
Shafarenko ﻿Cybersecurity (2021) 4:36
https://doi.org/10.1186/s42400-021-00101-w

RESEARCH

Indexing structures for the PLS blockchain
Alex Shafarenko*   

Abstract 

This paper studies known indexing structures from a new point of view: minimisation of data exchange between
an IoT device acting as a blockchain client and the blockchain server running a protocol suite that includes two Guy
Fawkes protocols, PLS and SLVP. The PLS blockchain is not a cryptocurrency instrument; it is an immutable ledger
offering guaranteed non-repudiation to low-power clients without use of public key crypto. The novelty of the situ-
ation is in the fact that every PLS client has to obtain a proof of absence in all blocks of the chain to which its coun-
terparty does not contribute, and we show that it is possible without traversing the block’s Merkle tree. We obtain
weight statistics of a leaf path on a sparse Merkle tree theoretically, as our ground case. Using the theory we quantify
the communication cost of a client interacting with the blockchain. We show that large savings can be achieved by
providing a bitmap index of the tree compressed using Tunstall’s method. We further show that even in the case
of correlated access, as in two IoT devices posting messages for each other in consecutive blocks, it is possible to
prevent compression degradation by re-randomising the IDs using a pseudorandom bijective function. We propose a
low-cost function of this kind and evaluate its quality by simulation, using the avalanche criterion.

Keywords:  PLS blockchain, Guy Fawkes protocol, Content-addressable storage, Data-structure statistics, Tunstall
coding, Pseudorandom bijections

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
This paper gives statistical analysis of some known data
structures required for the implementation of the PLS
(permissioned) blockhain (Shafarenko 2021) or PLSB
for short, whose purpose is to support a swarm of IoT
devices, or things operating on the premises of a single
administrative authority, for example a smart hospi-
tal. The use of a blockchain is for the purposes of audit
trail, authentication and non-repudiation of all actors,
both human and unmanned, including small, bare-metal
microcontrollers that supply critical sensor data and
those which drive actuators.

The utility of permissioned distributed ledger systems
(permissioned blockchains, or PBCs for short) is based
on two fundamentals: (i) distributed validity check of
messages and (ii) an immutable, linearly-ordered ledger.
In IoT applications, especially in sensor-networks, (ii)
tends to be more important than (i). Indeed, typically

messages are not transactions in the financial sense, so
checks such as double spending are not relevant; value
checks are domain-specific and are best performed
by smart contracts, which leaves the authenticity and
provenance of each message posted on the ledger as
the only general validity concerns. The PLS blockchain
(Shafarenko 2021) assures (ii) by employing Guy-Fawkes
Protocols (GFPs) (Anderson et al. 1998).

A GFP is a post-quantum signature protocol based on
an unlimited series of interlocking cryptographic hashes.
GFP computations are fast, messages short and secrets
neither moved nor kept for a long time; the GFPs are
resistant to quantum computing as they do not use oper-
ations such as prime-number factorisation or discrete
logarithm. Finally, by their recursive nature, GFPs define
a single sequence of signatures that is very hard to split;
this makes them quite suitable as a basis of a blockchain.

In the next section we will briefly outline the architec-
ture and protocols of the PLS blockchain published in
an earlier paper (Shafarenko 2021). Operational differ-
ences between the PLS and other blockchains, such as
Etherium, call for re-evaluation of major data structures

Open Access

Cybersecurity

*Correspondence: a.shafarenko@herts.ac.uk
University of Hertfordshire, AL10 9AB Hertfordshire, UK

http://orcid.org/0000-0001-8796-6542
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00101-w&domain=pdf

Page 2 of 19Shafarenko ﻿Cybersecurity (2021) 4:36

required for its implementation. In Sect. 4 we argue that
the limited number of users (IoT devices on the prem-
ises and human actors1) and the limit on their commu-
nication duty cycle and disposable energy need efficient
secure data structures to avoid communicating irrel-
evant data. We propose a Merkle-Tunstall Tree for that
purpose (Sect. 5) and provide a statistical evaluation of
its efficiency. The efficiency of the Tunstall compres-
sor depends on the lack of correlations between differ-
ent user’s contributing to the same block. To decorrelate
block access we propose to use a random permutation
function to map users’ true IDs onto local IDs for a given
block, see Sect. 6. To illustrate how proposed technolo-
gies work together we give one illustrated example in
Sect. 7. Finally, there is a section on related work and
some conclusions.

The main contributions of the paper are as follows:

1.	 Statistical analysis of a sparse Merkle tree with uni-
form, uncorrelated probabilistic leaf occupancy. We
have obtained the path-weight probability distribu-
tion function (as a recurrence relation in the tree
height) analytically, without Monte-Carlo simulation.
It is easy to quantify the function numerically for any
given height.

2.	 The proposal and evaluation of a compressed bitmap
and local enumeration of block users. This makes it
possible for a user to obtain the proof of absence in
the block directly from the broadcast root of trust
without accessing the Merkle tree. We have also
shown that the local enumeration results in a path
weight similar to that on the original sparse Merkle
Tree on average, but the variation is tightly bounded
from above, which makes it possible to limit the
packet length when communicating a secure leaf
path using our structure. By contrast, the path across
the original tree varies more widely depending on the
leaf statistics and may result in paths exceeding the
maximum packet size.

3.	 The proposal and evaluation of shuffle-shift as a low-
cost pseudorandom permutation technique sufficient
to break a possible correlation between occurrences
of different users’ records in block contents. We
quantified the number of rounds in the permutation
algorithm to be used taking the avalanche criterion
as a basis.

PLS blockchain: architecture and protocols
The details of the protocols and their security analysis are
available from Shafarenko (2021). We present them here
for completeness. However, for the contributions of the
present paper we only need to discuss the logistics of the
PLSB, whose architecture is shown in Fig. 1.

Blocks are formed from transactions communicated
by things via proxies that make it possible for all things
to rely on low-power radio communication. To author-
ise a transaction, things run another GFP protocol, called
SLVP. That protocol’s messages are forwarded by one or
more proxies to the Fog Server (FS) to be included in the
next block. The FS forms blocks regularly, on a fixed wall-
clock schedule, by validating incoming SLVP messages
from things, and adding them to the current block.

Chain. By regular deadlines the current blocks are
stored in CAS and their hash is signed by producing
messages of the main protocol, PLS. All PLS messages
are generated and transmitted by radio via a sealed unit,
Sequencer, which receives the current block’s hash from
the FS on a private radio channel. The Sequencer does
not contain a changeable program and is not connected
to the Internet, so it is not hackable. The PLS sequence,
i.e. the sequence of PLS messages, requires a short-term
secret, which is produced inside the Sequencer using a
physical source of randomness in one time interval and
is revealed in the next interval at the same time as select-
ing a new random secret. All things must receive each
PLS message, validate it, and unlock the corresponding
block’s hash, which is a file name of the block in CAS,
see Fig. 2. P- and L- messages cross-validate as shown
in the figure, and S-messages contain some redundancy,
which, after deciphering, indicates whether the message
is valid or not. For example, J can include a run of zeros
at the end; this would be sufficient to thwart a “random

Fig. 1  Architecture of a PLSB system

1  In the sequel, when it is not important what kind of actor is meant we will
call all actors users for short and apply the pronoun ’it’.

Page 3 of 19Shafarenko ﻿Cybersecurity (2021) 4:36 	

message” attack, which is a possible DoS action of the
attacker jamming the radio channel.2 Also notice that
blocks of the blockchain are, as usual, key-value collec-
tions, where the key is the originator’s ID.

Any invalid messages, possibly sent by an attacker will
fail the validity check with a very high probability. Pro-
gress is assured by limiting the number of invalid mes-
sages using various techniques discussed in Shafarenko
(2021), but those are exclusively DoS countermeasures
which do not influence the semantics of the blockchain.
The initial message P0 is authenticated by all blockchain
users via external credentials. Users joining the system
later would require external authentication of the lat-
est P-message instead of P0 . The unlocked hashes of all
the subsequent blocks are as secure as the weaker of the

Fig. 2  Structure of the PLS protocol

2  Since the attacker does not know the preimage of P at the time when an
attack is possible, it can only send an arbitrary message; after unlocking,
it would produce a near-random bitstring as a would-be block hash. The
requirement for it to have r trailing zeros will only be satisfied with the prob-
ability 2−r.

Page 4 of 19Shafarenko ﻿Cybersecurity (2021) 4:36

credential and the computational hardness of the full
hash preimage problem (i.e. finding all bit-strings of a
given length whose hash is a given value). The latter is
not feasible for an SHA-2 hash even Post Quantum. Also
notice that the verification and unlocking computations
are fast (single microseconds) even for a small bare-metal
microcontroller equipped with a crypto-accelerator, e.g.
ESP32 (https://​www.​espre​ssif.​com/​sites/​defau​lt/​files/​
docum​entat​ion/​esp32_​techn​ical_​refer​ence_​manual_​en.​
pdf).

Transactions. As mentioned earlier, a thing publishes a
transaction on the blockchain by running the SLVP pro-
tocol with the FS. A transaction requires one round of
the SLVP protocol, which takes three blockchain blocks.
For the security of the protocol it is required that the
originating thing check that the latest sent SLVP mes-
sage has appeared on a block. As soon as it has, the next
protocol message can be sent. The first message to send
is an S-message, which contains the data object to be
signed. Then an LV-message is posted on the blockchain,
which provides interlocking hashes and verification
data (the latter is needed to thwart jam-spoof attacks,
see Shafarenko 2021). Finally, the thing posts a (proof)
P-message. The FS validates the P-message using the data
contained in the previous round’s P-message and the con-
tent of the LV-message sent in between. The FS will only
include a P-message in a block if the P-message is valid,
while LV- and S- are posted right away, the reason being
that invalid LV- or S-messages will be recognised as such
by the protocol only when the next P-message has been
posted. In practice the FS and a user may share a secret
to help the FS to authenticate incoming messages early
to make it difficult for an attacker to post a large number
of invalid S- and LV-messages. However, this does not
help a counterparty that must be mistrustful of the FS.
So additional authentication, if present, is purely a DoS
countermeasure; we needn’t focus on it as we concern
ourselves only with the machinery of the blockchain.

The protocol is summarised in Fig. 3. The diagram
shows two users, blue and brown, which post their
SLVP messages on the blockchain using the transmis-
sions shown in the table below. The table is presented on
behalf of a single blockchain user. Users are independent
in transmitting protocol messages for themselves and in
verifying messages sent by others. The verification for-
mulae in the penultimate column enable users (as well as
the FS that does it first) to prove to themselves that the
other party has genuinely signed its data object M. If the
next P-message, Pk+1 checks out, they use its value to

unlock the data object Mk as defined in the bottom of the
figure.3 Just like blockchain blocks, the data objects have
some redundancy, for example, a fixed number of lead-
ing zeroes to adequately defend against random S mes-
sages, sent by an attacker. Notice that the SLVP protocol
defines variable length encryption for S-messages using a
block cipher in PCBC mode. Encryption is bijective, i.e.
information-preserving, and the redundancy required for
validation in the presence of a random-message attack is
just a few bytes (e.g. 4 bytes gives the attacker 1 chance in
a few billion to post valid random data, but even then it
only subverts a single S-message).

Also note that the FS has authority to introduce a
new user by posting their very first P-message. The first
P-message is always marked as such on the blockchain
for other users to recognise it as the originator’s identity.

Operations. Transactions can be posted by both things
and human users. Each thing has one or more masters,
which are typically users (but could be other things).
Not only does each thing check the posting of each of its
SLVP messages on the blockchain, it also monitors the
postings of all its masters and any relevant counterpar-
ties, and validates their data objects by applying the SLVP
protocol. Alternatively, the thing can participate in a
smart contract which would only require it to follow and
validate messages from a single contract engine acting as
a user. In this paper we limit ourselves to the mechan-
ics of transaction processing, while leaving higher-level
protocols to further work. We will assume in the sequel
that each thing is interacting with a very small number
of other actors and needs to follow a few SLVP threads
(perhaps 2 or 3). Our focus will be on how to make these
interactions as computationally and communicationally
efficient as possible.

Addresses. Each PLS user has an address, which is a
small number. Since we concern ourselves with a local-
ised enterprise solution (e.g. a smart hospital) covered by
a direct link radio network (e.g. smart sensors equipped
with a LoRa, see LoRa and LoRaWAN 2019, transceiver),
we do not expect the number of things greater than 1000.
The total number of actors should be a small factor of
that to account for human users and smart contracts, so
2–4K addresses is our target. Transactions have an origi-
nating address and a destination.

Frequency. In IoT networks of interest, communica-
tion is limited by the duty cycle to save the limited band-
width that all things have to share. This is in addition to
the constraints imposed by the energy budget of an indi-
vidual IoT device. Consequently a small fraction (typi-
cally a few percent) of the registered users will be posting
a transaction in any given block.

3  The original paper (Shafarenko 2021) has a slightly different arrangement for
S-messages since in the original design CAS was trusted for progress, but in
the present there is no such requirement.

https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf

Page 5 of 19Shafarenko ﻿Cybersecurity (2021) 4:36 	

Block structure and optimisation challenge
Immutable dictionary. In the previous section block-
chain blocks were shown in the diagrams that consisted
of records attributed to various users as key-value pairs,
where the key is the user ID. In a given block only some
of the registered users would be represented by records.
Since the frequency of posting on the blockchain in our

case is severely limited by the things’ communication
duty cycle (if using LoRa) or energy budget (if using pub-
lic networks or LoRa), the proportion of users posting
to any given block is expected to be very small. Still, the
user can only authenticate the block by the S-message
of the PLS protocol, which, when unlocked, contains
the block hash. On the other hand, as we mentioned in

Fig. 3  Structure of the SLVP protocol. Table on behalf of a single user

Page 6 of 19Shafarenko ﻿Cybersecurity (2021) 4:36

the previous section the user is typically interested in
two or three other users’ contributions, which, given a
typical enterprise IoT network of a thousand things, is
still much less than the expected volume of activity in a
block. Indeed, given a block production rate of 4 blocks
per hour and a thing data production rate of 2–4 samples
per day, and bearing in mind that each data post requires
3 blocks according to the SLVP protocol, we arrive at 6
to 12 blocks per device per day and circa 100 blocks per
day in total. This means that in the absence of correlated
activities we should expect about 5 to 10 percent of the
swarm to post in every given block. For a 1000-strong
swarm, the block may contain an estimated 50 to 100
user records authenticated by a single hash. If a thing
wishes to access just a few of these, it would have to first
read the whole block and check the hash to validate it,
and then dispose of most of these records as irrelevant.

Merkle tree. The standard solution to the above prob-
lem is called the Merkle Tree(MT) (Merkle 1988), see
Fig. 4. It is a labelled binary4 tree each node ν of which
has two children, with some labels νL and νR , and its own
label is ν = H(νL||νR) . A child can either be a leaf or
a full node in its own right; in both cases it has a label
but in the latter case it also has two children of its own.
It is quite clear that a change in any leaf will change the
root label (also known as the root hash), so the authen-
ticated root makes the whole tree authentic. For each
node except the root there exists one other node with the
same parent, which we call adjunct. What makes the MT

useful is that it can also authenticate a single leaf by pro-
viding a root-path list of adjunct nodes’ labels, or root-
adjunct path for short. For example, to authenticate the
leaf ν101 shown in red in the figure, given the root label
r, we only need to know the labels of the blue (adjunct)
nodes: ν100 , ν11 and ν0 , since

Generally speaking, for a tree with K leaves one needs to
communicate h =

⌈

log2 K
⌉

 hashes, which is much less
than K for the number of leaves in the hundreds that
we are considering. The tree thus represents an array of
leaves indexed by the path: a left edge represents 0 and a
right edge 1; the edges traversed en route to the leaf form
a bit-string that represents the key. The leaf itself repre-
sents the value of the key-value pair.

Blocks represented as Merkle trees. It is common
practice in Blockchain construction to represent a block
as an MT, each leaf of which carries the hash of a user’s
record included in the block, with the user ID being the
key gleaned from the leaf ’s root path. A user request-
ing another user’s record (or the one of its own) from an
intelligent CAS could just receive the root-adjunct path
corresponding to the requested ID and hash it through
to match with the root hash value. If the PBC signs the
root hash of every block it creates, no further security is
required to authenticate any user records. Our investiga-
tion is of a special case when the maximum number of
users is small and is known in advance, and where good
communication efficiency is important. We could use
an MT with the tree height h close to 10 (to accommo-
date our expected 210 ∼ 1000 users). Since, as we have
mentioned earlier, we expect only around 50 (maybe up

r = H(ν0||H(H(ν100||ν101)||ν11)) .

Fig. 4  Merkle tree

4  The tree does not have to be binary, but higher-based trees, and higher-
based MPTs, discussed later, are inefficient for a small number of leaves.

Page 7 of 19Shafarenko ﻿Cybersecurity (2021) 4:36 	

to 100) users to contribute to any given block, a great
majority of the leaves will not be used.

Mask-controllable sparse MT. The number of leaves
in an MT does not have to be a power of 2. Also a leaf
will provide no value when its root-path names a user
that did not contribute to the block. We can think of
such a leaf as unoccupied. An MT with no-value leaves
is called a sparse MT, or SMT. There are several ways
of organising an SMT, but proposals usually focus on
mutable trees that are used for secure updatable key-
value storage. Our interest is in immutable SMTs,
where efficiency is understood in narrow terms as effi-
ciency of retrieval only. Below we define our own ver-
sion of the SMT, geared towards our objectives.

We can assume that a leaf without value has a special
label NULL and the parent of two NULL nodes has the
label NULL as well. This assumption does not diminish
security due to the fact that a NULL child of any node
is implicitly associated with the node height. Conse-
quently, the shape of the NULL subtree associated with
the child is completely defined by its root position. All
such NULL trees are identical anyway, so a single label
value fully represents them.

For the verifier to be able to verify a path with NULL
nodes, it requires a bit mask of length h, where bit-
value 1 indicates that the corresponding adjunct node
is non-NULL; and the bit-value 0, that it is NULL. The
NULL labels can then be omitted from the path. Finally
we extend the domain of H(x) to include NULL-concat-
enated strings by defining that for any bit-string x

where x′ is the bit string obtained from x by flipping all
bits. Interestingly, a simpler extension

would not be secure, as it allows one to construct a
second preimage by rotating the subtree or swapping
nodes along a NULL path. It is easy to see that the hash-
ing process introduced by Eq. 1 is not invariant to any
such transformation. It is impossible to create a new
valid SMT with the same root hash and a different leaf
sequence without solving the second preimage problem.

If the path is mask-controlled, CAS only needs to com-
municate up to h hashes in addition to the bit mask
for the verifier to successfully compute the root hash.
Extending the above example, if ν11 were unoccupied,
CAS could supply the bit mask 101 (the second adjunct
is missing in path order), and the values of ν0 and ν100 .
Notice that the bit mask does not need to be secured: if
it is incorrect, the verifier will compute an incorrect path
expression and the result will not match the root hash.
Also notice that the mask is very small compared to the
hash length: for a tree of 1024 leaves (counting both
NULL and non-NULL ones) the root-adjunct path con-
tains from 1 to 10 hashes 256 bits each, i.e. 256 to 2560
bis, but the mask length is only 10 bits regardless.

Merkle-Patricia Trie. The idea of mask-control path is
similar to that of the so called Merkle-Patricia Trie(MPT)
(Yue et al. 2020) where not only the nodes but also the

(1)
H(x � NULL) =H(x � x′) ,

H(NULL � x) =H(x′ � x) ,

H(x � NULL) = H(NULL � x) = H(x)

Fig. 5  Merkle-Patricia Trie. All unlabelled edges are assumed to have the label ‘0’ if they lean to the left and ‘1’ if they lean to the right

Page 8 of 19Shafarenko ﻿Cybersecurity (2021) 4:36

edges can be labelled. If a node has a single active edge
(i.e the other edge leads to a NULL subtree), the node is
eliminated and its parent uses the prefix of the other edge
as its label, see Fig. 5. The example in the figure is of a
block where, out of the maximum 8, only users 2, 4, 5,
and 7 (010, 100, 101, 111 in binary) are present. Notice
that we still have a binary tree, but the root-adjunct path
augmented with edge labels requires from one (for leaf
010) to three (for leaves 100 and 101) adjunct hashes for
validation, depending on the leaf. The edge labels are
typically much shorter bit-strings than a single crypto-
graphic hash ( log2 K ≪ 256 ) and so can be neglected in
determining the communication efficiency of the access
scheme. The same is true of masks with our version of the
SMT.

The edge label is secured by hashing it together with
the corresponding child content in determining the node
label:

where �0,1 are the edge labels of the left and right child,
respectively.

It is easy to see that there is a direct correspondence
between the MPT and the SMT with mask-controlled
paths. Our construction requires more work when vali-
dating a path: each leaf, irrespective of its path quality
involves h hash calculations for verification, where h is
the height of the tree, but in the MPT case the number
of times a hash is calculated is the same as the number
of adjunct hashes supplied with the MPT path, although
each hash calculation also involves edge labels, which
may increase the cost. The total length of edge labels
along the root path in the MPT case is equal to the length
of the mask in the SMT case. However, an MPT path
requires markers to partition the path string into individ-
ual edge labels. Our construction is slightly more frugal
in this respect, and it is simpler, which is why we prefer it.

Motivation and optimisation idea
It is obvious from the SLVP protocol that an actor engag-
ing in transactions with another on the PLSB must check
each block to determine the presence of a transaction
message from the counterparty. Due to the low duty-
cycle of thing-to-FS communication, the counterparty
will be absent in a great majority of blocks. However,
to securely establish the absence, a verifier must trav-
erse the block and verify that the counterparty’s record
is not there. In the MT case we can use the mask-con-
trolled path to the unoccupied leaf which can contain
up to h adjunct hashes. In the MPT case CAS will sup-
ply the longest path in the direction of, rather than to, the
unoccupied leaf. By examining the last node on that path

ν = H(�0||�1||ν0||ν1) ,

the user will be able to verify that the necessary edge is
missing. For example, looking at the MPT in Fig. 5, if a
user requested the unoccupied leaf 110, the one-step
path r → ν1 with adjunct material will be sent back for
validation:

The part of the root path from ν1 to ν110 involves travers-
ing edges 10 (right-left), but the labels specified on the
second line above are 0 and 11, neither consistent with
10. The number of hashes to be communicated is the
same as that for the mask-controlled MT: in the current
example the latter would require hashes ν111 , ν10 , and
ν0 . An advantage of the MPT is that it saves the verifier
extra hash computations by providing segments of the
path as (hashed-controlled) edge labels. While saving
some compute time, the effect of it is negligible, since the
maximum root-adjunct path length is logarithmic in the
number of leaves ( � 12 ), and a modern microcontroller
can compute tens of thousands of hashes per second. A
disadvantage of the MPT is that it requires communica-
tion of edge labels in addition to the hash for each node
on the path, but again, compared to the hash length this
is negligible, too.

What is considerably more important here is that nei-
ther mask-controlled MT, nor MPT reduces the maxi-
mum root-adjunct path length. In our example the
number of leaves present is 4, but the hight of the MPT as
a binary tree is 3, not log2 4 = 2 ; it is as if all leaves were
present. As a result, the system would require to accom-
modate longer communication packets, which may affect
the guaranteed duty cycle limit of an IoT device.

This brings us to the central idea of the paper: to index
a block, one might prefer to locally renumber the users to
achieve a contiguous range of IDs rather than a scattering
over a regular structure with subsequent remedies such
as the MPT.

However, before proceeding to our solution, we would
like to evaluate the base case, the mask-controlled MT.
We would like to establish some quantitative character-
istics of MT paths under a random distribution of leaf
occupancy.

Sparse MT statistics
Let us number the levels of the MT from the leaves up,
starting with 0. We will call the number of adjunct hashes
associated with a path its weight. Let function PDFk(i) of
integer i be the probability for a path from a given leaf to
a hight-k node on the tree to be of weight i. Recall that we
only count nodes on the path with both children being
non-NULL as those require an adjunct hash for a Merkle

010, 1, ν010

0, 11, ν10, ν111

Page 9 of 19Shafarenko ﻿Cybersecurity (2021) 4:36 	

proof. Let us take a closer look at an example path, see
Fig. 6. From level 0 we move to level 1 as a left child, then to
level 2 as the left child, and finally to the level 3 as the right
child. Clearly different leaves’ paths differ by the choice of
left- and right- ascension at each level, but the significance
of the node does not depend on it: the node is only counted
when both its children are non-NULL. The shaded trian-
gles signify the subtrees that represent the other, non-path
child of the corresponding path node, which, if non-NULL,
produces what we termed above the adjunct hash. If the
non-path node is NULL, this fact is noted in the path bit
mask, but no adjunct hash is produced.

At level 0, the subtree is of height 0 (it is a leaf), at level
1 it is of height 1 (connects two leaves), etc.

Statistical model. We adopt a model relevant to the
IoT case that the PLS blockchain was developed for.
A thing submits a message for inclusion in a block very
infrequently. It does so at random with some small prob-
ability p, whose value depends on the duty cycle restric-
tion, urgency of the sensor data and the available energy
budget. Without loss of generality let us assume that
p ∼ 0.1 in our examples, which will give us some intui-
tion of what kind of figures may arise in practical work.
This level of activity means that a thing participates
in roughly one block out of 10 or that about 1/10 of all
blockchain users are active in any given PLS round. We
also assume that the activities of different things are
uncorrelated, so any given leaf is either present or absent
(NULL) for its own reasons, irrespective of the presence/
absence of other leaves.

Path weight. The subtrees in Fig. 6 will consequently
be NULL-valued with the probability

where k is the level at which the subtree is rooted. Let us
introduce the Probability Distribution Function PDFk(L)
as the probability for the weight of a path from level
k to a leaf to be equal to L. Clearly PDFk(L > k) = 0 ,

(2)αk = (1− p)2
k
,

and we also assume for convenience that for all k,
PDFk(L < 0) = 0 . It is easy to calculate PDF1 directly:

Indeed, the other child of a given leaf of a height-1 tree is
NULL with the probability 1− p , producing no adjunct
hash, so L = 0 with that probability; otherwise (with the
probability p) the other leaf is non-NULL, supplying a
single adjunct hash.

For a hight-k path we have a combinatorial problem
of calculating the probabilities of 2k combinations of
absence/presence of each adjunct hash (remember that
these probabilities are completely independent as per
our chosen statistical model). Instead of doing this, we
observe the following recurrence relation between the
paths to neighbouring levels:

Indeed, if the non-path child of the height-(k + 1) path
node is NULL (this happens with the probability αk ) the
number of adjunct hashes that the path to height k + 1
produces is the same as that to height k. Alternatively,
if the non-path child is non-NULL, it produces one
adjunct hash, and so the probability to produce L hashes
for the whole path is the same as the probability to pro-
duce L− 1 for the path to height k. The above equation
is the weighted sum of those two outcomes, a mixture
distribution.

The significance of Eqs. 2–4 is in the fact that they
permit direct calculation of the PDF at any level above
1 very cheaply given the value of p. The PDF obtained
can deliver various practical parameters: the average
path weight:

the standard deviation, the probability that a certain
limit Lmax is exceeded, etc., which are useful in designing
bandwidth-limited communication protocols.

Table 1 presents the outcome of a direct calculation
of Eqs. 2–4 for p = 0.1 and also includes the value of
¯Lk in the second column (heading “mean”). The table
shows the value (%) of PDFk(i) , where i runs horizon-
tally. For obvious reasons nontrivial evolution only hap-
pens until αk drops to small values, whereupon Eq. 4
degenerates to

making the PDF(i) shift to the right by 1 without change
of shape as k increases. For p = 0.1 sparsity is present
in the first 7 levels of the tree; from level 8 up the tree
becomes dense.

(3)PDF1(0) = 1− p, PDF1(1) = p .

(4)PDFk+1(i) = αkPDFk(i)+ (1− αk)PDFk(i − 1)

¯Lk =

∑

i

i × PDFk(i) ,

PDFk+1(i) ≈ PDFk(i − 1)

Fig. 6  A path across a sparse MT

Page 10 of 19Shafarenko ﻿Cybersecurity (2021) 4:36

Another noteworthy feature of the distribution is its
breadth: 95% of the paths require from 4 to 8 hashes,
with the mean being around 6, which would necessi-
tate variable length communication, since a factor of
2 difference cannot be ignored. This variability comes
despite the compression we have already applied by
introducing the bitmap-controlled MT.

The sparse MT is indexed by the user ID, and a set of
active users for an individual block is random as defined
by our statistical model. To get a feel of how efficient
the sparse MT is in terms of path weights, we compare
its mean path weight with that of a truncated dense tree

carrying the same number of non-NULL leaves. We use
the least sufficient hight of the dense tree to accommo-
date all non-NULL leaves, and place all NULLs on the
right hand side of level 0, so that the non-NULL leaves
may be contiguous, and use Eqs. 1 to deal with NULL
values (that is what we mean by truncation). Figure 7
compares the path weights of the two trees. The depend-
ence of the path-weight averaged across the truncated
tree on the number of non-NULL leaves is not smooth, as
the tree hight leaps up when the number of non-NULLs
crosses power-of-two boundaries. Nevertheless, one can
clearly see that the dense tree has a lighter path weight

Table 1  Numerical evaluation of Eqs. 2–4. Probability Distribution Function (%) of path weight vs height in a sparse MT ( p = 0.1)

k Mean 0 1 2 3 4 5 6 7 8 9 10

2 0.200 81.0 18.0 1.0

3 0.390 65.6 30.0 4.2 0.2

4 0.734 43.0 42.2 13.1 1.6 0.1

5 1.303 18.5 42.7 29.7 8.1 0.9 0.0

6 2.118 3.4 23.0 40.3 25.7 6.8 0.8 0.0

7 3.084 0.1 4.1 23.6 39.8 25.0 6.6 0.7 0.0

8 4.083 0.0 0.1 4.1 23.6 39.8 25.0 6.6 0.7 0.0

9 5.083 0.0 0.0 0.1 4.1 23.6 39.8 25.0 6.6 0.7 0.0

10 6.083 0.0 0.0 0.0 0.1 4.1 23.6 39.8 25.0 6.6 0.7 0.0

Fig. 7  Mean path weights. The curve: sparse MT, n = 1024 . Scattered dots: average path weight of a truncated, dense MT with 2⌈log2(np)⌉ leaves

Page 11 of 19Shafarenko ﻿Cybersecurity (2021) 4:36 	

at the majority of probability values, becoming slightly
worse just before the probability reaches a value that the
equivalent dense tree must grow at.

Challenge. Now we are prepared to argue our case.
A user engaging in the SLVP protocol as verifier must
examine every consecutive block to see if the prover
has placed a message in it (i.e. an S-, LV- or P-message).
According to our statistical model, in a great majority of
the blocs, in fact, in a factor of 1− p of them, the prover’s
message is likely to be absent. Nevertheless, the verifier
needs to satisfy itself that, indeed, no message from the
prover is present. With the classic MT as well as MPT
and our own version of sparse MT, the absence of a leaf
is almost as expensive to prove as its presence with a par-
ticular value. The difference is that for an absent leaf the
label is NULL and it is not communicated, but that is a
difference of 1 against, as our calculation shows, circa
6 adjunct hashes to be communicated when 1024 users
participate at probability p = 0.1 . This means that on
average 60 (!) hashes would be required to certify the
start of an SLVP round. Worse still, each active user, even
when all it does is wait for a possible signed message
from a counterparty, will be actively requesting the coun-
terparty’s root-adjunct path from CAS every time a block
is released, which pretty much destroys the advantages of
a low-bandwidth Guy Fawkes protocol.

However, a simple remedy exists, which we consider
next.

Tunstall–Merkel tree
Basic idea. We kill two birds with one stone by provid-
ing a one-time renumbering of users in each block while
broadcasting the renumbering information together with
the root of the tree. The purpose of the renumbering is
to achieve a contiguous range of ID numbers. This way
absent users will be recognised as such immediately by
any counterparty involved. As a result the cost of absence
proof will be zero (plus the cost of the one-for-all broad-
cast message, which need not be requested). The index-
ing structure in terms of new IDs will be the kind of tree
we have already studied and shown the superior access
cost of: a dense, truncated one.

We will enumerate users that are present in the fol-
lowing way. Imagine a bitmap sized 2h , where h is the
height of the original (sparse) MT. In the bitmap 1s mark
the presence of the corresponding user/leaf and 0s its
absence. Under our statistical model on average 2kp bits
(as per binomial distribution) of the bitmap will be 1s.
Users are renumbered according to the bitmap: the user’s
new ID is the number of 1s in the bitmap preceding the
bit that corresponds to the user’s actual ID.

Our statistical model assumes that all users are
engaged the whole time. A user that decides not to use

the blockchain for a while will not be able to maintain a
factor of p messages per block on average until the user
becomes active again; the user’s bit position in the bit-
map will be 0 during that period. If there are many such
users, the bitmap may have significantly fewer 1s than the
aforementioned expectation 2kp . In this sense the expec-
tation is pessimistic.

The maximum number of users is within a near-unity
factor from the number of things in the swarm, since
non-IoT users have typically a one-to-many relation with
things: a human or a server would be in control of several
IoT devices. The majority of the users tend to be always-
on, active things, which work according to a near-peri-
odic schedule. Another useful circumstance here is that
the bitmap can be effectively and efficiently compressed
to a fraction of its length, provided that the distribution
of 1s is close to random and that the number of 1s is
known to both the sender and the recipient. The former
can be made true by pseudorandomisation, and the later
is easy to achieve by including a small integer (typically
10-12 bits in length) in the message that broadcasts the
bitmap. In this section we describe the compression tech-
nique, and in the next one we will propose a simple and
efficient pseudorandomisation.

Tunstall code. Given a bit string of length n which is
expected to contain m = pn, p < 1 ones in random posi-
tions (which makes p a true probability), or alternatively
a bit string which is known to contain m ones, m = pn
in random positions (which makes p an empirical prob-
ability), with the positions of ones pairwise uncorrelated
(this is called a zero-order environment), we set ourselves
the task of finding a bijective function C : Bn

→ Brw ,
rw < n that maps the string to a sequence of r codewords
of length w. We wish to minimise rw, or, for a given w, to
minimise r. The theoretical limit of compression is well
known from information theory: rw ≥ H0n , where the
zero-order per-bit entropy H0 is defined thus:

The mapping C is realised by partitioning the source bit
string into (generally unequal length) chunks and assign-
ing a codeword to each. A chunk b0, b1, . . . , bk is found
at any given position in our random string with the
likelihood

The best code with the word length w should assign its 2w
codewords to the 2w chunks with the highest likelihood.
It must also make sure that the code is complete, i.e. any
bit sequence can be represented as a sequence of code-
words. It is intuitive that such a code would be optimal,

H0 = −p log2 p− (1− p) log2(1− p) .

(5)pc =

k
∏

i=0

pbi(1− p)1−bi .

Page 12 of 19Shafarenko ﻿Cybersecurity (2021) 4:36

and it can be proven that it is also asymptotically effec-
tive, i.e. that its compression ratio tends to the entropy
limit as w tends to infinity.

It is not easy, however, to turn Eq. 5 into a practical
encoder/decoder. The main reason for it is that the value
of k is not bounded, and neither is the search for suitable
chunks to find the top 2w ones in terms of their likeli-
hood. The problem is not so much the amount of work
required for the search, since we could take the logarithm
of Eq. 5 and maximise the linear form

where

in the (0 ≤ l ≤ k , k > 0) area of the (l, k)-plane starting at
the maximum (0, 1). The problem is that each (l, k) point
corresponds to

(

k
l

)

 chunks of length k with l 1s in each.
Their enumeration and mapping at different k would be
rather awkward.

Tunstall in his PhD thesis (Tunstall 1967) proposed a
greedy search which at the same time builds a compact
dictionary structure (the Tunstall tree) that can be used
for encoding/decoding efficiently, without sharing the
dictionary (as long as p is known to both the encoder
and the decoder). The greedy search turns out to be of
excellent quality, too, delivering the entropy limit asymp-
totically (Tunstall 1967), and, as a recent study shows (Jo
et al. 2017), with a rapidly decreasing redundancy as w
increases. The redundancy formula from Jo et al. (2017)

(6)log pc = l log p+ (k − l) log(1− p) ,

l =

k
∑

i=0

bi ,

being useful for our analysis, we present it below (with-
out derivation and rewritten in our notation):

We will return to Eq. 7 later and present our own calcula-
tion of the relevant range of parameters, but let us first
introduce the dictionary idea, see Fig. 8. The dictionary
is a (generally imbalanced) labelled binary tree. Both the
nodes and the edges are labelled. The edge labels are 0
and 1 as usual, and a node’s label is the likelihood value of
the chunk composed by reading the edge labels along the
path from the root to the node. The algorithm builds the
tree node-by-node, as follows:

1.	 Create a root node with two edges labelled 1 and 0
to two child nodes labelled with the value of p and
1− p , respectively.

2.	 Find and mark the maximum likelihood leaf node.
Denote its label as R.

3.	 Create two leaf children of the marked node and con-
nect them with edges labelled 1 and 0. Make the node
labels the value of Rp and R(1− p) , respectively.

4.	 Repeat steps 2 and 3 until the tree has 2w nodes
besides the root.

5.	 Now relabel each leaf by its consecutive leaf num-
ber while visiting the leaves in some order agreed
between the encoder and decoder.5

(7)rw ≤ nH0 + O(nH0
log(1/p)

w
) .

Fig. 8  Tunstall Tree for p = 0.4 . First two steps of the algorithm

5  For example, left to right, or in prefix order. The properties of the code
remain the same under any permutation of the codeword assignments but the
practicalities of encoding/decoding require a shared order.

Page 13 of 19Shafarenko ﻿Cybersecurity (2021) 4:36 	

Tunstall encoding is achieved by running the source
bit-string down the Tunstall tree bit by bit until a leaf is
reached, at which point the codeword is read off from
the leaf label and the process returns to the root. Tunstall
decoding requires a 2w-entry table where variable-length
path sequences are set against codewords, with the for-
mer read off from the path to the leaf labelled by the lat-
ter. We note with satisfaction that Tunstall decoding has
the cost O(1).

Implementation. Tunstall encoding (and especially
decoding) is very undemanding, well within reach of
a small, system-on-chip smart sensor. To avoid accu-
racy/underflow problems with repeated multiplica-
tion in generating the dictionary at the receiver (Step 3
of the algorithm above), one could use log-likelihoods
as node labels. Then instead of multiplication, log p
and log(1− p) are added to the parent label to produce
labels for the 1- and 0-child, respectively.6 This way for
any reasonable table size, computational accuracy will
not be a problem. We implemented the algorithm to see
what kind of residual redundancy we could be getting
from a specific Tunstall code. The results of our running
a Tunstall compressor through 1 million random bits are
presented in Table 2. Comparing this with Eq. 7, we con-
clude that at w = 4 the compressor is already within 10%
of the asymptotic mode, when doubling the codeword
length roughly halves the redundancy ρ.

From the practical point of view, if we target a block-
chain with ∼ 1K users, with 10% of them posting mes-
sages in any given block, p = 0.1 suggests a compressed
bitmap of at least 1024 × 0.47 = 482 bits or 61 bytes.
An 8% residual redundancy would increase this by only
5 bytes. However, the bitmap is broadcast together with
the root hash, 32 bytes long, and a few extra bytes of
forced redundancy for the purposes of S-message veri-
fication (as per PLS protocol). This increases the length

of the S-message up to nearly 100 bytes, and at this level
a redundancy of the compressor to the tune of 5 to 10
bytes makes little difference.

If the number of users drops to 0.05 of the total, even
the poor compression quality for w = 4 results in only
379 bits (though 82 bits, or 11 bytes, more than the
entropy limit), which is still less than the already accept-
able 482 bits we observed for p = 0.1 . An alternative is
to use a list of raw ID numbers, circa 52 in total, each
requiring 10 bits. This is 520 bits, far worse than the com-
pressor’s output, but not significantly worse than 482,
and the list length would decrease in proportion to p.
If p were to drop further below 0.05, and if the Tunstall
compressor further deteriorated, the uncompressed ‘list’
option could at some point be preferred, with the switch
controlled by a single additional bit in the message.

We conclude that a four-bit Tunstall code is all that is
required to implement the PLS S-message within half of
the maximum LoRa message length (250 bytes). To aid
the reader’s intuition, we present an example of a 4-bit
Tunstall code for p = 0.15 in table 3. For each code-
word we additionally show its log-likelihood. Notice that
unless the log-likelihoods are exactly identical, as is the
case for codewords 1011 and 1100 which correspond to
chunks with the same counts of 1s and 0s, the differences
between log-likelihoods manifest themselves in the first
(decimal) fractional digit already, so computational accu-
racy should not be a concern.7

Table 2  Observed redundancy ρ of Tunstall code

Sample length before compression: 106 . Column headers: w codeword length;
p probability of 1; κ compression ratio; H0 per-bit entropy; ρ = (κ − H)/H
residual redundancy(%)

w p κ H0 ρ(%)

4 0.05 0.37 0.29 30.4

4 0.10 0.50 0.47 7.5

4 0.15 0.65 0.61 6.9

8 0.05 0.32 0.29 13.4

8 0.10 0.49 0.47 4.6

8 0.15 0.63 0.61 3.8

Table 3  4-bit Tunstall code for p = 0.15

Codeword − log2 pc Chunk

0000 3.06 0000000000000

0001 5.55 0000000000001

0010 5.32 000000000001

0011 5.08 00000000001

0100 4.85 0000000001

0101 4.61 000000001

0110 4.38 00000001

0111 4.14 0000001

1000 3.91 000001

1001 3.67 00001

1010 3.44 0001

1011 3.20 001

1100 3.20 010

1101 5.70 011

1110 2.97 10

1111 5.47 11

6  We use the fact that the greatest number has the greatest logarithm.

7  The sender and the receiver could use different floating-point arithmetic,
incur different rounding errors and end up using different dictionaries. This
example shows that for a small dictionary this is not a concern.

Page 14 of 19Shafarenko ﻿Cybersecurity (2021) 4:36

New structure of the root of trust. In the original
PLS protocol (Shafarenko 2021) the S-record was a
message that contains the block’s root of trust Ji , which
was the root hash of the Merkle tree representing the
new block Bi . In the light of our analysis of indexing
costs presented in Sect. 4.1 and the properties of Tun-
stall encoding described in the current section, we pro-
pose to modify the root of trust Ji as shown in Table 4.

The total message length is L+ 320 bits or L+ 40
bytes. We expect L to be close to 60 bytes in most
cases (which is the entropy limit for 1024 users at 10%
occupancy per block on average), which makes the
S-message circa 100 bytes long, but if necessary L can
be increased to 128 bytes resulting in the packet length
168 bytes, still well within the length limit (255 bytes)
for LoRa communications. A 128-byte bitmap would
support the number of users up to 1024 without Tun-
stall compression, or about twice as many if Tunstall
compression is used at 10% occupancy.

The hash T requires the server to renumber the users,
building a new Merkle tree and computing its root
hash. The user will recompute T to validate any leaf
hash and its adjunct hashes sent to it by CAS, unau-
thenticated and unsigned, at request.

Notice that the redundancy field is only 32 bits,
since it is impossible to crack the S-message directly:
both the plaintext and the key are unknown, the for-
mer due to the XORing of the next P-message, yet to
be received, to the plain text, see Fig. 2. As mentioned
earlier, the purpose of the redundancy field is to thwart
a random message attack for the DoS purposes, and so
a 32-bit redundancy translates into a less than 1-in-a-
billion chance to cause the recipient to accept a false
message, which is more than sufficient in the IoT world.

Finally, let us dwell a little on the block’s MT whose
root Ti is included in the block’s root-of-trust Ji . The
leaves of that tree are hashes of the user records with
the user ID corresponding to the path label sequence
as usual, except the IDs are now new IDs calculated

from the block bitmap and occupying a range from 0 to
m− 1 without gaps. Since m is not necessarily a power
of 2, the MT generally consists of a complete half with
leaf labels in the interval [0, 2⌊log2 m⌋) without gaps and
a truncated half with labels in the interval [2⌊log2 m⌋,m) ,
also without gaps, with the rest of the leaves labelled
with NULL. The shape of the MT depends solely on one
parameter, m, which is a part of the root-of-trust. Con-
sequently, no further information, such as path masks,
etc, is required for access and validation of the root
hash, Ti . For a truncated tree Eqs. 1 can be replaced by
a simpler pair

without loss of security. The reason why the above is as
secure as Eqs. 1 is that subtrees cannot be rotated in the
truncated half as this renders the tree sparse; it is impos-
sible to create a second pre-image truncated tree this
way. As a result the hash calculations here are no more
expensive than their cost for the equivalent MPT.

For our running example of 10% occupancy and the
total number of users 1024, the value of m will have an
expectancy of around 102, which means this path will
be between 1 and 7, and never longer. Table 1 indicates
that the standard (MPT or mask-controlled MP) would
require from 3 to 9 adjunct hashes. The difference
between 7 and 9 is not big, but notice that 8 hashes would
already require more than one LoRa packet to transmit.

We would like to emphasise here that the main effect
of using the Tunstall-Merkle Tree (TMT, which is how
we wish to call our construction) rather than, say, MPT is
not that fewer hashes have to be communicated with the
former than the latter, but the fact that the latter requires
a full path irrespective of the presence or absence of the
leaf for secure retrieval. By contrast, a TMT provides an
absence proof directly from the root-of-trust bypass-
ing the Merkle Tree entirely. Since the SLVP protocol
requires every thing to check the presence of its own
S- and LV- messages before advancing the protocol,

(8)H(x||NULL) = H(x); H(NULL) = NULL

Table 4  Structure of the proposed block root-of-trust Ji

Offset (bits) Field Size (bits) Description

0 Ti 256 Root hash of the Merkle Tree for the new block Bi
Built using new user-IDs

256 n,m 24 n: total number of users, m: how many present

280 Flags φ 8 Bits 0,1: bitmap type (plain, compressed, list, empty)

Bit 2: (0: w = 4 , 1: w = 8)

Bits 3–7: pre-randomisation parameter (see next section)

288 Bitmap M L ≤ 1024 Processed bitmap content

L+ 288 Redundancy 32 All zeros, for PLS validation

Page 15 of 19Shafarenko ﻿Cybersecurity (2021) 4:36 	

and since a thing would typically monitor another user’s
infrequent activity, the cost of absence proof dominates
over the cost of secure retrieval. Nevertheless, it is reas-
suring to see that the latter is also improved, in terms of
limits if not necessarily average, by our approach. The
price we are paying is some additional calculations well
within the capabilities of resource-limited systems such
as most things tend to be.

Returning to the compression issue, there is one factor
yet to be accounted for. We remarked earlier that our sta-
tistical calculations are based on the zero-order assump-
tion, i.e. that different users’ behaviours are uncorrelated.
Obviously it is not the case when users engage in a
higher-level protocol with one another, e.g. producer/
consumer. This may skew the chunk statistics resulting in
a longer codeword sequence for the block bitmap. In the
next section we will propose a simple remedy.

Pre‑randomisation
The idea is to apply a bijective function to the source
user ID which depends on a parameter, block number i.
A different block number should result in a very differ-
ent permutation. This way a position in the block bit-
map will have the value 1 in a proportion of bitmaps that
does not depend on the value of other positions. A user
ID will be associated with a pseudorandom sequence of
positions as new blocks are produced. Invertibility (bijec-
tion) is very important, as it prevents different users
from being mapped on the same bit-position in the bit-
map, thus ensuring that the mapping is a pseudorandom
permutation.

A simple and effective pseudorandom permutation
based solely on the block number i can be achieved by
analogy with randomising the order in a deck of playing
cards. One player performs the deck shuffle: for the card
in position i in the deck i ∈ [0, n = 2d) represented in
binary as i = idid−1 . . . i0 , the new position of the card i′ ,
represented in binary as i′di

′

d−1 . . . i
′

0 is obtained from the
current position by applying the following operator

which is a cyclic shift left. This corresponds to dividing
the deck into two halves and interleaving them, exactly as
an experienced dealer would.

When the shuffle is finished, the other player shifts the
deck, i.e. divides it into two unequal parts and transposes
them. In terms of card numbers, this corresponds to add-
ing a pseudorandom value v modulo 2d:

i′di
′

d−1 . . . i
′

0 = id−1id−2 . . . i0id = σ(i) ,

i′ = i + v mod n = τv(i)

Applying the shuffle-shift operator Qv = σ ◦ τv to a range
ρ = [0, n) t times with a pseudorandom choice of v:

has the same effect as repeatedly shuffling/shifting a deck
of cards, which, the intuition suggests, delivers a rather
arbitrary permutation. We call t the number of rounds.

Note that the operators σ and τv have a negligible cost
even when executed by the least powerful platform, as
they take literally a few machine instructions. The cost of
pseudorandom generator that produces a series of v-val-
ues is similarly small if we use a standard Linear Congru-
ential Generator (LCG):

where n is a power of 2, v0 is set to the block number, and
the factor F is any positive integer that satisfies the well-
known Hull-Dobell constraint: F = 5 mod 8 . We chose
for F the hex value 5EED which satisfies the constraint
and which has more than enough significant digits for
any reasonable n.

Our solution appears quite attractive from the point of
view of its cost; however, while bijectiveness is guaran-
teed by construction, we need to be reassured that the
solution can deliver sufficient randomness of mapping at
a reasonably small number of rounds t.

Avalanche test. The quality of a pseudorandom map-
ping can be assessed with the help of the so-called ava-
lanche criterion (Webster and Tavares 1986), used in
evaluation of symmetric ciphers and hash functions. We
consider it next in relation to our mapping Q.

Select the block-number v0 for the test. Next,
select a number x from the range ρ and some inte-
ger 0 ≤ k < d and prepare two numbers x1 = x and x2
same as x1 , except bit k of it is flipped. Apply the map-
ping Q to both and take the bitwise XOR of the results:
Ai(x, k) = Q(x1)⊕ Q(x1) . Let Ai(x, k , l) be the lth bit of
Ai(x, k) . Define the correlation matrix Kkl thus:

Here the averaging is done over values of x ∈ ρ and block
numbers v0 . Good randomness of the mapping manifests
itself in the closeness of all matrix elements of Kkl to 1/2:

This means that if we flip a random bit in a random value
x the probability that any bit in the image of x under Q
flips in response is close to 1/2. In other words, if we flip
one bit in x, on average close to one half of the bits in the
result will flip. The name “avalanche effect” is to do with
the fact that small changes cascade through the rounds

Qvt . . .Qv1Qv0 ρ

vk+1 = F × vk + 1 mod n, 0 ≤ k < t ,

(9)Kkl = �Ai(x, k , l)�x,i ,

(10)max
kl

|Kkl − 1/2| ≪ 1/2 .

Page 16 of 19Shafarenko ﻿Cybersecurity (2021) 4:36

of the computation causing further changes until all bits
of the result are affected in a complex and unpredictable,
though of course deterministic, way.

We have applied the avalanche criterion to our pro-
posed randomiser to estimate the acceptable minimum
value of t, the number of rounds. As it is impossible to
average over all potential values of the block number v0 ,
we limited ourselves to 50 random samples taken from
the interval [0, 10000] The results have proven quite
insensitive to the averaging over v0 , which in not surpris-
ing given that we established that the required t-numbers
are in the hundreds. The averaging over x was done by
sweeping the whole range ρ.

The results of the avalanche test are presented in
Table 5. For practical purposes we limited ourselves to
n = 1024 , 2048 and 4096, since more users are unlikely
to be supported by the communication infrastructure of
a single site. The results show that a surprisingly large
number, around 200, of rounds is required to achieve

good randomisation. It is large compared to the number
of rounds one expects to be necessary to randomise a
deck of cards (of the order of 10), but it is not large tech-
nically: a microprocessor would have to execute only a
few thousand instructions to compute the image i′ given
i. This has to be done as many times per block as the
number of counterparties that the user has to monitor on
the blockchain. For a thing this would be a number of the
order unity, hence the cost would be negligible even on a
tight energy budget. On the other hand, setting t to 200
would ensure that possible correlations between bits in
the image do not exceed 3% (0.013 normalised by 1/2),
which should be good enough for practical purposes.

Finally, let us recall that the IoT platform is low-
power, but the server running the PLS protocol via the
Sequencer is not. It has ample capacity to analyse the

Table 5  Avalanche test of the pre-randomiser

Headers: d input length (bits); t number of rounds; δ mapping quality, δ = maxkl(Kkl − 1/2) , see Eq. 10

d t δ d t δ d t δ

10 100 0.061 11 100 0.113 12 100 0.164

10 150 0.014 11 150 0.026 12 150 0.042

10 200 0.008 11 200 0.009 12 200 0.013

Fig. 9  Retrieving a user record from block 269 for ID= 45 ; for this block m = 5 . Solid arrows show the flow of data, dotted arrows indicate a possible
bypass controlled by φ

Page 17 of 19Shafarenko ﻿Cybersecurity (2021) 4:36 	

quality of the permutation in terms of its influence on
Tunstall compression. We have reserved 5 bits in φ to
pass to the shuffle-shifter an integer value in the inter-
val [0, 32). It is convenient to use the value 0 to indicate
that a random permutation is not required,8 whereas a
nonzero value is added to the round counter t. The server
can try up to 31 additional rounds and choose the one
that gives the best compression. The users receiving the
root of trust will be aware of how many additional rounds
should be performed and will maintain consistency.

Putting it all together
Next we consider a complete example of a user attempt-
ing to retrieve a contribution to a block that has been
made either by itself or a counterparty.

Figure 9 presents the flow of data when a block-269
S-message is received and successfully unlocked by
a user. The user is about to request the contribution to
block 269 from user ID 45. To accomplish this, it needs
to decode the received block bitmap by feeding it to the
Tunstall decoder together with the parameters n and m
(total number of users and the number of users contrib-
uting to block 269, respectively). The decoder produces
the uncompressed bitmap. At the same time the user
ID (45) and the block number (269) along with the total
number of users and configuration parameters are fed to
the shuffle-shifter, which will perform the assumed and

the additional number of rounds extracted from φ and
will produce its output value, 20. The bit in position 20 of
the uncompressed bitmap happens to be 1, which means
that the contribution from ID 45 is present in block 269.
The number of 1s in the bitmap to the left of position
20 is 4, so the index in the truncated Merkle tree for the
contribution in question will be 4. The path to leaf 4 is
highlighted in red in the figure.

The user’s CAS request will include the block number,
269, and the ID index, 4. CAS will respond with the leaf
hash h4 and the adjunct sequence

which consists of the labels of the two nodes of the
tree marked in blue. Because the user acquired m from
the unlocked S-message, i.e. the root of trust, it knows
the shape of the tree. Consequently, no mask is com-
municated, but the user is able to reconstruct the mask
anyway.

To validate the requested h4 , the user checks that the
following equation holds:

where T is the root hash received with the unlocked
S-message. Notice that we used Eqs. 8 to account for
NULL nodes.

An alternative scenario is shown in Fig. 10. When
attempting to retrieve the contribution of user ID=17
to block 305, it turns out that the output of the shuffle-
shifter points to a 0 in the uncompressed block bitmap.
Since the unlocked S-message is the root of trust, this

V0 = h5, V2 = H(H(h0 � h1) � H(h2 � h3)) ,

H(V2 � H(h4 � V0)) = T .

Fig. 10  Obtaining proof of absence. Solid arrows show the flow of data, dotted arrows indicate a possible bypass controlled by φ

8  This could be advantageous when, for example, no compression is used.

Page 18 of 19Shafarenko ﻿Cybersecurity (2021) 4:36

constitutes a proof that block 305 has no contribution
from user 17. Notice that CAS is not involved in the pro-
cess at all.

Related work
The PLS blockchain and the protocols in basic form were
proposed in Shafarenko (2021). The idea of sparse Merkle
Tree has an unclear origin. To the best of our knowledge
it was first put forward by Bauer (2004) and was recently
improved on in Dahlberg et al. (2016). Both studies are
concerned with mutable trees, with objectives very dif-
ferent from ours, although, like ourselves, the authors
remark on the importance of proofs of absence (non-
membership). Tree statistics is tackled theoretically in
Bailey and Sankagiri (2021) in an attempt to optimise
mutable MTs for the Bitcoin blockchain in the context
of Bitcoin transactions. The objectives of this study are
similar to ours as the authors attempt to group the leaves
together to minimise the proof length, but they do it
using tree transformations (taking the data structure red-
black tree as a starting point), while we achieve a similar
objective by renumbering the keys (user IDs in our case).

The compression technique we use is due to Tunstall
(1967) and this seems to be uniquely suitable for our case
since it is based on empyrical probability of leaf occu-
pancy, which is available to the Fog Server running PLS
and which takes next to no resources to communicate
to the client. The efficiency of our technique depends on
this method.

We used our own pseudorandom permutation as a
combination of a perfect shuffle and a random shift,
using a classical LCG source (Lehmer 1951). There exist
various methods of pseudorandom permutation, an oft-
cited one being the Fisher-Yates shuffle (Fisher and Yates
1963), first published in the 1930s (citation unavailable).
The idea there is to choose a (pseudo)random element
of a sequence of source items and exchange it with the
first element on the sequence. Clearly, if this is repeated
enough times then any possible permutation could be
achieved. A recent paper (Bacher et al. 2018) presents
a fast, parallel algorithm that mimics the technique of
merge-sort except the merge makes a pseudorandom
choice when ordering two elements for the output.

However, our situation is quite different. Not because
we are dealing with a contiguous range of numbers rather
than an abstract sequence of objects: one could enumer-
ate the objects and the problem would boil down to the
one we are faced with. Our situation is different because
the sender and the recipient must choose the same per-
mutation. To encode an arbitrary permutation of n num-
bers would take close to (m− 1) log2m bits, which is
the same order of magnitude as the block bitmap we are
trying to make more compact. Of course the ability to

perform an arbitrary permutation is not required: all we
want is break correlations between user IDs in a series of
block bitmaps, and for this any sufficiently rich subgroup
would do.

Conclusions
Statistical analysis of a sparse Merkel Tree under the
assumption of uniform, uncorrelated leaf occupancy
has been presented. The model obtained allows direct
computation of the Probability Distribution Function
for path weights given the leaf-value probabilities. The
path weight was quantified in terms of the number of
adjunct hashes required for its leaf proof. We deter-
mined that the mean path weight of a sparse MT tree
is close to that of a dense, truncated MT tree, with the
latter being slightly better at most leaf-probability val-
ues p in the practically interesting interval. We pro-
posed an alternative structure, a Tunstall-Merkle tree,
which combines a dense, truncated MT and a Tunstall-
compressed bitmap indicating leaf ocupancy. We tested
the compressor at several practical values of code size
and quantified its residual redundancy. We found that
a very small code table (16 or 256 codewords) proves
sufficient for achieving near-limit compression, which
means that Tunstall decoding presents no storage prob-
lem whatsoever to an IoT platform. To improve the
effect of compression we further proposed a decorella-
tion facility in the form of a shuffle-shifting algorithm
and tested its properties using the standard avalanche
criterion to determine the number of rounds. Both the
Tunstall decoder and the shuffle-shifter with the code-
word size and the number of rounds, respectively, suf-
ficient for our purposes are quite processor-efficient as
well, since they involve inexpensive operations (table
indexing, cyclic shift and binary addition) and short
instruction sequences in implementation.

The main effect of the proposed technology is a drastic
improvement in the cost of the SLVP protocol. Indeed an
SLVP verifier has to check every block for the presence
of counterparty (prover) contributions, and no such con-
tribution would be present in a great majority of blocks.
Our proposed Tunstall-Merkle tree has zero proof-of-
absence cost, and when a leaf is present the communi-
cation cost of retrieval is in most cases better than that
for the standard MT and MPT. Obviously our technique
offers no advantage to a system with an unlimited and
dynamic number of users, but it is beneficial for at least
the PLS blockchain situation. The statistical analysis of a
sparse MT/MPT has significance beyond the area of our
study; it could be useful for planning and designing any
secure storage structure that involves Merkle trees.

Page 19 of 19Shafarenko ﻿Cybersecurity (2021) 4:36 	

Future work will concentrate on higher-level proto-
cols which control the interaction of resource-limited
things with a smart contract.

Acknowledgements
Discussions with Bruce Christianson are acknowledged with thanks.

Authors’ contributions
The single author contributed 100%.

Funding
This work was supported in part by IMC corporation, Slovakia, under EU
Project BRAINE (Grant 876967).

Availability of data and materials
None.

Declaration

 Competing interests
The author declares no competing interests.

Received: 22 July 2021 Accepted: 19 October 2021

References
Anderson R, Bergadano F, Crispo B, Lee JH, Manifavas C, Needham R (1998) A

new family of authentication protocols. SIGOPS Oper Syst Rev 32(4):9–20
Bacher A, Bodini O, Hollender A, Lumbroso J (2018) Mergeshuffle: a very fast,

parallel random permutation algorithm. CEUR Workshop Proc 2113:43–52
Bailey B, Sankagiri S (2021) Merkle trees optimized for stateless clients in

bitcoin. IACR Cryptol ePrint Arch 2021:340
Bauer M (2004) Proofs of zero knowledge. CoRR, cs.CR/0406058
Dahlberg R, Pulls T, Peeters R (2016) Efficient sparse merkle trees—caching

strategies and secure (non-)membership proofs. In Billy BB, and Juha R

(eds) Secure IT Systems—21st Nordic Conference, NordSec 2016, Oulu,
Finland, November 2–4, 2016, Proceedings, volume 10014 of Lecture
Notes in Computer Science, pp 199–215

Espressif Systems. ESP32 Technical Reference Manual. Available as https://​
www.​espre​ssif.​com/​sites/​defau​lt/​files/​docum​entat​ion/​esp32_​techn​ical_​
refer​ence_​manual_​en.​pdf

Fisher RA, Yates F (1963) Statistical tables for biological, agricultural and medi-
cal research, 6th edn. Oliver & Boyd, Edinburgh

Jo S, Joannou S, Okanohara D, Raman R, Satti SR (2017) Compressed bit vec-
tors based on variable-to-fixed encodings. Comput J 60(5):761–775

Lehmer DH (1951) Mathematical methods in large-scale computing units. In:
Proceedings of the second symposium on large scale digital computing
machinery. Cambridge, United Kingdom, 1951. Harvard University Press,
pp 141–146

LoRa and LoRaWAN: a technical overview. Technical report, Sentech Corpora-
tion, December 2019

Merkle RC (1988) A digital signature based on a conventional encryption func-
tion. In: Carl P (Ed) Advances in cryptology—CRYPTO ’87. Springer, Berlin,
pp 369–378

Shafarenko A (2021) A PLS blockchain for IoT applications: protocols and
architecture. Cybersecurity 4(1):4

Tunstall BP (1967) Synthesis of noiseless compression codes. Ph.D. thesis, Geor-
gia Technology

Webster AF, Tavares SE (1986) On the design of s-boxes. In: Lecture Notes
in Computer Sciences, 218 on Advances in Cryptology—CRYPTO 85.
Springer, Berlin, pp 523–534

Yue C, Xie Z, Zhang M, Chen G, Ooi BC, Wang S, Xiao X (2020) Analysis of
indexing structures for immutable data. In: Proceedings of the 2020 ACM
SIGMOD international conference on management of data, SIGMOD
’20, New York, NY, USA, 2020. Association for Computing Machinery, pp
925–935

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf

	Indexing structures for the PLS blockchain
	Abstract
	Introduction
	PLS blockchain: architecture and protocols
	Block structure and optimisation challenge
	Motivation and optimisation idea
	Sparse MT statistics

	Tunstall–Merkel tree
	Pre-randomisation
	Putting it all together
	Related work
	Conclusions
	Acknowledgements
	References

