprocesses to handle the requests and
always respond with “configuration failure” when subpro-
cesses are crashed. In such cases, the signal-based monitor
other than the response-based monitor can deal with
them.

Table 7 shows the effectiveness of monitors for D-CONF
mode fuzzing. In this mode, the response-based monitor
works similarly with the signal-based monitor on mem-
ory corruption issues (10 vs. 12) and with proxy-based
monitor on XSS issues (15 vs. 19).

For memory corruption issues, none of the devices that
found issues handles the requests with subprocess, so
the exceptional behaviors can be easily monitored by the
response-based monitor.

For XSS issues, the payload for proxy-based monitor is
more complex than for the response-based monitor. So
in general mode fuzzing, the CONF operation with these
payloads are more impossible to execute successfully than
the payload for the response-based monitor. However,
D-CONEF operation makes this more easily.

Reboot

The times of reboot for each device during the fuzzing
is given in Fig. 10. During 40 hours in our testing, each
device rebooted 6.8 times on average. It is interesting that
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Table 6 Effectiveness of Monitors for 101 Confirmed Issues of
General Mode Fuzzing

Product MEM CMD XSS INFO
R S P P R R
Orbi 0 0 0 1 0 1
Insight 0 N/A 1 0 0 0
WNDR-4500v3 3 10 2 0 0 1
R8500 7 2 0 1 2 1
R7800 2 8 8 2 3 1
TL-WVR900G 0 N/A 25 0 0 0
Mer450 0 N/A 2 0 0 0
G3 4 1 0 0 0 0
AC9 9 2 1 0 0 0
RT-AC1200 0 0 0 0 0 1
SUM 25 23 39 4 5 5

1. R represents response-based monitor. S represents signal-based monitor. P
represents proxy-based monitor. N/A represents this monitoring method is not
supported by the device

2. The issues of different monitors for the one type of vulnerability could be
overlapped, the union of them equals to the total confirmed issues

R8500 rebooted 3.6x as many as R7800 did. This is because
R8500 handles all requests in only one process, while
R7800 handles the requests by creating subprocesses.
Moreover, the devices with Openwrt-based (Fainelli 2008)
operating system (e.g., TL-WVR900G) are more stable
than others.

The times of reboot for D-CONF mode fuzzing is
given in Fig. 11. During 20 hours of testing, each device
rebooted 4.7 times on average. The reboot times per hour
of R8500 in D-CONF mode (0.2) is significantly less than
in general mode (0.425) while the RT-AC1200 is on the
contrary. This is because device reboot are more likely
caused by the memory corruption issues. In fact, the most
memory corruptions of R8500 are triggered in CONF

Table 7 Effectiveness of Monitors for 35 Confirmed Issues of
D-CONF Mode Fuzzing

Product MEM CMD XSS

R S P P R
Orbi 0 0 0 7 9
WNDR-4500v3 0 0 0 0 0
R8500 2 2 0 2 2
R7800 0 0 3 3 5
G3 3 4 0 0 0
AC9 3 4 1 0 0
RT-AC1200 2 2 0 3 3
SUM 10 12 4 15 19

1. R represents response-based monitor. S represents signal-based monitor. P
represents proxy-based monitor

2. The issues of different monitors for the one type of vulnerability could be
overlapped, the union of them equals to the total confirmed issues
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operation while of RT-AC1200 are triggered in READ
operation.

We compared ESRFuzzer(general mode fuzzing) with
three popular open-source fuzzers in terms of discovering
vulnerabilities. For memory corruption vulnerabilities, we
chose boofuzz (jtpereyda 2012), a fork and successor of
famous protocol fuzzer Sulley (Fitblip 2012), as the com-
parative tool. For command injection vulnerabilities, we
chose Commix (Stasinopoulos et al. 2015) instead of boo-
fuzz, as Commix are better with more mutation rules and
monitoring methods. For XSS vulnerabilities, we selected
wfuzz (jtpereyda 2014), a popular web fuzzing tool sup-
porting XSS detection. ESRFuzzer did not compare with
others in information disclosure vulnerabilities, as most of
the results (4 out of 5) are being assessed. We will perform
the comparison in future work.

In the comparison, seven devices among four vendors
were selected. On these devices, we ran all of the tools
for 40 hours without interruption, which was the same
as ESRFuzzer. We fed them with the raw requests, which
were also the same as ESRFuzzer. To satisfy the special
input requirement of boofuzz, we converted each seed
with k-v pairs into the data representation of boofuzz’.
As shown in Fig. 12, ESRFuzzer outperformed those three
comparative fuzzers in all types of vulnerabilities. Specif-
ically, it has found more memory corruption issues than
boofuzz by 53.57% and more command injection issues
than Commix by 25.81%. Meanwhile, ESRFuzzer found
one more XSS issue than wfuzz. We analyze the results in
details.

Memory Corruption. Boofuzz cannot find any vulner-
abilities with its default data representation. We encoded
our seeds, which consists of k-v pairs, in boofuzz’s data
representation. In such a way, boofuzz can mutate request
content field effectively, and trigger vulnerabilities. How-
ever, due to its lack of multiple monitor methods, boofuzz
could miss issues that occur in READ operation and in a
subprocess.

Command Injection. The true positives of Commix
are less than those of ESRFuzzer for two reasons. Firstly,
among its many monitor methods, “time-related” injec-
tion monitoring technique is suitable for the devices.
However, the technique relies on response time, which
makes Commix miss some short-time exceptions. Sec-
ondly, Commix only monitors exceptions during CONF
operation, which make it ignore the issues that occur
in READ operation, such as issues in AC9 and TL-
WVR900G.

Cross-site Scripting (XSS). ESRFuzzer found one more
XSS issue than wfuzz. It is in R8500. It is missed by wfuzz
because the input generated cannot bypass the backend

7 An example of the conversion to the data representation of boofuzz is listed
in the Appendix
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PROXY_SERVER_ADDRESS/lan.ip; ” was set. Actually,
after the D-CONTF operation, this command injection has
not been triggered. Only after the READ operation call-
ing the TelnetTenda handler, this issue was triggered and
our monitor caught it. In this case, ESRFuzzer malformed
a GET request to “http://DEVICE_ADDRESS/goform/
telnet” URL as the READ operation.

After analyzing this vulnerability manually, we found
that the value of “lan.ip” variable could also be config-
ured by a CONF handler that configures the LAN IP
address. However, the vulnerable READ handler is used
for enabling the build-in telnet service and is unrelated
to this CONF handler. Therefore, General mode fuzzing
cannot discover this issue because only the related READ
handler could be triggered after a CONF operation. This
issue also illustrates that Direct CONF mode fuzzing per-
forms better than general mode fuzzing about the READ
operation issue.

Discussion

In this section, we discuss the limitation of the current
fuzzing framework and explore the improvement direc-
tion in the future.

Limitation of the Scope. The IoT device whose man-
agement protocols satisfy the C-R model and the K-V
model can take advantage of ESRFuzzer. We will extend
our work to apply more types of device such as camera,
switch, and printer, as well as other widely used manage-
ment protocols such as SOAP. Listing 2 show an SOAP
request sample for NTP configuration, the KEY-VALUE
pairs are emphasized with red and green.

<SOAP-ENV: Envelope xmlns:SOAP-ENV="http://
schemas.
xmlsoap.org/soap/envelope/">
<SOAP-ENV: Header >
<SessionID >ABCDEFGHIJKLMNOPQRST</ SessionlID >
</SOAP—ENV: Header >
<SOAP-ENV: Body >
<M1: SetNTP xmlns:Ml="urn:ROUTER: service:
DevConfig:
1">
<Option>Preferred</Option>
<NTPServerl>time.testl.com</NTPServerl>
<NTPServer2>time.test2.com</NTPServer2>
<TimeZone>GMT-8</TimeZone>
</Ml1: SetNTP >
</SOAP-ENV: Body>
</SOAP—ENV: Envelope >

Listing 2 A SOAP Request Sample

Vulnerability of severity. Although ESRFuzzer can
fuzz devices without authentication, it does not find any
pre-authenticated issues in our experiment. So we will
examine the attack surfaces more thoroughly, to find hid-
den interfaces, so as to enhance the ability to discover
authentication bypass vulnerabilities.

Research on data inconsistency. Based on the C-R
model and the K-V model, we notice that there are several
data inconsistencies between different backend proce-
dures for a specific k-v pair. In this paper, we focus on
the automatic fuzzing process and leave the analysis of
the semantic relevance systematically for future investi-
gations. The in-depth research can also help vendors to
consolidate their security design.

Monitoring. From the monitoring perspective, ESR-
Fuzzer takes advantage of the two aspects: the various
monitors for different types of vulnerability and the var-
ious monitoring mechanisms for the same type of vul-
nerability. We will try to improve the generality of the
intrusive monitor, e.g., proposing a framework to repack
the firmware or support direct flash writing.

Related work

There are many researches on detecting vulnerabilities
of IoT devices, which might also be applied to SOHO
routers. A. Costin et al. (Costin et al. 2014) performed
a large scale analysis on the firmware images while not
finding any issues at runtime. H. Bojinov et al. (Bojinov
et al. 2009) audited several types of embedded manage-
ment interface and B. Gourdin et al. (Gourdin et al. 2011)
proposed WebDroid to build secure embedded web inter-
faces. Similar works (HP-Fortify-ShadowLabs 2014; Inde-
pendent Security Evaluators 2017) for the SOHO devices
are also proposed. Another type of large scale vulnerability
detection is to scan for venerable devices in the inter-
net. A. Cui (Cui and Stolfo 2010) presented a quantitative
lower bound on the number of the vulnerable embed-
ded devices on a global scale. They found over 540,000
embedded devices are configured with factory default
root passwords.

Fuzzing is an effective method to automatically discover
vulnerabilities. Feedback-driven fuzzers (CENSUS 2016;
Google 2015a; Google 2015b; LLVM 2015; Zalewski 2014;
Rawat et al. 2017) used the runtime code coverage to guide
the following inputs generation. You (You et al. 2019),
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Jain (Jain et al. 2018) worked on the automatic input type
inference of input bytes. Fuzzing process may stick at par-
ticular branches with complex conditions. To solve this
problem, researchers combined the fuzzing with symbolic
execution (Cha et al. 2012; Kim et al. 2017; Stephens et
al. 2016). Though they are promising, they are not suit-
able for the routers because of lacking internal runtime
information.

Emulating devices is a potential solution to get the
runtime information. A. Costin et al. (Costin et al.
2016) used qemu to emulate the web interface of cer-
tain linux-based devices. The method cannot work for
web interfaces that contain special hardware related oper-
ations, like Wi-Fi configuration. FIRMADYNE (Chen
et al. 2016) emulated Linux-based COTS firmware by
supporting the emulation of NVRAM of devices. But
it was limited only for ARM-based devices in our
practice.

To overcome the firmware acquisition and emulation
problems, fuzzing on physical devices was proposed. Z.
Wang et al. (Wang et al. 2013) developed RPFuzzer to
fuzz the router protocol like SNMP. IoTFuzzer (Chen et al.
2018) was an app-based fuzzing framework which aimed
at finding memory corruptions in physical IoT devices
without firmware images. It took advantage of the col-
laboration of fuzzing and taint analysis. It only focused
on mobile-to-web interface and detected memory corrup-
tions with only liveness check, which was not enough for
finding web server vulnerabilities. Moreover, M. Muench
(Muench et al. 2018) analyzed the challenges of fuzzing
embedded devices and presented six heuristics to detect
memory corruptions.

Program analysis techniques are also used for IoT
devices to discover vulnerability. Q. Feng et al. (Feng
et al. 2016) adopted a graph-based method to search
for vulnerabilities in firmware images. They converted
control flow graphs to numeric feature vectors, and
used several hashing techniques to achieve real-time
search. Y. Shoshitaishvili et al. (Shoshitaishvili et al.
2015) used static symbolic execute and program slic-
ing to find backdoor. Besides, dynamic symbolic execu-
tion were also used. FIE (Davidson et al. 2013) was a
symbolic execution framework to find bugs for MSP430
firmware. Avatar (Zaddach et al. 2014) was a frame-
work to coordinate emulator and device when analyz-
ing the firmware. ESRFuzzer is a complement to these
techniques.

Conclusion

We have presented ESRFuzzer to identify multi-type vul-
nerabilities of SOHO routers in a fully-automatic mode
without device emulation. Based on the D-CONF oper-
ation which we found in popular SOHO routers, we
extended the CONF-READ communication model and
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propose a novel method focusing on the detection of
the READ-op issue by improving the SRFuzzer with D-
CONF mode fuzzing mechanism. Finally, ESRFuzzer has
discovered 35 previously unknown READ-op issues
that belong to three vulnerability types, and 23 of
them have been confirmed as 0-day vulnerabilities by
vendors.

Appendix A: Data representation sample
Listing 3 shows a data representation sample for boofuzz,
this sample is related to the requests from Fig.4.

s_static ("submit_flag=")
s_string ("ntp_debug")
s_static ("&conflict_wanlan=")
s_string ("")

s_static ("&ntpserverl=")
s_string ("time. testl .com")
s_static ("&ntpserver2=")
s_string ("time. test2.com")
s_static ("&ntpadjust=")
s_string ("0")

s_static ("&hidden_ntpserver=")
s_string ("GMI8")

s_static ("&hidden_dstflag=")
s_string ("0")
s_static("&hidden_select=")
s_string ("33")

s_static ("&dif_timezone=")
s_string ("0")

s_static ("&time_zone=")
s_string ("GMI—-8")

s_static ("&ntp_type=")
s_string ("0")

s_static ("&pri_ntp=")
s_string ("") s_block_end ()

Listing 3 A Data Representation Sample for boofuzz

Appendix B: Assigned vulnerabilities
Table 8 shows the assigned CVE, PSV and CNVD ids
during the fuzzing.

Table 8 All assigned vulnerability IDs

Model Vulnerabity ID

NETGEAR Orbi PSV-2017-3093 , PSV-2018-0554, PSV-2018-0555,
PSV-2018-0556, PSV-2018-0557, PSV-2018-0558,
PSV-2018-0559, PSV-2018-0560, PSV-2018-0561,
PSV-2018-0562

NETGEAR Insight PSV-2018-0610

NETGEAR WNDR-
4500v3

PSV-2017-3169, PSV-2017-3167, PSV-2017-3170,
PSV-2017-3168, PSV-2017-3154, PSV-2017-3158,
PSV-2017-3159, PSV-2017-3152, PSV-2017-3165,
PSV-2017-3166, PSV-2017-3157, PSV-2017-3156,
PSV-2017-3160, PSV-2017-3155, PSV-2017-3153

PSV-2017-3065, PSV-2017-2460, PSV-2017-2427,
PSV-2017-2428, PSV-2017-2254, PSV-2017-2226,
PSV-2017-2229, PSV-2017-2228, PSV-2017-2227,
PSV-2018-0244, PSV-2018-0243, PSV-2018-0242,
PSV-2018-0614, PSV-2018-0618, PSV-2020-0255,
PSV-2020-0261

NETGEAR R8500
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Table 8 All assigned vulnerability IDs (Continued)

Model Vulnerabity ID

NETGEAR R7800 PSV-2018-0116, PSV-2018-0115, PSV-2018-0148,
PSV-2018-0144, PSV-2018-0141, PSV-2018-0142,
PSV-2018-0139, PSV-2018-0132, PSV-2018-0173,
PSV-2018-0140, PSV-2018-0136, PSV-2018-0138,
PSV-2018-0145, PSV-2018-0171, PSV-2018-0146,
PSV-2018-0147, PSV-2018-0137, PSV-2018-0135,
PSV-2018-0133, PSV-2018-0172, PSV-2018-0174,
PSV-2018-0159, PSV-2018-0158, PSV-2018-0355,
PSV-2018-0356, PSV-2018-0357, PSV-2018-0485,
PSV-2018-0486, PSV-2018-0487, PSV-2018-0488,
PSV-2018-0489

TP-Link
TL-WVR900G

CVE-2017-15613,
CVE-2017-15616,
CVE-2017-15619,
CVE-2017-15622,
CVE-2017-15625,
CVE-2017-15628,
CVE-2017-15631,
CVE-2017-15634,
CVE-2017-15637

CVE-2017-15614,
CVE-2017-15617,
CVE-2017-15620,
CVE-2017-15623,
CVE-2017-15626,
CVE-2017-15629,
CVE-2017-15632,
CVE-2017-15635,

CVE-2017-15615,
CVE-2017-15618,
CVE-2017-15621,
CVE-2017-15624,
CVE-2017-15627,
CVE-2017-15630,
CVE-2017-15633,
CVE-2017-15636,

Mercury Mer450

CVE-2018-12488, CVE-2018-12489

Tenda G3

CVE-2018-12057,

CVE-2018-12058,

CVE-2018-12059,

CVE-2018-12060, CVE-2018-12061

Tenda AC9 CVE-2018-8742, CVE-2018-8743, CVE-2018-8744,
CVE-2018-8745, CVE-2018-8746, CVE-2018-8747,
CVE-2018-8748, CVE-2018-8749, CVE-2018-8750,

CVE-2018-8751, CNVD-2019-00015, CNVD-2019-00016

Asus RT-AC1200 CVE-2017-16901, CNVD-2020-58141, CNVD-2020-59431
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