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Abstract

Empirical attacks on Federated Learning (FL) systems indicate that FL is fraught with numerous attack surfaces
throughout the FL execution. These attacks can not only cause models to fail in specific tasks, but also infer private
information. While previous surveys have identified the risks, listed the attack methods available in the literature or
provided a basic taxonomy to classify them, they mainly focused on the risks in the training phase of FL. In this work,
we survey the threats, attacks and defenses to FL throughout the whole process of FL in three phases, including Data
and Behavior Auditing Phase, Training Phase and Predicting Phase. We further provide a comprehensive analysis of these
threats, attacks and defenses, and summarize their issues and taxonomy. Our work considers security and privacy of FL
based on the viewpoint of the execution process of FL. We highlight that establishing a trusted FL requires adequate
measures to mitigate security and privacy threats at each phase. Finally, we discuss the limitations of current attacks

Evasion attacks, Defenses, Trusted

and defense approaches and provide an outlook on promising future research directions in FL.
Keywords: Federated learning, Security and privacy threats, Multi-phases, Inference attacks, Poisoning attacks,

Introduction

As smart cities grow in popularity, the amounts of multi-
source heterogeneous data generated by various organi-
zations and individuals have become increasingly diverse.
However, businesses and people are hesitant to exchange
data due to the concern about data privacy, leading to
the emergence of data silos. Several attempts have been
made to solve the data privacy threats, where FL has
shown its superiority as it allows multiple local workers
to train together without revealing sensitive information
about local data (Lyu et al. 2020). In December 2018, the
IEEE Standards Committee approved the standard pro-
ject of architectural framework and application of Fed-
erated machine learning. Subsequently, more and more

*Correspondence: wangweil@bjtu.edu.cn

Pengrui Liu and Xiangrui Xu contributed equally to this work and should
be considered co-first authors.

Beijing Key Laboratory of Security and Privacy in Intelligent
Transportation, Beijing Jiaotong University, Beijing 100044, China

@ Springer Open

scholars and technical experts joined the standards work-
ing group and participated in drafting IEEE Standards
about FL.

At present, FL combined with Multi-task Learn-
ing (Smith et al. 2017), Reinforcement Learning (Qi
et al. 2021), Graph Neural Network (Wu et al. 2021) or
other artificial intelligence algorithms have been pro-
posed and applied in many fields. In addition, similar to
FL, some collaborative learning methods like Assisted
Learning (Xian et al. 2020), Split Learning (Vepa-
komma et al. 2018) have also been proposed. In Natu-
ral Language Processing (NLP), the application of FL is
also being widely studied. Lin et al. (2021) opened up
a research-oriented FedNLP framework, which aims
to study privacy-preserving methods in NLP with FL.
Many aggregation algorithms and open-source frame-
works for FL have also been proposed (Mothukuri et al.
2021), such as FedAvg (McMahan et al. 2017), SMC-
AVG (Bonawitz et al. 2016), FedProx (Li et al. 2018),
and FATE, Tensorflow-Federated, PySyft etc.
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Although FL can effectively break data silos, there are
many inborn security and privacy threats. Before the
model is trained, malicious local workers may destroy
the integrity, confidentiality, and availability of data, and
thus contaminate the model. In general, the key roles of
FL include two parts: central server and local workers (or
local clients). The adversary can compromise the cen-
tral server or a part of local workers. When the model
is being trained, the adversary can manipulate the global
model by controlling the samples or model updates. This
will result in degraded performance of the global model,
or leave a backdoor. In addition, in the model training
and predicting phases, the adversary can also infer the
private information of other honest local workers, includ-
ing membership inference and attribute inference. Even
though differential privacy and other privacy-preserving
algorithms have been implemented within FL, attacks
against FL can still succeed (Cheu et al. 2021).

Many existing surveys mainly focused on listing and
describing various attack methods and defense strate-
gies (Lyu et al. 2020; Mothukuri et al. 2021; Enthoven
and Al-Ars 2020). However, these surveys only analyze
security and privacy threats in the training phase. In this
work, we analyze the security and privacy threats accord-
ing to the multi-phase framework of the FL execution,
including Data and Behavior Auditing, Training and Pre-
dicting. We identify the issues and provide a taxonomy of
threats, attacks and defenses on FL. We also provide per-
spectives on how to build a trusted FL.

FL concepts and challenges

Definition

FL is defined as a machine learning paradigm in which
multiple clients work together to train a model under the
coordination of a central server, while the training data
remains stored locally (Kairouz et al. 2019). According to
the type of local workers, FL can be divided into cross-
device and cross-silo. Cross-device workers are primarily
mobile phones, tablets, speakers, and other terminal IoT
devices. These local workers may disconnect at any time
in the process of model training. The workers of cross-silo
are mainly large institutions that have high data storage
and computing capabilities. In the fully decentralized
setting, FL can be combined with blockchain (Warnat-
Herresthal et al. 2021) or secure multi-party computing
technology (Song et al. 2020). In this work, we focus on
security and privacy threats against centralized FL.

A Categorization of Federated Learning

In FL, models are trained locally and aggregated at a
central server. A global model is obtained after sev-
eral parameter/gradient aggregation updates. Unlike
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distributed machine learning, the central server of FL
does not have access to the local worker’s data. The data
distribution among local workers can be independent
and identically distributed (i.i.d) or non-independent and
identically distributed (non-i.i.d). The types of FL mainly
include Horizontal FL (HFL), Vertical FL (VFL) and Fed-
erated Transfer Learning (FTL) (Yang et al. 2019). The
specific description of each type is as follows:

HFL is suitable for local workers with less sample rep-
etition and more overlapping features. Most existing
work mainly focused on the security and privacy towards
HFL. VEL is suitable for the scenarios where local work-
ers have the same sample ID and less overlapping fea-
tures. VFL consists of encrypted entity alignment and
encrypted model training. As the number of workers
increases, the amount of calculations increases accord-
ingly. SecurBoost (Cheng et al. 2019) is the most repre-
sentative model of vertical FL, which supports multiple
workers to participate in VFL in the FATE framework.
FTL (Liu et al. 2018) is suitable for scenes with few sam-
ple ID and feature overlap.

Fully decentralized learning

To avoid malicious or semi-honest third parties (cen-
tral servers), fully decentralized learning emerged (Kim
et al. 2018). The fully decentralized learning is usually
combined with blockchain, which has proven to be effec-
tive in protecting data privacy (Wang et al. 2021; Li et al.
2018). Warnat-Herresthal et al. (2021) proposed a decen-
tralized collaborative computing method called Swarm
Learning (SL), which combines privacy-preserving, edge
computing and blockchain based peer-to-peer network.
Weng et al. (2021) proposed DeepChain, realizing data
confidentiality and calculating auditability based on
blockchain incentive mechanism and privacy-preserving
methods. Based on the combination of blockchain tech-
nique and privacy-preserving algorithms, it can be seen
that fully decentralized learning enhances the trust guar-
antee of collaborative computing.

Learning mechanisms

The idea of FL is to jointly train a global model by opti-
mizing the parameters 6 with multiple local workers’
updates. Basically, there are two aggregating mechanisms
named synchronized SGD (Shokri and Shmatikov 2015)
and FedAvg (McMahan et al. 2017). In synchronized
SGD, each local worker computes the gradient at one
batch from its own data and uploads it to the server. In
FedAvg, each local worker performs several epochs of
gradient descent and provides the updated parameters to
the server. Then, the central server will aggregate those
gradients or parameters.
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The relationship between FL and privacy computing
Privacy computing refers to a range of information
technologies that analyze data while ensuring that the
data providers do not reveal the private information. In
other words, privacy computing is a collection of “data
available but not visible” technologies, including FL,
secure multi-party computing (MPC), trusted execu-
tion environment (TEE), differential privacy (DP), etc.
Among them, FL is a derivative technique that integrates
distribution machine learning with privacy techniques;
secure multi-party computing is a cryptography-based
privacy computing technique; trusted execution envi-
ronment is a trusted hardware-based privacy computing
technique; differential privacy is a rigorous mathemati-
cal definition of privacy. These techniques are often used
in combination to accomplish computing and analyzing
data while ensuring the security and privacy of the origi-
nal data.

The challenge of heterogeneity

With the diversification and complexity of the local
workers, the concerns of mutual trust, efficiency, and
convergence quality become increasingly obvious. In
practical applications, FL needs to break through the
heterogeneity of devices in storage, computing and
communication capabilities, non-i.i.d data, and model
requirements in different local application environ-
ments. One effective method to addressing these hetero-
geneous challenges is to implement personalized FL in
three aspects: device (Liu et al. 2020), data (Li et al. 2020)
and model (Smith et al. 2017).

The challenge of communication

Reducing communication costs is a major bottleneck
for federated computing, as local workers need to mul-
tiple interact with a central server and the connections
are often unstable. Therefore, how to improve the trans-
mission efficiency while ensuring the accuracy of the
joint calculation is an important issue. Existing work
indicated that sparse matrix (Koneé¢ny et al. 2016) and
model compression (Chen et al. 2018) can significantly
reduce the communication overhead with little impact
on the model accuracy.

The challenge of security and privacy threats

The attack surfaces of FL have expanded due to the
characteristics of distribution. For example, malicious
local workers may try to steal the privacy information
of honest local workers, or malicious local workers can
launch collusive attacks to impairing the performance
of the final global model.
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Multi-phases framework of trusted FL

As shown in Fig. 1, the multi-phases framework of
the FL execution can be divided into three phases,
including Data and Behavior Auditing, Training and
Predicting. The model faces different security and pri-
vacy threats at each phase of FL execution. We argue
that establishing a trusted FL requires taking effective
measures at each phase to fully mitigate security and
privacy threats.

 Data and behavior auditing phase

In general, contaminated data and malicious behav-
ior are the main factors affecting model performance.
On the one hand, the data of local workers may be
contaminated by label noise or feature noise. On the
other hand, the historical behavior of local workers
may be malicious. The local workers’ systems may
have some vulnerabilities. These vulnerabilities may
have been exploited by adversaries. These threats
will impact the subsequent training and prediction
of FL. If the risk of data and behavior auditing phase
is minimized, the probability of poisoning attacks
and privacy inference attacks may decrease.

o Training phase
FL requires multiple local workers working collabo-
ratively to train a global model. In the model training
phase, malicious local worker can manipulate their
data, model gradients and parameters. Therefore, if
adversaries compromise the local workers, they can
disturb the integrity of the training dataset or model
to impair the performance of the global model.
Besides, the central server can also launch passive
or active inference attacks. In addition, during the
upload and download of model updates, the mod-
els may be eavesdropped by intermediaries in the
communication channel, resulting in model updates
being tampered or stolen. Therefore, it is necessary
to protect the transfer of model updates between
the local workers and the central server.

« Predicting phase
Once the model is trained, the global model is
deployed onto the local worker devices, regardless
of whether they participated in the training or not.
In this phase, the evasion attacks and privacy infer-
ence attacks occur frequently. Evasion attacks usually
do not change the target model, but cheat the model
to produce false prediction. Privacy inference attacks
can reconstruct the characteristics of the model and
raw data. The effectiveness of these attacks depend
on the knowledge available to the adversaries.
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Fig. 1 The multi-phases framework of FL including data and behavior auditing, model training and model predicting

Data and behavior auditing phase

The performance of FL depends on the high qual-
ity data of the local workers and the bengin historical
behavior of the local workers and central server. Once
the data quality is low or there exists malicious behav-
ior, the trained model may become ineffective or even
harmful. This section analyzes the threat model, attacks
and defenses during the data and behavior auditing
phase.

Threat model

In FL, the data of each local worker is available and
invisible. Local workers have absolute right of control
over their data. This rule makes it difficult to audit the
data quality and historical behavior of all local workers.
Therefore, a malicious local worker can silently modify
the training data to influence the final global model.
In addition, the data quality issues, such as unlabeled,
noisy or incomplete, may occur during data collection,
transmission and processing. These may cause a sig-
nificant impact on data-based decision-making (Jiang
et al. 2021).

Attacks

The data and behavior auditing phase is the first line
of defense to ensure the credibility of FL. If this line is
breached, a malicious local worker can use low-quality
or poisoned data to decrease the performance of the
global model or even corrupt the model.

In this phase, the local workers and central server
are exposed to existing system, software, and network
security threats. Adversaries can cause damage to data
and systems by social engineering, penetration attacks,
backdoor attacks, and advanced persistent threat (APT)
attacks etc. For example, in the cross-device scenario, if
the devices have some vulnerabilities, the adversaries can
exploit these vulnerabilities to compromise the data and
the model (Wang et al. 2014). In addition, insiders can
also directly undermine core data and systems by abusing
their authorities. Inadvertent errors, and environmental
factors in the phases of data collection and transmission
will also have a certain impact on the subsequent data
analysis.
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Defenses

Before the model training phase, one method to ensure
the credibility of the FL model is auditing the data qual-
ity of the local workers. High-confidence data can effec-
tively reduce the occurrence of poisoning attacks and
improve the effectiveness of the model. However, there
are few works on the data quality assessment in FL.
The fact that the data of local workers cannot be aggre-
gated poses some challenges to the overall data quality
assessment in FL. Other method is evaluating the his-
torical behavior of local workers and central server. Cred-
ibility measurement and credibility verification methods
should be proposed based on the system logs.

In addition, the trustworthiness of the local work-
ers should also be dynamically evaluated in the training
process (Akujuobi et al. 2019). In general, malicious local
workers usually behave differently than most trusted
local workers. Therefore, by auditing the model behavior
uploaded to the central server, the untrusted local work-
ers can be eliminated.

Training phase

As mentioned earlier, the training phase of FL mainly
involves poisoning attacks and privacy inference attacks
(white-box). An adversary may launch privacy infer-
ence attacks to obtain the victim’s privacy information,
or launch poisoning attacks locally to affect the perfor-
mance of the global model. We explain these two attacks
in detail in the following subsections.

Privacy inference attacks

FL (McMahan et al. 2016) has recently emerged as a
solution to protect data privacy. However, existing work
suggested that adversaries can infer different levels of
sensitive information from the updated gradients in FL
(Hitaj et al. 2017; Nasr et al. 2019; Zhu and Han 2020). In
this section, we analyze the reasons for privacy leakage,
threat models, attack methods and defense strategies for
privacy inference attacks in the training phase.

The reasons of privacy leakage
Several common forms of privacy leakage are listed
below.

o Leakage from embedding layer

When a deep learning model learns non-digital data
with sparse and discrete input space, it will first con-
vert the input into a low-dimensional vector repre-
sentation through the embedding layer. For example,
in the natural language processing scenario, each
word in its vocabulary V signifies a discrete token,
and is mapped to a vector after learning. The param-
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eters of the embedding layer can be represented by
the matrix W,,,;, € R'Y*?, where | V| donates the size
of the vocabulary and 4 donates the dimensional-
ity of the embedding. For a specific text, the gradi-
ent update of the embedding layer is only based on
the words that appear in the text, and the gradient
update corresponding to other words are 0. Based on
this observation, an adversary can infer which words
the local workers used during the FL training period
directly (Melis et al. 2019).

+ Leakage from FC layer
The fully connected (FC) layer is usually an indispen-
sable component in a deep learning model. The main
function of the FC layer is to map the distributed fea-
tures to the sample label space. Recent studies dem-
onstrated that both the ground-truth labels (Zhao
et al. 2020)and the inputs to any FC layer (Geiping
et al. 2020; Pan et al. 2020) can be restored from the
gradients.
In regular classification tasks, the deep learning
model generally ends with the FC layer, and the loss
is calculated by cross-entropy after softmax activa-
tion. After the activation function, the output val-
ues are between 0-1. Therefore, the sign of gradi-
ent according to the correct label is negative and
positive otherwise. Hence, the ground-truth labels
can definitely be reconstructed from the shared
gradients(Zhao et al. 2020). In addition, the input of
the fully connected layer can always be calculated
from the gradients, regardless of the position in the
neural network(Geiping et al. 2020).

o Leakage from the model gradients
The model training is usually regarded as a high-
level representation of the data (Lyu 2018), which
makes the gradient-based privacy inference attack
possible (Aono et al. 2017). Recent work demon-
strated that gradients can determine whether an
exact sample was used to training (Melis et al. 2019;
Shokri et al. 2017), reveal the properties or the repre-
sentatives of the training samples (Melis et al. 2019),
and even completely restore the original training
data (Stella et al. 2021; Zhang et al. 2020; Hitaj et al.
2017).

Threat model

In FL, the local workers, the central server, and the com-
munication between the central server and the local
workers are considered viable points for the implemen-
tation of attack methods. Since FL requires the central
server and local workers to exchange gradients/param-
eters information, white-box attacks can be implemented
in FL setting. A comparison of the threat models is sum-
marized in Table 1.
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Table 1 Threat model of privacy inference attacks in the training phase, Y (Yes), N (No)

Knowledge Ability Auxiliary data
Model Weights Gradients Train model Design model Modify update
structure
Server Y Y Y N Y N
Eavesdropping N Y Y N N N N
Workers
k=2 Y Y Y Y N Y Y
k>2 Y Y N Y N Y Y

3

3

Sever-side attacks

A server can be assumed as an honest-but-curious
server or a malicious server. The server’s knowledge
includes the model’s structure, weights, and gradients
for each epoch of the local workers. Basically, hon-
est-but-curious adversaries may not modify the net-
work structure or send malicious global parameters,
while malicious servers vice. Meanwhile, it is usually
assumed that the adversaries have unlimited comput-
ing resources.

Eavesdropping attacks

The adversaries located in the communication chan-
nel between central server and local workers can
launch eavesdropping attacks. The adversaries can
steal or tamper some meaningful information, such
as model weights or gradients, in each communica-
tion.

Worker-side attacks It can be assumed that K workers
(of which K > 2) collaboratively train a joint model
using local datasets with negotiating a common FL
algorithm.

Table 2 Privacy inference attacks against FL in the training phase

When K =2, one of the workers is the adversary,
whose goal is to steal information about the training
data of another targeted local worker. In this case, an
adversary can access the model structure, weights,
and gradients of the target worker, just like a server-
side adversary. In addition, the adversary takes the
responsibility of training the model but cannot mod-
ify the model structure.

When K > 2, there are workers who are neither the
adversary nor the victim. In this case, the adversary
cannot accurately obtain the gradient of the target
victim, which increases the difficulty of the attack.

Attacks

According to different inference targets, privacy infer-
ence attacks can be summarized as membership infer-
ence attacks, class representative inference attacks,
property inference attacks, and data reconstruction
attacks. Table 2 lists the representative privacy inference
attacks against FL in the training phase.

o Membership inference attacks

Assumption

Goal Limitation

Adversary Active/Passive Auxiliary data

GAN attack (Hitaj et al. 2017) Worker Active No
CPA (Nasr et al. 2019) Worker Active/Passive  No
UFL (Melis et al. 2019) Worker Active/Passive  Yes
DLG (Zhu and Han 2020) Server Passive No
iDLG (Zhao et al. 2020) Server Passive No
Invert gradient (Geiping et al. Server Passive No
2020)

GradInversion (Yin et al. 2021) Server Passive No
GRNN (Ren et al. 2021) Server Passive No

Classrepresentative inference
Membershipinference

Propertiesinference
Inferringtraining dataandlabel

Inferringtrainingdata withimage-
labelrecovery

Inferringtraining dataandlabel

Largebatchimagerecovery
forcomplexdatasets

Generatingtraining dataandlabel

Allclassmembers similar

Lackstheoretical proofofthe-
bounds

Auxiliarycondition maynotmeet
Shallowand smoothnetworks
Asingleinput point

Lowperformance atgeneralcase

Gradientsonlyupdate onceatlocal
ineachiteration
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Membership inference attacks target on determin-
ing whether an exact sample was used to train the
network (Shokri et al. 2017). An adversary can con-
duct both passive and active membership inference
attacks (Nasr et al. 2019; Melis et al. 2019) to infer
whether an exact data was used to train. Passive
attacks generally do not modify the learning pro-
cess, and only make inferences by observing the
updated model parameters. Active adversaries can
tamper with the training protocol of the FL. model
and trick other participants into exposing their pri-
vacy. A straightforward way is that the adversary
shares malicious updates and induces the FL global
model to reveal more information about the local
data of other local workers. In Nasr et al. (2019),
the author presented a comprehensive privacy anal-
ysis (CPA) of deep learning by exploiting the pri-
vacy vulnerabilities of the SGD algorithm. Experi-
mental results concluded that the gradients are
closer to the output layer leak more information,
i.e., members and non-members produce different
distributions during training. However, their work
lacks theoretical proof of the boundaries of privacy
breaches.

Class representative inference attacks

Class Representatives inference attacks aim to obtain
the prototypical samples of a target label that the
adversary does not own. Hitaj et al. (2017) proposed
an active inference attack at inside, called Generative
Adversarial Networks Attack, on collaborative deep
learning models. Experimental results demonstrated
that any malicious local workers using this method
could infer privacy information from other partici-
pants. However, the experiments require that all class
members are similar, and the adversary has prior
knowledge of the victim’s data labels.

Property inference attacks

The goal of property inference attacks is to infer
meta characteristics of other participants’ train-
ing data (Melis et al. 2019). Adversaries can obtain
specific properties of victim’s training data through
active or passive inference based on auxiliary label
information about the target properties. Passive
adversaries can only observe model updates and train
a binary attribute classifier of target property to per-
form inferences. Active adversaries can deceive the
FL model to better separate data with and without
target attributes, thereby stealing more information.
However, the attack condition of auxiliary training
data may limit its applicability.

Data reconstruction attacks
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Data reconstruction attacks aim to reconstruct train-
ing samples and/or associated labels accurately that
were used during training.

1. DLG/iDLG

Previous work has made some contributions
in inferring training data features from gradi-
ents, but these methods are generally considered
“shallow” leakage. Deep Leakage from Gradient
(DLG) (Zhu and Han 2020) was the first explora-
tion to fully reveal the private training data from
gradients, which can obtain the training inputs
as well as the labels in only a few iterations. The
core idea of DLG is to synthesis pairs of “dummy”
inputs and labels by matching their “dummy”
gradients close to the real ones, which can be
described as a euclidean matching term (1).

argmin [|VoLo(x,y) — VoLo(*, 911> (q)
X

Where (x, y) denotes the “dummy” input and
the corresponding “dummy” label, and (x*,y*)
denotes the ground-truth training data and label.
Experimental results demonstrated that the train-
ing image and label can be jointly reconstructed
with a batch size up to 8 and image resolution up
to 6464 in shallow and smooth architectures.

Although DLG has superior performance than
the previous “shallow” leakage methods, it suffers
from obtaining the ground-truth labels consist-
ently and often fails due to a lousy initialization.
In the following, the Improved Gradient Depth
Leakage (iDLG) (Zhao et al. 2020) presented the-
oretically as well as empirically that the ground-
truth labels can be recovered with 100% accuracy
from the signs of corresponding gradients, such
that it improves the fidelity of the extracted data.
However, such an algorithm only works for shar-
ing gradients of a single input data.
2. Inverting gradients

The effectiveness of DLG/iDLG is based on
a strong assumption of shallow network and
low-resolution recovery, but it is far from real-
istic scenarios. (Geiping et al. 2020) noted that
these assumptions are not necessary if in a right
attack. As such, it proposed to use cosine simi-
larity (Chinram et al. 2021) with Total Varia-
tion (TV) restriction (Rudin et al. 1992) as the
cost function.
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Experimental results demonstrated that it is pos-
sible to restore the image even in realistic deep
and non-smooth architectures

3. Gradlnversion
The recovery of a single image’s label in iDLG has
yield great benefits for image restoration (Geip-
ing et al. 2020). In GradInversion (Yin et al. 2021),
it implemented a batch-wise labels reconstruc-
tion from the final FC layer gradients, enabling a
larger batch images restoration in complex train-
ing settings. To recover more specific details,
GradInversion also introduced a set of regulari-
zation, such as image fidelity regularization and
group consistency regularization. The optimiza-
tion function can be formulated as (3):

X* = argfninﬁ(f(; W, AW) + R figelity X) + R group (X)
X
3)

Where x is a dummy input batch, and W denotes
a network weights, AW denotes a batch-averaged
gradient of images x* and labels y*.

Experimental results indicated that even for
complex datasets and deep networks, batch-wise
images can be reconstructed with high fidel-
ity through Gradlnversion. However, this paper
only discussed the gradient in one descent step at
local.

4. GRNN

Generative Adversarial Networks (GAN) have
been shown to be effective in recovering data
information (Liu et al. 2021). However, GAN
based techniques require additional information,
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such as class labels which are generally unavail-
able for privacy persevered learning (Hitaj et al.
2017). Recently, Ren et al. (2021) proposed Gen-
erative Regression Neural Network (GRNN),
which is capable of restoring training data and
their corresponding labels without auxiliary data.
Experimental results indicted that GRNN out-
performs the DLG/IDLG method with stronger
robustness, better stability and higher accuracy.
However, same as Gradlnversion, it only dis-
cussed the gradient in one descent step at local.

Defenses
Existing strategies to resisting private inference are usu-
ally based on the processing of shared gradient infor-

mation, including:

(2)

(1) Compression Gradients;

Cryptology Gradients; and (3) Perturbation Gradients, as
shown in Table 3.

.

Compression gradients

The compressibility and sparsity of the gradients are
mainly considered as tricks to reduce communica-
tion and computational overhead (Haddadpour et al.
2021). Abdelmoniem (2021) illustrated a statistical-
based gradient compression technique for distributed
training systems, which effectively improves model
communication and calculation efficiency. Intuitively,
these methods can be directly transferred to FL pri-
vacy protection because they reduce the information
sources for privacy inferences. In DLG (Zhao et al.
2020), the experimental results suggested that com-
pressing the gradients can successfully prevent deep
leakage.

Table 3 Defense methods against privacy inference attacks in the training phase

Actor Guarantee Weakness
Model Aggregated value Local releasedvalue

Compression gradients

Pruning Worker Y N Failintext inferringtask

Dropout Worker Y N Slightlydecrease modelaccuracy
Cryptology gradients

SMC Worker N Computationand communicationconsuming

HE Worker N
Perturbation gradients

CcDP Server N Y Requirea trustaggregator

LDP Worker N Needenough calibrationnoise

DDP Worker N N Computation consuming
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Another straightforward measure to increase the
randomness of gradient is dropout (Zeng et al. 2021).
However, dropout produces more generalized fea-
tures while increasing uncertainty (Srivastava et al.
2014; Chang et al. 2017), which may facilitate infer-
ence on generalized data. Experimental results in
UFL (Melis et al. 2019) demonstrated that dropout
can have a positive impact on their attacks, albeit
slightly degrading the performance of the joint
model.
+ Cryptology gradients
The encryption algorithms often used in FL can be
broadly classified as Homomorphic Encryption
(HE) (Fang and Qian 2021; Reagen et al. 2021) and
secure multi-party computing (SMC) (Li et al. 2020;
Liu et al. 2020). HE allows the data to be encrypted
and processed, and the decrypted result is equiva-
lent to the operation performed on the original data.
Since homomorphic encryption does not change the
original data information, it can theoretically ensure
that there is no performance loss in model conver-
gence (Yousuf et al. 2021; Wu et al. 2021; Park and
Tibouchi 2020). However, the effectiveness of HE
comes at the expense of computation and mem-
ory (Rahman et al. 2020; Gaid and Salloum 2021),
which limits its application (Lyu et al. 2020; Aono
et al. 2017). SMC (Yao 1982) enables individual par-
ticipants to perform joint calculations on their inputs
without revealing their own information. This pro-
cess ensures a high degree of privacy and accuracy.
However, it is also computation and communication
consuming (Chen et al. 2019). In addition, SMC in
FL scenario requires each worker to coordinate with
each other during the training process, which is usu-
ally impractical.
+ Perturbation gradients

The core idea of differential privacy(DP) (Abadi et al.
2016; Triastcyn and Faltings 2019) is to protect data
privacy by adding random noise to sensitive infor-
mation. Basically, DP can be divided into three cat-
egories: centralized DP (CDP), local DP (LDP) and
distributed DP (DDP) (Lyu et al. 2020; Wei 2020). In
FL, CDPs add noise to the aggregated local model
gradient through a trusted aggregator to ensure the
privacy of the entire data (Lyu et al. 2020). The effec-
tiveness of CDPs requires numerous workers in the
FL, which is not apply to H2B scenarios with small-
scale workers (Zheng et al. 2021). For LDPs and
DDPs, the workers control noise disturbances, which
can provide stronger privacy protection. However,
LDPs usually need to add sufficient calibration noise
to guarantee the data privacy, which may impair the
performance of the model (Seif et al. 2020). DDPs
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guarantee the privacy of each worker by incorporat-
ing encryption protocols, which can lead to higher
training costs.

Poisoning attacks

Poisoning attacks on machine learning models have been
widely studied. These attacks occur in the training phase
against FL. On the one hand, adversaries can impair the
performance of the final global model on untargeted
tasks. On the other hand, adversaries can inject a back-
door into the final global model. In general, poisoning
attacks can be categorized as data poisoning and model
poisoning.

Threat model

The adversaries can manipulate some local workers to
participate in the training process of FL and modify
the model updates. The modification methods include
changing data features, labels, model parameters, or gra-
dients. The proportion of local workers being manipu-
lated and the amount of modification of training data are
the key factors affecting the final training effect. Due to
the distributed setting and practical application of FL,
the data distribution can be iid., and non-ii.d. These
attacks may be carried out under different data distribu-
tion conditions.

Attacks

In general, poisoning attacks can be divided into data
poisoning attacks and model poisoning attacks, as well
as targeted attacks (backdoor attacks) and untargeted
attacks (byzantine attacks) (Lyu et al. 2020; Mothukuri
et al. 2021; Enthoven and Al-Ars 2020).

+ Data poisoning and model poisoning attacks

Data poisoning attacks Data poisoning attacks are
mainly changing the training dataset. The data can be
changed by adding noise or flipping the labels.

Model poisoning attacks The purpose of model poi-
soning attacks is to arbitrarily manipulate the model
updates. These attacks can cause the global model to
deviate from the normal model, resulting in degraded
model performance or leaving backdoors in the final
global model.

Moreover, local workers sometimes just get the
global model, but do not contribute data and com-
puting resources. Such local workers can upload vir-
tual updates, e.g. random parameters, to the cen-
tral server. These attacks are called free riding
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attacks (Lin et al. 2019; Zong et al. 2018). Free riding
attacks can also be classified as the model poisoning
attacks.

What are the differences and similarities between
data poisoning and model poisoning attacks?

For data poisoning attacks, adversaries can only add
specific noise to the data or change the labels to affect
the performance of the global model. For model poi-
soning attacks, adversaries usually actively influences
the update of the model, e.g., changing objective
function. Data poisoning attacks may not as effective
as model poisoning attacks (Bhagoji et al. 2019).

The amount of existing data poisoning and model
poisoning attacks to construct poisoned samples is to
add a specific trigger to the data or to flip the labels.
There are not many methods to implement poisoning
attacks by adding triggers and unchanging labels.

« Byzantine and backdoor attacks

Byzantine attacks Byzantine attacks are the untar-
geted attacks and their goal is to cause the failure of
the global model.

Backdoor attacks The goal of a backdoor attack is to
make the model fail in a particular task, while the
normal task cannot be affected. To some degree,
backdoor attack is one type of targeted poisoning
attacks.

Backdoor attacks insert hidden triggers in the global
model after training, generally by changing specific
features. In the predicting phase, only when there
are samples that can trigger backdoor task, the attack
will succeed. Therefore, only the adversaries who
know how to trigger the backdoor task can success-
fully launch the attack (this idea can also be applied
to model identity authentication (Xiangrui et al.
2020)). However, the current work mainly focus on
image datasets, and how to inject backdoor attacks
on text datasets needs to be further explored.

« Perspectives of poisoning attacks

We summarize the perspectives of poisoning attacks
with the following five questions.
Q1. How to improve the effectiveness of poisoning
attacks?

Bagdasaryan et al. (2020) indicated that any local
worker can upload a malicious model to the central
server during the training phase. They presented a gen-
eral method called “restrict-and-scale’, which enabled
adversaries to generate a model with high accuracy in
both main task and backdoor task. In addition, they
used an objective function to avoid being detected. The
objective function includes rewarding the accuracy of the
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model and punishing the model that deviates from the
“normal” 