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Abstract

While consumers use the web to perform routine activities, they are under the constant threat of attack from
malicious websites. Even when visiting ‘trusted’ sites, there is always a risk that site is compromised, and, hosting a
malicious script. In this scenario, the injected script would typically force the victim’s browser to undergo a series of
redirects before reaching an attacker-controlled domain, which, delivers the actual malware. Although these malicious
redirection chains aim to frustrate detection and analysis efforts, they could be used to help identify web-based attacks.
Building upon previous work, this paper presents the first known application of a Long Short-Term Memory (LSTM)
network to detect Exploit Kit (EK) traffic, utilising the structure of HTTP redirects. Samples are processed as sequences,
where each timestep represents a redirect and contains a unique combination of 48 features. The experiment is
conducted using a ground-truth dataset of 1279 EK and 5910 benign redirection chains. Hyper-parameters are tuned
via K-fold cross-validation (5f-CV), with the optimal configuration achieving an F1 score of 0.9878 against the unseen
test set. Furthermore, we compare the results of isolated feature categories to assess their importance.
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Introduction
Despite decades of research, browser and web-based
threats remain a critical attack vector. In 2019, researchers
identified an increasing trend of web exploitation, includ-
ing a 460% increase in PowerShell attacks used to com-
promise servers, spawn remote webshells, delivermalware
and establish botnets. CryptoJacking attacks increased by
29%, and, CookieMiner was discovered; a new malware
family which targets Apple users, automating the theft of
cryptocurrency site credentials (McAfee 2019).
EK attacks have declined in recent years due to fear

of arrest, stronger offence by security vendors, increased
security features in operating systems and browsers, the
use of ad-blockers, more robust patching etc (Ma 2018).
However, researchers registered nine active EKs in 2019.
Although these EKs did not include new, zero-day vulner-
abilities, they introduced innovative evasion techniques
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e.g. UnderMiner added steganography to provide security
through obscurity (MalwareBytes 2020).
The web is also plagued by ClickJacking, FormJack-

ing, FakeUpdaters, web-skimmers, malvertising and other
browser-based attacks. Although these attacks differ in
methodology, there may be universal features which can
be extracted and used for detection.When combined with
content-based features, the structure of HTTP redirec-
tions performed by websites could provide enough con-
text to accurately classify malicious behaviour via machine
learning (ML), which is the focus on this work.
The remainder of this paper is organised as fol-

lows. “Background” section provides a background
into HTTP redirections, Exploit Kits and LSTM net-
works. “Related work” section surveys related works. In
“Experiment” section, we describe our experimental
methodology, present and evaluate our results, and, dis-
cuss system limitations. We conclude in “Conclusion”
section and suggest areas of future work.
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Background
HTTP redirections
A HTTP redirection is an automatic transfer from one
URL to another, without user interaction. Redirections
broadly fall into two categories; header and content-based.
Header-based redirects are usually achieved by populating
the ‘referrer’ or ‘location’ header field and may produce a
30x HTTP code. These redirects are easy to map because
their occurrence cannot be hidden or obfuscated in the
network traffic.
Content-based redirects are launched from JavaScript

(JS), HTML tags or iFrames, and, cannot be mapped using
HTTP headers. Furthermore, these methods can be used
in conjunction with obfuscation techniques that hinder
the ability to trace redirections via static or manual anal-
ysis. A series of HTTP redirects is essentially a chain of
URLs, sequenced by their time of access. Attackers use
redirections to target victims with web-based malware
while evading detection.
A common technique is to compromise a legitimate

website and inject a script which redirects users to another
domain. The injected script may go unnoticed for a period
of time, especially if the redirect occurs silently. In the
meantime, victims are redirected to a malicious site which
may perform crypto-mining (Carlin et al. 2019) or attempt
to exploit vulnerabilities (Kotov and Massacci 2013).

Exploit kits
An EK is a malicious software package that can be
used to automate the exploitation of computer systems.
They operate on a subscription-based business model
that drives innovation; authors protect their source-code,
develop user-friendly interfaces, invest in new exploits,
improve evasion/anti-analysis techniques, and, offer live
customer support. The standard EK workflow can be
broken down into five phases:

1 Traffic Generation: EK operators employ a variety
of approaches to maximise traffic:

• Compromise LegitimateWebsites: inject
malicious code which redirects to an EK.

• Malvertising Attacks: place malicious code in
an advertisement which will be displayed on a
prominent, trusted website.

• Spam Email Campaigns: trick users into
opening a malicious link via phishing/spam.

Search engine optimisation (SEO) poisoning is often
used to provide a further boost to traffic.

2 Redirections:When a victim visits a compromised
site or is served a malicious advertisement, their
browser is redirected through a series of intermediate
pages known as gates. This chain of redirects

obscures the final URL that the victim will arrive at;
the landing page.

3 Fingerprinting:When a victim arrives at the
landing page, the fingerprinting process starts (may
occur during the redirection phase too).
Client/server-side code is used to profile the system
and identify vulnerabilities.

4 Exploitation: If the EK identified a vulnerability for
which it has a corresponding exploit, it now attempts
to execute it. If multiple vulnerabilities were
discovered, it may queue a series of exploits and
execute each one until it successfully compromises
the system.

5 Payload Delivery: Following successful exploitation,
the payload is executed. Typically, the payload
fetches a malicious binary, stores it on the victim
machine and then executes it. The binary could be
any variety of traditional malware e.g. ransomware or
banking trojan.

Figure 1 outlines a common EK attack structure.

Long short-termmemory (LSTM)
Recurrent neural networks (RNNs) are a type of neural
network (NN) that use internal memory to store contex-
tual information. While a traditional NN takes a fixed
length input maps it to an output, RNNs take a series
of input and learn how inputs over time map to an out-
put. These properties mean that RNNs are well suited
to sequential and time-based problems where previous
steps can be used to provide context and improve future
predictions e.g. speech recognition, language translation,
weather/stock market predictions.
Problems can arise with RNNs when the weight update

procedure introduces weight changes so small that they
have no effect (vanishing gradients) or so large that they
create instability (exploding gradients). An LSTMnetwork
is a form of RNN which uses memory blocks to learn
long-range dependencies across timesteps, addressing the
gradient complications (Brownlee 2017).
LSTMs process sequences one timestep at a time, per-

mitting variable length inputs and outputs. They can look
back across approximately 100 times more timesteps than
standard RNNs (Staudemeyer and Morris 2019). The lay-
ers in an LSTM network consist of sets of recurrently
connected memory blocks. Each of these blocks contains
one or more recurrently connected memory cells which
have weight parameters for their input, output and inter-
nal state. The cells use three multiplicative gates to control
their state and regulate information flow.

• Forget:What to forget from the previous cell.
• Input:What to learn from the previous cell.
• Output:What to pass on to the next cell.
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Fig. 1 Typical EK attack structure

Figure 2 shows the structure of a LSTMmemory cell and
how gates control the cell state and govern information
flow.

Related work
Table 1 outlines the dataset, approach and results of
related works which focus on malicious website detec-
tion by modelling the structure of redirection chains,
or, using redirection-based features. The existing works
have potential limitations or contrasting properties that
distinguish it from this experiment.
Nikolaev et al. (2016) aims to detect a single mali-

cious flow rather than chain of redirections, ignores
content-based redirects and fails to properly validate
dataset. Similarly, (Harnmetta and Ngamsuriyaroj 2018)
focuses on individual network flows rather than the full
sequence of flows that make up an EK attack. Singh and
Goyal (2019) evaluates general web-based malware fea-
tures for ML detection with no specific focus on EKs or

the structure of malicious redirections, and, no explicit
detection system is proposed.
The dataset in Süren et al. (2019) is limited (2016, span-

ning 4 families), and, attackers can update URL patterns
using DGAs. Stringhini et al. (2013) uses a private dataset,
and, fails to differentiate between header and content-
based redirects. Li et al. (2014) relies on a clean version
of the JS being available, doesn’t cover all EK attacks,
and, is easily bypassed by injecting malicious scripts in
non-standard libraries or directly into webpage.
The small sample size in Matsunaka et al. (2014) may

be problematic, and, URLs accessed within 2 seconds are
labelled as related, but URLs accessed after user inter-
action, e.g. moving the mouse, labelled as initial entry
points (potentially incorrectly). In Mekky et al. (2014),
data is collected via browser rather than the logs typi-
cally available to organisations, and, the private dataset
is labelled using an IDS which cannot detect unknown
attacks.

Fig. 2 LSTM memory cell
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Table 1 Comparison of related works

Ref Dataset Approach Results

Nikolaev et al. (2016) HTTP logs from 200+ networks over
6months and PCAPs (Duncan 2020)
over 3 months

Compares EK detection using 5
indicators (MIME type, structure,
duration, repetition, browser agent)
against RegEx only based detection

Average precision of 0.95 and recall
of 0.92-0.95 using all 5 indicators

Harnmetta and
Ngamsuriyaroj (2018)

820 PCAPs (Duncan 2020) (2014-
2016)

Applies Decision Tree classifier
to content-based, interaction
and connection-specific features
extracted from the HTTP, DNS and
Files logs produced by Zeek

Classified EK traffic with 0.99 accu-
racy, 0.92 precision and families
with 0.82-0.99 accuracy, 0.8-0.99
precision

Singh and Goyal (2019) Dataset extracted from 3496 mali-
cious and 2907 benign websites
(MalCrawler)

Determines importance of 25 differ-
ent features for detecting malicious
websites, according to accuracy
and computational costs. Applies
10-fold cross-validation (CV) in
WEKA using Naive Bayes and C4.5
classifiers

Identifies top 5 attributes of mali-
cious sites; cloaking, use of iFrame,
redirection, size of obfuscated code
and pop-ups using Window.open()
function

Süren et al. (2019) 240 PCAPs (Duncan 2020) (2016) Extracts 20 URL-based features from
each domain in EK attack chain and
compares ML algorithms

KNN, SVM, GBC achieved 0.958,
0.916 and 1.0 accuracy

Stringhini et al. (2013) 5000 redirect chains from a large AV
vendor (2012)

Builds redirection graphs by aggre-
gating redirect chains from a collec-
tion of different users, and, extracts
28 features from 5 categories for
SVM

Achieved F1 score of up to 0.881,
depending on the range of features
considered

Li et al. (2014) Crawled Alexa top 1m domains and
Microsoft’s feed of malicious URLs
over 4-6 weeks (2012)

Detects mass redirect-script injec-
tions by comparing suspicious JS
files to their original versions. Based
on the observation that redirection
scripts are often quietly injected
into legitimate JS libraries, whose
unaltered code is publicly available

Produced detailed analysis of mali-
cious JS/redirects and quantified
the use obfuscation/evasion tech-
niques

Matsunaka et al. (2014) D3M 2013 dataset of 108 malicious
websites (Marionette)

Uses monitoring sensors on the
client-side (browser, web proxy and
DNS), and, an analysis centre on the
server-side to detect EK attacks. EXE
downloads are classified as mali-
cious if the URL is not present in
previous HTTP headers or web con-
tent

Achieved 0% FPR with 24.2% FNR
when tested against dataset of 108
URLs (33 malicious)

Mekky et al. (2014) 15,000 malicious paths and 225,000
benign paths, provided by a large
ISP (2011-2012)

Reconstructs user browsing activity
into trees, representing time-based
sessions, and, extracts 8 redirection-
based features for use with a Deci-
sion Tree classifier

Extracted redirection trees with
0.965 accuracy, and, classified
with precision and recall values of
0.9-0.98

Takata et al. (2015) Crawled 19,899 EK landing pages
over 3 years (Marionette)

Applies program slicing to JS; exe-
cutes each code segment and
extracts URLs, even when cloaking
prevents the execution of malicious
JS branches

Extracted 30,000 new URLs com-
pared to existing techniques

Nelms et al. (2015) Dataset of 683 manually labelled,
malicious download paths (164 EK
instances)

Investigates browsing paths fol-
lowed by users before an attack.
WebWitness identifies a malicious
download and traces back through
HTTP requests, building a tree of
redirects that led to the malware

Identified EKs with 0.9919 accuracy
when tested against 48 EK samples
using 10-fold CV

Taylor et al. (2016) 688 million redirection trees,
extracted from 3800 hours of traffic
(2013-2014)

Builds web session trees (WST) and
extracts URL-based features. Sub-
tree similarity searches are per-
formed against the WSTs to identify
node-level and structural similari-
ties with known malicious trees

Achieved 95% FPR against a dataset
of 85 EK samples, and, identified 28
new EK instances during analysis
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Table 1 Comparison of related works (Continued)

Ref Dataset Approach Results

Nagai et al. (2019) D3M 2015 dataset of 256 malicious
websites (Marionette)

Builds WSTs similar to (Taylor et al.
2016), but, aims to handle incom-
plete redirection data using time-
based clustering. Focus is on WST
construction rather than feature
extraction

Average accuracy of 0.862 using 2-
f CV. Scored higher on EKs families
represented in both train and test
sets

Takata et al. (2018) 8467 JS samples from 20,272 mali-
cious websites (2012-2016)

Compares redirection graphs from
browsers running different JS
implementations to identify struc-
tural differences resulting from
evasive code

Discovered several new evasion
techniques that abuse JS imple-
mentation differences

Shibahara et al. (2019) Crawled 455,860 websites, 1.3%
labelled as malicious or evasive
(2016)

Graph mining approach to detect
malicious sites, even if full chain of
redirects cannot be extracted. 22
redirect, HTML and JS-based fea-
tures obtained from each graph,
evaluated with RF classifier

Achieved F1 score of 0.766 for sites
hosting EK URLs, and, identified 143
more malicious sites than conven-
tional systems

Takata et al. (2015) exclusively focuses on identifying
redirects in JS code, no other redirect types or website
features are considered. The sample size in Nelms et al.
(2015) is limited, and, it aims to classify different cate-
gories of web malware. Taylor et al. (2016) uses a private
dataset extracted from 3800 hours of traffic, but, only con-
tains 131 EK instances. Furthermore, potential content-
based redirects are modelled using a 5 second threshold,
without verification.
The small dataset used in Nagai et al. (2019) misses

many high profile EKs (Angler, Nuclear, Neutrino, Rig,
Fiesta), and, modelling redirects based on time alone is
problematic. Redirection chains are mapped in Takata
et al. (2018), but, content-based redirects are not con-
sidered. Shibahara et al. (2019) models redirections irre-
spective of occurrence, e.g. if URL is found in JS but
wasn’t accessed, it’s still labelled as a redirect. Dataset
distribution may also impact these results.
LSTM has been applied to traditional malware (Hwang

et al. 2019) and Android malware detection (Vinayakumar
et al. 2018). It has also been used to detect malicious web-
sites using URL-based features (Liang et al. 2017) and JS
bytecode sequences (Fang et al. 2018). To our knowledge,
this paper presents the first use of an LSTM classifier to
detect EKs, utilising the sequential structure of malicious
redirection chains.
The LSTM detection method builds upon REdiREKT

(Burgess et al. 2020), a system designed to map HTTP
redirection chains observed in EK attacks and extract
features for ML. By processing a unique combina-
tion of 9 redirection techniques, REdiREKT correctly
extracted 96.52% of malicious domains from 1279 EK
samples, spanning 28 families and 8 campaigns, and,
only failed to extract 0.7% of malicious chains. A

ground-truth dataset was produced during the experi-
ment (see “Experiment” section).
REdiREKT (Burgess et al. 2020) serves as the first com-

ponent of an EK detection system. This work advances
the previous work and presents several new contributions;
it is the first known application of a LSTM network to
detect EK traffic, and using REdiREKT’s new dataset, it
better reflects up to date network traffic behaviours. The
methods used to prepare the raw dataset for ML and
build the LSTM classifier were carefully considered and
are outlined in detail.
A range of hyper-parameters are explored and tuned

using 5-fold CV to obtain the optimum model in terms
of accuracy and computational cost, and, assess the fluc-
tuation in results across different configurations. The
final model is tested for environmental bias and feature
categories importance are presented and discussed. The
project code, dataset and results are publicly released to
help further research in the field.

Experiment
The experiment was conducted in 2020 on an Ubuntu
18.04 VM with an Intel i7-8700K CPU and 24GB RAM.
The project is primarily written in Python3.

Goals
1 Develop an LSTMmodel to detect EK attacks,

utilising the sequential structure of redirections.
2 Apply the classifier to a ground-truth dataset.
3 Use K-fold CV to accurately tune hyper-parameters

and select the best performing model.
4 Compare isolated feature category performance.
5 Assess environmental bias impact and discuss future

work.
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Data extraction
In a previous experiment, REdiREKT (Burgess et al. 2020)
was used to extract HTTP redirection chains from net-
work traffic (PCAPs) using the Zeek IDS (Zeek 2020). A
key goal of the experiment was to build a ground-truth
dataset of EK and benign samples which could be used to
assist future ML research. We use REdiREKT as our data
collection and extraction system for this experiment. Further
details of the methodology can be found in Burgess et al.
(2020) but each sample is processed broadly as follows:

1 PCAP is processed by Zeek, generating a HTTP.log
which is modified to include server-side headers.
CONTENT.log is also generated via a custom Zeek
script which uses RegEx to extract potential
content-based redirects e.g. HTML/JS/iFrame/
Base64/Concat.

2 Log entries are divided into sets according to their
source IP, this enables tracking of multiple hosts.

3 If the time between two neighbouring entries is
greater than 15 minutes (user-defined), they are split
into temporal sessions.

4 Sessions are passed to the AnyTree module (c0fec0de
2020) to build redirection trees according to the
redirects observed in the logs. Content-based
redirects are verified first e.g. if an iFrame is found on
a.com which points to b.com, we verify that b.com
was accessed after a.com.

5 When all trees have been constructed, any single
node trees (no redirects) that exist are compared
against the leaf nodes in each tree. A ‘subdomain’
redirect is added if they have the same domain but
different subdomains, and, were accessed with 60
seconds of each other.

6 Redirection chains are extracted from the trees. A
chain is defined as a unique path from root node to
one of its leaf nodes, excluding the root node’s
children which aren’t on the direct path to the leaf
node which are unlikely to be attacker-controlled.

7 The structure of each chain is exported to JSON.
8 48 features are extracted from each node, in each

chain, and, are stored as rows in CSV file, uniquely
indexed by the sample name, chain number and
redirect number.

Time-based thresholds were selected pragmatically
based on initial observations from our dataset and can
be easily defined at runtime, allowing their impact to
be assessed in different environments. Table 2 provides
examples of the types of redirections processed by REdi-
REKT. The system is designed to overcome basic obfus-
cation techniques such as whitespace randomisation, case
sensitivity and foreign characters.
Figure 3 shows a redirect tree and the four chains

extracted from it. A chain from benign.com to x.sploit is
extracted without modelling the siblings of 1.mal (chil-
dren of benign.com not on the path to x.sploit). However,
2.mal is included in the chain, despite not being on the
direct path to x.sploit. This is because, in an attack, 1.mal
would be attacker-controlled and all redirects spawned
from here are inherently malicious.
Figure 4 provides a high level overview of REdiREKT

and Table 3 outlines the features which are currently
extracted. Note, the initial feature-set is based on a com-
bination of manual analysis of EK attacks and previous
web-basedmalware research. DNS/file-based features will
also be considered in future.

Data preparation
Data produced by REdiREKT requires some pre-
processing before it can be used for ML:

1 CSV dataset is loaded using Pandas.
2 Top level domain (TLD) is converted into category

codes.
3 Features are scaled between 0-1 by MinMaxScaler.
4 Padding is used to ensure equal length sequences.
5 Dataset is reshaped into a 3D array (no_of_samples *

max_nodes * features_per_node).

Table 2 Redirection types

Category Type Example

Header Referrer referrer field holds source, and host field holds destination URL

Header Location host field holds source, and location field holds destination URL

Content HTML http-equiv="Refresh" url="< url>" and form|a|p|img src="< url>"

Content JavaScript window|document(.location|.open)?.href|hostname|replace|assign|write
Content iFrame < iframe src="http://evil.com"></iframe>

Content Base64 window.cback(‘aHR0cDovL2V2aWwuY29tL2V4cGxvaXQvZXhwbG9pdC5waHA=’);

Content Concatenation var a = "http://" + ‘evil’ + ".com"; window.href=a;

Content Unknown URL found in page content and subsequently visited, no verifiable source

Relational Subdomain URL shares domain with recently accessed URL, no other identifiable source
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Fig. 3 Redirection tree

LSTM classifier
An LSTM binary classification model is created to utilise
the sequential structure of EK attacks and aid detection
efforts. The classifer is developed using Jupyter Notebook
and imports TensorFlow 1.14, Keras 2.3.1 and Scikit-
Learn 0.22.2.

Buildmodel
The model building function creates a new sequential
model and adds a masking layer, with a mask value of zero.
The masking layer ensures that all padded timesteps (con-
sisting solely of zeroes) are ignored by the model. Next,
X LSTM layers are added to the model consisting of Y
neurons with a dropout value applied between each layer.
If X is greater than one, then return_sequences is

set to True to ensure all the relevant data is passed
to the next layer. The final LSTM layer will not have
return_sequences enabled. A dense output layer with a
single neuron and sigmoid activation function are added;
they are designed for binary classification problems and
allow the model to make 0-1 predictions.
Finally, the model is compiled using binary_

crossentropy; the default loss function used for binary
classification problems. Other common loss functions
include hinge loss and squared hinge loss but they are pri-
marily associated with SVM models. The adam optimiser
is selected as it is known to perform well in most practical
applications with minimal changes to hyper-parameters.

Fig. 4 REdiREKT flowchart
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Table 3 Node-based features

Feature Description

Redirect

Number Index of node within chain

Depth Depth of node within chain

Time Time between redirections

Referrer No. of ‘Referrer’ redirects

Location No. of ‘Location’ redirects

HTML No. of ‘HTML’ redirects

JS No. of ‘JS’ redirects

iFrame No. of ‘iFrame’ redirects

Subdomain No. of ‘Subdomain’ redirects

Concatenation No. of ‘Concat’ redirects

Base64 No. of ‘Base64’ redirects

Unknown No. of ‘Unknown’ redirects

URL

Standard Port Use of default HTTP(S) port

Is IP Domain is an IP address

Domain Length Length of the domain name

Domain Entropy Entropy of the domain name

URI Length Avg URI length

URI Entropy Avg URI entropy

URI Slash Avg/Total slashes (‘/’)

URI Amp Avg/Total ampersands (‘&’)

URI Dash Avg/Total dashes (‘-’)

URI Plus Avg/Total pluses (‘+’)

TLD Top-level domain

Content

Requests No. of HTTP requests

Response Avg/Total size of responses

Shockwave Avg/Total Shockwave bytes

Executable Avg/Total EXE bytes

Java Avg/Total Java bytes

Silverlight Avg/Total Silverlight bytes

JavaScript Avg/Total JavaScript bytes

XML Avg/Total XML bytes

ZIP Avg/Total ZIP bytes

Image Avg/Total Image bytes

HTML Avg/Total HTML bytes

Cross validation
CV is commonly used to assess the performance of ML
models, especially when the dataset is limited. K-fold CV
splits the dataset into K partitions, trains on K-1 parti-
tions and tests on the remaining K partition. This process
repeats K times until all samples have had a chance to

appear in the test set, eliminating any bias introduced by
the train:test dataset distribution. The final performance
metric is calculated by averaging the scores for the K-folds.
In order to accurately select the optimal hyper-

parameters for a model, the training set must be fur-
ther broken down to include a validation set (train:val).
The validation set is used to identify the best perform-
ing hyper-parameters, which, are then used in the final
model to be evaluated against the test set (via K-fold
CV). However, this method is susceptible to potential bias
introduced by the train:val dataset distribution.
Nested CV can address this issue by applying multi-

ple layers of K-fold CV. An inner loop applies K-fold
CV to select hyper-parameters (train:val) and an outer
loop applies K-fold CV to evaluate the model (train:test).
Nested CV represents the highest standard of ML model
selection and evaluation, but, it is computationally expen-
sive and not always feasible.
Although the nested CV technique was initially imple-

mented, it was ultimately discarded due to time con-
straints. Instead, the dataset is split into a train:test
(80:20) set which remains fixed throughout the experi-
ment. 5-fold CV splits the training set (train:val) during
hyper-parameter tuning and the best performing model is
evaluated with the unseen test set.

Hyper-parameter tuning
Neural networks allow a range of hyper-parameters to be
configured which determine the network structure and
training properties. The configuration is not an exact sci-
ence, and, although some formulas for calculating param-
eters exist, selection is often a trial and error-based
approach. K-fold CV can be used to improve accuracy but
it is computationally expensive.
The hyper-parameters listed below were tuned using

5-fold CV. Note that the network training time rises
exponentially as the number of layers, neurons and
epochs increase. LSTMnetworks allowmanymore hyper-
parameters to be adjusted which were not tuned during
this experiment due to time constraints. The default Keras
values were used for learning rate (0.01), batch size (32)
and any other hyper-parameters which are not described
below.

• Layers: Number of hidden layers in network.
• Neurons: Number of hidden neurons in a layer.
• Epochs: Number of times that all samples in the

training data are shown to the network and weights
are updated.

• Dropout: Helps to avoid overfitting; dropout
randomly skips neurons during training, increasing
the robustness of the network.

Initially, GridSearchCV was used to perform an
exhaustive, linear search over a grid of specified
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hyper-parameters, allowing the impact of incrementing
each parameter to be visualised. Ultimately, Randomized-
SearchCV was better suited for the final model selection
as it allows the number of random iterations to be pre-
defined, and, improves performance.
The best scoring model identified during the search

is refit against the entire dataset (train:val) before test-
ing. GridSearchCV and RandomizedSearchCV both per-
form data shuffling and use StratifiedKFold to ensure
that each partition preserves the distribution of mali-
cious and benign samples. The random_state values are
fixed to ensure that model comparisons are accurate and
experiments are reproducible.

Dataset
The dataset used for this experiment was generated by
processing PCAPs with REdiREKT (Burgess et al. 2020)
(summarised in section B). The techniques used to build
and verify the ground-truth dataset are broadly outlined
here.

Malicious
Malicious samples were collected from malware-traffic-
analysis.com (Duncan 2020) and broadanalysis.com
(Analysis 2020). Each PCAP is coupled with a techni-
cal report describing the malware e.g. family, campaign,
exploit/malware type and associated domains. Only sam-
ples labelled as EK-traffic containing at least one redirect
were considered. Some samples were excluded for a vari-
ety of reasons:

• Contained only post-infection traffic.
• Spam-based EK attack.
• Corrupt PCAP file.
• Author unable to provide password for archive.

Many samples were missing some of the initial traf-
fic, e.g. the compromised host, often for privacy rea-
sons. These PCAPs were not discarded, providing they
contained at least one redirection. However, any sam-
ples missing the compromised host were clearly labelled,
allowing statistics to be accurately updated and sam-
ples to be easily excluded from ML. The data collection
process produced 1279 useable malicious samples from
2013-2019, spanning 28 EK families and 8 campaigns.
All samples were manually analysed using Wireshark

alongside the accompanying technical reports. The output
of this process was a series of JSON-based test cases which
correctly map to the HTTP redirection chains observed
in the PCAPs.When running REdiREKT against the mali-
cious dataset, the extracted chains are compared to the
corresponding test case. There are three possible test
results for each sample:

• Correct: A chain matches the test case exactly.

• Semi-correct: A chain begins and ends with the
correct domains, but, redirects are missing or
ordered incorrectly.

• Incorrect: Failed to extract a chain beginning and
ending with the correct domain.

Out of the 1279 malicious samples, 1172 (91.63%) mali-
cious chains were correctly identified, 98 (7.66%) were
semi-correctly identified, and 9 (0.7%) were incorrectly
identified. In total, 3328 (96.52%) malicious domains were
correctly extracted from 1279 malicious chains. Note
that while semi-correct chains don’t match the test case
exactly, they may provide adequate data for ML as they
still contain the EK domain which runs the exploit and
delivers the payload.

Benign
To generate the benign dataset, the Alexa top 10k web-
sites were pre-filtered to remove URLs which were inac-
tive, routed to the same domain (duplicates) or were
HTTPS-based (currently unable to decrypt in Zeek - see
“Conclusion” section), producing 1525 unique domains.
Although this number may appear low, over 70% of the
top 10k domains use HTTPS, which, is to be expected for
high-profile websites. The remaining domains failed due
to a variety of errors, e.g. connection refused, DNS lookup
and timeout.
Next, each domain is queried using the VirusTotal

API (VirusTotal 2019), and, excluded from the dataset
if flagged by any AV vendors. 88/1525 domains were
excluded for this reason. Selenium (Selenium 2019) is
used to visit each domain while traffic is captured via
TShark (Wireshark 2019). The system operates on Win-
dows 10 using the native IE 11 browser to recreate the
environment used to capture the malicious traffic as best
possible.
If the page loads correctly, the Selenium driver attempts

to close any generic GDPR/cookie-related pop-up win-
dows and continues to capture traffic for 15 s. If the
domain fails to load within 60 s, it is removed from
the dataset. 37/1525 domains were excluded for this rea-
son. Finally, the virtual environment is completely reset,
ensuring a new session for each sample. This system pro-
duced 1400 PCAPs which were then processed through
REdiREKT.

Deployment
It is envisioned that the practical application of the LSTM
model would occur at network level, using data extracted
directly from networking equipment or HTTP logs. It is
possible to capture data directly from the browser via
an extension as seen in some existing works (Mekky
et al. 2014). Using a browser extension offers a decen-
tralised approach and has some key benefits e.g. easier
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to monitor HTTPS-based traffic and capture additional
browser-related features.
However, there are also several problems with this

method. Malicious JS could interfere with an in-browser
detection system, poisoning data which is later used
for ML training. Furthermore, in a successful EK infec-
tion the attacker will have complete control over the
system and could easily disable the browser extension,
clear logs and prevent reporting. Gaining control of an
external networking device is significantly more chal-
lenging, even with full control of a system within the
network.
The network-based data collection method was also

chosen to improve accessibility. Most networks will have
existing equipment to process HTTP traffic and store
logs, whether that’s a Firewall, IDS/IPS or standard HTTP
Proxy. This means that many networks will be able to
deploy the LSTMmodel against live traffic out of the box,
and, even retroactively process stored logs to identify past
infections.
The choice to focus on network traffic also ensures that

historical EK attack data can be used for ML training. The
malicious PCAPs which were gathered and processed for
the experiment were captured from 2013-2019, on dif-
ferent computer systems and networks. Some of these
PCAPs were generated using realistic honeypots, oth-
ers were taken directly from the real-world attacks on
corporate networks.
Unlike most traditional malware types, EK attacks can-

not be easily recreated by executing a sample in a virtual
machine. The EK needs to be active in order to recre-
ate an attack, and, many of the popular families from the
past decade have been taken down e.g. law enforcement

takedown operations and EK developers ending their as-
a-service offerings for a variety of reasons.
Even for the EKs that remain active, the ability to recre-

ate attacks is greatly hindered by evasion techniques e.g.
only target specific countries/OS/browser/software, only
attempt infection once, VM/debugger aware etc. There-
fore, it is important that existing data is utilised, and, the
system can operate using data that is commonly recorded
and stored by organisations. In future work, OS/browser-
based features may be explored as an additional (possibly
optional) data source.

Metrics
Four commonmetrics are used to evaluate the MLmodel.
True positives (TP) and true negatives (TN) refer to cor-
rectly classified samples (malicious and benign, respec-
tively). False positives (FP) and false negatives (FN) refer
to incorrectly classified samples (benign and malicious,
respectively).

Accuracy
Proportion of accurately classified samples to total num-
ber of samples. The accuracy metric can be misleading
when dealing with an unbalanced dataset.

accuracy = TP + TN
TP + FP + TN + FN

(1)

Precision
Proportion of accurately classified malicious samples to
total number of samples. A high precision score correlates
to low FP rate (FPR).

precision = TP
TP + FP

(2)

Fig. 5 Testing 20-500 epochs on vanilla LSTM
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Fig. 6 Testing 1-200 nodes (trained for 213 epochs)

Recall
Proportion of accurately classified malicious samples to
total number of malicious samples.

recall = TP
TP + FN

(3)

F1 score
Harmonic mean of precision and recall. F1 is typi-
cally considered more valuable than accuracy, particularly
when there is an irregular distribution of classes.

F1score = 2 ∗ (Precision ∗ Recall)
Precision + Recall

(4)

Results
Hyper-Parameter tuning
5f-CV was applied during the hyper-parameter tuning
process to identify the optimal range of parameters. Due
to computational costs, a single iteration of 5f-CV was
applied to the training set before retraining on the best
performing parameters and testing the final model against
the unseen test set. First, a vanilla model with a single
hidden layer and neuron was constructed and trained
for 10-500 epochs. Figure 5 shows that the performance
plateaued after ∼200 epochs, with the best performing
epoch (213) achieving an F1 score of 0.989. If multiple
models produce the same result, the parameter which
incurs the least computational cost is selected.

Fig. 7 Testing 1-25 layers (trained for 213 epochs with 1 node)
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Fig. 8 Testing 1-25 layers (trained for 213 epochs with 45 nodes)

The best performing epoch (213) was fixed through-
out the remainder of the tuning process. This is not ideal
because the optimum epoch is expected to change as
other hyper-parameters are adjusted, but, it is a calculated
trade off as computational costs will increase exponen-
tially when tuning the number of layers and hidden units.
This concern will be addressed later when Randomized-
SearchCV is used to randomly select and test differ-
ent hyper-parameter configurations, without introducing
such significant resource costs.
Figure 6 shows the model performance across 1-200

hidden units with the optimal number of hidden units
(45) achieving an F1 score of 0.989. Although the results
appear to fluctuate significantly due to the graph scale,

the standard deviation of 0.00161 is within the expected
variation threshold for LSTM training. Figures 7 and 8
show the model performance across 1-25 layers with 1
hidden unit and 45 hidden units, respectively. The highest
scores are 0.986 (1 layer) and 0.99 (3 layers), respectively.
Note, the F1 score rapidly declines to zero in both cases
where the number of layers is too high.
The drop was observed consistently across several

tests using similar configurations and resulted from the
sharp decline in precision and recall, while the accu-
racy remained relatively high. Keras applies dropout at
the output gate between layers, randomly dropping neu-
rons which helps prevent overfitting. Figure 9 shows the
impact of the dropout hyper-parameter on the model

Fig. 9 Testing 0.1-0.9 dropout (trained for 213 epochs, with 45 nodes and 1 layers)
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Fig. 10 Testing 1-25 nodes across 1-10 layers (trained for 267 epochs)

performance. The dropout range 0.1-0.9 was tested and
remained fairly consistent between 0.1-0.7 before declin-
ing. The best performing value was 0.1, achieving an F1
score of 0.989.
Figure 10 shows a full hyper-parameter grid search

over 1-25 hidden units using 1-10 hidden layers, 3/250
results are not visualised due to anomalous values (0.5-
0.7) that introduce scaling issues in the graph. Additional
hyper-parameter testing was performed but not docu-
mented in the previous section as it did not produce
noteworthy results e.g. halving the number of hidden
units in each layer similar to (Hwang et al. 2019), and,
various configurations based on existing academic work.

Optimummodel
Using insights gained from the GridSearchCV hyper-
parameter tuning process, RandomizedSearchCV was
configured with a grid of suitable hyper-parameters and
executed 15 times. On each run, 10 grid configurations
were randomly selected and tuned with 5f-CV. The best
performing model was then retrained against the entire
dataset (train:val) and evaluated against the test set.
The best model used 40 hidden units and 6 layers, and,

was trained for 298 epochs with a dropout value of 0.4.

Table 4 Results by feature category

Feature Accuracy Precision Recall F1 Score

All 0.9958 0.9918 0.9837 0.9878

Redirect 0.9318 0.87 0.7073 0.7803

URL 0.9708 0.9397 0.8862 0.9121

Content 0.993 0.9836 0.9756 0.9796

The results from this model are presented in Table 4. To
determine the importance of different feature categories,
new models were constructed using the same hyper-
parameters and trained for each feature type; redirect,
URL and content (see Table 3).
The highest scoring individual category was content,

achieving a score comparable to ‘all’ features. This is
because EKs must deliver exploit code in the required for-
mat for execution e.g. Shockwave, Java, Silverlight. The
URL category performed well since EKs generate domains
with DGAs and use distinctive query strings. The detec-
tion of malicious sites via URL-based features is an exten-
sive field, with notable works focusing on EKs (Süren
et al. 2019) and one contribution applying LSTM to detect
DGA-based domains (Liang et al. 2017).
Although the redirect feature category scored the lowest

individually as a category, it still achieved notable results.
Furthermore, the LSTM model is utilising the structure
of redirections by processing each node as a timestep
in a sequence. Therefore, the contribution provided by
the redirect-based features is not fully represented in
Table 4.

Table 5 Environmental bias check

Feature Condition Accuracy Precision Recall F1 Score

Content Averages
only

0.993 1.0 0.9593 0.9793

All No redirect
timing

0.9944 0.9877 0.98 0.9837

All Equalised
dataset

0.9882 0.9881 0.9881 0.9881
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Environmental bias
Although we aimed to replicate environments as closely
as possible, the malicious and benign samples were cap-
tured on different systems over various time periods. This
variation in the malicious dataset could actually provide
robustness as it represents website visits from multiple
sources, over a ∼7 year period. The data was also captured
using different hardware, operating systems and internet
connections, which, are likely to have been replaced or
upgraded along the way.
Based on the understanding that the average internet

connection quality and website sophistication has been on
a continuous upward trend, we wanted to test for environ-
mental bias between the malicious and benign datasets.
Although some of the malicious samples were captured
recently, the average network connection speed and web-
site size across the dataset is significantly lower than the
benign samples which were all captured in 2019-2020.
We tested the ‘content’ features without totals to

account for the increase of website content size and ‘all’
features without the redirect timing features, to account
for the increased performance of web servers and high
speed internet. Since benign redirect chains are over-
represented in the dataset ∼6:1, we also equalised the
dataset to contain 1270 samples of each class. The impact
of these environmental bias checks were negligible, as
seen in Table 5.

Performance
The accuracy of aMLmodel comes at a performance cost,
and, achieving the right balance can be difficult. Depend-
ing on the use case, a significant increase in computational
requirements may be justified for a slight boost in accu-
racy. Training a vanilla LSTM for 213 epochs achieves an
F1 score of 0.989 during validation with an average fit and
test time of 266 s and 0.26 s, respectively. Introducing 40
hidden units and 6 layers, and, training for 298 epochs

(optimal model) achieves the same F1 score during valida-
tion while increasing the fit time by 1839%. Figure 11 show
how the time consumption of training increases as more
hidden units and layers are added the model.

Conclusion
This paper presented the first known application of a
LSTM classifier to detect EK traffic, utilising the sequen-
tial structure of HTTP redirections. Using a ground-
truth dataset of 1279 EK and 5910 benign redirection
chains obtained from REdiREKT (Burgess et al. 2020), we
optimised LSTM model hyper-parameters and achieved
an F1 score of 0.9878 against the unseen test set.
Finally, we assessed the contribution of individual fea-
ture categories and the overall performance of the
model.
In order to process HTTPS traffic at network level, the

SSL keys must be captured and used to decrypt the traf-
fic. While this is fairly trivial to do with right level of
access and authorisation, automating the process in REdi-
REKT/Zeek remains a task for future work. Note that
although this functionality is desirable, only 0.18% of the
1279 EK samples collected from 2013-2019 used HTTPS.
Additional data sources could be explored in future

work to identify new detection features. The Zeek
DNS.log could be used identify the age and scheduled
validity of domain names, e.g. if a domain was registered
recently and has a short expiration, it’s more likely to be
malicious. The Zeek Files.log may also prove useful; if an
executable file is downloaded by the final node in a chain,
it is more likely to be an attack than a redirection chain
that does not drop a binary.
Finally, expanding the ground-truth dataset is a key goal

of future work. In particular, we would like to apply REdi-
REKT to other forms of web-based malware and iden-
tify any shared or distinct characteristics which could be

Fig. 11 Time consumption vs hidden layers/nodes (trained for 267 epochs)
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used to classify attacks, e.g. ClickJacking, CryptoJacking,
FormJacking and FakeUpdaters. Dataset expansion is time
consuming as it requires extensive manual analysis and
labelling.
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