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Abstract 

The cybersecurity report provides unstructured actionable cyber threat intelligence (CTI) with detailed threat attack 
procedures and indicators of compromise (IOCs), e.g., malware hash or URL (uniform resource locator) of command 
and control server. The actionable CTI, integrated into intrusion detection systems, can not only prioritize the most 
urgent threats based on the campaign stages of attack vectors (i.e., IOCs) but also take appropriate mitigation meas-
ures based on contextual information of the alerts. However, the dramatic growth in the number of cybersecurity 
reports makes it nearly impossible for security professionals to find an efficient way to use these massive amounts of 
threat intelligence. In this paper, we propose a trigger-enhanced actionable CTI discovery system (TriCTI) to portray 
a relationship between IOCs and campaign stages and generate actionable CTI from cybersecurity reports through 
natural language processing (NLP) technology. Specifically, we introduce the “campaign trigger” for an effective 
explanation of the campaign stages to improve the performance of the classification model. The campaign trigger 
phrases are the keywords in the sentence that imply the campaign stage. The trained final trigger vectors have similar 
space representations with the keywords in the unseen sentence and will help correct classification by increasing the 
weight of the keywords. We also meticulously devise a data augmentation specifically for cybersecurity training sets 
to cope with the challenge of the scarcity of annotation data sets. Compared with state-of-the-art text classification 
models, such as BERT, the trigger-enhanced classification model has better performance with accuracy (86.99%) and 
F1 score (87.02%). We run TriCTI on more than 29k cybersecurity reports, from which we automatically and efficiently 
collect 113,543 actionable CTI. In particular, we verify the actionability of discovered CTI by using large-scale field 
data from VirusTotal (VT). The results demonstrate that the threat intelligence provided by VT lacks a part of the threat 
context for IOCs, such as the Actions on Objectives campaign stage. As a comparison, our proposed method can com-
pletely identify the actionable CTI in all campaign stages. Accordingly, cyber threats can be identified and resisted at 
any campaign stage with the discovered actionable CTI.

Keywords:  Actionable cyber threat intelligence, Campaign trigger, Indicators of compromise (IOCs), Natural 
language processing (NLP)
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Introduction
Cyberspace security attacks (e.g., zero-day attack, 
advanced persistent threat) have been increasingly more 
sophisticated, destructive, and dangerous (Singh et  al. 
2019). In this situation, once a malicious attack vector is 
identified using actionable CTI, SOC (Security Operation 
Center) teams may immediately take effective measures 
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(Samtani et  al. 2020), which can contain the immediate 
damage.

Generally, indicators of compromise (IOCs) are the 
forensic artifacts of an intrusion (Liao et al. 2016), such 
as communication domains, downloader hashes, etc. 
Cyber threat intelligence (CTI) is the knowledge that 
provides context like what their motivation and capa-
bilities are and what IOCs in victim’s systems to look 
for (Zane 2021). More importantly, the CTI needs to 
be perceived as actionable to convey a richer context of 
IOCs by revealing their campaign stages. We adopt the 
five campaign stages of cyber threat intelligence referring 
to Hutchins et  al. (2011), Yadav and Rao (2015): Deliv-
ery, Exploitation, Installation, Command and Control, 
Actions on Objectives. What calls for special attention is 
that sentences that do not clearly describe the campaign 
stage but introduce malicious behaviors are determined 
as Malicious. And we define the sentence describing the 
non-malicious behavior as Benign. Consequently, IOCs 
can be specified as attachment hash or compromised IP 
in Delivery stage, exploit site URL in Exploitation stage, 
command and control (C&C) server domain in Com-
mand and Control stage, and data exfiltration URL in 
Actions on Objectives stage, etc.

Actionable CTI can provide incident response teams 
with actionable insights and recommendations to stay 
nimble and precise in decision-making and taking effec-
tive actions (e.g., blocking the malicious domain or clean-
ing the underlying vulnerability) (Jeff 2021). Specifically, 
one of the essential applications of actionable CTI is that 
it has higher interpretability, which can guide the secu-
rity professionals to distinguish the urgency of the cyber 
threats and promptly develop defensive countermeas-
ures. Another instructive opinion is that if actionable 
CTI is integrated into intrusion detection systems, SOC 
teams can take appropriate mitigation actions based on 
contextual information of the alerts. For example, in the 
Command and Control stage, it is necessary not only to 
block malicious domains, but also to detect potential 
infection entry points (vulnerabilities) to the system. In 
the Delivery stage, on the other hand, it is sufficient to 
simply prevent users to access malicious phishing URLs, 
because at this point the attacker does not gain the initial 
access of the victim host.

Challenges. 1) Existing CTI feeds are significant limi-
tations for their purported goals (Li et  al. 2019; Bouw-
man et  al. 2020). There are many security vendors in 
the industry that provide commercial threat intelligence 
services. However, open-source intelligence, such as 
CleanMX (2021), only provides a blocklist. Our motiva-
tion is to automatically discover actionable CTI, so the 
existing open or paid threat intelligence is out of the 
scope of our study. 2) The CTI automatically extracted 

is incomplete and has no actionable insights. There are 
many efforts focusing on how to convert unstructured 
texts (e.g., cybersecurity reports) into machine-reada-
ble data using automated methods. These cybersecurity 
reports are regularly released by security vendors, such as 
Kaspersky and FireEye, which proactively share the spe-
cific tactics, techniques, and procedures (TTPs) of the 
attacker and the associated IOCs. Some works such as 
Liao et  al. (2016), Zhou et  al. (2018), Long et  al. (2019) 
only extract IOCs without campaign stages, others just 
the threat actions information (Husari et al. 2017, 2018). 
These efforts do not correlate with IOCs and the cam-
paign stages they belonged to. 3) Limitations on feature 
engineering. Even IOCs and the corresponding campaign 
stages are extracted, the method adopted neural network 
is limited by the cumbersome feature engineering (Zhu 
and Dumitras 2018), which may introduce false positives. 
4) For threat intelligence discovery, high-quality training 
data is severely scarce. Because the annotator needs to 
take into account the security professional background 
and the relevant work experience in NLP, and the annota-
tion process is time-consuming and labor-intensive.

Our study. To solve the above challenges, we pro-
pose trigger-enhanced cyber threat intelligence (TriCTI) 
discovery system, which aims to automatically dis-
cover actionable CTI. Our method takes the cybersecu-
rity report as the input raw material, and then TriCTI 
chooses the sentences where the candidate IOCs are 
located, and finally determines the campaign stage of the 
IOCs by classifying the campaign stage of the sentences. 
As shown in Fig. 1, the first sentence will be selected by 
TriCTI because of the candidate domain d.heheda.tk, 
then the sentence is classified as a Command and Control 
stage and thus the domain d.heheda.tk is determined as 
the Command and Control stage.

Intuitively, security professionals can recognize the 
campaign stage in a sentence based on highly explanatory 
words or phrases, which we define as a “campaign trig-
ger”. For the sentence “The infection chain started with an 
email and an attached malicious word document”, we can 
infer from “infection chain” or “an email and an attached 
malicious word document” that the sentence describes 
the Delivery stage, which means the transmission of the 
cyber weapon to the targeted host. Naturally, the hash 
value in the sentence is determined as the Delivery cam-
paign stage (see the second sentence of Fig. 1). We first 
train the trigger vectors of the training set, based on the 
principle that the trigger phrases can not only express a 
certain campaign stage with high interpretability but also 
match the keywords representing the campaign stage in 
the unseen sentences of the test set. When an unseen 
sentence is given, the most similar trigger vector can be 
used to enhance the weight of keywords in the unseen 
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sentence, thereby improving the classification perfor-
mance. This approach is not limited by laborious feature 
engineering but instead allows the model to better absorb 
the features of the campaign stage.

Moreover, we manually annotate a gold-standard 
corpus with trigger phrases for model training, which 
requires considerable time and manpower. In particu-
lar, we devise a data augmentation method specifically 
for cybersecurity retrofitting CBERT (Conditional Bidi-
rectional Encoder Representations from Transformers) 
(Wu et al. 2019) without breaking the label compatibility, 
modifying trigger words, and altering IOCs. Because we 
believe that the trigger phrase represents the emphasis of 
the campaign stages of the sentence, it cannot be altered. 
More importantly, the type of IOCs emphasized varies 
between the different stages of the campaign. For exam-
ple, the hash is only one type of IOCs in the Installation 
stage, and the Command and Control stage frequently 
mentions IP and domain. Data augmentation can effec-
tively alleviate the shortcomings of the small size of high-
quality cybersecurity corpora and will prevent overfitting 
and improve the generalization of TriCTI.

Contributions. In general, we make the following 
contributions:

•	 We propose TriCTI for exploring the actionable CTI 
concerning the sentence contained putative IOCs 
from cybersecurity reports. Compared with state-
of-the-art classification models, such as BERT, our 
model introduces an elaborate trigger vector that 
can best express the campaign stage and improve the 
weight of essential keywords in the sentence, thus the 
trigger-enhanced classification model has better per-
formance.

•	 We present a total of 3167 sentences and 3012 trigger 
phrases covered five campaign stages for campaign 
stages classification. To alleviate the lack of annotated 
data in cybersecurity, we design a data augmentation 

method to improve the generalization performance 
of the model. We share the corpus1 for in-depth 
study of threat intelligence community.

•	 We conduct a set of experiments on the annotated 
dataset and augmented dataset, and prove the effec-
tiveness of our model. Particularly, compared with 
industry practice (VirusTotal) to verify the actiona-
bility of the discovered CTI, the experimental results 
demonstrate that TriCTI achieves competitive per-
formance for completely exploring campaign stages.

Roadmap. The remainder of our paper is structured as 
follows: We first discuss the literature review in Sec-
tion  2. Then we introduce the design and implementa-
tion of TriCTI architecture in Section 3. Section 4 gives 
a detailed description of experiments and results. Sec-
tion  5 gives analysis and discussion of our devised data 
augmentation method, attention distribution explora-
tion, comparison with industry practices, constraints for 
TriCTI, generality analysis, and limitation of the study 
and our future work. Ultimately, the paper ends with 
concluding remarks in Section 6.

Related works
Threat intelligence
IOCs are often used as forensic artifacts to detect attacks 
of threat organizations. Specifically, IOCs are hash values 
of malicious samples or IP addresses of C&C servers, etc. 
To allow IOCs to be quickly shared for defense, relevant 
security agencies have proposed some threat intelligence 
expression and transmission specifications, such as STIX 
(Structured Threat Information eXpression) (2021), 
MAEC (Malware Attribute Enumeration and Charac-
terization) (2021). CAPEC (Common Attack Pattern 
Enumeration and Classification) (2021) and ATT&CK 
(Adversarial Tactics, Techniques, and Common Knowl-
edge) (2021) describe the threat ontology of attack tech-
niques and patterns. Cyber Kill Chain (Hutchins et  al. 

Its hardcoded C2 domain is: d.heheda.tk .

As mentioned above, the infection chain started with an email and an attached malicious word document 
b98abdbdb85655c64617bb6515df23062ec184fe88d2d6a898b998276a906ebc .

The first version of the skimmer used in this campaign is the hex obfuscated type with data exfiltration via autocapital.pw
as seen in the decoy Rocket Loader library.

Suspected TEMP.Veles incidents include malicious activity originating from 87.245.143.140 , which is registered to CNIIHM.

Command and Control

Delivery

Actions on Objectives

Malicious

Fig. 1  Examples of different campaign stages. The red font represents the IOCs, and the underlined words represent the trigger phrase in the 
sentence, that is, keywords that can emphasize the category of the sentence. The phrase that follows in the lower right corner of the IOC indicates 
the campaign stage of the IOC and the campaign stage to which the sentence belongs

1  https://​github.​com/​lingr​en0/​TriCTI.

https://github.com/lingren0/TriCTI
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2011) is a model proposed by Lockheed-Martin that 
describes 7 attack stages, which can help defenders pro-
vide different defense and mitigation strategies for each 
attack stage. Although these specifications describe the 
context of threat intelligence in detail, few intelligence 
sources can provide a wealth of information about the 
campaign stages. For example, some public available 
intelligence, such as AlienVault (2021), can be provided in 
STIX format, but it lacks the campaign stages and shares 
unclassified IOCs. Instead, our TriCTI system can auto-
matically extract IOCs and their associated campaign 
stages from unstructured cybersecurity reports.

NLP for cybersecurity
The application of NLP in the field of cybersecurity has 
many challenges. 1) Dependency vanishes. The IOCs are 
too far away from their associated context description. 2) 
The challenge of high-quality ground truth training data. 
It is particularly so for threat intelligence discovery. There 
are many advanced efforts (Dong et  al. 2019; Dionísio 
et  al. 2019) dedicating to mining reports for vulnerabil-
ity information that can provide the warning. Dong et al. 
(2019) adopt named entity recognition and relationship 
extraction technology to extract the name and version 
number of the vulnerable software from the cybersecurity 
reports. Dionísio et al. (2019) develop a BiLSTM network 
to extract vulnerability-related information from tweets 
to serve security warnings. There are also many works on 
extracting IOCs, such as the studies of Zhou et al. (2018) 
and Long et al. (2019). They apply neural-based sequence 
labeling to extract IOCs from unstructured text, which 

lacks contextual semantic information. Liao et  al. (2016) 
propose an automated IOCs extraction solution to analyze 
the IOCs and their contextual terms in security blogs. The 
identified IOCs do not involve the stages of the campaign. 
In addition to the basic IOCs information, there is also 
an effort to perform high-level threat actions discovery. 
Husari et al. (2018) use the metrics of entropy and mutual 
information to extract low-level attack actions from pub-
licly available cybersecurity reports. Similarly, Husari et al. 
(2017) proposes a pre-defined ontology model to auto-
matically extract threat actions from threat reports. This 
model relies heavily on custom ontology. In addition, one 
research (Satyapanich et al. 2020) focuses on the extrac-
tion of cybersecurity events from the text. A notable effort 
on discovering campaign stages is recently introduced by 
Zhu and Dumitras (2018) where their model relies heavily 
on manually predefined rules, which may introduce false 
positives and is limited to a small size of training sets. Our 
system TriCTI focuses on the campaign triggers related 
to IOCs and uses an advanced neural network algorithm 
model. This approach is not limited by laborious feature 
engineering but instead allows the model to better absorb 
the semantic information of the campaign stage. More 
importantly, we have adopted a well-designed data aug-
mentation method so that the model is not limited to a 
small sample set.

Design and implementation
In this section, we will describe the pipeline of TriCTI 
with more details. As shown in Fig.  2, we first intro-
duce the preparation of the classification model for the 

Actionable CTI Generator
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Purification

Segmentation

IOC Fanging

Cybersecurity 
Reports Crawler

I D U
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Fig. 2  The overall architecture of TriCTI system. IOC Types: IP address (I), Domain (D), URL (U), Email address (E), Hash (H), CVE number(C). t  stands 
for campaign trigger
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campaign stages, including cybersecurity reports crawler 
and reports preprocessor. And then, we automatically 
filter candidate sentences that potentially describe the 
campaign stages and infrastructures (i.e., IOCs) using 
regexes. Subsequently, we annotate the campaign trig-
gers and apply data augmentation to improve the gener-
alization performance of the model. After that, we feed 
the annotated dataset to train the trigger vectors as well 
as the trigger-enhanced classification model. Finally, 
we will discuss the actionable CTI generator. We would 
then elaborate on the overall architecture of the TriCTI 
system.

Cybersecurity reports crawler
To highly cover the scope of cyberspace security detec-
tion, we need to crawl unstructured cybersecurity reports 
from a large range of high-quality security vendors. Thus, 
we collect a total of 29,686 cybersecurity reports cover-
ing 22 elaborately selected mainstream security vendors 
(such as Kaspersky, Symantec, and Fireeye) in the past 21 
years (from November 24, 2000 to September 13, 2021) 
to support our analysis and research. We choose these 
security vendors because 1) their reports are related to 
campaigns, and 2) these reports describe IOCs used by 
Internet miscreants. Figure 3 depicts the cumulative dis-
tribution function (CDF) of the number of reports pub-
lished each month. It can be seen that as time grows, 
the number of reports released every month gradually 
increases. It is an impossible task to extract actionable 
CTI from these reports only manually.

Reports preprocessor

•	 Purification. We convert the cybersecurity reports 
into pure text, that is to say, we remove the HTML 
tags that damage the performance of the model.

•	 Segmentation. Subsequently, we apply the Spacy 
toolkit (2021) to split the report into sentences.

•	 IOC Fanging. We convert IOCs that appear in the 
report from a defanged form to the normal and origi-
nal form. For instance, some security professionals 
use “hxxp” instead of “http” in URL, and “[.]” or “(.)” 
instead of “.” in the IP address to prevent users from 
clicking malicious links. Therefore, regular expres-
sions (regex) are used to remove the anti-misclick 
symbols in reports.

Candidate sentences recognition
In the cybersecurity reports, there will be some normal 
software patch hashes or emails of the security vendor, 
which may be misclassified as IOCs. In real application 
scenarios, these benign indicators will cause a high rate 
of false positives when applied to intrusion detection, 
which is disruptive to an enterprise (Li et  al. 2019). To 
address the above-described challenges, our intuition is 
that the model should strictly filter the identification of 
IOCs.

•	 Regexes Identification. Specifically, we first employ 
regular expressions to match candidate IOCs.

•	 Filter. Furthermore, we filter the Alexa (2021) top-
level domain and intranet IPs to filter benign IP/
Domain/URL, thereby reducing false positives.

•	 Candidate IOCs Replacement. The remainder of 
candidate IOCs can locate the candidate sentences 
containing putative IOCs. What is remarkable is that 
the characters of IOCs often have no linguistic mean-
ing. Particularly, there are some special symbols in 
IOCs, such as “:” and “//” in URL. The above pecu-
liarity will affect the word segmentation or feature 
extraction in the NLP task. Consequently, we replace 
IOCs with “$IOC$” (e.g., “8.8.8.8” → “$IP$”).

Subsequently, the candidate sentences are fed into the 
campaign stage classification model. As shown in Fig. 2, 
we introduce 6 types of IOCs here: IP, domain, URL, 
hash, email address and CVE (Common Vulnerabilities 
and Exposures) number.

According to the contextual semantics of candidate 
IOCs, the trigger-enhanced classification model can clas-
sify the candidate IOCs into a different category. Nota-
bly, only when IOCs are divided as a certain campaign 
stage can they guide the priority of defense in intrusion 
detection.

Campaign triggers annotation
Campaign triggers can significantly explain the campaign 
stage of IOCs so that they can make our model more 

Fig. 3  The CDF of the number of cybersecurity reports published 
each month
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generalize efficiently. We define the campaign trigger as 
t = ({wi,wi+1, ...,wi+q} → c) . wi represents i-th word of 
the input sequence, q is the number of trigger words, and c 
is the campaign stage to which the trigger phrase belongs. 
Take Fig.  4 as an example for illustration, this sentence 
describes the Delivery campaign stage. Triggers “infection 
chain” can be described as “ t1 = ({2, 3} → Delivery) ” and 
“an email and an attached malicious word document” is 
“ t2 = ({6, 7, 8, 9, 10, 11, 12, 13} → Delivery) ”. We annotate 
campaign triggers based on this criterion.

Data augmentation
We retrofit CBERT (Wu et al. 2019) to augment the train-
ing dataset without breaking the label compatibility, 
modifying trigger words, and altering IOCs. CBERT uses 
fine-tuned conditional BERT to predict label-compatible 
words. That is, the fine-tuned model takes the polar-
ity of the sentence into account. Since we use the trig-
ger to improve the performance of the model, the trigger 
phrases in the sentence cannot be replaced by the sub-
stitutions randomly predicted and generated by BERT. 
And the type of IOCs varies between the different stages 
of the campaign, therefore, when we introduced the con-
ditional masked language model, we need fix the trigger 
phrase and IOCs, and only replace other words. Figure 5 
describes the process of data augmentation using retro-
fitted CBERT.

Campaign stages classifier
With the recognized candidate IOCs and sentences 
from the reports, we next generate actionable threat 

intelligence by determining the campaign stages incorpo-
rating the campaign triggers. Specifically, for a sentence s, 
there will be a set of triggers 

�
= {t1, t2, ..., tk} (as shown 

in Fig. 4). To make the model training more effective, we 
redefine the input of the model to one sentence, one trig-
ger, and their output y, which is expressed as (s, tk , y) . y 
represents the ground-truth label of the campaign stage. 
After training the model and the trigger vectors, we 
introduce the trained trigger vectors, instead of labeled 
trigger phrases, into our test set to verify performance.

Trigger vectors generator
In this process, we will train the vector representations 
of the triggers. Our method is inspired by Lin’ work (Lin 
et  al. 2020), which trains trigger vectors using bidirec-
tional long short term memory (BiLSTM) for named 
entity recognition (NER). However, in the field of text 
classification tasks, BERT (Devlin et  al. 2018) is proven 
to have significant experimental effects due to the multi-
layer bidirectional transformer (Vaswani et  al. 2017). 
Therefore, in our paper, we apply fine-tuning BERT with 
elaborate design to generate trigger vectors.

We use the following heuristic to derive the trigger 
vectors.

•	 Classification loss Lcls . Generally, we introduce 
“campaign trigger” to strengthen the classification 
model because it is more explanatory for the cam-
paign stage. Therefore, the trigger vector representa-
tion needs to be trained through the campaign stage 
classification model.

•	 Contrastive loss Lsim . In parallel, trigger representa-
tion should be similar to the unseen sentence rep-
resentation, so when classifying unseen sentences, 
trigger vectors with strong similarity to the unseen 
sentences can be assimilated to enhance the classifi-
cation of the model. Notably, contrastive loss (Had-
sell et al. 2006) is used here to compare the similarity 
between sentence and trigger.

Given the sequence token of the input sentence s, the 
last hidden state Hl and pooler output state Hp can be 
obtained by the BERT model. Accordingly, the trigger 
vector G can be obtained from Hl based on the position 
of the trigger phrase in the sentence. Trigger vectors are 

Fig. 4  An example of Delivery campaign stage. The red font represents the IOC, and the blue font is the campaign trigger

Fig. 5  Data augmentation process
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jointly trained by campaign stage classification and simi-
larity calculation. Algorithm 1 describes the joint training 
of trigger vectors. 

In Algorithm  1, the self-attention (Lin et  al. 2017) is 
applied to generate the final sentence vectors and trigger 
vectors. The specific calculation formulas are as follows:

As for the learning of campaign stages for trigger vectors, 
the exact cross-entropy loss function is to evaluate the 
multi-stages campaign classification performance of the 
models.

where yji is the ground-truth label; ŷji is prediction prob-
abilities; n and c denote the number of samples and 
classes, respectively.

Simultaneously, the trigger vector needs to be further 
trained according to the similarity between trigger and 
sentence containing the trigger. The parameterized dis-
tance function is defined as D. Subsequently, as men-
tioned in Hadsell et  al. (2006), we define γ as a binary 
label. γ = 0 if rt and rs are deemed similar, and γ = 1 if 
they are deemed dissimilar. The contrastive loss function 
is:

where m > 0 is a margin for the negative examples.

(1)
as =softmax(Ws2 tanh(Ws1Hl

T )))

rs =asHl

(2)
at =softmax(Wt2 tanh(Wt1G

T )))

rt =atG

(3)Lcls = −

n
∑

i

c
∑

j

y
j
ilog(ŷ

j
i)

(4)D =

∥

∥rs − rt
∥

∥

2

(5)Lsim = (1− γ )
1

2
(D)2 + (γ )

1

2
{max(0,m− D)}2

Finally, the joint loss of the triggers representation 
learning is,

where α is a hyper-parameter to balance the loss 
functions.

Through the joint training of equation  6, the trigger 
vector is not only highly explanatory for the campaign 
stage (that is, the trigger phrase in the sentences that 
plays an essential role in the classification of the cam-
paign stages has a higher attention score), but also most 
similar to the unseen sentence (that is, given a sentence 
at random, certainly, the sentence does not appear in the 
training set, a trigger vector can be selected according 
to the ranking of the similarity between the trigger vec-
tors and the sentence). Specifically, this elaborate trigger 
vector is similar to an essential keywords in the unseen 
sentence that can best express the campaign stage and 
improve the weight of essential keywords in the classifi-
cation process.

Trigger‑enhanced classifier
So far, we have obtained a final set of trained trigger vec-
tors T. Next, we will introduce how to use these trigger 
vectors to enhance our campaign stages classification 
model. The architecture of the trigger-enhanced cam-
paign classification model is depicted in Fig. 6.

As mentioned in the previous section, given a sen-
tence s, we can obtain Hl and Hp using BERT, and then 
the sentence vector representation rs and trigger vector 
representation rt are obtained through the self-attention 
mechanism. Differently, we no longer use the trigger rep-
resentation rt but instead use rtk , which comes from the 
set of trigger vectors we trained in the previous section 
and is the most similar to the sentence vector rs . Because 
no labeled trigger phrase is applied in a large-scale cyber-
security report.

As described in algorithm 2, independently using equa-
tion 4, the most similar campaign triggers rtk to the sen-
tence representation rs can be obtained. Then, to learn 
alignments between Hl and rtk , they are input into dot-
product attention to infer a weight vector a and create a 
trigger-enhanced sequence of token representations H ′

l .

Empirically, the types of IOCs contained in the sentence 
are also import for model, and we consider them as 
IOCfeature . For example, the hash is only one type of IOCs 
in the Installation stage, and the Command and Control 
stage frequently mentions IP and domain. Therefore, we 

(6)L = Lsim + αLcls

(7)

M = tanh(W1Hl +W2rtk )

a = softmax(uTM)

H ′

l = aHl
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consider the types of IOCs that appear in the sentence 
and construct them into one-hot encoding. For exam-
ple, if the token match the regex of URL, then we set the 
value of the URL feature to 1; otherwise, the value is 0.

Finally, we concatenate these feature vectors [ Hp,H
′

i , 
IOCfeature] , and then input them into the softmax layer 
for training the sentence campaign stage classification. 
The complete pseudo-code for the trigger-enhanced 
campaign stage classification model is depicted as 
algorithm 2.

 

Actionable CTI generator
If the candidate sentence is classified into a certain cam-
paign stage, then we will obtain the candidate IOC’s 
classification result, and the original value of the IOC in 
the sentence is restored. For instance, the placeholder 
“$Hash$” is replaced with the hash value 791ad58d9b-
b66ea08465aad4ea968656c81d0b8e. And then we 
combine the IOC with the campaign stage to obtain 
actionable CTI. Applying actionable CTI to intrusion 
detection systems can guide security operators to make 
faster, better decisions.

•	 Threat Priority Decision. In Lockheed Martin’s Kill 
Chain model (Hutchins et  al. 2011), an IOC in the 
Command and Control stage is more dangerous than 
the IOC in the Delivery stage. That is, the Delivery 
stage is merely to gain access to the victim’s host, 
while the Command and Control stage is closer to 
the attacker’s final intention, which is more destruc-
tive and serious. In this case, security professionals 
will give priority to mitigating the cyber attack in the 
Command and Control stage. The sooner the detec-
tion is done, the less loss the organization under 
attack will suffer (Yadav and Rao 2015).

their homepage at a new C2 server $URL$

BERT

Campaign Trigger

softmax

self-attention

similarity calculation

last hidden 
state

concat
dot-product

attention

pooler output state

Campaign Stage             

Fig. 6  The demonstration of the trigger-enhanced campaign stages classification model. rtk is the most similar trigger vector to final sentence 
vector rs , which is highly explanatory for the campaign stage. The final input of the model is: the type features of the IOCs IOCfeature , weighted 
hidden representation H′

l  , and Hp . Note: the original value of “$URL$” is “http://5.​79.​66.​241/​index.​html”

http://5.79.66.241/index.html
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•	 Appropriate Mitigation Actions. Once malicious 
communication is detected, the C&C server address 
should be added to the firewall of the victim host to 
block the connection. Please do not take it lightly, 
before the attacker controls the victim host, there 
may exist a security breach that is compromised by 
the attacker. If it is not carefully cleaned up, the vul-
nerable host will get compromised again (De  Silva 
et  al. 2021). However, if the victim only receives a 
phishing email, it only needs to prevent the victim 
from opening the malicious link, because the attacker 
may not get the initial access of the victim host.

Experiments
In this section, we use the annotated corpus as the 
ground truth to evaluate the performance of our model. 
Then we apply the model to a large number of cybersecu-
rity reports.

Datasets
Annotating security corpus is difficult due to 1) the com-
plexity of annotation work, and 2) the security profes-
sional background and relevant work experience in NLP. 
And for this reason, three security professionals with 
NLP-related work experience help annotate the data-
set. Albeit they have relevant professional experience, 
annotating our corpus of campaign stages still requires 
meticulous definition and delimitation. These three pro-
fessionals, therefore, co-define the annotation specifica-
tion by prior consultation and strictly comply with them. 
In a subsequent step, to minimize the manual annota-
tion efforts, a semi-automated annotation method was 
employed. Specifically, we first randomly select reports 
from the collected cybersecurity reports (from 2013 to 
2021) for corpus annotation. Then we use the method 
shown in Fig.  2, that is, regular expressions are applied 
to locate candidate IOCs and their sentences. As such, 
professionals directly categorize the sentences contain-
ing candidate IOCs and annotate the trigger words. The 
professionals spent a week annotating the corpus, and we 
also spent another week to ensure the correctness of the 
annotation results. Specifically, we aggregate the anno-
tations from the three professionals and take a majority 
voting. For annotations that consensus was not reached 
(i.e., three different viewpoints), we incorporate the opin-
ions of front-line security researchers.

We meticulously construct two different datasets, DS-1 
(2013 to 2020) and DS-2 (2021) that are temporally dis-
joint and different window sizes to train trigger-enhanced 
classification models and show their generality. As shown 
in Table  1, a total of 2,362 sentences are annotated as 
ground truth in DS-1 and we use these sentences to train 

the campaign stages classification model. We divide the 
training set and the test set according to the ratio of 7:3 
and only perform data augmentation for the training set. 
TriCTI performs better when the data is augmented to 
around 700 per category. After data augmentation, we 
obtain a total of 4,900 labeled sentences. As for DT-2, a 
total of 805 sentences are annotated, and more notably, 
no trigger phrases are annotated. We share all annotated 
corpus, hoping to help more security professionals in 
their research. Among DS-1 and DS-2, a total of 3,468 
IOCs have corresponding campaign stages.

Experiment setup
By contrast, we choose state-of-the-art text classification 
models as the baselines to prove the performance of the 
trigger-enhanced classification model, including BiLSTM 
(Tang et al. 2015) (we uses the last hidden state vector of 
LSTM to predict campaign stages), attention-based BiL-
STM (BiLSTM-Att) (Lin et  al. 2017) (attention mecha-
nism will relief the burden of LSTM to capture long term 
dependencies), and fine-tune BERT (Devlin et al. 2018). 
As for BiLSTM and BiLSTM-Att, we apply the combi-
nation of 50-dimensional character-level representation 
from a trainable BiLSTM model and 300-dimensional 
pre-trained GloVe vectors (Pennington et al. 2014). And 
as for the TriCTI model and pure BERT, we use the 
uncased BERT-base English version (Devlin et al. 2018). 
We use Adam (Kingma and Ba 2014) as the optimizer for 
BERT with a learning rate of 2e-5. The TriCTI works bet-
ter with a low dropout rate of around 0.4, and our batch 
size is 10. The experimental results of the above models 
are obtained by averaging the results of 3 runs. Accuracy, 
Precision, Recall, and Macro-Averaged F1 are adopted as 
the evaluation metrics.

Table 1  Statistics of annotation

# of Sen. indicates that the number of original annotation sentences (split 
into DS-1 and DS-2 datasets respectively basing on temporal order), # of Aug. 
represents the number of sentences after data augmentation (only the training 
set is augmented), and # of Triggers is the number of annotated triggers

Category DS-1 DS-2

# of Sen. # of Aug. # of Triggers # of Sen.

Delivery 348 700 449 111

Exploitation 304 700 392 105

Installation 316 700 371 105

Command and Control 401 700 472 125

Actions on Objectives 303 700 388 111

Malicious 351 700 413 129

Benign 339 700 527 119

Total 2362 4900 3012 805
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Overall performance
As shown in Table 2, the experimental effect on the data 
augmentation training set is higher than the original 
labeled training set in all models. This proves that data 
augmentation does improve the efficiency of the model. 
The F1 score of BiLSTM-Att gives still further improve-
ment to 82.10% compared to BiLSTM’s 81.38% in the 
augmentation training set. Unfortunately, it is slightly 
inferior to BiLSTM on the original dataset. The pure 
BERT outperforms all the about models in the original 
and augmented training set, demonstrating the power of 
its large pre-trained model (Devlin et al. 2018). Especially, 
after incorporating trigger vectors and IOCs features, 
the TriCTI model outperforms all these state-of-the-art 
neural network models and the F1 score is remarkably 
improved to 87.02%.

Ablation study
As shown in Table  3, we further conduct an ablation 
study to evaluate the level of benefit that each component 
of the TriCTI. ‘-BERT’ denotes that the TriCTI replaces 
the BERT with BiLSTM to train sentence and trigger 
vectors, ‘-IOCs’ means that TriCTI removes the IOC 
features, and ‘-Trigger’ indicates that TriCTI does not 
introduce the pre-trained trigger vectors.

As shown in Table 3, the F1 score of ‘-BERT’ drops to 
79.98%, indicating that BERT is better at capturing richer 
semantic features in practice than BiLSTM. Removal of 
trigger features leads to performance drops consider-
ably. This study validates that the introduction of the 
pre-trained trigger vectors can indeed improve model 

performance. Moreover, ‘-IOCs’ has a lower score than 
TriCTI, which proves that adding the IOC features allows 
our model to be robust.

Analysis and discussion
Golden label study of augmentation
In Section  3.5, the guideline for data augmentation 
is that the original meaning of the sentence (i.e., the 
golden label) needs to be conserved. Although we fixed 
the trigger phrases and IOCs, we still face the possibil-
ity of changing the meaning of the sentence when the 
input sentence is altered. Therefore we use the test set 
to visualize whether the retrofitted CBERT can maintain 
the golden label of the input sentence. We first simply 
use pure BERT to train the campaign stage classifica-
tion model on the original training set. Then use retro-
fitted CBERT to generate approximately three times the 
augmented test dataset, that is, one original sentence 
generates three augmented sentences. Subsequently, the 
original test set and the augmented test set are respec-
tively fed to the trained BERT classification model to 
compare whether the meanings are conserved. Finally, 
t-SNE (Van Der Maaten 2014) is used to map the BERT 
model’s last layer hidden-state to a 2-dimensional vector. 
Figure 7 is a visualization of the latent space representa-
tions for the two data sets.

It can be seen that the latent space representations of 
the augmented data in each campaign stage are closely 
adjacent to the original data. This shows that our retrofit-
ted CBERT method can well retain the original meaning 
of the sentence without changing the golden label of the 
sentence.

Attention distribution exploration
It is enlightening to analyze which words decide the 
campaign stage of a sentence. As shown in Table 4, the 
motivating examples from the test set illustrate that the 
attention scores of triggers can improve classification 
performance. The Trigger phrase “phishing campaign” 
contributes to the Delivery campaign stage in the train-
ing set. Our model can calculate that the phrase “spear-
phishing” in the unseen sentence (a) is similar to trigger 

Table 2  Comparison of campaign stages classification results

We run the model on the original labeled training set and the augmented training set. Accuracy, Precision, Recall, and F1 score (macro) are the average value over 3 
runs

Model Original training set Augmentation training set

Accuracy Precision Recall F1 Accuracy Precision Recall F1

BiLSTM 81.23 81.45 81.39 81.27 81.27 81.54 81.55 81.38

BiLSTM-Att 80.76 81.31 80.99 80.94 82.02 82.38 82.17 82.10

BERT 82.99 83.77 82.93 82.87 83.63 84.15 83.68 83.65

TriCTI 86.38 86.55 86.57 86.43  86.99 87.16 87.10 87.02

Table 3  Ablation study results

The experimental results (average value over 3 repeated runs) are carried out on 
augmentation data

Model Precision Recall F1 (macro)

TriCTI 87.16 87.10 87.02

-BERT 81.00 79.83 79.98

-IOCs 87.05 86.38 86.41

-Trigger 85.80 85.41 85.42
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“phishing campaign”, therefore, adding trigger vector 
of “phishing campaign” to the classification model can 
make “spear-phishing” have a higher attention score 
to correctly distinguish the campaign stage. This situ-
ation can also be illustrated by other campaign phase 
examples.

Some benign indicators are incorrectly matched by 
regular expressions, as shown in the sentence (g). We 
also apply some benign triggers, such as the trigger 

phrase “If you’d like to”. Similarly, this trigger matches 
the phrase “you’d” in an unseen sentence and makes the 
model more information to correctly determines the 
classification of the sentence.

Comparison with industry practices
Finally, TriCTI discovered 113,543 IOCs with their cam-
paign stages from more than 29k cybersecurity reports 

Fig. 7  Case study 1. The visualization of the latent space representations for original training set (smaller size symbol) and augmented training set 
(large size symbol). The same campaign stages have the same colors

Table 4  Case study 2. Attention Distribution Exploration. Darker cell color, meaning higher attention weight, demonstrates that the 
triggers contribute to the classification performance
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during the last 21 years. We elaborate on the statistics of 
classification results in Table 5.

To verify the actionability of our recognized CTI, 
large-scale analyses are applied to provide a quantita-
tive measurement. In our paper, we apply VirusTotal 
(VT) (VirusTotal 2021) to perform verification experi-
ments. VT is a service that users can submit suspi-
cious files for scanning and analysis, and it provides 
API to query the Relationships (e.g., contacted_domains 
describes the domains contacted by the file) of a given 
IOC (e.g., malicious hash). Our CRITERION is to 
determine whether an IOC has a certain campaign 
stage by querying the Relationships of the IOC. For 
example, by querying whether the malware has a con-
tacted IP (and the IP is malicious), we can determine 
whether it has the ability to connect back to C&C ser-
vices (Other Relationships that can be mapped to the 
campaign stages, such as: email_attachments → Deliv-
ery, dropped_files → Installation, etc.). If at least one 
scanner in VT determines the IP to be malicious, then 
we consider it to be malicious.

Since the Relationships provided by VT are limited 
to support the verification of ALL campaign stages, we 
can only determine the Delivery, Installation, and Com-
mand and Control campaign stages of the hash, as well 
as the Command and Control campaign stages of the 
domain, IP, and URL using the API provided by VT to 
query the Relationships about the hash, IP, domain, and 
URL. Due to the high volume of our discovered IOCs 
and the query rate limit of VT, we intend to verify the 
22,934 unique IOCs (including IP, domain, URL, and 
hash) and related campaign stages from 2018 to 2021. 
Figures 8 and 9 show the VT verification results of the 
discovered actionable IOCs with their campaign stages. 
Note that the relationship provided in VT to describe a 
certain campaign stage does not fully cover ALL mali-
cious behaviors in that stage of the campaign. There-
fore, VT can only verify PART​ of the performance of 
our model.

As seen in Fig. 8, the VT results verified that most of 
the hashes and URLs labeled by TriCTI to be Malicious 
are also malicious in nature. This proves the ability of 
our model to discover malicious IOCs in the wild. How-
ever, a small part of the hashes and URLs are not found 
in VT, this probably indicates that these open-source 
intelligence vendors focus on threats that are not as 
relevant to most VT users’ interest (Li et al. 2019). As 
for domain and IP, a significant portion are marked as 
no malicious behavior. Not like hash and URL, domain 
and IP are time-sensitive to the blocklist, that is, the IPs 
and domains in the blocklist after a period of time will 
change ownership (Lever et al. 2016) and may become 
benign.

Figure 9a, b show the verification about a part of cam-
paign stages of our model. It is worth noting that some 
IOCs with their campaign stages marked by TriCTI may 
not be able to verify through the Relationships query 
interface (such as the Not det. hashes in the Installation 
stage in Fig. 9a). Intuitively, the Relationships lacks some 

Table 5  TriCTI classification results statistics

Category IP Domain URL Hash Email CVE

Delivery 1359 4695 2692 767 280 –

Exploitation 314 561 593 360 – 21,698

Installation – – – 3477 – –

Command and control 2892 3675 7200 808 47 –

Actions on objectives 692 1398 1430 1754 148 –

Malicious 11,091 17,852 1498 16,301 396 –

Benign 3387 2312 1451 1037 1378 –

Total 19,735 30,493 14,864 24,504 2249 21,698

Fig. 8  The verification (using the VirusTotal analysis) for Malicious 
IOCs discovered from TriCTI. Note: Not found is a fraction of IOCs that 
are not found in VT, Not det. indicates that the IOCs are found in VT 
but none of the antivirus scanners mark it as malicious, and Detected 
represents the number of the IOCs that are found in VT and are 
labeled malicious by at least one antivirus scanners
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description of Installation behavior, so only part of the 
Installation campaign stages can be verified. For these 
IOCs that are not able to be verified in the campaign 
stages through Relationships (VT provides Relation-
ships with limitations), we again use VT’s query interface 
to verify whether they are malicious. If these fraction of 
IOCs are malicious, then it means that these IOCs have 
a high probability of being in the campaign stages (it’s 
just that VT lacks the description of the Relationships). 
As shown in Fig.  10, among them, about 56.8% of the 
IOCs that are not able to be verified in the campaign 
stages through Relationships are malicious. This confirms 
that VT has limitations in identifying the ALL campaign 
stages of IOCs, and our model TriCTI can discover the 
whole campaign stages based on the description of mali-
cious behavior about IOCs.

Constraints for discovery of cybersecurity campaign stages
While our basic goal is to discover actionable CTI, which 
reveals the campaign stage of IOC, we cannot use the 
previously shared corpus of security reports directly as 
we are obliged to introduce campaign triggers to enhance 
the classification performance of our model. Concretely, 
the sentence input to our model not only contains candi-
date IOCs but more importantly, the location of the trig-
ger phrase needs to be pointed out. Table 6 summarizes 
how the different goals and additional specifications of 
previous works do not fully satisfy our requirements.

Overall, several works focus on the IOCs extraction 
(Liao et  al. 2016; Zhou et  al. 2018; Long et  al. 2019; 

Kim et  al. 2020, 2019), but either the type of IOCs 
extracted varied from our work (e.g., lack of Email) 
(Zhu and Dumitras 2018; Kim et al. 2020) or the con-
textual description of the IOCs was lacking (Liao et al. 
2016; Zhou et al. 2018; Long et al. 2019; Kim et al. 2020, 
2019). Moreover, there are papers that describe only 
part of our campaign phases, such as Baiting, Exploita-
tion, Installation, Command & Control, and the corpus 
are publicly unavailable (Zhu and Dumitras 2018). On 
the whole, the quantity of papers that corpus is pub-
licly shared is relatively small, and even if the dataset 
is available, it’s not sufficient to satisfy our demands, so 
we constructed a cybersecurity corpus, which focuses 

(a) The campaign stages of hashes. (b) The Command and Control campaign stages.
Fig. 9  The verification (using the VirusTotal analysis) for Delivery, Installation, and Command and Control campaign stages of the hash, as well as the 
Command and Control campaign stages of the domain, IP, and URL discovered from TriCTI. Note: Not det. indicates that the IOCs are found in VT but 
there are not existing any kind of malicious Relationships to indicate their campaign stages, and Detected represents the number of the IOCs that are 
found in VT and have at least one malicious Relationships 

Fig. 10  The re-verification (using the VirusTotal analysis) for IOCs that 
are not able to be verified the campaign stages through Relationships. 
Note: Not found is a fraction of IOCs that are not found in VT, Not 
det. indicates that the IOCs are found in VT but none of the antivirus 
scanners mark it as malicious, and Detected represents the number 
of the IOCs that are found in VT and are labeled malicious by at least 
one antivirus scanners
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on trigger phrases, and the data of our study is available 
at: https://​github.​com/​lingr​en0/​TriCTI.

Model generality over time
As analyzed in Section 5.4, given that the uniqueness of 
our approach is the introduction of a triggered-enhanced 
neural network to discover actionable CTI, we can-
not test the generality of our model with another pub-
licly available dataset. Instead, we are more concerned 
about whether performance can remain generalizable 
across datasets of varying time spans. Actually, exploring 
whether the model can cope with concept drift (De Silva 
et  al. 2021; Le  Pochat et  al. 2020) is quite important in 
practice. To measure the impact of concept drift on our 
trained trigger word vector (2013-2020), i.e., how much 

it will affect the performance of future practical work, we 
use DS-2 (2021) to evaluate the generalization perfor-
mance of the DS-1 trained model.

As shown in Table 7, concept drift occurs that the per-
formance of TriCTI drops on the DS-2 dataset. This sug-
gests that new attack patterns are emerging over time and 
our model is unable to capture these changes. To keep 
high accuracy, the model should be retrained accordingly 
over time.

Limitations and future work
To analyze the limitations of TriCTI, We randomly vali-
date the large-scale actionable intelligence discovered by 
the TriCTI and carefully select the misclassified exam-
ples to analysis. After careful manual inspection of bad 
cases, we discover that there are two primary reasons for 
the classification error. The details are shown in Table 8. 
One of the important reasons is the complexity of sen-
tences describing cybersecurity attacks, that is, one sen-
tence may contain multiple campaign stages, which 
leads to contradictions in the model. For example, sen-
tence (a) describes two behaviors, one is installation and 
the other is remote communication. Another reason is 

Table 6  Overview of goals and additional specifications of CTI discovery

Goal Public available Campaign stages IOC types Related work

Interdependent relationships among 
heterogeneous IOCs

✔ ✗ ✔ Zhao et al. (2020)

IOC extraction ✗ ✗ ✔ Liao et al. (2016), Zhou 
et al. (2018), Long et al. 
(2019)

IOC extraction ✔ ✗ Partially-compliant Kim et al. (2020)

IOC extraction ✔ ✗ ✔ Kim et al. (2019)

IOC extraction and part of the cam-
paign stages classification

✗ Partially-compliant Partially-compliant Zhu and Dumitras (2018)

Extraction of Threat Actions ✗ ✔ ✔ Husari et al. (2017)

Actionable CTI ✔ ✔ ✔ Our work

Table 7  Concept drift analysis of trigger-enhanced campaign 
stages classification model

Dataset Precision Recall F1 (macro)

DS-1 87.16 87.10 87.02

DS-2 81.93 80.79 80.76

Table 8  Error analysis

Reasons Examples Analysis

Multi-label a. b14d8faf7f0cbcfad051cefe5f39645f - dispci.exe installs the 
bootlocker, communicates with the driver

Two kinds of label conflict: Installation and Command and 
Control

b. Via an associated C2 IP address 108.61.214.194, we found 
an equivalent page on the phishing domain www.​battl​lesta​
tegam​es.​com

Two kinds of label conflict: Command and control and 
Delivery

 Incorrect association of IOCs 
with the campaign stages

c. We observed the sample in the sandbox launched a DDoS 
attack against 185.63.190.95 around 2017-04-23 21:45:00

185.63.190.95 is the IP address of the victim

d. A typical representative of this malware family is an 
obfuscated Java script using ADODB.Stream technology to 
download and run DLL, EXE and PDF files

ADODB.Stream is not a domain address

https://github.com/lingren0/TriCTI
http://www.battllestategames.com
http://www.battllestategames.com
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that IOCs are incorrectly associated with the campaign 
stages. Our model can correctly determine the campaign 
stage according to the attack behaviors described by sen-
tences (c) and (d), however, the campaign stage cannot be 
accurately associated with candidate IOCs identified by 
regular expressions. For example, sentence (c) describes 
the DDoS attack, but “85.63.190.95” is the IP address of 
the victim. “ADODB.Stream” in the sentence (d) is rec-
ognized as domain by regular expressions, but it is the 
name of an obfuscation technique.

In this paper, we use the trigger-enhanced model to 
classify the campaign stages of the sentences. After error 
analysis, it can be found that most fraction of the mis-
classified results are due to the fact that the campaign 
stage described by the sentence is not correlated with 
the IOC identified by the regular expression. Conse-
quently, a useful future direction is to introduce depend-
ency parse trees. We can construct a dependency parse 
tree by associating candidate IOCs with the contexts they 
depend on. In this way, the classification model can suc-
cessfully determine the campaign stages related to the 
IOCs based on the well-designed dependency parse tree 
that expresses the contextual meaning of the IOCs. More 
interestingly, we also would like to specify a more fine-
grained description of cyber threat intelligence campaign 
stages.

Conclusions
In this paper, we design and develop a trigger-enhanced 
system named TriCTI to discover actionable threat intel-
ligence, that is, conveying a richer context of IOCs by 
revealing their campaign stages. So that we can obtain 
complete visibility across campaign stages. Specifically, 
we apply BERT to pre-train the trigger vectors that can 
explain the campaign stage and we also considered the 
features of the IOCs contained in the sentence to jointly 
improve the performance of the model. To cope with the 
challenge of the scarcity of annotation for cybersecurity 
corpus, we devise a data augmentation without break-
ing the label compatibility, modifying trigger words, and 
altering IOCs. The experimental results prove that the 
performance on the augmented data set is better, and the 
TriCTI we proposed has higher accuracy (86.99%) than 
other state-of-the-art models, such as BERT. Thanks to 
the highly explanatory trigger vectors improve the atten-
tion weight of the keywords that can best represent the 
sentence campaign stages. Finally, our system discovered 
113,543 actionable CTI from more than 29k cybersecu-
rity reports from 2000 to 2021. Significantly, we prove the 
actionability of discovered CTI by using large-scale field 
data from VirusTotal (VT). We find that VT has limita-
tions in describing attack behaviors using Relationships 
they offered. And our TriCTI system is able to perfectly 

cover all campaign stages regarding IOCs. Once a threat 
intrusion is detected, security professionals can quickly 
adjust the defense strategy according to the actionable 
CTI.
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