
Liu et al. Cybersecurity             (2022) 5:4  
https://doi.org/10.1186/s42400-021-00105-6

SURVEY

Threats, attacks and defenses to federated 
learning: issues, taxonomy and perspectives
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Abstract 

Empirical attacks on Federated Learning (FL) systems indicate that FL is fraught with numerous attack surfaces 
throughout the FL execution. These attacks can not only cause models to fail in specific tasks, but also infer private 
information. While previous surveys have identified the risks, listed the attack methods available in the literature or 
provided a basic taxonomy to classify them, they mainly focused on the risks in the training phase of FL. In this work, 
we survey the threats, attacks and defenses to FL throughout the whole process of FL in three phases, including Data 
and Behavior Auditing Phase, Training Phase and Predicting Phase. We further provide a comprehensive analysis of these 
threats, attacks and defenses, and summarize their issues and taxonomy. Our work considers security and privacy of FL 
based on the viewpoint of the execution process of FL. We highlight that establishing a trusted FL requires adequate 
measures to mitigate security and privacy threats at each phase. Finally, we discuss the limitations of current attacks 
and defense approaches and provide an outlook on promising future research directions in FL.
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Introduction
As smart cities grow in popularity, the amounts of multi-
source heterogeneous data generated by various organi-
zations and individuals have become increasingly diverse. 
However, businesses and people are hesitant to exchange 
data due to the concern about data privacy, leading to 
the emergence of data silos. Several attempts have been 
made to solve the data privacy threats, where FL has 
shown its superiority as it allows multiple local workers 
to train together without revealing sensitive information 
about local data (Lyu et al. 2020). In December 2018, the 
IEEE Standards Committee approved the standard pro-
ject of architectural framework and application of Fed-
erated machine learning. Subsequently, more and more 

scholars and technical experts joined the standards work-
ing group and participated in drafting IEEE Standards 
about FL.

At present, FL combined with Multi-task Learn-
ing  (Smith et  al. 2017), Reinforcement Learning  (Qi 
et al. 2021), Graph Neural Network (Wu et al. 2021) or 
other artificial intelligence algorithms have been pro-
posed and applied in many fields. In addition, similar to 
FL, some collaborative learning methods like Assisted 
Learning  (Xian et  al. 2020), Split Learning  (Vepa-
komma et al. 2018) have also been proposed. In Natu-
ral Language Processing (NLP), the application of FL is 
also being widely studied. Lin et  al. (2021) opened up 
a research-oriented FedNLP framework, which aims 
to study privacy-preserving methods in NLP with FL. 
Many aggregation algorithms and open-source frame-
works for FL have also been proposed (Mothukuri et al. 
2021), such as FedAvg  (McMahan et  al. 2017), SMC-
AVG  (Bonawitz et  al. 2016), FedProx  (Li et  al. 2018), 
and FATE, Tensorflow-Federated, PySyft etc.
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Although FL can effectively break data silos, there are 
many inborn security and privacy threats. Before  the 
model is  trained, malicious local workers may destroy 
the integrity, confidentiality, and availability of data, and 
thus contaminate the model. In general, the key roles of 
FL include two parts: central server and local workers (or 
local clients). The adversary can compromise the cen-
tral server or  a part of local workers. When the model 
is being trained, the adversary can manipulate the global 
model by controlling the samples or model updates. This 
will result in degraded performance of the global model, 
or leave a backdoor. In addition, in the model training 
and predicting  phases, the adversary can also infer the 
private information of other honest local workers, includ-
ing membership inference and attribute inference. Even 
though differential privacy and other privacy-preserving 
algorithms have been implemented within FL, attacks 
against FL can still succeed (Cheu et al. 2021).

Many existing surveys mainly focused on listing and 
describing various attack methods and defense strate-
gies  (Lyu et  al. 2020; Mothukuri et  al. 2021; Enthoven 
and Al-Ars 2020). However, these surveys only analyze 
security and privacy threats in the training phase. In this 
work, we analyze the security and privacy threats accord-
ing to the multi-phase framework of the FL execution, 
including Data and Behavior Auditing, Training and Pre-
dicting. We identify the issues and provide a taxonomy of 
threats, attacks and defenses on FL. We also provide per-
spectives on how to build a trusted FL.

FL concepts and challenges
Definition
FL is defined as a machine learning paradigm in which 
multiple clients work together to train a model under the  
coordination  of a central server, while the training data 
remains stored locally (Kairouz et al. 2019). According to 
the type of local workers, FL can be divided into cross-
device and cross-silo. Cross-device workers are primarily 
mobile phones, tablets, speakers, and other terminal IoT 
devices. These local workers may disconnect at any time 
in the process of model training. The workers of cross-silo 
are mainly large institutions that have high data storage 
and computing capabilities.  In   the fully  decentralized 
setting, FL can be combined with blockchain  (Warnat-
Herresthal et  al. 2021) or secure multi-party computing 
technology (Song et al. 2020). In this work, we focus on 
security and privacy threats against centralized FL.

A Categorization of Federated Learning
In  FL, models are trained locally and  aggregated at a 
central server.  A  global model is obtained after sev-
eral parameter/gradient aggregation updates. Unlike 

distributed machine learning, the central server of FL 
does not have access to the local worker’s data. The data 
distribution among local workers can be independent 
and identically distributed (i.i.d) or non-independent and 
identically distributed (non-i.i.d). The types of  FL mainly 
include Horizontal FL (HFL), Vertical FL (VFL) and Fed-
erated Transfer Learning (FTL)  (Yang et  al. 2019). The 
specific description of each type is as follows:

HFL is suitable for local workers with less sample rep-
etition and more overlapping features. Most existing 
work mainly focused on the security and privacy towards 
HFL. VFL is suitable for the scenarios where local work-
ers have the same sample ID and less overlapping fea-
tures. VFL consists of encrypted entity alignment and 
encrypted model training.  As the number of workers 
increases, the amount of  calculations increases accord-
ingly. SecurBoost  (Cheng et al. 2019) is the most repre-
sentative model of vertical FL, which supports multiple 
workers to participate in VFL in the FATE framework. 
FTL (Liu et al. 2018) is suitable for scenes with few sam-
ple ID and feature overlap.

Fully decentralized learning
To avoid malicious or semi-honest third parties (cen-
tral servers), fully decentralized learning emerged  (Kim 
et  al. 2018). The fully decentralized learning is usually 
combined with blockchain, which has proven to be effec-
tive in protecting data privacy (Wang et al. 2021; Li et al. 
2018). Warnat-Herresthal et al. (2021) proposed a decen-
tralized collaborative computing method called Swarm 
Learning (SL), which combines privacy-preserving, edge 
computing and blockchain based peer-to-peer network. 
Weng et  al. (2021) proposed DeepChain, realizing data 
confidentiality and calculating auditability based on 
blockchain incentive mechanism and privacy-preserving 
methods. Based on the combination of blockchain tech-
nique and privacy-preserving algorithms, it can be seen 
that fully decentralized learning enhances the trust guar-
antee of collaborative computing.

Learning mechanisms
The idea of FL is to jointly train a global model by opti-
mizing the parameters θ with multiple local workers’ 
updates. Basically, there are two aggregating mechanisms 
named synchronized SGD (Shokri and Shmatikov 2015) 
and FedAvg  (McMahan et  al. 2017). In synchronized 
SGD, each local worker computes the gradient at  one 
batch  from its own data and uploads it to the server. In 
FedAvg, each local worker performs several epochs of 
gradient descent and provides the updated parameters to 
the server. Then, the central server will aggregate those 
gradients or parameters.
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The relationship between FL and privacy computing
Privacy  computing  refers to a range of information 
technologies that analyze data while ensuring that the 
data providers do not reveal the private information. In 
other words, privacy  computing  is a collection of “data 
available but not visible” technologies, including FL, 
secure  multi-party computing  (MPC), trusted execu-
tion environment  (TEE), differential privacy (DP),  etc. 
Among them, FL is a derivative technique that integrates 
distribution machine learning with privacy techniques; 
secure  multi-party computing is a cryptography-based 
privacy computing technique;  trusted execution envi-
ronment is a trusted hardware-based privacy computing 
technique; differential privacy is a rigorous mathemati-
cal definition of privacy. These techniques are often used 
in combination to accomplish computing and analyzing 
data while ensuring the security and privacy of the origi-
nal data.

The challenge of heterogeneity
With the diversification and complexity of the local 
workers, the concerns of mutual trust, efficiency, and 
convergence quality become increasingly obvious. In 
practical applications, FL needs to break through the 
heterogeneity of devices in storage, computing and 
communication capabilities,  non-i.i.d data, and model 
requirements  in  different local  application   environ-
ments. One effective method to addressing these hetero-
geneous challenges is to implement personalized FL in 
three aspects: device (Liu et al. 2020), data (Li et al. 2020) 
and model (Smith et al. 2017).

The challenge of communication
Reducing communication costs is a major bottleneck 
for federated computing, as local workers need to mul-
tiple  interact with a central server  and the connections 
are often unstable. Therefore, how to improve the trans-
mission efficiency while ensuring the accuracy of the 
joint calculation is an important issue. Existing work 
indicated that sparse matrix  (Konečný et  al. 2016) and 
model compression  (Chen et  al. 2018) can significantly 
reduce the communication overhead with little impact 
on the  model accuracy.

The challenge of security and privacy threats
The attack surfaces of FL have expanded due to the 
characteristics of distribution. For example, malicious 
local workers may try to steal the privacy information 
of honest local workers, or malicious local workers can 
launch collusive attacks to impairing the performance 
of the final global model.

Multi‑phases framework of trusted FL
As shown in Fig.  1, the multi-phases framework  of 
the  FL execution can be divided  into three phases, 
including Data and Behavior Auditing, Training and 
Predicting. The model faces different security and pri-
vacy threats at each phase of FL execution. We argue 
that establishing a trusted FL requires taking effective 
measures at each phase to fully mitigate security and 
privacy threats.

•	 Data and behavior auditing phase

	 In general, contaminated data and malicious behav-
ior are the main factors affecting model performance. 
On the one hand, the data of local workers may be 
contaminated by label noise or feature noise. On the 
other hand, the historical behavior of local workers 
may be malicious. The local workers’ systems may 
have some vulnerabilities. These vulnerabilities may 
have been exploited by adversaries.  These threats 
will   impact  the subsequent training and prediction 
of FL. If the risk of data and behavior auditing phase 
is minimized, the probability of poisoning attacks 
and privacy inference attacks may decrease.

•	 Training phase
	 FL requires multiple local workers working collabo-

ratively to train a global model. In the model training 
phase, malicious  local worker can manipulate their 
data, model gradients and parameters. Therefore, if 
adversaries compromise the local workers, they can 
disturb the integrity of the training dataset or model 
to impair the performance of the global model. 
Besides, the central server can also launch passive 
or active inference attacks. In addition, during the 
upload and download of model updates, the mod-
els may be eavesdropped by intermediaries in the 
communication channel, resulting in model updates 
being tampered or stolen. Therefore, it is necessary 
to protect the transfer of model updates between 
the local workers and the central server.

•	 Predicting phase
	 Once the model is trained, the global model is 

deployed  onto the  local worker devices, regardless 
of whether they participated in the training or not. 
In this phase, the evasion attacks and privacy infer-
ence attacks occur frequently. Evasion attacks usually 
do not change the target model, but cheat the model 
to produce false prediction. Privacy inference attacks 
can reconstruct the characteristics of the model and 
raw data. The effectiveness of these attacks depend 
on the knowledge available to the adversaries.
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Data and behavior auditing phase
The performance of FL depends on the high qual-
ity  data of the local workers and the bengin historical 
behavior of the local workers and central server. Once 
the data quality is low or there exists malicious behav-
ior, the trained model may become ineffective or even 
harmful. This section analyzes the threat model, attacks 
and defenses during the data and behavior auditing 
phase.

Threat model
In FL, the data of each local worker is available and 
invisible. Local workers have absolute right of  control 
over their data. This rule makes it difficult to audit the 
data quality and historical behavior of all local workers. 
Therefore, a malicious local worker can silently modify 
the training data to influence the final global model. 
In addition, the data quality issues, such as unlabeled, 
noisy or incomplete, may occur during data collection, 
transmission and processing.  These  may cause a sig-
nificant impact on data-based decision-making  (Jiang 
et al. 2021).

Attacks
The data and behavior auditing phase is the first line 
of defense to ensure the credibility of FL. If this line is 
breached, a malicious local worker can use low-quality 
or poisoned data to decrease  the performance of the 
global model or even corrupt the model.

In this phase, the local workers and central server 
are exposed to existing system, software, and network 
security threats. Adversaries can cause damage to data 
and systems by social engineering, penetration attacks, 
backdoor attacks, and advanced persistent threat (APT) 
attacks etc. For example, in the cross-device scenario, if 
the devices have some vulnerabilities, the adversaries can 
exploit these vulnerabilities to compromise the data and 
the model  (Wang et  al. 2014). In addition, insiders can 
also directly undermine core data and systems by abusing 
their authorities. Inadvertent errors, and environmental 
factors in the phases of data collection and transmission 
will also have a certain impact on the subsequent data 
analysis.

Training Phase

Global Model

Data Poisioning

Model Poisoning

Privacy Inference

……

Central Server

Model Aggregation
ΔW=Aggr(ΔW1+ΔW2+...+ΔWn-1+ΔWn)

ΔW1 ΔW2 ΔWn-1 ΔWn

ΔWΔW ΔWΔW

Predicting Phase

Trusted Untrusted

Federated Learning

Eavesdropping

 Evasion

Privacy Inference

Local Workers Data and Behavior
Auditing Phase

Fig. 1  The multi-phases framework of FL including data and behavior auditing, model training and model predicting
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Defenses
Before the  model training phase, one method to ensure 
the credibility of the FL model is auditing the data qual-
ity of the local workers. High-confidence data can effec-
tively reduce the occurrence of poisoning attacks and 
improve the effectiveness of the model. However, there 
are few works on the data quality assessment in FL. 
The fact that  the data of local workers cannot be aggre-
gated  poses  some  challenges to the overall data quality 
assessment in FL. Other method is evaluating the his-
torical behavior of local workers and central server. Cred-
ibility measurement and credibility verification methods 
should be proposed based on the system logs.

In addition, the trustworthiness of the local work-
ers should also be dynamically evaluated in the training 
process (Akujuobi et al. 2019). In general, malicious local 
workers usually behave differently than most trusted 
local workers. Therefore, by auditing the model behavior 
uploaded to the central server, the untrusted local work-
ers can be eliminated.

Training phase
As mentioned earlier, the training phase of FL mainly 
involves poisoning attacks and privacy inference attacks 
(white-box). An adversary may launch privacy infer-
ence attacks to obtain the victim’s privacy information, 
or launch poisoning attacks locally to affect the perfor-
mance of the global model. We explain these two attacks 
in detail in the following subsections.

Privacy inference attacks
FL  (McMahan et  al. 2016) has recently emerged as a 
solution to protect data privacy. However, existing work 
suggested that adversaries can infer different levels of 
sensitive information from the updated gradients in FL 
(Hitaj et al. 2017; Nasr et al. 2019; Zhu and Han 2020). In 
this section, we analyze the reasons for privacy leakage, 
threat models, attack methods and defense strategies for 
privacy inference attacks in the training phase.

The reasons of privacy leakage
Several common forms of privacy leakage are listed 
below.

•	 Leakage from embedding layer

	 When a deep learning model learns non-digital data 
with sparse and discrete input space, it will first con-
vert the input into a low-dimensional vector repre-
sentation through the embedding layer. For example, 
in the natural language processing scenario, each 
word in its vocabulary V signifies a discrete token, 
and is mapped to a vector after learning. The param-

eters of the embedding layer can be represented by 
the matrix Wemb ∈ R|V×d| , where |V| donates the size 
of the vocabulary and d donates the dimensional-
ity of the embedding. For a specific text, the gradi-
ent update of the embedding layer is only based on 
the words that appear in the text, and the gradient 
update corresponding to other words are 0. Based on 
this observation, an adversary can infer which words 
the local workers used during the FL training period 
directly  (Melis et al. 2019).

•	 Leakage from FC layer
	 The fully connected (FC) layer is usually an indispen-

sable component in a deep learning model. The main 
function of the FC layer is to map the distributed fea-
tures to the sample label space. Recent studies dem-
onstrated that both the ground-truth labels (Zhao 
et  al. 2020)and the inputs to any FC layer (Geiping 
et al. 2020; Pan et al. 2020) can be restored from the 
gradients.

	 In regular classification tasks, the deep learning 
model generally ends with the FC layer, and the loss 
is calculated by cross-entropy after softmax activa-
tion. After the activation function, the output val-
ues are between 0-1. Therefore, the sign of gradi-
ent according to the correct label is negative and 
positive otherwise. Hence, the ground-truth labels 
can definitely be reconstructed from the shared 
gradients(Zhao et al. 2020). In addition, the input of 
the fully connected layer can always be calculated 
from the gradients, regardless of the position in the 
neural network(Geiping et al. 2020).

•	 Leakage from the model gradients
	 The model training is usually regarded as a high-

level representation of the data  (Lyu 2018), which 
makes the gradient-based privacy inference attack 
possible  (Aono et  al. 2017). Recent work demon-
strated that gradients can determine whether an 
exact sample was used to training (Melis et al. 2019; 
Shokri et al. 2017), reveal the properties or the repre-
sentatives of the training samples (Melis et al. 2019), 
and even completely restore the original training 
data (Stella et al. 2021; Zhang et al. 2020; Hitaj et al. 
2017).

Threat model
In FL, the local workers, the central server, and the com-
munication between the central server and the local 
workers are considered viable points for the implemen-
tation  of attack methods. Since FL requires the central 
server and local workers to exchange gradients/param-
eters information, white-box attacks can be implemented 
in FL setting. A comparison of the threat models is sum-
marized in Table 1.
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•	 Sever-side attacks

	 A server can be assumed as an honest-but-curious 
server or a malicious server. The server’s knowledge 
includes the model’s structure, weights, and gradients 
for each epoch of the local workers. Basically, hon-
est-but-curious adversaries may not modify the net-
work structure or send malicious global parameters, 
while malicious servers vice. Meanwhile, it is usually 
assumed that the adversaries have unlimited comput-
ing resources.

•	 Eavesdropping attacks 
	 The adversaries located in the communication chan-

nel between central server and local workers can 
launch eavesdropping attacks. The adversaries can 
steal or tamper some meaningful information, such 
as model weights or gradients, in each communica-
tion.

•	 Worker-side attacks It can be assumed that K workers 
(of which K ≥  2) collaboratively train a joint model 
using local datasets with negotiating a common FL 
algorithm.

	 When K = 2 , one of the workers is the adversary, 
whose goal is to steal information about the training 
data of another targeted local worker. In this case, an 
adversary can access the model structure, weights, 
and gradients of the target worker, just like a server-
side adversary. In addition, the adversary takes the 
responsibility of training the model but cannot mod-
ify the model structure.

	 When K > 2 , there are workers who are neither the 
adversary nor the victim. In this case, the adversary 
cannot accurately obtain the gradient of the target 
victim, which increases the difficulty of the attack.

Attacks
According to different inference targets, privacy infer-
ence attacks can be summarized as membership infer-
ence attacks, class representative inference attacks, 
property inference attacks, and data reconstruction 
attacks. Table 2 lists the representative privacy inference 
attacks against FL in the training phase.

•	 Membership inference attacks

Table 1  Threat model of privacy inference attacks in the training phase, Y (Yes), N (No)

Knowledge Ability Auxiliary data

Model 
structure

Weights Gradients Train model Design model Modify update

Server Y Y Y N Y Y N

Eavesdropping N Y Y N N N N

Workers

 k = 2 Y Y Y Y N Y Y

 k > 2 Y Y N Y N Y Y

Table 2  Privacy inference attacks against FL in the training phase

Assumption Goal Limitation

Adversary Active/Passive Auxiliary data

GAN attack (Hitaj et al. 2017) Worker Active No Classrepresentative inference Allclassmembers similar

CPA (Nasr et al. 2019) Worker Active/Passive No Membershipinference Lackstheoretical proofofthe-
bounds

UFL (Melis et al. 2019) Worker Active/Passive Yes Propertiesinference Auxiliarycondition maynotmeet

DLG (Zhu and Han 2020) Server Passive No Inferringtraining dataandlabel Shallowand smoothnetworks

iDLG (Zhao et al. 2020) Server Passive No Inferringtrainingdata withimage-
labelrecovery

Asingleinput point

Invert gradient (Geiping et al. 
2020)

Server Passive No Inferringtraining dataandlabel Lowperformance atgeneralcase

GradInversion (Yin et al. 2021) Server Passive No Largebatchimagerecovery 
forcomplexdatasets

Gradientsonlyupdate onceatlocal 
ineachiteration

GRNN (Ren et al. 2021) Server Passive No Generatingtraining dataandlabel
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	 Membership inference attacks target on determin-
ing whether an exact sample was used to train the 
network (Shokri et al. 2017). An adversary can con-
duct both passive and active membership inference 
attacks (Nasr et al. 2019; Melis et al. 2019) to infer 
whether an exact data was used to train. Passive 
attacks generally do not modify the learning pro-
cess, and only make inferences by observing the 
updated model parameters. Active adversaries can 
tamper with the training protocol of the FL model 
and trick other participants into exposing their pri-
vacy. A straightforward way is that the adversary 
shares malicious updates and induces the FL global 
model to reveal more information about the local 
data of other local workers. In Nasr et  al. (2019), 
the author presented a comprehensive privacy anal-
ysis (CPA) of deep learning by exploiting the pri-
vacy vulnerabilities of the SGD algorithm. Experi-
mental results concluded that the gradients are 
closer to the output layer leak more information, 
i.e., members and non-members produce different 
distributions during training. However, their work 
lacks theoretical proof of the boundaries of privacy 
breaches.

•	 Class representative inference attacks
	 Class Representatives inference attacks aim to obtain 

the prototypical samples of a target label that the 
adversary does not own. Hitaj et al. (2017) proposed 
an active inference attack at inside, called Generative 
Adversarial Networks Attack, on collaborative deep 
learning models. Experimental results demonstrated 
that any malicious local workers using this method 
could infer privacy information from other partici-
pants. However, the experiments require that all class 
members are similar, and the adversary has prior 
knowledge of the victim’s data labels.

•	 Property inference attacks
	 The goal of property inference attacks is to infer 

meta characteristics of other participants’ train-
ing data  (Melis et  al. 2019). Adversaries can obtain 
specific properties of victim’s training data through 
active or passive inference based on auxiliary label 
information about the target properties. Passive 
adversaries can only observe model updates and train 
a binary attribute classifier of target property to per-
form inferences. Active adversaries can deceive the 
FL model to better separate data with and without 
target attributes, thereby stealing more information. 
However, the attack condition of auxiliary training 
data may limit its applicability.

•	 Data reconstruction attacks

	 Data reconstruction attacks aim to reconstruct train-
ing samples and/or associated labels accurately that 
were used during training. 

1.	 DLG/iDLG

	 Previous work has made some contributions 
in inferring training data features from gradi-
ents, but these methods are generally considered 
“shallow” leakage. Deep Leakage from Gradient 
(DLG) (Zhu and Han 2020) was the first explora-
tion to fully reveal the private training data from 
gradients, which can obtain the training inputs 
as well as the labels in only a few iterations. The 
core idea of DLG is to synthesis pairs of “dummy” 
inputs and labels by matching their “dummy” 
gradients close to the real ones, which can be 
described as a euclidean matching term (1). 

 Where (x,  y) denotes the “dummy” input and 
the corresponding “dummy” label, and (x∗, y∗) 
denotes the ground-truth training data and label. 
Experimental results demonstrated that the train-
ing image and label can be jointly reconstructed 
with a batch size up to 8 and image resolution up 
to 6464 in shallow and smooth architectures.

	 Although DLG has superior performance than 
the previous “shallow” leakage methods, it suffers 
from obtaining the ground-truth labels consist-
ently and often fails due to a lousy initialization. 
In the following, the Improved Gradient Depth 
Leakage (iDLG) (Zhao et al. 2020) presented the-
oretically as well as empirically that the ground-
truth labels can be recovered with 100% accuracy 
from the signs of corresponding gradients, such 
that it improves the fidelity of the extracted data. 
However, such an algorithm only works for shar-
ing gradients of a single input data.

2.	 Inverting gradients
	 The effectiveness of DLG/iDLG is based on 

a strong assumption of shallow network and 
low-resolution recovery, but it is far from real-
istic scenarios.  (Geiping et  al. 2020) noted that 
these assumptions are not necessary if in a right 
attack. As such, it proposed to use cosine simi-
larity  (Chinram et  al. 2021) with Total Varia-
tion  (TV) restriction  (Rudin et  al. 1992) as the 
cost function. 

(1)arg min
x

||▽θLθ (x, y)− ▽θLθ (x
∗, y∗)||2
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 Experimental results demonstrated that it is pos-
sible to restore the image even in realistic deep 
and non-smooth architectures

3.	 GradInversion
	 The recovery of a single image’s label in iDLG has 

yield great benefits for image restoration  (Geip-
ing et al. 2020). In GradInversion (Yin et al. 2021), 
it implemented a batch-wise labels reconstruc-
tion from the final FC layer gradients, enabling a 
larger batch images restoration in complex train-
ing settings. To recover more specific details, 
GradInversion also introduced a set of regulari-
zation, such as image fidelity regularization and 
group consistency regularization. The optimiza-
tion function can be formulated as (3): 

 Where x̂ is a dummy input batch, and W denotes 
a network weights, �W  denotes a batch-averaged 
gradient of images x∗ and labels y∗.

	 Experimental results indicated that even for 
complex datasets and deep networks, batch-wise 
images can be reconstructed with high fidel-
ity through GradInversion. However, this paper 
only discussed the gradient in one descent step at 
local.

4.	 GRNN
	 Generative Adversarial Networks (GAN) have 

been shown to be effective in recovering data 
information  (Liu et  al. 2021). However, GAN 
based techniques require additional information, 

(2)

arg min
x∈[0,1]n

1−
< ▽θLθ (x, y),▽θLθ (x

∗, y) >

||▽θLθ (x, y)||||▽θLθ (x∗, y)||
+ αTV (x)

(3)

x̂
∗ = argmin

x̂

L(x̂;W ,�W )+R fidelity (x̂)+R group (x̂)

such as class labels which are generally unavail-
able for privacy persevered learning  (Hitaj et  al. 
2017). Recently, Ren et al. (2021) proposed Gen-
erative Regression Neural Network (GRNN), 
which is capable of restoring training data and 
their corresponding labels without auxiliary data. 
Experimental results indicted that GRNN out-
performs the DLG/IDLG method with stronger 
robustness, better stability and higher accuracy. 
However, same as GradInversion, it only dis-
cussed the gradient in one descent step at local.

Defenses
Existing strategies to resisting private inference are usu-
ally based on the processing of shared gradient infor-
mation, including: (1) Compression Gradients; (2) 
Cryptology Gradients; and (3) Perturbation Gradients, as 
shown in Table 3.

•	 Compression gradients

	 The compressibility and sparsity of the gradients are 
mainly considered as tricks to reduce communica-
tion and computational overhead (Haddadpour et al. 
2021). Abdelmoniem (2021) illustrated a statistical-
based gradient compression technique for distributed 
training systems, which effectively improves model 
communication and calculation efficiency. Intuitively, 
these methods can be directly transferred to FL pri-
vacy protection because they reduce the information 
sources for privacy inferences. In DLG  (Zhao et  al. 
2020), the experimental results suggested that com-
pressing the gradients can successfully prevent deep 
leakage.

Table 3  Defense methods against privacy inference attacks in the training phase

Actor Guarantee Weakness

Model Aggregated value Local releasedvalue

Compression gradients

 Pruning Worker Y N Y Failintext inferringtask

 Dropout Worker Y N Y Slightlydecrease modelaccuracy

Cryptology gradients

 SMC Worker N Y Y Computationand communicationconsuming

 HE Worker N Y Y

Perturbation gradients

 CDP Server N Y N Requirea trustaggregator

 LDP Worker N N Y Needenough calibrationnoise

 DDP Worker N N Y Computation consuming
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	 Another straightforward measure to increase the 
randomness of gradient is dropout (Zeng et al. 2021). 
However, dropout produces more generalized fea-
tures while increasing uncertainty  (Srivastava et  al. 
2014; Chang et al. 2017), which may facilitate infer-
ence on generalized data. Experimental results in 
UFL  (Melis et  al. 2019) demonstrated that dropout 
can have a positive impact on their attacks, albeit 
slightly degrading the performance of the joint 
model.

•	 Cryptology gradients
	 The encryption algorithms often used in FL can be 

broadly classified as Homomorphic Encryption 
(HE)   (Fang and Qian 2021; Reagen et al. 2021) and 
secure multi-party computing (SMC) (Li et al. 2020; 
Liu et al. 2020). HE allows the data to be encrypted 
and processed, and the decrypted result is equiva-
lent to the operation performed on the original data. 
Since homomorphic encryption does not change the 
original data information, it can theoretically ensure 
that there is no performance loss in model conver-
gence  (Yousuf et  al. 2021; Wu et  al. 2021; Park and 
Tibouchi 2020). However, the effectiveness of HE 
comes at the expense of computation and mem-
ory  (Rahman et  al. 2020; Gaid and Salloum 2021), 
which limits its application   (Lyu et  al. 2020; Aono 
et al. 2017). SMC (Yao 1982) enables individual par-
ticipants to perform joint calculations on their inputs 
without revealing their own information. This pro-
cess ensures a high degree of privacy and accuracy. 
However, it is also computation and communication 
consuming  (Chen et  al. 2019). In addition, SMC in 
FL scenario requires each worker to coordinate with 
each other during the training process, which is usu-
ally impractical.

•	 Perturbation gradients
	 The core idea of differential privacy(DP) (Abadi et al. 

2016; Triastcyn and Faltings 2019) is to protect data 
privacy by adding random noise to sensitive infor-
mation. Basically, DP can be divided into three cat-
egories: centralized DP (CDP), local DP (LDP) and 
distributed DP (DDP) (Lyu et al. 2020; Wei 2020). In 
FL, CDPs add noise to the aggregated local model 
gradient through a trusted aggregator to ensure the 
privacy of the entire data (Lyu et al. 2020). The effec-
tiveness of CDPs requires numerous workers in the 
FL, which is not apply to H2B scenarios with small-
scale workers  (Zheng et  al. 2021). For LDPs and 
DDPs, the workers control noise disturbances, which 
can provide stronger privacy protection. However, 
LDPs usually need to add sufficient calibration noise 
to guarantee the data privacy, which may impair the 
performance of the model  (Seif et  al. 2020). DDPs 

guarantee the privacy of each worker by incorporat-
ing encryption protocols, which can lead to higher 
training costs.

Poisoning attacks
Poisoning attacks on machine learning models have been 
widely studied. These attacks occur in the training phase 
against FL. On the one hand, adversaries can impair the 
performance of the final global model on untargeted 
tasks. On the other hand, adversaries can inject a back-
door into the final global model. In general, poisoning 
attacks can be categorized as data poisoning and model 
poisoning.

Threat model
The adversaries can manipulate some local workers to 
participate in the training process of FL and modify 
the model updates. The modification methods include 
changing data features, labels, model parameters, or gra-
dients. The proportion of local workers being manipu-
lated and the amount of modification of training data are 
the key factors affecting the final training effect. Due to 
the distributed setting and practical application of FL, 
the data distribution can be i.i.d., and non-i.i.d. These 
attacks may be carried out under different data distribu-
tion conditions.

Attacks
In general, poisoning attacks can be divided into data 
poisoning attacks and model poisoning attacks, as well 
as targeted attacks (backdoor attacks) and untargeted 
attacks (byzantine attacks)  (Lyu et  al. 2020; Mothukuri 
et al. 2021; Enthoven and Al-Ars 2020).

•	 Data poisoning and model poisoning attacks

	 Data poisoning attacks  Data poisoning attacks are 
mainly changing the training dataset. The data can be 
changed by adding noise or flipping the labels.

	 Model poisoning attacks  The purpose of model poi-
soning attacks is to arbitrarily manipulate the model 
updates. These attacks can cause the global model to 
deviate from the normal model, resulting in degraded 
model performance or leaving backdoors in the final 
global model.

	 Moreover, local workers sometimes just get   the 
global model, but do not contribute data and com-
puting resources. Such local workers can  upload vir-
tual updates, e.g. random parameters, to the cen-
tral server. These attacks are called free riding 
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attacks (Lin et al. 2019; Zong et al. 2018). Free riding 
attacks can also be classified as the model poisoning 
attacks.

	 What are the differences and similarities between 
data poisoning and model poisoning attacks?

	 For data poisoning attacks, adversaries can only add 
specific noise to the data or change the labels to affect 
the performance of the global model. For model poi-
soning attacks, adversaries usually actively influences 
the update of the model, e.g., changing objective 
function.  Data poisoning attacks may not as effective 
as model poisoning attacks (Bhagoji et al. 2019).

	 The amount of existing data poisoning and model 
poisoning attacks to construct poisoned samples is to 
add a specific trigger to the data or to flip the labels. 
There are not many methods to implement poisoning 
attacks by adding triggers and unchanging labels.

•	 Byzantine and backdoor attacks
	 Byzantine attacks  Byzantine attacks are the untar-

geted attacks and their goal is to cause the failure of 
the global model.

	 Backdoor attacks The goal of a backdoor attack is to 
make the model fail in a particular task, while the 
normal task cannot be affected. To some degree, 
backdoor attack is one type of targeted poisoning 
attacks.

	 Backdoor attacks insert hidden triggers in the global 
model after training, generally by changing specific 
features. In the predicting phase, only when there 
are samples that can trigger backdoor task, the attack 
will succeed. Therefore, only the adversaries who 
know how to trigger the backdoor task can success-
fully launch the attack (this idea can also be applied 
to model identity authentication  (Xiangrui et  al. 
2020)). However, the current work mainly focus on 
image datasets, and how to inject backdoor attacks 
on text datasets needs to be further explored.

•	 Perspectives of poisoning attacks
	 We summarize the perspectives of poisoning attacks 

with the following five questions.
Q1. How to improve the effectiveness of poisoning 
attacks?

Bagdasaryan et  al. (2020) indicated that any local 
worker can upload a malicious model to the central 
server  during the training phase. They presented a gen-
eral method called “restrict-and-scale”, which enabled 
adversaries to generate a model with high accuracy in 
both main task and backdoor task. In addition, they 
used an objective function to avoid being detected. The 
objective function includes rewarding the accuracy of the 

model and punishing the model that deviates from the 
“normal” of the aggregator. By adding the penalty item 
Lano , the objective (loss) function is modified as follows:

The adversary’s training data include both normal inputs 
and backdoor inputs, so that Lclass can balance the accu-
racy of main task and backdoor task. Lano can be any 
type of regularization, such as p-norm distance between 
weight/gradient matrices. In fact, the model poisoning 
attacks are mainly realized by modifying the objective 
function. Bhagoji et al. (2019) mainly studied a targeted 
attack on FL initiated by a few malicious local workers. 
They proposed the idea of simple boosting. In this pro-
cessing, malicious local workers try to overcome the 
impact of the normal local workers and central server on 
model updates.

In order to improve the stealth of this attack, Bhagoji 
et al. (2019) proposed the idea of steady model pooling 
and alternating minimization, making the adversaries 
avoid being detected by central server.

Q2. What are the conditions for a successful poi-
soning attack?

Sun et  al. (2019) compared the “random sampling 
attack” with “fixed frequency attack”. “Random sam-
pling attack” randomly selects malicious local workers 
in each round. And “fixed frequency attack” ensures 
one malicious local worker per f round. They proved 
that the performance of attacks depends on the pro-
portion of malicious local workers. Baruch et al. (2019) 
indicted that the model changed within a certain small 
range is enough to lead to a non-omniscient attack, and 
some existing defenses (Krum, Trimmed Mean, Bulyan) 
can be bypassed when the data of each participant 
satisfy  i.i.d.

Q3. How to make a backdoor task more secret?
Xie et  al. (2020) proposed a distributed backdoor 

attack. The original trigger added to samples in one 
local worker is disassembled into many sub-triggers 
added to samples in different local workers. Hence, 
each compromised local worker trains the local model 
using partial triggers. In the  predicting phase, all sub-
triggers can be clustered on a single sample to launch 
a backdoor attack. In this way, the detection difficulty 
will increase after the triggers are distributed.

Q4. What are the triggers that can launch a suc-
cessful backdoor attack ?

Wang et al. (2020) indicted that using tail edge sam-
ples as triggers can effectively launch backdoor attacks. 
These samples are unlikely to be part of the training or 
test data. This provided an idea for finding backdoor 
triggers.

(4)Lmodel = αLclass + (1− α)Lano
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Q5. Can poisoning attacks bypass the defense 
strategies?

Existing work presented that the answer to this ques-
tion is “YES”.

Fang et  al. (2020) studied model poisoning attacks 
against byzantine robust FL. It demonstrated that poi-
soning attacks can succeed even using robust aggregation 
algorithms such as Krum, Bulyan, Trimmed Mean and 
Median. Their work can greatly improve the error rate of 
the global model learned by the above four robust aggre-
gation algorithms.

Defenses
There are two types of defense methods for poisoning 
attacks, namely robustness aggregation and differential 
privacy.

•	 Robustness aggregation

	 The central server can independently verify the per-
formance of the global model with the validation 
dataset. The central server can also check whether 
the malicious local workers’ updates are statistically 
different from other local workers’ updates  (Bhagoji 
et al. 2019).

	 Various byzantine-robust aggregation methods 
have been proposed to defend against malicious 
local workers. Sun et  al. (2019) proved that norm 
threshold of updates can mitigate the attack without 
affecting the model performance. Fang et  al. (2020) 
generalized RONI and TRIM which were designed 
to defend against data poisoning attacks  to defend 
against their  model poisoning attacks. RFA  (Pillutla 
et al. 2019) aggregated the local models by comput-
ing a weighted geometric median using the smoothed 
Weiszfeld’s algorithm. FoolsGold (Fung et al. 2018) is 
a defense method against sybil attacks on FL. Fools-
Gold adapts the learning rate  (aggregate weight) 
of local   models based on  the  model similarity in 

each  round. In the Median method (Yin et al. 2018), 
the central server sorts the parameters of local mod-
els, and takes the median as the next round global 
model. Same as Median, in the Trimmed Mean 
method (Yin et al. 2018), the server will also sort the 
parameter of local models. Then, the central server 
removes the largest and smallest β parameters, and 
computes the mean of the remaining m− 2β param-
eters as the next round global model. Blanchard et al. 
(2017) selects one of the local models which is simi-
lar to other local models as the global model. Even 
if the selected local model comes from the compro-
mised local workers, its influence will be limited. 
Mhamdi et al. (2018) combined Krum and a variant 
of trimmed mean. Specifically, Bulyan first iteratively 
applies Krum to select θ local models. It then uses 
a variant of Trimmed Mean to aggregate the θ local 
models.

•	 Differential privacy
	 Sun et  al. (2019) added Gaussian noise with small 

standard deviations to the aggregated global model 
to   mitigate threats.   Naseri  et  al. (2020) demon-
strated that both LDP and CDP can defend against 
backdoor attacks.

Predicting phase
In the model predicting phase, there are still security and 
privacy threats, as shown in Table 4. The global model are 
visible to the local workers and central server, which may 
increase the possibility of launching attacks in the pre-
dicting phase. Malicious local workers or central server 
may infer honest local workers’ sensitive information 
from the global model.

Evasion attacks
Evasion attacks aim to cheat the target model by con-
structing specific samples called adversarial examples. 
Usually, some subtle noise added to the input samples 
cannot be detected by human beings, and cause the 

Table 4  Evasion and privacy inference attacks in the model  predicting phase

Attack Types Goal Attack Methods Defense Strategies

Evasion Making the model misclassification on 
adversary examples

Based on optimization; Based on gradi-
ent; Based on decision-making and so 
on

Empirical defense; Certified defense

Model Inversion Obtaining privacy information of the 
original data

Attribute inference; Property inference Model structure defense; Information 
obfuscation; Query control; Differential 
privacyMembership Inference Testing whether a specific point was part 

of the training dataset
Shadow model; Boundary attack

Model Extraction Obtaining relevant information about the 
target model

Model parameter; Hyperparameter
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model to give incorrect classification results. A classic 
example is that a panda image with a small amount of 
noise is identified as a gibbon (Szegedy et al. 2014). The 
adversarial examples can be attributed to the linear char-
acteristics in high-dimensional space  (Goodfellow et  al. 
2015) and the non-robust characteristics  (Gilmer et  al. 
2019).

According to the optimization objective, evasion 
attacks can be divided into targeted attacks with class-
specific errors, and untargeted attacks that do not con-
sider class-specific errors. The evasion attacks have 
attracted wide attentions and been applied to many 
scenes, such as attacking autonomous driving  (Lu et  al. 
2017), internet of things  (Yulei 2021), face recogni-
tion (Sharif et al. 2016), and speech recognition (Carlini 
et al. 2016).

Threat model
From the perspective of the adversary’s knowledge, 
the attack can be divided into white-box and black-box 
attacks. Under the white-box attacks, the adversary has 
complete knowledge about the target model, including 
neural network structure, model parameters and output. 
In contrast, under the black-box attacks, the adversary 
does not know the neural network architecture, param-
eters, and other target model information. The attack can 
be implemented according to the query results of the tar-
get model.

Attacks
The main research direction of the evasion attacks 
(adversarial examples attacks) is to design adversarial 
examples and to break through the robustness of the 
model.

•	 In computer vision (CV)

	 White-box evasion attacks are mainly based on opti-
mization, gradient, classification hyperplane and so 
on. For the optimization-based methods, how to find 
the minimum possible attack disturbance is defined 
as an optimization problem. The most representa-
tive method is C&W  (Carlini and Wagner 2017) 
and L-BFGS  (Szegedy et al. 2014). For the gradient-
base methods, their core idea is to modify the input 
sample in the gradient direction. The main methods 
include one attack, such as FGSM (Goodfellow et al. 
2015) and iterative attack, such as i-FGSM (Kurakin 
et  al. 2017). For the classification hyperplane-based 
methods, their purpose is to find the minimum dis-
turbance that fool deep networks, such as Deep-
fool  (Moosavi-Dezfooli et  al. 2016). Black-box eva-
sion attacks are mainly based on transferability, 

gradient estimation and decision-making   (Ji et  al. 
2021).

•	 In natural language processing (NLP)
	 Evasion attacks in CV domain have made significant 

breakthroughs in attack methods. However, there are 
still many challenges in NLP tasks. Due to the inher-
ent differences between image and text data, the 
evasion attacks for the CV tasks cannot be directly 
applied to the NLP tasks. First, image data (such as 
pixel value) is continuous, but text data is discrete, 
so that it is a challenge to disturb along the gradient 
direction. Second, a tiny change in the pixel values 
can cause image data disturbance, and this distur-
bance is challenging to be detected by human beings. 
However, minor disturbances can be easily detected 
for text data.

	 The adversarial examples for text data can be char, 
word and sentence levels (Zeng et al. 2020). There are 
three representative methods of generating adversar-
ial examples in text classification: genetic attack (Ren 
et  al. 2020), HoTFLip  (Ebrahimi et  al. 2018) and 
MHA (Zhang et al. 2019).

Defenses

•	 Empirical defense

	 Many researchers suggest that image preprocess-
ing and feature transformation can defend against 
evasion attacks. However, these methods are almost 
ineffective in the scenario where the adversary knows 
the defense methods  (Ji et  al. 2021). Security-by-
obscurity mechanism improves the model security by 
hiding information, mainly including model fusion, 
gradient mask and randomization  (Ji et  al. 2021). 
The main methods affecting decision boundary are 
adversarial training  (Madry et  al. 2018). In order to 
improve the robustness of the model,  the defender 
generates the adversary examples and mixes them 
with the original samples to train the model.  How-
ever, in CV,  adversarial training tends to overfit the 
model to the specific constraint region, which leads 
to the degradation of generalization performance of 
the model.

•	 Certified defense
	 Certified defense (Lécuyer et al. 2019; Li et al. 2018) 

has been studied in recent years, and it is prov-
ably robust to certain kinds of adversarial perturba-
tions. Cohen et  al. (2019) prove a tight robustness 
guarantee in l2 norm for smoothing with Gaussian 
noise. Strong empirical results suggest that rand-
omized smoothing is a promising direction for future 
research into robust adversarial classification.



Page 13 of 19Liu et al. Cybersecurity             (2022) 5:4 	

Privacy inference attacks
Privacy inference attacks also happened in predicting 
phase. These attacks include model inversion, member-
ship inference, and model extraction.

Threat model
In the model predicting phase, the adversaries may have 
no knowledge of the parameters of the model, and only 
have access to query the model. In particular, different 
assumptions about adversary’s knowledge, such as with 
or without auxiliary data, and knowing the confidence 
vector or label-only, make the attack and defense meth-
ods difficult to be generally applicable.

Attacks

•	 Model inversion

	 Model inversion attacks mainly use some APIs pro-
vided by a machine learning system to obtain the 
preliminary information of the model. With this pre-
liminary information, the adversaries can analyze the 
model to obtain some relevant information about 
the original data  (Jayaraman and Evans 2019).  We 
argue that model inversion attacks are categorized 
as attribute inference attacks and property inference 
attacks.

	 Attribute inference attacks(Fredrikson et  al. 2014; 
Yeom et  al. 2018) aim to learn hidden sensitive 
attributes of a   sample. The prediction results of 
machine learning models often contain a lot of rea-
soning information about the sample. Fredrikson 
et  al. (2014) proposed that the input information 
contained in the confidence output can be used as 
a measure of the input inversion attacks. Property 
inference attacks  (Song and Shmatikov 2020) try to 
infer whether the training dataset has a specific prop-
erty. We argue that the difference between attribute 
and property inference attacks is that attribute infer-
ence attacks obtain the features involved in the main 
task, while the property inference attacks obtain the 
features independent of the main task.

•	 Membership inference
	 Membership inference attacks aim to test whether a 

specific point is part of the training dataset. Shokri 
et al. (2017) first proposed this attack catting it as a 
supervised learning problem. Specifically, the adver-
sary trains multiple shadow models to mimic the 
behavior of the target model, and trains an attack 
model from data derived from the shadow models’ 
outputs. Salem et  al. (2019) pointed that the above 
method has many assumptions on the adversary, 

such as the use of several shadow models, knowledge 
of the target model structure, and a dataset from the 
same distribution as the target model’s training data-
set. They relax these assumptions and study three 
different types of attacks. Choquette-Choo et  al. 
(2021) and Li and Zhang (2021) focus on how to 
implement the attack in the case of label-only. These 
methods based on an intuition that it is more difficult 
to perturb the member inputs to mislead the target 
model than to perturb the non-member inputs. The 
fundamental reason for the success of the member-
ship inference attacks is the overfitting of the target 
model.

	 Yeom et  al. (2018) assumed that the adversary has 
full white-box access to the target model, along with 
some auxiliary information. Under the same settings, 
Nasr et  al. (2019) obtained the activation function 
output and gradients of the model as the features to 
train the attack model. Leino and Fredrikson (2020) 
presented a white-box membership inference attack 
based on the intimate understanding of information 
leakage through the target model’s idiosyncratic use 
of features. Chen et  al. (2020) studied membership 
inference attacks against generative models under 
various threat models, and the attack calibration 
technique proposed significantly boosts the attack 
performance.

•	 Model extraction
	 The adversaries obtain relevant information about 

the target model through a circular query to simulate 
the decision boundary of the target model. Model 
extraction attacks can be divided into model parame-
ter extraction and hyperparameter extraction attacks. 
Model parameter extraction attacks aim to recover 
the model parameters via black-box access to the 
target model. The main methods include adversarial 
learning, based on meta-model, alternative-model 
or equation-solving attacks (Ren et al. 2021; Tramèr 
et  al. 2016). Hyperparameter extraction attacks try 
to recover the underlying hyperparameters, such as 
regularization coefficient (Wang and Gong 2018).

Defenses
Grosso et  al. (2021) analysed fundamental bounds on 
information leakage, which can help us to construct pri-
vacy-preserving ML models. Ren et al. (2021) concluded 
that the following types of data privacy-preserving meas-
ures could be adopted: model structure defense  (e.g. 
reducing the sensitivity of the model to training sam-
ples and overfitting of the model), information obfus-
cation defense  (e.g. confusing the output of the model), 
and query control defense (e.g. controlling query times). 
The reasons of successful attacks are very important for 
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studying defense methods. Facts have proved that the 
existing defense methods still have some defects. For 
example, overfitting is the main reason why membership 
inference attacks can succeed, and the data enhancement 
mechanism can effectively prevent overfitting. However, 
Kaya and Dumitras (2021) evaluated the implementa-
tion of two membership inference attacks on seven data 
enhancement mechanisms and differential privacy. They 
found that “applying augmentation does not limit the 
risk”, so that we should to study more robust defense 
methods.

In particular, differential privacy is used to protect 
data privacy  (Papernot et al. 2018). At training, random 
noise may add to the data, objective function, gradients, 
parameters, or output. At Inferring, due to the noise 
added in the training process, the model’s generalization 
performance will be reduced, so that there is a trade-off 
between privacy and utility. In order to achieve the util-
ity-loss guarantees, Jia et al. (2019) added crafted noise to 
each confidence score vector to turn it into an adversarial 
example against black-box membership inference attacks. 
This method can mislead the adversary’s attack model, 
and it belongs to information obfuscation defense.

Perspectives

•	 Security and privacy threats on VFL and FTL

	 Most previous work has focused on security and pri-
vacy threats in HFL, while work on security and pri-
vacy threats in VFL/FTL is limited. In VFL, usually 
only one local worker has the label of training data. 
Hence, whether the threats in HFL still exit in VFL/
FTL and whether there are new threats in VFL/FTL 
deserve further study (Lyu et al. 2020). Some attacks 
against VFL have been proposed. For example, Luo 
et  al. (2020) proposed a feature inference attack 
against VFL in the predicting phase. Weng et  al. 
(2020) implemented two practical attacks against 
VFL based on logistic regression and XGBoost.

•	 Limitations of attack scenarios
	 For property and membership inference attacks in the 

training phase, if the adversaries are local workers, 
they can only obtain the sum of information from 
other local workers. Therefore, they can only infer 
that there is a specific sample or property in the over-
all dataset of other local workers. How to confirm the 
specific information belonging to which honest local 
worker is an open problem.

	 For data reconstruction attacks, the existing work 
assumed that adversaries are located in the  central 
server. They can collect the parameters or gradients 
about all local workers and launch a white-box data 

reconstruction attack. However, these attacks can 
only recover a single sample or a batch of samples 
when iteration = 1 , where iteration means stochas-
tic  gradient  update  steps  per epoch.  How to imple-
ment data reconstruction attacks under epoch > 1 
and iteration > 1 is a big challenge.

	 For evasion attacks and poisoning attacks, the key 
to the success depends on finding or generating the 
appropriate samples  as triggers. For the discrete 
datasets, further work on evasion and poisoning 
attacks is needed  (Wang et al. 2020). Except for the 
most obvious difference, namely that evasion attacks 
occur in the predicting phase and poisoning attacks 
occur in the training phase, it is valuable to analyze 
the connections and differences between them in 
theory (Pang et al. 2020; Suciu et al. 2018; Demontis 
et al. 2019).

•	 Weakness of the defense strategies
	 Recent evidence suggests that the defense methods 

of FL have some shortcomings. For example, robust 
aggregation algorithms can be circumvented by poi-
soning attacks; DP affects the  usability of the model; 
SMC and HE can cause model inefficiency to some 
extent (Kanagavelu et al. 2020). With the continuous 
improvement of attack methods, targeted defense 
strategies need to be put forward as soon as possible 
to ensure the security and privacy of FL.

	 Besides, previous work emphasized that detect-
ing whether the local workers are trusted. The local 
workers should confirm whether the central server is 
trusted (Guowen et al. 2020; Guo et al. 2021) in the 
training phase. Previous work also established that 
adversaries can extract memorized information from 
the model (Song et al. 2017). Therefore, how to make 
the trained model remember less information about 
data is also a research direction (He et al. 2021).

•	 Building a trustworthy FL
	 There are many threats against FL in every phase 

from data and behavior auditing, model training to 
predicting. In particular, the data and behavior audit-
ing for FL should be paid more attention, as it is the 
first line of defense for FL security and privacy. In 
addition, more trustworthiness measurement and 
assessment methods can be investigated to evaluate 
the trustworthiness of local staff and central serv-
ers before the model training phase. In the model 
training phase, the centralized FL needs to employ 
privacy-preserving and security technologies, and 
advances machine learning algorithms. Warnat-Her-
restha et al. (2021) construct a decentralized collabo-
rative learning platform based on blockchain. This 
platform fully considers the trusted access of institu-
tions, and employs Trusted Execution Environment 



Page 15 of 19Liu et al. Cybersecurity             (2022) 5:4 	

(TEE), DP and HE to protect private information. 
This platform can provide experience for central-
ized FL. Building a FL systems on Blockchain may be 
more reliable due to its nature of  immutability and 
decentralization.  

Conclusion
Federated Learning (FL) has recently emerged as a solu-
tion to the issues of data silos. However, FL itself is still 
riddled with attack surfaces that arouse the risk of data 
privacy and model robustness. In this work, we identify 
the issues and provide the taxonomy of FL based on the 
multi-phases it works with, including data and behav-
ior auditing phase, training phase and predicting phase. 
Finally, we present the perspectives of FL.  Our work 
indicate that FL is promising in privacy enhancement 
technology. However, building a trusted FL system  is 
confronted with security and privacy issues inherited by 
its distributed  nature. One should consider the threats 
existing in all the phases on which the execution of FL 
follows, including the data and behavior auditing phase, 
training phase and predicting phase. 
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