
Disha and Waheed ﻿Cybersecurity (2022) 5:1
https://doi.org/10.1186/s42400-021-00103-8

RESEARCH

Performance analysis of machine learning
models for intrusion detection system using
Gini Impurity‑based Weighted Random Forest
(GIWRF) feature selection technique
Raisa Abedin Disha1*  and Sajjad Waheed2 

Abstract 

To protect the network, resources, and sensitive data, the intrusion detection system (IDS) has become a fundamental
component of organizations that prevents cybercriminal activities. Several approaches have been introduced and
implemented to thwart malicious activities so far. Due to the effectiveness of machine learning (ML) methods, the
proposed approach applied several ML models for the intrusion detection system. In order to evaluate the per-
formance of models, UNSW-NB 15 and Network TON_IoT datasets were used for offline analysis. Both datasets are
comparatively newer than the NSL-KDD dataset to represent modern-day attacks. However, the performance analy-
sis was carried out by training and testing the Decision Tree (DT), Gradient Boosting Tree (GBT), Multilayer Percep-
tron (MLP), AdaBoost, Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) for the binary classification
task. As the performance of IDS deteriorates with a high dimensional feature vector, an optimum set of features was
selected through a Gini Impurity-based Weighted Random Forest (GIWRF) model as the embedded feature selection
technique. This technique employed Gini impurity as the splitting criterion of trees and adjusted the weights for two
different classes of the imbalanced data to make the learning algorithm understand the class distribution. Based upon
the importance score, 20 features were selected from UNSW-NB 15 and 10 features from the Network TON_IoT data-
set. The experimental result revealed that DT performed well with the feature selection technique than other trained
models of this experiment. Moreover, the proposed GIWRF-DT outperformed other existing methods surveyed in the
literature in terms of the F1 score.

Keywords:  Cyber security, Feature selection, Intrusion Detection System, Machine learning, Network security

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
In this era of modernization, information system has
become a prominent asset for companies and organiza-
tions to collect, store, process, manage and distribute
information effectively in an organized way. As soon as
information system technology has been introduced

to organizations, the risk of security breaches has also
emerged. To protect sensitive data as well as the Informa-
tion Technology (IT) infrastructure from cyber attackers,
several information security measures have been taken by
organizations. One of the essential components of cyber-
security is the Intrusion Detection System (IDS). Based
upon the knowledge it is provided, an IDS can identify
the anomalous traffic and alert the network administra-
tor accordingly (Scarfone and Mell 2007). In general,
the architecture of an intrusion detection system (IDS)
is developed based on four functional modules—(1) E
block (Event-boxes), (2) D block (Database-boxes), (3)

Open Access

Cybersecurity

*Correspondence: raisaabedin@gmail.com
1 Department of Information and Communication Technology,
Bangladesh University of Professionals, Mirpur Cantonment, Dhaka 1216,
Bangladesh
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2157-1024
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00103-8&domain=pdf

Page 2 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

A blocks (Analysis-boxes), and (4) R blocks (Response-
boxes) (Garcia-Teodoro et al. 2009). In a nutshell, E block
(Event-Boxes) contains sensor elements for monitor-
ing the system, and it acquires information of events for
further analysis. This acquired information needs to be
stored for processing. For this purpose, D block (Data-
base-boxes) elements store the information that coming
from the E block. A block (Analysis-boxes) is the pro-
cessing module, where the detection of malicious behav-
ior is carried out by analyzing the events. After detecting
the hostile behavior, the most important task is to pre-
vent that threat. So, if any kind of intrusion occurs, the
R block (Response- boxes) takes initiative to thwart the
malicious event with appropriate response execution
(Chandola et al. 2009). An illustration of the IDS frame-
work is given in Fig. 1. Based on information source (E
block), an IDS can be categorized into Host-based IDS
(HIDS) and Network-based IDS (NIDS). HIDS is related
to operating system information (system calls and pro-
cess identifiers), whereas NIDS performs analysis on
the network events (IP address, protocols, service ports,
traffic volume, etc.). Based on the analysis performed in
A block, IDS can be classified into Signature-based IDS
(misuse-based) and Anomaly-based IDS. In Signature-
based IDS (SIDS), a database of known attack signatures

is maintained, and the IDS matches the analyzed data
with the database to find out the intrusion (Khraisat et al.
2019). It is the best fit for detecting known attacks, but
unable to detect new types (previously unseen attacks).
The false-positive rate is considerably lower in Signature-
based IDS. On the contrary, Anomaly-based IDS (AIDS)
tries to understand the normal behavior of the system
and sets a threshold value. When the given observation at
an instant deviates from normal behavior exceeding the
preset threshold value, an anomaly alarm is raised (Liao
et al. 2013). As Anomaly-based IDS tries to find out sus-
picious events, it is a good solution for detecting previ-
ously unseen attacks. However, the false-positive rate of
intrusion detection is higher in AIDS than in SIDS.

Due to the tremendous usage of cloud services and the
Internet of things (IoT), network traffic is also uprais-
ing every day in an enormous amount. It makes it quite
difficult for the IDS to distinguish between normal and
anomalous behavior of network traffic, especially while
detecting zero-day attacks (previously unseen attacks). To
address this issue, Machine Learning (ML) methods have
become a convenient and effective technique for identify-
ing and categorizing multiple network attacks. Machine
Learning technology makes the IDS able to learn and
improve the system’s performance by analyzing previ-
ous data. Moreover, computer programs that use ML
do not require to be explicitly programmed as they can
learn by themselves (Naqa and Murphy 2015). The intru-
sion detection technique is still the core of many types of
research works as the detection rate and accuracy score
of the machine learning models are not up to the mark
for classifying the intrusion. Furthermore, many solu-
tions are not effective enough for a large number of data
using the full dataset (Yin et al. 2017). Also, a lot of intru-
sion detection works have been conducted using NSL-
KDD 99 or KDD 99 dataset, which is now considered
outdated to identify modern cyber-attacks (Moustafa and
Slay 2015; Labonne 2020; Divekar et al 2018).

In this research, a binary classification task imple-
menting supervised machine learning models had been
conducted. Binary classification happens when the
supervised machine learning model is assigned to predict
a discrete value as a ‘normal’ or ‘attack’ instance (Har-
rington 2012). The dataset used in this study is relatively
large and owns a high dimension of feature space. For a
large dataset, it is important to choose a feature selec-
tion method for dropping the irrelevant features, and use
only the important set of features in both the training
and testing step (Dong and Liu 2018). Feature selection
is the process of choosing a subset of relevant features by
reducing the number of input variables while building a
predictive model. It is desired in most cases to improve
the performance of predictive models. Also, irrelevant Fig. 1  Common intrusion detection architecture for IDS

Page 3 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

features have a negative impact on the performance of
the model. However, as the IDS deals with numerous data
instances which have irrelevant or redundant features, it
not only decreases the detection accuracy score but also
increases the computational cost (Zaman and Karray
2009). Feature selection gives the solutions to some fre-
quently occurred mistakes in IDS by identifying the rel-
evant features which consist of essential information for
the classification task (Mohammadi et al. 2019).

In our proposed approach, a Gini Impurity-based
weighted Random Forest (GIWRF) model was devel-
oped to select the important and relevant features based
on the importance score. The feature importance scores
were calculated by adjusting the weight in the Random
Forest algorithm (Breiman 2001) for imbalanced class
distribution, and employing the Gini impurity criterion
for splitting the trees. However, the Decision Tree (DT),
Gradient Boosting Tree (GBT), Multilayer Perceptron
(MLP), Adaptive Boosting (AdaBoost), Long-Short Term
Memory (LSTM), and Gated Recurrent Unit (GRU)
were developed over two datasets for ML-based IDS
framework. Data preprocessing or Data engineering was
required before training and testing the models. The data
preprocessing phase included three steps which would be
discussed later in this paper. However, performance anal-
ysis for the binary classification task was conducted using
UNSW-NB 15 dataset (Moustafa et al. 2018; Moustafa
and Slay 2016), and the Network TON_IoT dataset
(Moustafa 2021) which are relatively new datasets con-
taining modern attack patterns. The rest of the paper is
organized as follows. First of all, related research works
have been discussed in “Literature review” section. After
that, a brief discussion of the other existing datasets for
IDS and the experimental datasets (UNSW-NB 15 and
Network TON_IoT) have been presented in “Datasets”
section. The proposed methodology of the experimental
process has been explained subsequently in “Proposed
methodology” section. “Experiments and results” sec-
tion has focused on the experiment environment and the
result of the models. Based on the experimental result, a
discussion segment has been added in “Discussion” sec-
tion, and finally, the conclusion (“Conclusion” section)
has ended the paper.

Literature review
Different Intrusion detection techniques have been
explained and suggested over the last 2 decades (Catania
and Garino 2012). To build robust and efficient IDS many
types of research have been proposed with machine
learning approaches and made some improvements in
this area. An approach was introduced by Ingre and
Yadav (2015) for ML-based IDS that combined the Deci-
sion Tree (DT) classifier and correlation input selection

method for the classification task. A filter-based feature
selection method was used to train and test their models.
For their experimental process, the NSL-KDD dataset
was analyzed. 14 significant features had been selected
by filter-based feature selection technique to reduce the
time complexity. However, this study was conducted for
both binary and multiclass classification tasks. The result
showed that they obtained an accuracy of 83.66% for
a multiclass classification task that successfully identi-
fied five different attacks and 90.30% accuracy for binary
classification.

Another filter-based approach was introduced to detect
Distributed Denial of Service (DDoS) attacks by Osan-
aiye et al. (2016). They used multiple filters: Chi-Square,
Information Gain, Gain Ratio, and ReliefF algorithm for
selecting an optimum number of features. For perfor-
mance analysis of the system, they trained and evaluated
the models on the NSL-KDD dataset. The classifier used
in this approach was DT. The model had been validated
with a tenfold cross-validation technique before testing.
Their result indicated that DT was capable of detecting
DDoS attacks with an accuracy of 99.67% while using 13
important features out of the whole feature set.

Alazzam et al. (2020) compared the performance of IDS
using Decision Tree (DT) as a binary classifier. Pigeon
Inspired Optimizer (PIO) is considered as the feature
reduction technique in this study. PIO is a swarm intel-
ligence algorithm inspired by pigeon’s homing behav-
ior. When a flock of pigeons flies a long way home, they
use different navigation tools in different phases of their
flight (Liu et al. 2019). The pigeons continuously change
their position according to the navigation tool (map and
compass operator) following the best pigeon that has
the best position. Based on this philosophy of search
and optimization, PIO has been further developed. In
this experiment, two types of PIO were used for feature
reduction: Cosine PIO and Sigmoid PIO. The authors
carried out the simulation on UNSW-NB 15, NSL-KDD,
and KDDCup99 datasets. Using Sigmoid PIO, 10 features
from KDDCup99, 14 features from the UNSW-NB data-
set, and 18 features from NSL-KDD were selected. Also,
they selected 7 features from KDDCup99, 5 features from
UNSW-NB-15, and NSL-KDD using Cosine PIO for
comparing the result. Sigmoid PIO obtained an accuracy
of 94.7% for KDDCup99, 86.9% using the NSL-KDD, and
91.3% over the UNSW-NB 15 dataset. On the contrary,
Cosine PIO achieved 91.7% accuracy over UNSW-NB 15,
88.3% on NSL-KDD, and 96% on KDDCup99.

Another experiment was conducted by Khan et al.
(2018) to enhance the performance of Random For-
est, Extreme Gradient Boosting (XGBoost), Decision
Tree, Bagging Meta Estimator, and K-Nearest Neigh-
bors (KNN). The goal of this study was to decrease

Page 4 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

the computational time with reduced features while
improving the accuracy of models. The subset of 11
features had been chosen according to the feature
importance calculated by the Random Forest model.
Random Forest obtained 74.87% accuracy, XGBoost
achieved 71.43% detection accuracy, 74.64% for Bag-
ging Meta Estimator using UNSW-NB Dataset. Also,
Decision Tree and KNN attained an accuracy of 74.22%
and 71.10% respectively. However, the training time for
XGBoost was comparatively higher than other models
in this experiment. Decision Tree required the lowest
prediction time and KNN needed significantly higher
prediction time than other models.

An improved anomaly detection technique was pro-
posed by Tama and Rhee (2019) using Gradient Boost-
ing Machine (GBM) with complete features of NSL KDD,
UNSW-NB 15, and GPRS dataset. The authors statisti-
cally assessed the superiority of GBM over other models:
Support Vector Machine (SVM), Random Forest, Classi-
fication and Regression Tree (CART), and Deep Neural
Network (DNN) in terms of area under the receiver oper-
ating characteristic curve (AUC), specificity, false-pos-
itive rate, sensitivity, and accuracy. The experiment was
simulated in a Python environment with machine learn-
ing libraries. GBM outperformed other methods with
an accuracy score of 91.31% for the UNSW-NB Dataset,
91.82% for KDDTest+, and 86.51% for KDDTest-21.

An SVM and Artificial Neural Network (ANN) based
technique was proposed by Aboueata et al. (2019) for
intrusion detection systems in cloud environments.
Additionally, they considered Univariate and Principal
Component Analysis (PCA) together for choosing an
optimal set of features. They trained and tested the mod-
els on UNSW-NB 15 dataset and performance evalua-
tion is carried out in terms of F1 score, Precision, Recall
as well as Accuracy. However, feature engineering along
with parameter tuning was performed by the authors to
obtain maximum accuracy while reducing the time com-
plexity of the models. The study indicated that with an
appropriate set of features, ANN and SVM techniques
were capable of detecting anomalies with 91% and 92%
accuracy scores respectively.

Jing and Chen (2019) introduced another SVM-based
anomaly detection approach for both binary classifica-
tion and multiclass classification. A nonlinear feature
scaling method was applied in their simulation. However,
they used Radial Basis Function (RBF) to map low dimen-
sional space to high dimensional space in SVM. RBF ker-
nel is suitable for large dataset evaluation in terms of
computational time and accuracy. They achieved 85.99%
testing accuracy for binary classification and 75.77% of
accuracy for multiclass classification. Their preferred

dataset for offline performance analysis was also the
UNSW-NB 15 dataset.

Kasongo and Sun (2020) implemented five super-
vised models: Support Vector Machine (SVM), Logistic
Regression (LR), k-Nearest-Neighbour (kNN), Decision
Tree (DT), and Artificial Neural Network (ANN) using
a filter-based feature reduction technique. The Extreme
Gradient Boosting (XGBoost) technique was used for
reducing the feature vector from 42 to 19 based on the
feature importance score. This study compared the per-
formance of models by training and testing them on
UNSW-NB 15 dataset. However, they conducted the
work for both binary and multiclass classification. With
reduced features, they observed an increment in accu-
racy from 88.13 to 90.85% for the DT model while per-
forming the binary classification task.

Another intrusion detection framework was proposed
by Meftah et al. (2019) that included two stages. In the
first stage, their approach performed binary classifica-
tion. In the second stage, the attack traffic output was
fed to multiclass classifiers for identifying each attack.
The authors used Random Forest for the feature selec-
tion technique for the binary classification task. They
trained the Gradient Boost Machine, Logistic Regres-
sion, and Support Vector Machine (SVM) and the test
result revealed that SVM obtained the maximum detec-
tion accuracy of 82.11%. The Gradient Boost Machine
and Logistic Regression obtained the accuracy score of
61.83% and 77.21% respectively. For multiclass classifica-
tion, they applied multinomial Support Vector Machine,
Decision Trees (C5.0), and Naïve Bayes. However, the
Decision Tree achieved the highest accuracy of 74%, and
86% F1 score for multiclass classification. Moreover, they
presented constructive criticism on UNSW-NB 15 data-
set, which had been used in their experimental analysis.

Injadat et al. (2020) proposed an ML-based NIDS
framework that studied the oversampling technique on
the training data and selected a suitable sample size for
training the KNN and RF. They applied correlation-based
(CBFS) and information gain (IGBFS) feature selection
techniques and compared the performance of classi-
fiers using CICIDS 2017 and UNSW-NB 2015 datasets.
However, unlike other research works which used the
benchmark UNSW-NB 15 training and UNSW-NB
15 test datasets, this study used the full UNSW-NB 15
data (2,540,044 instances) and made a random split for
training and testing. Moreover, they used the oversam-
pling technique, SMOTE to synthetically produce more
instances to a smaller class. They analyzed the effect of
feature selection on the training sample and feature set
size. The performance of the models was evaluated based
on Accuracy, Precision, Recall, and FAR (False Alarm
Rate) score. The oversampling method as well as the

Page 5 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

selection of an optimum train size helped to achieve an
accuracy score of 99% for both datasets.

Belgrana et al. (2021) proposed two approaches for
NIDS. Firstly, they applied Condensed Nearest Neigh-
bors (CNN) to reduce the dimensionality of features as
well as the computational time. Secondly, the authors
implemented a Radial Basis Function (RBF) neural net-
work to realize the performance training on the NSL-
KDD dataset. Then, they compared the performance
of KNN, C4.5, and IBK (version of KNN in Weka) with
CNN and RBF model with all features of NSL-KDD and
with reduced features in terms of True Positive Rate
(TPR), False Alarm Rate (FAR) and Missed Attacks
Rate (MAR). Their proposed RBF and CNN obtained
the accuracy (success rate) score of 94.28% and 95.54%
respectively. However, they found CNN faster than
RBF, though the MAR in CNN was lower than RBF.

A hybrid approach was proposed by Lee et al. (2020),
where the authors proposed a deep sparse autoencoder
for feature selection in the data pre-processing step.
Autoencoder is widely used in image processing to
compress the image without decreasing the number of
features, so this research used autoencoder to compress
the features of training and test datasets without having
any loss. They compared the performance of a single RF
and their proposed Deep Sparse Autoencoder Random
Forest (DSAE-RF) to realize the effect of the proposed
feature compression technique. The authors evaluated
their approach in terms of Accuracy, Precision, Recall,
and F1 score by training the DSAE-RF on CICIDS2017
Dataset. The accuracy score for DSAE-RF was 99.83%,
which was slightly lower than single RF (99.86%), but
the precision and recall score was comparatively higher
than single RF. In addition, they analyzed the perfor-
mance of the model according to the hidden layer’s
structure. However, they claimed that their proposed
DSAE-RF model requires less training and testing time
than the single RF.

Based on Neural Network approaches an experimental
review for Network Intrusion Management was provided
by Mauro et al. (2020). The authors offered a full view of
some promising neural networks which are very relevant
for applying to ML-based IDS. For their experimental
analysis, they developed Convolutional Neural Network,
MLP, Recurrent Neural Network (RNN), Wilkes Stonham
and Aleksander Recognition Device (WiSARD), Learn-
ing Vector Quantization (LVQ), Self-Organizing Maps
(SOM) using CIC-IDS-2017/2018 dataset released from
Canadian institute for cybersecurity. As per their experi-
mental analysis, MLP is much slower than other neural
networks due to the backpropagation property, though it
performed well in terms of detection performance. LVQ
performed inferior to other networks, whereas WiSARD

showed the best trade-off between performance and time
complexity.

Gu and Lu (2021) proposed an effective approach for
IDS using SVM with Naïve Bayes algorithm together to
classify intrusion and normal instances. In that work, the
Naïve Bayes algorithm was used to transform the original
features into new data. After that, the newly transformed
data was used to train the SVM model for the classifi-
cation task. They applied this approach on UNSW-NB
15, CICIDS2017, NSL-KDD, and Kyoto 2006 + datasets
to evaluate the performance. Their experimental result
showed that they achieved good performances with
98.92% accuracy for the CICIDS2017 dataset, 99.35%
accuracy for the NSL-KDD dataset, 93.75% accuracy on
UNSW-NB 15 dataset, and 98.58% accuracy applying
Kyoto 2006 + dataset.

Moustafa (2021) created a new dataset called, Network
TON_IoT dataset and used a Wrapper Feature Selec-
tion technique-based RF to select the important features.
They developed the GBM, RF, NB, and DNN to evaluate
the performance. After feature selection, the GBM, RF
and DNN achieved the accuracy score of 93.83%, 99.98%,
and 99.92% respectively and for NB they obtained the
AUC score of 91.28%.

A summary of the related works that used the ML tech-
niques for IDS has been presented in Table 1.

Datasets
Existing datasets
Several datasets are available to evaluate the security
systems of cybersecurity. However, many datasets do
not contain modern cyber-attack patterns for intrusion
detection systems such as NSL-KDD. In this segment,
the most recent and widely used datasets for ML-based
IDS have been discussed as follows:

1.	 CAIDA datasets CAIDA datasets (Hick et al. 2007)
are a set of enormous different data sources for veri-
fying IDSs performance with very few numbers of
attack vectors (e.g., DDoS). The dataset is available as
CAIDA 2007, which contains anonymized network
data for DDoS attacks without payload. However, the
datasets neither possess the audit traces of telemetry
data of IoT sensors and operating systems nor have a
ground truth of the security events.

2.	 The Kyoto dataset It was built at Kyoto University
collecting the network traffic from a honeypot envi-
ronment. The Kyoto 2006 + (Song et al. 2011) dataset
was generated by using the Zeek tool which extracted
24 features from the original KDD99 dataset. How-
ever, this dataset did not have the testbed configura-
tion with the IoT system, and network components.

Page 6 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

3.	 ISCX dataset This dataset (Shiravi et al. 2012) was
created by capturing normal traffic and a synthetic
attack simulator, which was carried out in a real-time
simulation environment for more than 1 week. How-
ever, there was no ground truth of the intrusions, and
the proofing concept requires enormous computa-
tional resources making it unsuitable to be applied in
real-time.

4.	 CICIDS 2017 The dataset (Sharafaldin et al. 2018)
was created at the Canadian Institute for Cybersecu-

rity (CIC) which involves several normal and attack
(hack) scenarios employing data profiling concept,
similar to ISCX dataset. The network traffic of this
dataset was scrutinized by the CICFlowMeter. The
flow identifiers and the time-stamp were utilized by
the CICFlowMeter with the labeled data to investi-
gate the network traffic. However, CICIDS 2017 also
has the same shortcomings as the ISCX dataset.

5.	 The UNSW-NB 15 dataset The dataset (Moustafa
and Slay 2015) was designed at the University of New

Table 1  Related works on IDS using ML models

Proposed by Used dataset Feature selection Algorithm Accuracy

Khan et al. (2018) UNSW-NB 15 dataset Feature importance (RF) XGBoost,
RF,
Bagging,
KNN,
DT

71.43%,
74.87%,
74.64%,
74.22%,
71.10%

Tama and Rhee (2019) NSL KDD,
UNSW-NB 15 and GPRS

Complete feature GBM 91.31% (UNSW-NB),
91.82% (KDDTest +),
86.51% (KDDTest-21)

Jing and Chen (2019) UNSW-NB 15 All features SVM 85.99% (binary classification),
75.77% (multiclass classifica-
tion)

Kasongo and Sun (2020) UNSW-NB 15 XGBoost algorithm SVM,
Logistic Regression,
KNN,
DT,
ANN

60.89,
77.64,
84.46,
90.85,
84.39

Ingre and Yadav (2015) NSL-KDD filter-based DT 83.66% (multiclass classifica-
tion),
90.30% (binary classification)

Osanaiye et al. (2016) NSL-KDD Chi-Square, information
gain, gain ratio, and relieff
algorithm

DT 99.67%

Alazzam et al. (2020) UNSW-NB 15,
NSL-KDD, KDDCup99

Sigmoid PIO
Cosine PIO

DT
DT

91.7% (UNSW-NB 15);
88.3% (NSL-KDD);
96% (KDDCup99);
91.3% (UNSW-NB)
86.9% (NSL-KDD)
94.7% (KDDCup99)

Aboueata et al. (2019) UNSW-NB 15 Univariate and principal com-
ponent analysis (PCA)

ANN, SVM 91%, 92%

Meftah et al. (2019) UNSW-NB 15 Random forest GBM,
LR,
SVM

61.83%,
77.21%,
82.11%

Injadat et al. (2020) CICIDS 2017,
UNSW-NB 15

Correlation based (CBFS) and
information gain (IGBFS)

KNN
RF

99% for both datasets

Belgrana et al. (2021) NSL-KDD Condensed nearest neighbors
(CNN)

Radial basis function (RBF),
CNN

94.28%,
95.54%

Lee et al. (2020) CICIDS2017 dataset Autoencoder Deep sparse autoencoder
random forest (DSAE-RF)

99.83%

Gu and Lu (2021) UNSW-NB 15, CICIDS2017,
NSL-KDD, and Kyoto 2006 + 

Feature transformation with
Naïve Bayes

SVM 98.92% (CICIDS2017),
99.35% (NSL-KDD),
93.75% (UNSW NB15),
98.58% (Kyoto 2006 +)

Moustafa (2021) Network TON_IoT Wrapper feature selection
technique-based RF

GBM
RF
DNN

93.83%,
99.98%,
99.92%

Page 7 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

South Wales, Canberra, especially to evaluate the
Network Intrusion Detection System. It used IXIA
traffic generator which captured 2,540,044 obser-
vations. Out of the whole data, a portion is avail-
able online as two separated.csv files called UNSW_
NB15_training-set and UNSW_NB15_test-set.
However, this dataset does not contain any security
events against the operating system and IoT.

6.	 TON_IoT Datasets It was also created at the Univer-
sity of New South Wales, Canberra deploying a novel
testbed architecture by Moustafa (2021). The data
was collected and labeled by executing real-world
normal and intrusion scenarios. The final dataset was
named TON_IoT as the data was gathered from dif-
ferent telemetry datasets of IoT services, the dataset
of network traffic, and Windows and Linux-based
datasets.

Discussion about experimental datasets
UNSW‑NB 15 dataset
For our experimental process of Intrusion Detection
System (IDS) the first dataset we used for the offline
analysis was UNSW-NB 15 (Moustafa and Slay 2015).
UNSW-NB 15 dataset is comparatively newer than NSL
KDD 99 or KDD 99, CAIDA, Kyoto 2006 + , and ISCX
dataset. It contains modern network traffic for both nor-
mal and anomalous instances including present-day low
footprint attacks. It is available in a clean format, and
there is no redundancy in the data, thus making it more
suitable for reliable evaluation for Network Intrusion
Detection systems. The total number of data instances
is 2,540,044 which are kept in four.csv files. From these
records, a partition of 175,341 instances is considered as
a training set and 82,332 data instances as the test set. In
UNSW-NB 15 training set, a significant portion (68.1%)
of data instances is attack types and just less than one-
third (31.9%) of data instances are normal transactions,
as shown in Fig. 2. Similarly, in the test set, 55.1% of total
data is attack traffic, and 44.9% of instances contain nor-
mal transactions, as shown in Fig. 3. Attacks are repre-
sented by ‘1’, whereas normal traffic is indicated by ‘0’
in the class label of the dataset for binary classification.
The dataset does not have any duplicate records to make
the classifiers being biased. However, attack types in the
UNSW-NB 15 train and test dataset are similar. Figure 4
has illustrated the distribution of attack categories in
both datasets. In its clean format, the dataset contains
44 features, where ‘attack_cat’ and ‘label’ are output vari-
ables (labeled feature). The data instances can be catego-
rized into float, categorical and binary format as shown in
Table 2. Both of train and test set contains nine different

types of attacks (Moustafa and Slay 2016), which can be
described as in the following points:

1.	 Fuzzers It is a malicious activity by the perpetrators
in which they explore the security vulnerabilities in
applications, programs, operating systems, or net-
works by flooding it with enormous random data
with the aim of crashing it.

2.	 Analysis It involves a wide range of intrusions that
penetrate the web application via emails (using
spam), web scripts (through HTML files), and ports
(via port scan techniques).

Fig. 2  Transaction class distribution of UNSW-NB 15 Train Dataset

Fig. 3  Transaction class distribution of UNSW-NB 15 Test Dataset

Page 8 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

3.	 Backdoor This technique is used to bypass the nor-
mal authentication process, and let unauthorized
users (attackers) access a computer or device, which
helps them to execute commands remotely.

4.	 DoS (Denial of Service) In DoS, the attacker attempts
to make the computer resources unavailable to
authorized users temporarily or indefinitely by shut-
ting down theservices provided by the target system
or network.

5.	 Exploit It is a series of instructions given by the per-
petrators, which takes advantage of any vulnerability,
bug, or glitch that exists in the network or system.

6.	 Generic It is a malicious activity in which the attackers
do not care about the cryptographical implementation
of any primitives. It works successfully against all block
ciphers using the hash function to cause a collision, no
matter what configurations the block ciphers have.

7.	 Reconnaissance/ Probe This attack collects informa-
tion about the computer network in order to dodge
the security controls.

8.	 Shellcode For the purpose of taking control over the
compromised device or machine, attackers write the
code and inject it into the application that activates
the command shell.

9.	 Worms It is a self-replicating code that exploits the
system vulnerabilities or uses social engineering
techniques to gain access to the system. It reduces
the availability of the system by consuming memory
and network bandwidth.

Network TON_IoT dataset
TON_IoT network dataset is the most recent dataset
created by Moustafa (2021). This dataset was collected
by the Intelligent Security Group of the Cyber Range
and IoT Labs of UNSW, which contains nine very recent
attacks traffic. The full data record contains 22,339,021
instances, from where a portion of 461,043 instances is
being considered as ‘Train_Test_Network_dataset’ for
evaluating new Artificial Intelligence-based cybersecu-
rity solutions. The dataset was published for applying
into different machine learning models and to handle the
challenges of class imbalance, which made it suitable for
using in this research. However, the dataset has 44 fea-
tures excluding the target variable ‘label’ and ‘type’. As
the author suggested in Moustafa (2021) four features:
source IP, destination IP, source ports and destination
ports were removed from the dataset before applying the
feature selection technique in the proposed approach,
and from this dataset, 80% of data (368,834) was selected
for training the models, and other 20% (92,209) was used
for testing the models. As shown in Table 3, the features
are categorized into four types of format: String, Num-
ber, Boolean, and Time, which belong to four service
groups, such as connection, statistics, user attributes (i.e.
HTTP, SSL activities and DNS), and violation attributes.
Unlike UNSW NB 15, where the number of attack traffic
is higher than normal instances, the TON_Train_Test_
Network dataset posses 65.1% normal instances and
34.9% attack traffics as shown in Fig. 5. The distribution

Fig. 4  Distribution of categories in UNSW-NB 15 Train and Test dataset

Page 9 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

Table 2  List of features exist in UNSW-NB 15 Dataset

Feature number Format Feature

1 Float dur

2 Categorical proto

3 Categorical service

4 Categorical state

5 Integer spkts

6 Integer dpkts

7 Integer sbytes

8 Integer dbytes

9 Float rate

10 Integer sttl

11 Integer dttl

12 Float sload

13 Float dload

14 Integer sloss

15 Integer dloss

16 Float sinpkt

17 Float dinpkt

18 Float sjit

19 Float djit

20 Integer swin

21 Integer stcpb

22 Integer dtcpb

23 Integer dwin

24 Float tcprtt

25 Float synack

26 Float ackdat

27 Integer smean

28 Integer dmean

29 Integer trans_depth

30 Integer response_body_len

31 Integer ct_srv_src

32 Integer ct_state_ttl

33 Integer ct_dst_ltm

34 Integer ct_src_dport_ltm

35 Integer ct_dst_sport_ltm

36 Integer ct_dst_src_ltm

37 Binary is_ftp_login

38 Integer ct_ftp_cmd

39 Integer ct_flw_http_mthd

40 Integer ct_src_ltm

41 Integer ct_srv_dst

42 Binary is_sm_ips_ports

43 Categorical attack_cat

44 Binary label

Table 3  List of features exist in TON_IoT Train_Test Network
Dataset

Feature number Feature Format

1 dns_AA Boolean

2 dns_RD Boolean

3 dns_RA Boolean

4 dns_rejected Boolean

5 ssl_resumed Boolean

6 ssl_established Boolean

7 weird_notice Boolean

8 src_port Number

9 dst_port Number

10 duration Number

11 src_bytes Number

12 dst_bytes Number

13 missed_bytes Number

14 src_pkts Number

15 src_ip_bytes Number

16 dst_pkts Number

17 dst_ip_bytes Number

18 dns_qclass Number

19 dns_qtype Number

20 dns_rcode Number

21 http_trans_depth Number

22 http_request_body_len Number

23 http_status_code Number

24 http_response_body_len Number

25 http_user_agent Number

26 label Number

27 src_ip String

28 dst_ip String

29 proto String

30 service String

31 conn_state String

32 dns_query String

33 ssl_version String

34 ssl_cipher String

35 ssl_subject String

36 ssl_issuer String

37 http_method String

38 http_uri String

39 http_referrer String

40 http_version String

41 http_orig_mime_types String

42 http_resp_mime_types String

43 weird_name String

44 weird_addl String

45 type String

46 ts Time

Page 10 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

of attack categories as shown in Fig. 6 has illustrated that
except Man-in-the-middle (MITM) other attacks have
an equal distribution of records. The MITM attack has
the lowest, and normal traffic has the highest records in
the dataset.

However, the nine different attacks that exist in the
dataset can be summarized as following points:

1.	 Scanning attack The goal of a scanning attack is to
gather information about the target system. Attackers

try to find out the active IP addresses and the open
port of the vulnerable target system using Nmap or
Nessus or any other scanning tool.

2.	 Denial of Service (DoS) DoS attack is one of the fre-
quently occurred invasions in the network that
induces fake flooding to target network for making
services unavailable to its users.

3.	 Distributed Denial of Service (DDoS) In DDoS attack,
multiple DoS attacks are launched together to cor-
rupt the system. Usually, an attacker infects many
vulnerable systems with malware and turns each sys-
tem into a bot or zombie. Then, taking control over
the botnet it attacks the target from all of the com-
promised bot systems.

4.	 Ransomware attack It is a complicated malware that
infects any system or service by encrypting those and
makes the authorized user unable to access until they
pay the attacker ransom money.

5.	 Backdoor attack It bypasses the normal authentica-
tion process and gains high-level user access to the
vulnerable system for stealing user’s personal data,
financial information, installing other malware, or
hijacking the devices.

6.	 Injection attack This attack inserts or injects any
malicious input or any forged data from the client to
a web application, and forces it to execute some com-
mands for changing the operation.

7.	 Cross-site Scripting (XSS) attack It is a type of vulner-
ability where the attackers inject client-side scripts
into the web pages that are accessed by other users,
and employs the web pages to transmit the malicious
code to the other end user’s system in the form of
browser-side script.

8.	 Password cracking attack Password cracking refers to
any hacking technique that continuously tries to dis-
cover the correct password by employing brute force
or dictionary attacks.

9.	 Man-In-The-Middle (MITM) attack MITM is a
kind of eavesdropping attack, where the attackers
put themselves between two parties (e.g. users and
applications), and impersonate as one of the parties
to steal personal information (e.g. login credentials,
credit card information etc.) from them.

Proposed methodology
The main motivation of this study was to apply a suit-
able feature selection technique for imbalanced data
and make a comparison of the performance of the ML
models described in “Machine learning methods under
scrutiny” section by training those over the datasets
summarized in “Discussion about experimental data-
sets” section. The diagram of the proposed approach
has been illustrated in Fig. 7.

Fig. 5  Class distribution in TON_Train_Test Network data

Fig. 6  Distribution of categories in TON_Train_Test Network data

Page 11 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

Data preprocessing
The first step of the experiment was data preprocessing
or data engineering. Feeding the models raw data may
give a misleading prediction sometimes. As the datasets
do not have any null or duplicate value, the data preproc-
essing step included only Categorical Feature Encoding,
Feature Selection, and Feature Scaling.

Coding for categorical feature
The UNSW-NB 15 dataset contains three categori-
cal features: State, Proto, and Service, and the Network
TON_IoT Dataset has nineteen string features as shown
in Table 3. To encode the categorical features of UNSW-
NB 15, Response Coding was applied, and to transform
the string features of Network TON_IoT dataset Label
Encoding was used. In Label Encoding, each categorical
feature is given a unique integer value based on alpha-
betical order (Sethi 2020). On the other hand, Response
Coding is an encoding technique, which represents the
probability of data instances that belongs to a specific
class given a category. For N-class classification, N new
features are generated for each category that inserts the

probability (P) of data instance belonging to each class
based upon the value of categorical data (Dharmik 2019).
A mathematical expression can be presented by:

where Y is denoted as a class and the category of feature
is represented as A. It requires considerable memory
space that made it unsuitable for transforming string
features of the Network TON_IoT dataset, as it contains
several categorical features.

Feature scaling
The datasets contain some features which have highly fluc-
tuated magnitudes, ranges, and units. Due to this highly
varying characteristic of the datasets, some algorithms
such as the Multilayer Perceptron predicts wrongfully.
Besides, it requires high computational resources. So, fea-
ture scaling is one commonly used method that normalizes
the range of independent variables. Feature scaling is man-
datory for some machine learning models which calculate
the distance between data. Normalization and Standardi-
zation are two widely applied feature scaling methods in

(1)P(Y |A) = P(A ∩ Y)/P(A)

Fig. 7  Proposed ML-based IDS framework

Page 12 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

machine learning. In this experiment, Normalization or
Min–Max scaling was used to normalize the data between
the range of 0 and 1. The general formula of normalization
can be shown as below:

where f is the original feature and f − is the normalized
feature. The minimum and maximum values of the fea-
ture are represented as min

(
f
)
 and max

(
f
)
 respectively.

Gini Impurity‑based Weighted Random Forest (GIWRF)
for feature selection
Random Forest (Breiman 2001) is an ensemble classi-
fier that is built on a number of decision trees and sup-
ports various feature importance measures. One of those
is to derive the importance score by training the classifier.
The traditional machine learning classification algorithm
expects that all the classes in the training set come up with
similar importance, and the models are built without con-
sidering that there may exist an imbalance class distribu-
tion in training data (Krawczyk 2016). To understand the
relevance of features with the output of the imbalanced
data, this feature selection technique employed a weight
adjustment technique in RF once the classifier measured
the Gini impurity, i(τ). Gini impurity reveals how well a
split is to divide the total samples of binary classes in a spe-
cific node. Mathematically it can be written as:

(2)f − =
(
f − min

(
f
))

/
(
max

(
f
)

− min
(
f
))

(3)i(τ) = 1 − p2p − p2n where pp is the fraction of positive samples and pn is the
fraction of negative samples out of the total number of

Fig. 8  Accuracy versus threshold value for UNSW-NB 15 and Network TON_IoT dataset

Table 4  Selected features of UNSW-NB 15 and Network TON_IoT
dataset

UNSW-NB 15 (20 features) Network TON_IoT (10 features)

feature name Importance
score

Feature name Importance
score

sttl 0.123 ts 0.258

ct_state_ttl 0.099 proto 0.146

sload 0.059 src_ip_bytes 0.137

rate 0.058 src_pkts 0.067

dload 0.057 dst_ip_bytes 0.062

dttl 0.045 dst_pkts 0.048

sbytes 0.039 conn_state 0.047

ct_srv_dst 0.037 dst_bytes 0.034

smean 0.034 src_bytes 0.032

dmean 0.032 duration 0.030

dbytes 0.028 – –

ackdat 0.027 – –

ct_dst_src_ltm 0.027 – –

ct_srv_src 0.026 – –

dur 0.026 – –

tcprtt 0.025 – –

synack 0.024 – –

dinpkt 0.023 – –

sinpkt 0.022 – –

dpkts 0.021 – –

Page 13 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

samples (N) at node τ. The reduction in Gini impurity
deriving from any optimal split �if (τ ,M) is gathered
together for all the nodes τ in the M number of weighted
trees in the forest, individually for all of the features.
Mathematically it can be written as:

where Ig is the Gini importance, which specifies the fre-
quency of a particular feature (f) being selected for the
split and the significance of the feature’s overall discrimi-
native value for the binary classification task. Assigning
the weight wp,n defines the imbalanced class distribution
in the learning algorithm. The weight adjustment can be
written as:

(4)Ig
(
f
)

=
∑

M

wp,n

∑

τ

�if (τ ,M) wp + wn = 1 and for imbalanced class data wp �= wn.
The number of negative instances is represented as

nn and the positive instances are denoted as np . N is the
total number of instances in the training dataset. The
pseudo-code for selecting the features using the sklearn
library has been explained in Algorithm 1. Considering
the threshold as 0.02 and 0.030 for UNSW-NB 15 and
Network TON_IoT respectively maximum accuracy was
observed as shown in Fig. 8, and the selected features for
both datasets have been listed in Table 4.

(5)weight for positive class,wp =
nn

N

(6)weight for negative class,wn =
np

N

Page 14 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

Machine learning methods under scrutiny
In this section, a summary of ML techniques that were
applied to the experimental analysis has been discussed.
The methods were selected in such a way that a compari-
son between traditional ML technique (DT), Ensemble
method (Adaboost, GBT), Artificial Neural Network
(MLP), and Deep Neural Network (LSTM, GRU) would
be performed to detect intrusions over two imbalanced
datasets.

Decision tree
Decision Tree (Quinlan 1986) is a non-parametric super-
vised machine learning model which is implemented for
both classification and regression tasks. It repeatedly
splits the data following a specific attribute. Decision
Tree learns the decision rules that are deduced from the
data attributes. Based on that rules, it predicts the value
of the target variable. The decision-making process of
this model can be shaped like a tree and makes it easier
for the user to interpret. Numerous ML tools are avail-
able to visualize the output of DT (Safavian and Land-
grebe 1991). Two units: decision nodes and leaves are
the fundamental concepts of DT. In the decision node,
data is split based on a particular parameter, and in the
leaves unit, the outcome or decisions are obtained. How-
ever, the splitting criterion in this experimental study was
entropy (Shannon 1948), which measures the impurity
of the split. For every single internal decision node of the
Decision Tree, the entropy equation can be given by the
following formula:

where j is the number of unique classes in the dataset and
Pk is the probability of each particular class. For binary
classification the entropy equation can be written as:

where Pp is the probability of positive event and Pn is the
probability of the negative event.

Adaptive boosting (AdaBoost)
AdaBoost algorithm was firstly introduced by Schapire
(2003). It is an ensemble learning method, which utilizes
an iterative approach to correct the mistakes of weak
learners. It calls a given base learning algorithm or a
weak learner repeatedly in a series of rounds to boost the
model’s performance. The fundamental concept of Ada-
Boost is to reassign the weights to each instance, and giv-
ing higher weights to the misclassified instances. In brief,
while training the Adaboost model, firstly it trains the

(7)Entropy,E
(
j
)

= −

j∑

k=1

Pk log2 Pk

(8)Entropy,E = −Pp log2 Pp − Pn log2 Pn

base classifier (such as DT) and utilizes that classifier to
predict over the training set. Then, increasing the weight
of incorrectly classified training instances, it trains the
second classifier, using the newly updated weights, again
it makes a prediction on the training set. Then, again
updates the weights of instances, and so on. This pro-
cess will be continued until it reaches the very last base
learner.

Gradient boosting tree (GBT)
Gradient Boosting Tree (Mason et al. 1999) is a widely
used machine learning model that identifies the short-
comings of weak learners and overcomes their limita-
tions by boosting gradient descent with each weak
learner in the loss function. The Loss function is cal-
culated from the difference between the true value and
estimated value. It transforms the weak learners into
stronger ones by adding up the predictors to the ensem-
ble, sequentially as well as gradually. Each predictor in
the ensemble corrects the mistakes made by its prede-
cessor. GBT is an effective technique to reduce noise,
variance as well as bias (Felix and Sasipraba 2019).

Multilayer perceptron (MLP)
MLP (Rosenblatt 1961) is a feed-forward Artificial Neural
Network (ANN) that passes the information from input
to output in a forward direction. As the name suggests,
Multilayer Perceptron contains three layers of nodes:
Input Layer, Hidden Layer, and Output Layer. However,
in MLP each node except the input unit is a neuron, and
these neurons utilize a nonlinear activation function to
transform the weighted sum of input into an output. The
input unit receives the input signal, and the desired task
of regression or classification is conducted in the output
layer (Abirami and Chitra 2020). A mathematical expres-
sion of MLP can be written as the following equation:

where each neuron estimates the weighted sum of the
inputs k, then adds a bias c, and after that uses an activa-
tion function ( ∅ ) for producing the output y. MLP uses
back-propagation to train the neurons.

Long Short‑Term Memory (LSTM)
LSTM (Hochreiter and Schmidhuber 1997) is a type
of artificial Recurrent Neural Network (RNN) that is
adapted to store the information for a longer period. It
was developed to handle the vanishing gradient problem,
which can be experienced by RNN during the training

(9)y = ∅

(
k∑

i=1

wixi + c

)

Page 15 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

phase. An LSTM unit is a composition of a memory cell,
and three gates: input, output and forget gates to control
the flow of information towards the memory cell or out
of the cell. The input gate takes the decision of updat-
ing the cell state, the forget gate determines what infor-
mation would be kept or discarded based on estimating
a coefficient computed by the input data and the earlier
hidden state. Based on the previous hidden state and the
input data, the output gate highlights which information
should be conveyed to the next hidden state. Mathemati-
cally, if oj (t) is an output gate and sj (t) denotes the cell
state of the jth LSTM unit, the equation for the hidden
state hj(t) at any time t can be represented as follows:

where tanh is the activation function.

Gated Recurrent Unit (GRU)
Gated Recurrent Unit (Cho et al. 2014) is considered
as a variation or a lightweight version of LSTM, but it
is simpler to implement than LSTM. It has two gates:
The update gate and Reset gate, which have been intro-
duced to solve the vanishing gradient problem of RNN.
The update gate is similar to the input and the forget gate
used in the LSTM, which helps the model to decide what
information should be passed to the next state. On the
other hand, the Reset gate determines how much past
information should be forgotten. Mathematically, the
hidden state of jth GRU unit can be represented as a lin-
ear interpolation between the previous activation at time
t and the candidate activation h̃j(t + 1), where zj(t + 1)
is the update gate and makes a decision regarding the
updating amount of the candidate activation:

Evaluation metrics
The goal of this experiment was to increase the number
of correct predictions in the test set for binary classifica-
tion. To evaluate the performance of ML-based IDS sev-
eral performance metrics are used in Machine Learning,
such as Accuracy, False Positive Rate, Precision, Recall,
etc. (Kumar 2014). However, the Accuracy (AC) score is
the most commonly used metric to evaluate the perfor-
mance of models in binary classification problems. It can
be defined as below equation:

(10)hj(t) = oj(t). tanh
(
sj(t)

)

(11)
hj(t + 1) =

(
1 − zj(t + 1)

)
hj(t) + zj(t + 1)h̃j(t + 1)

where TP stands for True Positive, and TN represents
the count of True Negative. True Positive is the number
of correctly detected attack instances. True Negative
counts the correctly classified normal instances. On the
other hand, False Positive (denoted as FP) is the num-
ber of legitimate traffic that is misclassified as an attack.
False Negative (denoted by FN) counts the number of
attack instances that are wrongfully considered as normal
instances. In the case of detecting intrusion, less FN is
always expected, as it is more hazardous than FP. How-
ever, for imbalanced class data, especially, where the aim
is to efficiently detect the intrusion (positive instances)
four other metrics: False Positive Rate (FPR), Precision,
Recall, and F1 score are also considered in addition to the
Accuracy measure.

1.	 False Positive Rate (FPR) The FPR is measured as the
ratio of the negative events that are misclassified as
positive (FP) and the total amount of truly negative
events. The expression can be given as below:

2.	 Precision Precision is the measure that evaluates a
model’s performance by calculating how often the
model’s prediction is correct when it positively pre-
dicts an instance. Mathematically, it can be expressed
as below equation:

3.	 Recall/ Detection Rate (DR) It is the measure of the
Machine Learning model correctly detecting True
Positive instances. Also, Recall measures how accu-
rate the model is to identify relevant data. This is why
it is referred to as Sensitivity or True Positive Rate.
The mathematical expression can be shown as below:

4.	 F1 Score It is the tradeoff between Recall and Preci-
sion that takes both FP and FN into account and
measures the overall accuracy of the ML model. F1
score can be expressed as below equation:

(12)AC =
(TP + TN)

(TP + TN + FP + FN)

(13)FalsePositiveRate(FPR) =
FP

(FP + FN)

(14)Precision =
TP

(TP + FP)

(15)Recall/DR =
TP

(TP + FN)

(16)F1score =
(2 ∗ Recall ∗ Precision)

(Recall + Precision)

Page 16 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

Experiments and results
The experiment was conducted on an HP Pavilion
14-AL143TX loaded with the Windows 10 Operating
System with the following processor: Intel(R) Core(TM)
i5-7200U CPU @ 2.5–3.1 GHz. The building, training,
and evaluation of the Machine Learning model were per-
formed by Pandas, NumPy, Scikit-Learn (sklearn), etc.
Machine Learning libraries in the python environment of
Jupyter Notebook, an open-source tool.

Considering six ML models: Decision Tree (DT),
Adaptive Boosting (AdaBoost), Gradient Boosting
(GBT), ANN (Multilayer Perceptron), Long-Short Term
Memory (LSTM) and Gated Recurrent Unit (GRU), this
experiment was carried out into two states. In the first
state, all the features of the UNSW-NB 15 and Network
TON_IoT dataset were utilized, and the performance
of ML models was evaluated for binary classification. In
the second state, using the proposed feature selection
method only 20 features for UNSW-NB 15 and 10 fea-
tures from the Network TON_IoT dataset were chosen
and the binary classification was performed again with
six models. For training all the models, parameter tuning
was one common approach that assisted this experiment
to improve the accuracy and F1 score as well as decrease
the FPR score. Table 5 (for UNSW-NB 15) and Table 7

(for Network TON_IoT) have shown the result obtained
by machine learning algorithms for binary classification
using the whole feature set, and Table 6 (for UNSW-NB
15) and Table 8 (for Network TON_IoT) have indicated
the performance of the same models applying only the
selected features. The best result per column has been
written in boldface. Visual representation of the perfor-
mance comparison for Network TON_IoT and UNSW-
NB 15 has been illustrated in Figs. 9 and 10 respectively
in terms of Accuracy, F1 score and FPR.

For the Decision Tree (DT) classifier, entropy was
selected as the criterion during parameter tuning.
Entropy is the measure of information gain, based on
what DT decides to split the data. To define each class
label another important parameter, class_weight was set
to ‘balanced’. Other tuned parameters of DT were set as
follows: random_state = 10, max_depth = 11, max_leaf_
nodes = 162, min_samples_leaf = 20, and min_impu-
rity_decrease = 0.00006. However, for UNSW-NB 15, the
result indicated that DT achieved the test accuracy score
of 90.15% while applying the full feature space (42 fea-
tures), whereas it achieved the accuracy of 93.01% using
20 selected features. A 16.84% FPR score and 91.46%
F1 score were achieved applying the full features, and a
09.14% FPR score and 93.72% F1 score were observed
while using only the reduced features. For Network

Table 5  Result of the models with all features (42) for UNSW-NB
15 dataset

The best result per column has been written in boldface to have better
understanding

Models AC. (%) Precision
(%)

Recall (%) F1 score (%) FPR (%)

DT 90.15 87.45 95.85 91.46 16.84
AdaBoost 90.51 87.07 97.19 91.85 17.67

GBT 87.56 82.49 98.25 89.68 25.54

MLP 84.11 78.34 98.31 87.20 33.28

LSTM 87.90 85.01 94.71 89.60 20.44

GRU​ 82.87 76.78 98.75 86.39 36.57

Table 6  Result of the models with reduced features (20) for
UNSW-NB 15 dataset

The best result per column has been written in boldface to have better
understanding

Models AC.(%) Precision (%) Recall (%) F1 score (%) FPR (%)

DT 93.01 92.69 94.76 93.72 09.14
AdaBoost 90.51 87.59 96.43 91.80 16.73

GBT 87.08 82.25 97.58 89.26 25.78

MLP 87.26 82.02 98.44 89.48 26.43

LSTM 88.99 87.59 93.21 90.31 16.17

GRU​ 90.11 86.73 96.84 91.51 18.14

Table 7  Result of the models with all features (39) for Network
TON_IoT dataset

The best result per column has been written in boldface to have better
understanding

Models AC. (%) Precision
(%)

Recall (%) F1 score (%) FPR (%)

DT 99.50 99.83 98.74 99.28 0.09

AdaBoost 99.88 99.99 99.67 99.83 0.001
GBT 99.98 99.98 99.95 99.97 0.006

MLP 98.35 97.60 97.68 97.64 1.2

LSTM 94.51 91.28 93.18 92.22 4.7

GRU​ 95.69 91.23 96.99 94.02 5.0

Table 8  Result of the models with selected features (10) for
Network TON_IoT dataset

The best result per column has been written in boldface to have better
understanding

Models AC.(%) Precision
(%)

Recall (%) F1 score (%) FPR (%)

DT 99.90 99.84 99.87 99.85 0.08

AdaBoost 99.98 99.98 99.96 99.97 0.006
GBT 99.98 99.98 99.97 99.97 0.008

MLP 97.13 93.64 98.49 96.00 3.5

LSTM 88.99 76.44 99.00 86.27 16.37

GRU​ 95.02 90.95 95.24 93.04 5.08

Page 17 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

TON_IoT dataset, the accuracy score for DT was 99.50%,
F1 score was 99.28% and FPR score was 0.09% using full
features, and using only the selected features the accu-
racy, F1 and FPR score became 99.90%, 99.85% and 0.08%
respectively.

During hyperparameter tuning, DecisionTreeClassifier
was selected as the base estimator of the AdaBoost classi-
fier. In addition, the number of trees (n_estimators) cho-
sen for the AdaBoost model was 3300 with a learning rate
of 0.3. Other than that, the ‘SAMME.R’ algorithm was
used as another important parameter that achieves com-
paratively lesser test errors with a fewer number of boost-
ing iterations. The base estimator, Decision Tree, was also
tuned with some important attributes as follows: crite-
rion = ’gini’, random_state = 10, class_weight = ’balanced’,
max_depth = 11, max_leaf_nodes = 162, min_samples_
leaf = 20, and min_impurity_decrease = 0.00006. The
criterion, ‘gini’ is the measure of impurity that calculates
the probability of incorrect classification of an observa-
tion. Based on the criterion, DT takes the decision to
split the data. However, intending to perform binary clas-
sification task for UNSW-NB 15, the obtained result for
AdaBoost classifier exhibited that the accuracy score was
unchanged (90.51%) in both cases. However, the F1 score

and FPR of detection was 91.85% and 17.67% respec-
tively using full features, and became 91.80% and 16.73%
respectively applying the selected features. In the case of
Network TON_IoT dataset, the accuracy, F1 score and
FPR score were 99.88%, 99.83%, and 0.001% respectively
using full features, whereas it became 99.98%, 99.97% and
0.006% using selected features.

The Gradient Boosting (GBT) model used ‘deviance’
as the loss function. Multiple models were trained with
different number of trees and different learning rate as
follows: n_estimators = {2500, 2700, 3000, 3200, 3500}
and learning_rate = {0.1, 0.08, 0.07, 0.05, 0.01}. There is
always a tradeoff between n_estimators and learning_
rate. The experimental result revealed that n_estimators
set as 3200 with a learning rate of 0.05 provided the high-
est test accuracy score for GBT. Using the full features of
UNSW-NB 15, the accuracy score for detecting intru-
sion was 87.56%, F1 score was 89.68% and the FPR was
25.54%. In contrast, the accuracy score was 87.08%, F1
score was 89.26% and the FPR score became 25.78% with
only the selected features.

For the Network TON_IoT dataset, in both cases of
whole features and selected features the accuracy, and F1

Fig. 9  The performance comparison between ML models with full feature and with reduced feature for Network TON_IoT dataset

Page 18 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

score did not change, but FPR was increased to 0.008%
from 0.006% using selected features.

In the case of the Multilayer Perceptron (MLP), ‘Adam’
solver was used in the experiments for weight optimiza-
tion. ‘Adam’ solver is a stochastic gradient-based opti-
mizer that works efficiently for large datasets. This is why
it was selected instead of Stochastic Gradient Descent
(SGD) or Limited memory Broyden–Fletcher–Gold-
farb–Shanno (LBFGS) solver. The MLP was developed
with only one hidden layer with the following number of
neurons: hidden_layer_sizes = (15, 30, 60). The activation
function, which decides whether a neuron will be trig-
gered or not for the hidden layer was set at ‘Relu’ in all of
our experiments. The maximum iteration for the solver
was set at 2000 and the learning rate was ‘adaptive’. In
addition, learning_rate_init was tuned into 0.002 to con-
trol the step size for upgrading the weight. However, for
the binary classification task using the whole feature set
of UNSW-NB 15, the accuracy score for detection was
84.11% and it became 87.26% while using the subset of
features selected through the feature selection method.
In the case of F1 score and FPR, the scores were 87.20%
and 33.28% respectively when all of the features were

used, and those became 89.48% and 20.86% respectively
using only selected features. For the Network TON_IoT
dataset, the accuracy, F1 score and FPR were respec-
tively 98.35%, 97.64% and 1.2% with whole features,
and became 97.13%, 96.00% and 3.5% with the selected
features.

A stacked LSTM model with four hidden layers and
one output layer was trained on both UNSW-NB 15
and Network TON_IoT dataset. In the hidden lay-
ers, tanh was used as the activation function, wherein
sigmoid was employed in the output layer as the acti-
vation function. Other selected parameters were opti-
mizer = ’adam’, loss = ’binary_crossentropy’, epochs = 50,
and batch_size = 64. The layers contained 300, 200,
100, 80 LSTM units sequentially with a dropout of 0.4.
Using the full feature set of UNSW-NB 15, the accuracy
score was 87.90%, F1 score was 89.60% and FPR score
was 20.44%, and after using selected features the scores
became 88.99%, 90.31%, and 16.17% respectively. In
the case of Network TON_IoT dataset, the accuracy,
F1 score and FPR were respectively 94.51%, 92.22%
and 4.7% with full features, and those became 88.99%,
86.27% and 16.37 with reduced features.

Fig. 10  The performance comparison between ML models with full feature and with reduced feature for UNSW-NB 15 dataset

Page 19 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

Similar to the LSTM model, the same setting was also
considered for the GRU model. While employing the full
features of UNSW-NB 15, the obtained accuracy, F1 and
FPR scores were 82.87%, 86.39% and 36.57% respectively,
which became 90.11%, 91.51%, and 18.14% after applying
the selected features. In the case of Network TON_IoT
dataset, with all features the accuracy score was 95.69%,
the F1 score was 94.02% and the FPR was 5.0%, which
became 95.02%, 93.04% and 5.08% respectively.

Discussion
Observation for UNSW‑NB 15 dataset
After numerous trials and errors, the experimental result
revealed that with the GIWRF feature selection tech-
nique, Decision Tree outperformed all other models
obtaining an accuracy score of 93.01% and an F1 score
of 93.72%. As the accuracy score climbed to 93.01% from
90.15% using the 20 features, it is clear that the feature
selection method had a great impact on the detection
process of DT-based IDS. Also, the feature selection
technique helped to reduce the FPR by 7.7%. There was
a minor decrement in the accuracy score of GBT while
using the reduced features for binary classification. In the
case of GBT, the accuracy score was 0.48% higher when
we used the full feature set and it dropped to 87.08%
using 20 features. Similarly, F1 score was decreased by
0.42% and the FPR score was increased by 0.24% using
the reduced feature. The result indicated that the fea-
ture selection technique did not improve the prediction
capability of GBT. Surprisingly, the accuracy of Adaboost
model remained at 90.51% for both cases of selected fea-
tures and full features, though the FPR was decreased by
0.94% after feature selection, F1 score was reduced by a
negligible percentage of 0.05.

For UNSW-NB 15, the feature selection technique sig-
nificantly improved the performance of the Neural Net-
work. In the case of using full features, MLP, LSTM and
GRU classified the intrusion and normal instances with
an accuracy score of 84.11%, 87.9% and 82.87% respec-
tively, whereas the feature selection technique boosted
this accuracy score to 87.26%, 88.99 and 90.11% respec-
tively. Likewise, the F1 scores for the aforementioned
models were improved by 2.28%, 0.71% and 5.12%
respectively with reduced features. Similarly, the FPR
score for MLP, LSTM and GRU were decreased by 6.85%,
4.27% and 18.43% respectively with the selected features.
The GRU came out as the best performer out of other
two neural networks.

Observation for network TON_IoT dataset
In the case of the Network TON_IoT dataset, the experi-
mental result showed that DT and Adaboost models
performed better with the feature selection technique

than the full features. Training the models on selected
features, the accuracy score was improved for DT by
a percentage of 0.40, and became 99.90%, F1 score was
increased by 0.5% and FPR was decreased by 0.001%. In
the case of Adaboost, the accuracy score was boosted by
0.1% and became 99.98% with selected features, F1 score
was also improved by 0.14%, but the FPR was increased
by 0.005%. Surprisingly, no change in accuracy or F1
score was observed for GBT with feature selection, but
FPR score was increased to 0.008% from 0.006%.

Feature selection did not improve the prediction capa-
bility for the neural networks in the case of the Network_
TON_IoT dataset. The accuracy score for MLP, LSTM
and GRU were respectively 98.35%, 94.51% and 95.69%
without feature selection technique, which reduced to
97.13%, 88.99% and 95.02% respectively. Similarly, the
F1 score was reduced by 1.64%, 5.95% and 0.98% respec-
tively for the aforementioned models. Feature selection
did not decrease the FPR score for the neural networks.
It increased the score by 2.3%, 11.67% and 0.08% respec-
tively for the above-mentioned models.

General consideration
Overall, it is clear that the weight adjustment technique
along with the Gini impurity criterion that split the
trees in RF picked a set of important features consider-
ing the skewed class distribution of training data, and it
enhanced the learning ability of DT over two imbalanced
datasets. As DT obtained the improved Accuracy and F1
score for both datasets with the selected features, it can
be claimed as the best model of the proposed approach to
detect intrusions. Another observation should be pointed
out that during the parameter tuning, setting the class
weight as ‘balanced’ improved the prediction ability of
DT. As this work did not consider any oversampling or
undersampling technique to handle the skewed class dis-
tribution of training data, setting the class weight as ‘bal-
anced’ implicitly put a higher weight on the minor class
and a lower weight on the major class while training the
model.

While feature selection significantly improved the per-
formance of neural networks over the UNSW-NB 15
dataset, it showed opposite behavior when trained on
the Network TON_IoT dataset, where normal traffic is
higher than the attack traffic. For this dataset, without
feature selection, the ANN and DNN learned well, but in
the case of UNSW-NB 15 where attack traffic is higher
than the normal instances, the ANN and DNN required
important features to train on. Similarly, AdaBoost per-
formed better in terms of accuracy, F1 score and FPR
with selected features from the Network TON_IoT
dataset, but in the case of UNSW-NB 15 feature selec-
tion did not make any negative or positive impact on the

Page 20 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

prediction ability of AdaBoost. Also, feature selection did
not improve the performance of GBT for both datasets.

However, choosing the best model from each litera-
ture that used the UNSW NB-15 dataset, Table 9 has
compared the performance with the best model (DT)
presented in this paper. It has affirmed that DT with our
proposed feature selection (GIWRF) achieved satisfac-
tory performance than other works in terms of F1 score,
which is a suitable evaluation criterion for imbalanced
data. Also, the accuracy score was found to be higher
than other existing works except the one proposed by
Gu and Lu (2021). In this case, the proposed GIWRF-DT
obtained slightly a lowered accuracy score (0.74%) than
the NB-SVM (Gu and Lu 2021), but the Recall/Detection
Rate was still higher (0.03%) than theirs. That proved the
effective intrusion detection capability of the proposed
DT. However, they used a different training size than the
one used in the proposed work.

To expand the comparison scope, Table 10 has depicted
the performance of the best model proposed by Moustafa
(2021) versus our proposed DT using the newest dataset,
Network TON_IoT. Models developed in the proposed
approach were also capable to classify normal and mali-
cious traffic effectively compared to the proposed work
by Moustafa (2021). DT developed in the proposed study
obtained a slightly lowered accuracy score (0.08) than
their proposed RF in Moustafa (2021), which was quite
expected as the authors used the source IP, destination
IP, source port, and destination port attributes for devel-
oping the models but suggested other future works to

remove those features for demonstrating the difficulty of
the security event.

It should be mentioned that Tables 9 and 10 have just
illustrated a picture of a comparison between the pro-
posed intrusion detection technique and other existing
frameworks. Hence, it should not be claimed that the
proposed framework is superior to other intrusion detec-
tion techniques, but the effectiveness of this study may
bring stimulation for future works in the active research
area of IDS.

Conclusion
The motivation of this study was to train and evalu-
ate the ML models: DT, AdaBoost, GBT, MLP, LSTM,
and GRU for performing the binary classification task
of ML-based IDS. To select a suitable set of features
from two imbalanced datasets: UNSW-NB 15 and Net-
work TON_IoT, a Gini Impurity-based Weighted RF
was introduced as the feature selection process based
upon the assumption that imbalanced class distribu-
tion might have an influence on the feature selection
process. The feature selection technique reduced the
features of the UNSW-NB 15 and Network TON_IoT
dataset to 20 (from 42) and 10 (from 41) respectively.
The performance of the models was evaluated in terms
of Accuracy, FPR, Precision, Recall, and F1 score to
detect the intrusion. In the beginning, the experiment
was conducted using the whole feature set over both
datasets. After that, the experiment was carried out
again using only the selected features extracted through
the feature selection method. A comparison of the

Table 9  Comparison between different existing methods and our proposed approach for UNSW-NB 15

Proposed by ML methods used for IDS Accuracy(%) Recall/detection rate
(DR) (%)

F1 score (%)

Alazzam et al. (2020) Cosine-PIO DT 91.7 – 90

Khan et al. (2018) RF 75.65 76 73

Jing and Chen (2019) SVM 85.99 – –

Kasongo and Sun (2020) DT 90.85 98.38 88.45

Meftah et al. (2019) SVM 82.11 – –

Tama and Rhee (2019) GBM 91.31 – –

Aboueata et al. (2019) SVM 92 92 91

Gu and Lu (2021) NB-SVM 93.75 94.73 –

Proposed approach GIWRF-DT 93.01 94.76 93.72

Table 10  Comparison between existing methods and our proposed approach for Network TON_IoT

Proposed by ML methods used for IDS Accuracy (%) Recall/detection rate (DR) (%) F1 score (%)

Moustafa (2021) RF 99.98 99.99 99.97

Proposed Approach GIWRF-DT 99.90 99.87 99.85

Page 21 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1 	

model’s performance with full feature space and with
reduced features for both datasets was performed. In
both cases, the Decision Tree behaved better with the
feature selection technique for both datasets. However,
this work did not perform multiclass classification and
time complexity analysis, hence, a multiclass classifica-
tion scheme for IDS considering time complexity analy-
sis can be carried out as future work.

Abbreviations
IDS: Intrusion Detection System; ML: Machine learning; RF: Random forest;
DT: Decision tree; GBT: Gradient Boosting Tree; MLP: Multilayer Perceptron;
FPR: False positive rate; HIDS: Host-based IDS; NIDS: Network-based IDS;
SIDS: Signature-based IDS; AIDS: Anomaly-based IDS; IoT: Internet of Things;
DDoS: Distributed Denial of Service; PIO: Pigeon Inspired Optimizer; XGBoost:
Extreme Gradient Boosting; LSTM: Long-Short Term Memory; GRU​: Gated
Recurrent Unit; KNN: K-Nearest Neighbors; GBM: Gradient Boosting Machine;
RBF: Radial Basis Function; SVM: Support Vector Machine; CART​: Classification
and Regression Tree; DNN: Deep Neural Network; AUC​: Area under the receiver
operating characteristic curve; ANN: Artificial Neural Network; PCA: Principal
Component Analysis; DoS: Denial of Service; SGD: Stochastic Gradient
Descent; LBFGS: Limited memory Broyden–Fletcher–Goldfarb–Shanno.

Acknowledgements
Not applicable.

Authors’ contributions
RAD designed the feature selection technique, performed the experiments,
interpreted the results, and drafted the manuscript. SW participated in prob-
lem discussions and improvements of the manuscript. The author(s) read and
approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The UNSW-NB 15 dataset can be found at the website of the University of
New South Wales, (https://​resea​rch.​unsw.​edu.​au/​proje​cts/​unsw-​nb15-​datas​et).
The Network TON_IoT dataset can be found at the website of the University of
New South Wales,
(https://​cloud​stor.​aarnet.​edu.​au/​plus/s/​ds5zW​91vdg​jEj9i?​path=%​2FTra​in_​
Test_​datas​ets%​2FTra​in_​Test_​Netwo​rk_​datas​et).

Declaration

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Information and Communication Technology, Bangladesh
University of Professionals, Mirpur Cantonment, Dhaka 1216, Bangladesh.
2 Department of Information and Communication Technology, Maw-
lana Bhashani Science and Technology University, Santosh, Tangail 1902,
Bangladesh.

Received: 2 August 2021 Accepted: 17 November 2021

References
Abirami S, Chitra P (2020) Energy-efficient edge based real-time healthcare

support system. In: Advances in computers. Elsevier, pp 339–368
Aboueata N, Alrasbi S, Erbad A, Kassler A, Bhamare D (2019) Supervised

machine learning techniques for efficient network intrusion detection.
In: 2019 28th international conference on computer communication and
networks (ICCCN). IEEE, pp 1–8

Alazzam H, Sharieh A, Sabri KE (2020) A feature selection algorithm for intru-
sion detection system based on pigeon inspired optimizer. Expert Syst
Appl 148:113249

Belgrana FZ, Benamrane N, Hamaida MA et al (2021) Network intrusion detec-
tion system using neural network and condensed nearest neighbors
with selection of NSL-KDD influencing features. In: 2020 IEEE international
conference on internet of things and intelligence system (IoTaIS). IEEE,
pp 23–29

Breiman L (2001) Random forests. Mach Learn 45:5–32
Catania CA, Garino CG (2012) Automatic network intrusion detection: current

techniques and open issues. Comput Electr Eng 38:1062–1072
Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM

Comput Surv 41:1–58
Cho K, Van Merriënboer B, Gulcehre C et al (2014) Learning phrase represen-

tations using RNN encoder-decoder for statistical machine translation.
arXiv14061078

Dharmik (2019) Response coding for categorical data. https://​medium.​com/@​
thewi​ngedw​olf.​winte​rfell/​respo​nse-​coding-​for-​categ​orical-​data-​7bb89​
16c6dc. Accessed 23 July 2021

Di Mauro M, Galatro G, Liotta A (2020) Experimental review of neural-based
approaches for network intrusion management. IEEE Trans Netw Serv
Manag 17:2480–2495

Divekar A, Parekh M, Savla V, et al (2018) Benchmarking datasets for anomaly-
based network intrusion detection: KDD CUP 99 alternatives. In: 2018 IEEE
3rd international conference on computing, communication and security
(ICCCS). IEEE, pp 1–8

Dong G, Liu H (2018) Feature engineering for machine learning and data
analytics. CRC Press

Felix AY, Sasipraba T (2019) Flood detection using gradient boost machine
learning approach. In: 2019 international conference on computational
intelligence and knowledge economy (ICCIKE). IEEE, pp 779–783

Garcia-Teodoro P, Diaz-Verdejo J, Maciá-Fernández G, Vázquez E (2009)
Anomaly-based network intrusion detection: techniques, systems and
challenges. Comput Secur 28:18–28

Gu J, Lu S (2021) An effective intrusion detection approach using SVM with
naïve Bayes feature embedding. Comput Secur 103:102158

Harrington P (2012) Machine learning in action. Simon and Schuster
Hick P, Aben E, Claffy K, Polterock J (2007) The CAIDA DDoS attack 2007 data-

set. 2012) [2015-07-10]. http//www. caida. org
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput

9:1735–1780
Ingre B, Yadav A (2015) Performance analysis of NSL-KDD dataset using ANN.

In: 2015 international conference on signal processing and communica-
tion engineering systems. IEEE, pp 92–96

Injadat M, Moubayed A, Nassif AB, Shami A (2020) Multi-stage optimized
machine learning framework for network intrusion detection. IEEE Trans
Netw Serv Manag

Jing D, Chen H-B (2019) SVM based network intrusion detection for the
UNSW-NB15 dataset. In: 2019 IEEE 13th international conference on ASIC
(ASICON). IEEE, pp 1–4

Kasongo SM, Sun Y (2020) Performance analysis of intrusion detection systems
using a feature selection method on the UNSW-NB15 dataset. J Big Data
7:1–20

Khan NM, Negi A, Thaseen IS (2018) Analysis on improving the performance
of machine learning models using feature selection technique. In:
International conference on intelligent systems design and applications.
Springer, pp 69–77

Khraisat A, Gondal I, Vamplew P, Kamruzzaman J (2019) Survey of intrusion
detection systems: techniques, datasets and challenges. Cybersecurity
2:1–22

Krawczyk B (2016) Learning from imbalanced data: open challenges and
future directions. Prog Artif Intell 5:221–232

Kumar G (2014) Evaluation metrics for intrusion detection systems-a study.
Evaluation 2:11–17

Labonne M (2020) Anomaly-based network intrusion detection using machine
learning. https://​tel.​archi​ves-​ouver​tes.​fr/​tel-​02988​296/. Accessed 30 Sept
2021

Lee J, Pak J, Lee M (2020) Network intrusion detection system using feature
extraction based on deep sparse autoencoder. In: 2020 international con-
ference on information and communication technology convergence
(ICTC). IEEE, pp 1282–1287

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i?path=%2FTrain_Test_datasets%2FTrain_Test_Network_dataset
https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i?path=%2FTrain_Test_datasets%2FTrain_Test_Network_dataset
https://medium.com/@thewingedwolf.winterfell/response-coding-for-categorical-data-7bb8916c6dc
https://medium.com/@thewingedwolf.winterfell/response-coding-for-categorical-data-7bb8916c6dc
https://medium.com/@thewingedwolf.winterfell/response-coding-for-categorical-data-7bb8916c6dc
https://tel.archives-ouvertes.fr/tel-02988296/

Page 22 of 22Disha and Waheed ﻿Cybersecurity (2022) 5:1

Liao H-J, Lin C-HR, Lin Y-C, Tung K-Y (2013) Intrusion detection system: a com-
prehensive review. J Netw Comput Appl 36:16–24

Liu H, Yan X, Wu Q (2019) An improved pigeon-inspired optimisation
algorithm and its application in parameter inversion. Symmetry (basel)
11:1291

Mason L, Baxter J, Bartlett P, Frean M (1999) Boosting algorithms as gradient
descent in function space. In: Proc. NIPS, pp 512–518

Meftah S, Rachidi T, Assem N (2019) Network based intrusion detection using
the UNSW-NB15 dataset. Int J Comput Digit Syst 8:478–487

Mohammadi S, Mirvaziri H, Ghazizadeh-Ahsaee M, Karimipour H (2019) Cyber
intrusion detection by combined feature selection algorithm. J Inf Secur
Appl 44:80–88

Moustafa N (2021) A new distributed architecture for evaluating AI-based
security systems at the edge: network TON_IoT datasets. Sustain Cities
Soc 72:102994

Moustafa N, Slay J (2015) UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). In: 2015
military communications and information systems conference (MilCIS).
IEEE, pp 1–6

Moustafa N, Slay J (2016) The evaluation of network anomaly detection sys-
tems: statistical analysis of the UNSW-NB15 data set and the comparison
with the KDD99 data set. Inf Secur J A Glob Perspect 25:18–31

Moustafa N, Turnbull B, Choo K-KR (2018) An ensemble intrusion detection
technique based on proposed statistical flow features for protecting
network traffic of internet of things. IEEE Internet Things J 6:4815–4830

El Naqa I, Murphy MJ (2015) What is machine learning? In: Machine learning in
radiation oncology. Springer, pp 3–11

Osanaiye O, Cai H, Choo K-KR, Dehghantanha A, Xu Z, Dlodlo M (2016)
Ensemble-based multi-filter feature selection method for DDoS detection
in cloud computing. EURASIP J Wirel Commun Netw 2016:1–10

Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106
Rosenblatt F (1961) Principles of neurodynamics. Perceptrons and the theory

of brain mechanisms. Cornell Aeronautical Lab Inc, Buffalo
Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodol-

ogy. IEEE Trans Syst Man Cybern 21:660–674
Scarfone K, Mell P (2007) Guide to intrusion detection and prevention systems

(idps). NIST Spec Publ 800:94
Schapire RE (2003) The boosting approach to machine learning: an overview.

Nonlinear Estim Classif 149–171
Scikit Learn, Machine Learning in Python. https://​scikit-​learn.​org/​stable.

Accessed 6 July 2021
Sethi (2020) One-hot encoding vs. label encoding using scikit-learn. https://​

www.​analy​ticsv​idhya.​com/​blog/​2020/​03/​one-​hot-​encod​ing-​vs-​label-​
encod​ing-​using-​scikit-​learn/. Accessed 30 Sept 2021

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech
J 27:379–423

Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generating a new
intrusion detection dataset and intrusion traffic characterization. Icissp
1:108–116

Shiravi A, Shiravi H, Tavallaee M, Ghorbani AA (2012) Toward developing a
systematic approach to generate benchmark datasets for intrusion
detection. Comput Secur 31:357–374

Song J, Takakura H, Okabe Y, et al (2011) Statistical analysis of honeypot data
and building of Kyoto 2006+ dataset for NIDS evaluation. In: Proceedings
of the first workshop on building analysis datasets and gathering experi-
ence returns for security, pp 29–36

Tama BA, Rhee K-H (2019) An in-depth experimental study of anomaly detec-
tion using gradient boosted machine. Neural Comput Appl 31:955–965

Yin C, Zhu Y, Fei J, He X (2017) A deep learning approach for intrusion detec-
tion using recurrent neural networks. IEEE Access 5:21954–21961

Zaman S, Karray F (2009) Features selection for intrusion detection systems
based on support vector machines. In: 2009 6th IEEE consumer com-
munications and networking conference. IEEE, pp 1–8

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://scikit-learn.org/stable
https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-label-encoding-using-scikit-learn/
https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-label-encoding-using-scikit-learn/
https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-label-encoding-using-scikit-learn/

	Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique
	Abstract
	Introduction
	Literature review
	Datasets
	Existing datasets
	Discussion about experimental datasets
	UNSW-NB 15 dataset
	Network TON_IoT dataset

	Proposed methodology
	Data preprocessing
	Coding for categorical feature
	Feature scaling
	Gini Impurity-based Weighted Random Forest (GIWRF) for feature selection

	Machine learning methods under scrutiny
	Decision tree
	Adaptive boosting (AdaBoost)
	Gradient boosting tree (GBT)
	Multilayer perceptron (MLP)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Evaluation metrics

	Experiments and results
	Discussion
	Observation for UNSW-NB 15 dataset
	Observation for network TON_IoT dataset
	General consideration

	Conclusion
	Acknowledgements
	References

