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Abstract 

Gaussian sampling over the integers is one of the fundamental building blocks of lattice-based cryptography. Among 
the extensively used trapdoor sampling algorithms, it is ineluctable until now. Under the influence of numerous side-
channel attacks, it is still challenging to construct a Gaussian sampler that is generic, efficient, and resistant to timing 
attacks. In this paper, our contribution is three-fold. First, we propose a secure, efficient exponential Bernoulli sampling 
algorithm. It can be applied to Gaussian samplers based on rejection samplings. We apply it to FALCON, a candidate 
of round 3 of the NIST post-quantum cryptography standardization project, and reduce its signature generation time 
by 13–14%. Second, we develop an isochronous Gaussian sampler based on rejection sampling. Our Algorithm can 
securely sample from Gaussian distributions with different standard deviations and arbitrary centers. We apply it to 
PALISADE (S&P 2018), an open-source lattice-based cryptography library. During the online phase of trapdoor sam-
pling, the running time of the G-lattice sampling algorithm is reduced by 44.12% while resisting timing attacks. Third, 
we improve the efficiency of the COSAC sampler (PQC 2020). The new COSAC sampler is 1.46x–1.63x faster than the 
original and has the lowest expected number of trials among all Gaussian samplers based on rejection samplings. But 
it needs a more efficient algorithm sampling from the normal distribution to improve its performance.
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Introduction
Lattice-based cryptography has gained much attention 
due to its many attractive features. It allows us to build 
various powerful cryptographic primitives, such as fully 
homomorphic encryption (Gentry 2009), and has conjec-
tured security against quantum computers (Shor 1997). 
Most lattice-based cryptographic schemes are based on 
two main average-case problems, the short integer solu-
tion (SIS) problem (Ajtai 1996), the learning with errors 
(LWE) problem (Regev 2005), and their analogs over 
rings (Micciancio 2002; Lyubashevsky et  al. 2010). Dis-
crete Gaussian distributions are at the core of security 
reduction proofs from the worst-case lattice problems to 
the average-case problems (Micciancio and Regev 2004; 

Brakerski et al. 2013). Therefore, they have great signifi-
cance to the theoretical security of lattice-based crypto-
graphic schemes.

In practice, it is notoriously difficult to sample from 
discrete Gaussian distributions effectively and securely, 
as demonstrated by numerous side-channel attacks 
(Groot Bruinderink et al. 2016; Espitau et al. 2017; Pessl 
et  al. 2017; Bootle et  al. 2018) against the Gaussian 
sampler in the BLISS signature (Ducas et  al. 2013). For 
this reason, some schemes replace Gaussian distribu-
tions with other distributions (Lyubashevsky et al. 2020; 
Schwabe et al. 2020), like uniform distributions or bino-
mial distributions, even if this ordinarily leads to perfor-
mance and security degradation.

However, discrete Gaussian distributions are ineluc-
table in some situations. One prominent example is 
trapdoor sampling (Gentry et  al. 2008; Peikert 2010; 
Micciancio and Peikert 2012). Trapdoor sampling can 
be used to construct many powerful cryptographic 
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applications, including signature (Gentry et  al. 2008; 
Prest et  al. 2020), (hierarchical) identity-based encryp-
tion ((H)IBE) (Gentry et  al. 2008; Agrawal et  al. 2010; 
Ducas et al. 2014), and attribute-based encryption (ABE) 
(Zhang and Zhang 2011), etc. There are two extensively 
used trapdoor sampling algorithms at present. The first 
one is proposed by Gentry, Gentry et  al. (2008) (GPV 
trapdoor sampler), while the second one is proposed by 
Micciancio and Peikert (2012) (MP trapdoor sampler). 
Both of them require to sample from the Gaussian distri-
butions over the integers with different standard devia-
tions and arbitrary centers (Ducas et al. 2014; Prest et al. 
2020; Genise and Micciancio 2018; Hu and Jia 2019). 
To resist timing attacks, the former requires the Gauss-
ian sampler over the integers does not leak the informa-
tion of the standard deviation σ , center c, and output z 
(Fouque et  al. 2020), while the latter requires the sam-
pler does not leak the information of c and z. In practical 
implementations, the trapdoor samplers usually employ 
a generic Gaussian sampler over the integers whose 
precomputation cost does not vary with different σ and c. 
So it is important to propose a Gaussian sampler over the 
integers which is generic, efficient, and resistant to tim-
ing attacks.

There are two strategies to design generic Gaussian 
samplers over the integers. One is based on the convo-
lution theorems of discrete Gaussian distributions, and 
another is based on rejection samplings. The convolution 
sampler (Micciancio and Walter 2017) belongs to the for-
mer. It is easy to make its running time independent of 
its inputs σ , c and output z. However, its efficiency highly 
relies on online/offline skills, and its whole running time 
is not competitive. For Gaussian samplers based on rejec-
tion samplings, the rejection sampling algorithm seems 
to be inherently costly to turn into a constant-time 
algorithm. FALCON’s sampler (Howe et al. 2020) is not 
constant-time, but isochronous concerning its inputs σ , 
c, and output z. Isochrony is sufficient to resist timing 
attacks. But FALCON’s sampler is only suitable for small 
σ . In practice, if we do not use NTRU lattices to instanti-
ate GPV trapdoor sampler, or employ MP trapdoor sam-
pler, we may need to sample the distributions with large 
σ . Karney’s sampler (Karney 2016) and the COSAC sam-
pler (Zhao et al. 2020a) are suitable for large σ . However, 
Karney’s sampler does not consider how to resist timing 
attacks, while the COSAC sampler may reveal its input σ . 
One crucial step of Gaussian samplers based on rejection 
samplings is sampling an exponential Bernoulli variable 
Bp with parameter p = exp(−x) (x ≥ 0) . It is a time-con-
suming module, and the mainstream solution is approxi-
mating the exponential function by a polynomial (Zhao 
et al. 2020b; Barthe et al. 2019).

In some lattice-based cryptography libraries, such as 
PALISADE (Cousins et al. 2018; Dai et al. 2018; Gür et al. 
2019), it is one of the fundamental building blocks to 
sample from the Gaussian distributions over the integers. 
To implement MP trapdoor sampler, the lattice-based 
cryptography library PALISADE (Cousins et  al. 2018) 
employs the convolution sampler and Karney’s sampler 
as the Gaussian samplers over the integers. The convolu-
tion sampler is only used in the offline phase, as it does 
not seem easy to get an efficient implementation of the 
convolution sampler. PALISADE employs Karney’s sam-
pler to obtain a more efficient implementation, although 
Karney’s sampler can not resist timing attacks. Thus, it 
deserves more effort to design a Gaussian sampler over 
the integers which is generic, efficient, and resistant to 
timing attacks.

Our contribution
In this paper, we mainly focus on Gaussian samplers over 
the integers based on rejection samplings. We first pro-
pose an exponential Bernoulli sampling algorithm sam-
pling the exponential Bernoulli variables. It is a basic tool 
to construct the Gaussian samplers based on rejection 
samplings. Then we utilize the discrete Gaussian distribu-
tion with a small standard deviation as the base distribu-
tion and design an isochronous Gaussian sampler based 
on rejection sampling. The COSAC sampler is a rejection 
sampling algorithm using the normal distribution as the 
base distribution. We reduce its expected number of tri-
als to improve the efficiency. Therefore our contribution 
is three-fold.

The inspiration of our exponential Bernoulli sampling 
algorithm comes from von Neumann’s algorithm that 
samples from the exponential distribution. As far as we 
know, our work is the first one that securely applies this 
idea to the discrete Gaussian sampling to improve the 
efficiency of the cryptographic scheme. Compared with 
the mainstream method approximating the exponential 
function by a polynomial (Zhao et  al. 2020b), our algo-
rithm has the following advantages:

•	 Our algorithm has higher efficiency while resist tim-
ing attacks in rejection sampling scenes. On the one 
hand, we improve the performance by reducing float-
ing-point operations significantly. On the other hand, 
when our algorithm is applied to the rejection sam-
pling algorithm resistant to timing attacks, its output 
only relies on the public rejection rate and its run-
ning time is independent of its input, therefore our 
algorithm can resist timing attacks.
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•	 We apply our algorithm to FALCON (Prest et  al. 
2020), a lattice-based signature scheme of the third-
round candidates in the NIST post-quantum cryp-
tography standardization project (NIST PQ project). 
When the LDL tree1 has been built upon the secret 
key, the signature generation time of the new imple-
mentation decreases by 13–14%.

We derive the idea of our isochronous Gaussian sam-
pler from Karney’s sampler (Karney 2016) and FAL-
CON’s sampler (Howe et  al. 2020). We employ the 
rejection sampling strategy2 of Karney’s sampler to 
design the sampler, then apply a similar technique as 
FALCON’s sampler to make it isochronous concerning 
its inputs (standard deviation σ and center c) and output 
(sampling value z). There are four differences between the 
techniques in our work and (Howe et  al. 2020): (1) We 
use Algorithm 3 instead of the polynomial approximation 
to sample the exponential Bernoulli variable; (2) We pro-
vide two base samplers, the cumulative distribution table 
(CDT) sampler and the binary sampler (Algorithm 5); (3) 
To make the rejection rate independent of σ , the param-
eter C(σ ) in Algorithm 4 relies on the ratio σ/σ0 rather 
than σ (Lemma  8); (4) We need Algorithm  6 to sample 

the integers from [0, ⌈k⌉) uniformly. Our discrete Gauss-
ian sampling algorithm has the following advantages:

•	 As shown in Table 1, Algorithm 4 has the best per-
formance while the samplers consider timing attacks.

•	 Compared with FALCON’s sampler, the memory 
consumption and running time of Algorithm  4 are 
almost unaffected by the maximum standard devia-
tion σmax , so it is suitable for large σ . When we use 
the parameter C(σ ) in Algorithm  4 to hide σ , we 
could adjust C(σ ) to the minimum σ required by the 
cryptographic scheme, such that our sampler has the 
better performance.

•	 We replace Karney’s sampler in PALISADE with our 
Gaussian sampler to speed up the online phase of the 
MP trapdoor sampler. The running time of the G-lat-
tice sampling algorithm in the online phase decreases 
by 44.12%.

The core of our new COSAC sampler is to adjust the 
rejection sampling strategy to the center. The expected 
number of trials of the new COSAC sampler is half of 
that of the original. As the standard deviation increases, 
its expected number of trials converges to 1, which is 
the best in theory for the rejection sampling algorithms. 
However, the new COSAC sampler is only 1.46x–1.63x 
faster than the original due to the additional operations 
to hide the output. As shown in Table 1, it is not faster 
than Algorithm  4 and needs a more efficient algorithm 
sampling from the normal distribution to improve its 
performance.

Table 1  Comparison between our work and existing generica samplers at 3.6 GHz

a “Generic” means that the precomputation cost does not vary with different σ and c. The precomputation of FALCON’s Sampler is determined by the maximum 
standard deviation σmax.
b In this column, “ × ” means the sampler can not resist timing attacks; “Type I” means the sampler is isochronous concerning σ , c and z; “Type II” means the sampler is 
isochronous concerning c and z; “Type III” means the sampler is only isochronous concerning z.
c We provide two base samplers. Here we utilize the CDT sampler as the base sampler.
d The reference implementation of the COSAC sampler batches the random number generation to hide its output z, but its rejection rate still seems to depend on c. 
Our implementation of Algorithm 8 may have the same problem

Algorithm Isochronyb σ Memory (KB) Number 
of 
samples 
(× 106/s)

Convolution Sampler Micciancio and Walter (2017) Type I 3− 215 O(1) (≈ 25.4) 1.53

Karney’s Sampler Karney (2016) × 1− 220 O(1) (< 1) 8.10

DWZ Sampler Du et al. (2019) × 4− 220 O(1) (< 1) 13.97

FALCON’s Sampler Howe et al. (2020) Type I 1.29− 1.82 O(σmax)(< 1) 7.53

COSAC Sampler
(AVX2) Zhao et al. (2020a)

Type IIId 2− 220 O(1) (< 1) 6.81

Our work Algorithm 4c Type I 2− 220 O(1) (< 1) 7.12

Type II 2− 220 O(1)(< 1) 13.55

Our work Algorithm 8 (AVX2) Type IIId 2− 220 O(1)(< 1) 11.07

1  The LDL tree is a data structure to reduce the complexity of the Gaussian 
sampling over rings during the signature generation. It depends only on the 
secret key.
2  The rejection sampling strategy is the way of sampling the discrete Gauss-
ian distributions with different σ and arbitrary c by the base sampler.
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Related works
Some works (Forsythe 1972; Ahrens and Dieter 1973; 
Karney 2016) have employed the idea of von Neumann’s 
algorithm to elegantly sample from a continuous prob-
ability distribution with the probability density function 
proportional to exp(−G(x)) , where G(x) is some simple 
function. The normal distribution is one of the continu-
ous probability distributions. However, it is hard to make 
the algorithms isochronous. To the best of our knowl-
edge, there is no work to employ the idea to improve the 
efficiency of cryptographic schemes in practice.

Du et  al. (2019) proposed a Gaussian sampler over the 
integers (DWZ sampler) utilizing the rejection sampling 
strategy of Karney’s sampler (Karney 2016). It is similar 
to Algorithm  4. However, they chose the insecure binary 
sampler as the base sampler and computed the exponen-
tial function directly. Therefore, its side-channel resistance 
perspective is unclear. Although it is faster than Karney’s 
sampler, it does not solve the crucial security problem of 
Karney’s Sampler. In addition, we employ the CDT sampler 
as the base sampler of Algorithm 4 and get better perfor-
mance. There are some not generic, but efficient Gaussian 
samplers. The CDT sampler and Knuth-Yao sampler are 
often used as the base samplers. Karmakar et  al. (2019) 
crafted a constant-time and efficient implementation of the 
Knuth-Yao sampler. The Twin-CDT sampler (Melchor and 
Ricosset 2018) can sample from the discrete Gaussian dis-
tribution with the fixed σ and arbitrary c. It is constant-time.

Preliminaries
Notations
Let R , Z , N be the set of real numbers, integers and non-
negative integers respectively. For a distribution D, we use 
the notation x $←− D to mean that x is chosen according to 
the distribution D. If S is a set, then x $←− S means that x 
is sampled uniformly at random from S. The left arrow ← 
denotes the assignment operator. We use the notation Bp to 
denote the Bernoulli distribution with parameter p. A ran-
dom variable with Bp takes the true value with probability 
p and the false value with probability 1− p . We denote the 
logarithm with base 2 by log and the one with base e by ln.

Gaussian distributions
For any σ , c ∈ R with σ > 0 , the Gaussian func-
tion with parameters σ and c over R is defined as 
ρσ ,c(x) = exp(− (x−c)2

2σ 2 ) . We denote the normal (or contin-
uous Gaussian) distribution with parameters σ and c over 
R by N (c, σ 2) , which has the probability density func-
tion ρσ ,c(x)/(σ

√
2π) . For any countable set S � R , we 

denote ρσ ,c(S) by the sum 
∑

x∈S ρσ ,c(x) . If ρσ ,c(S) is finite, 
we define the discrete Gaussian distribution with param-
eters σ and c over S as DS,σ ,c(x) = ρσ ,c(x)/ρσ ,c(S) , and 

denote the distribution by DS,σ ,c . The parameter σ (resp. 
c) is often called the standard deviation (resp. center) of 
the distribution. Note that when c = 0 , we omit it in index 
notation, e.g. ρσ (x) = ρσ ,0(x) and DS,σ (x) = DS,σ ,0(x).

Smoothing parameter
The smoothing parameter is a lattice quantity proposed by 
Micciancio and Regev (2004). For ǫ > 0 , the smoothing 
parameter ηǫ(�) of a lattice � is the smallest value σ > 0 
such that ρ 1

σ
√
2π

(�∗\{0}) ≤ ǫ , where �∗ denotes the dual 

of � . The initial definition (Micciancio and Regev 2004) of 
the smoothing parameter is 

√
2π  times that our definition, 

as it is defined by the Gaussian parameter s = σ
√
2π .

Lemma 1  (Micciancio and Regev 2004) For any posi-
tive real ǫ > 0 , we have ηǫ(Z) ≤ η+ǫ (Z):

The following lemma states that the total Gaussian 
measure over Z , i.e. ρσ ,c(Z) , is essentially the same for 
any center c when the standard deviation σ exceeds the 
smoothing parameter ηǫ(Z).

Lemma 2  (Micciancio and Regev 2004; Gentry et  al. 
2008) For any ǫ ∈ (0, 1) , σ > ηǫ(Z) and c ∈ R , we have

We need the following lemma to make the running 
time of a discrete Gaussian sampling algorithm inde-
pendent of σ . One may get a similar result by the proof 
of Lemma 4.4 in Micciancio and Regev (2004). The dif-
ference here is that σ is larger than η+ǫ (Z) rather than 
ηǫ(Z) . We give a brief proof in “Appendix”.

Lemma 3  For any ǫ > 0 , σ > η+ǫ (Z) , we have:

Rényi divergence
We recall the definition of the R ́enyi divergence, which 
is extensively used in the cryptographic security proofs 
currently.

Definition 1  (Bai et al. 2015) Let P , Q be two distribu-
tions such that Supp(P ) ⊆ Supp(Q ). For a ∈ (1,+∞) , we 
define the R ́enyi divergence of order a by

η+ǫ (Z) =
1

π

√

1

2
ln

(

2+ 2

ǫ

)

.

ρσ ,c(Z) ∈
[
1− ǫ

1+ ǫ
, 1

]

· ρσ (Z).

ρσ (Z) ∈ [1, 1+ ǫ] · σ
√
2π .
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In addition, we define the R ́enyi divergence of +∞ by 
R∞(P ,Q) = maxx∈Supp(P)

P(x)
Q(x).

The R ́enyi divergence is not a distance, but it does ver-
ify cryptographically useful properties. We recall some 
important properties of the R ́enyi divergence from (Bai 
et al. 2015; van Erven and Harremoës 2014).

Lemma 4  (Bai et al. 2015) Let a ∈ (1,+∞] . Let P and Q 
denote distributions with Supp(P ) ⊆ Supp(Q ). Then the 
following properties hold:

•	 Data Processing Inequality. For any function f, 
where f (P) (resp. f (Q) ) denotes the distribution of 
f(y) induced by sampling y from P (resp. Q ), we have: 

•	 Multiplicativity. For two families of distributions 
(Pi)i, (Qi)i , 

•	 Probability Preservation. For any event E ⊆ Supp(Q) 
and a ∈ (1,+∞) , 

In practice, when we approximate the original distribu-
tion DZ,σ ,c by sampling from a finite set, we can use the 
following lemma to bound the R ́enyi divergence between 
the real and ideal distributions.

Lemma 5  (Prest 2017) Let P and Q be two distribu-
tions such that Supp(P ) ⊆ Supp(Q ). For any x ∈ Supp(P ), 
if there exists δ > 0 such that P(x)

Q(x) ≤ 1+ δ then, for 
a ∈ (1,+∞) : Ra(P ,Q) ≤ 1+ δ.

When we use the double type or 64-bit integers to 
approximate floating-point numbers, which results in the 
relative error between the real and ideal distributions, the 
following lemma gives a bound of the R ́enyi divergence 
between the distributions.

Lemma 6  (Prest 2017) Let P and Q be two distributions 
of the same support S. Suppose that the relative error 
between P and Q is bounded: ∀x ∈ S , ∃δ > 0 , such that ∣
∣
∣
P(x)
Q(x) − 1

∣
∣
∣ ≤ δ . Then, for a ∈ (1,+∞):

Ra(P ,Q) =




�

x∈Supp(P)

P(x)a

Q(x)a−1





1
a−1

.

Ra

(
f (P), f (Q)

)
≤ Ra(P ,Q).

Ra(
∏

i
Pi,

∏

i
Qi) =

∏

i
Ra(Pi,Qi).

Q(E) ≥ P(E)
a

a−1 /Ra(P ,Q) and Q(E) ≥ P(E)/R∞(P ,Q).

Isochronous algorithm
When an algorithm is applied to different scenarios, the 
sensitive variables of the algorithm may be different. 
To resist against timing attacks, we only need to keep 
the running time of the algorithm from leaking sensi-
tive parameters for a particular scenario. In this work, 
when we show that our algorithms are provably resistant 
against timing attacks, we use the following definition of 
the isochronous algorithm to capture this idea.

Definition 2  (Howe et al. 2020) Let A be a (probabilis-
tic or deterministic) algorithm with set of input variables 
I  , set of output variables O , and let S ⊆ I ∪O be the set 
of sensitive variables. We say that A is perfectly isochro-
nous with respect to S if its running time is independent 
of any variables in S.

In addition, we say that A is statistically isochronous with 
respect to S if there exists a distribution D independent 
of all the variables in S , such that the running time of A 
is statistically close (for a clearly identified divergence) to 
D.

In this paper, we refer to the implementations of FAL-
CON and previous Gaussian samplers (Howe et  al. 2020; 
Prest et al. 2020) and assume that the four basic operators 
over integers, the addition, subtraction, and multiplica-
tion over floating-point numbers, the rounding, ceiling, 
floor, and bitwise operations are isochronous. For the lat-
tice-based trapdoor sampling, the short lattice basis deter-
mines σ of the Gaussian distribution over the integers, 
while c is usually variable. As the floating-point division 
rarely offers constant-time execution guarantee (Zhao et al. 
2020b), we precompute the parameters 1/σ , k, ⌈k⌉ and Pk 
in Algorithm 4 and Algorithm 6. We can also precompute 
S = ρσ ,c(Z) in Algorithm 8 by Lemma 23. While the imple-
mentation of FALCON’s sampler only precomputes 1/σ4, 
Algorithm 4 may have to precompute a few more param-
eters. But its memory consumption is also tolerable (see 
Table 1).

Ra(P ,Q) ≤
(

1+ a(a− 1)δ2

2(1− δ)a+1

) 1
a−1

∼
δ→0

1+ aδ2

2
.

3  If the adversary makes no more than 264 queries, for a 256-bit cryptographic 
scheme, ǫ = 240 and σ ≥ 2 > η+ǫ (Z) can ensure security.
4  Assuming the floating-point division is isochronous (Howe et  al. 2020), 
FALCON’s sampler only requires to precompute the cumulative distribu-
tion table.
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Von Neumann’s algorithm
Von Neumann’s algorithm (Forsythe 1972) can sample a 
variable from the exponential distribution and avoid float-
ing-point operations. It is the foundation of our exponential 
Bernoulli sampling algorithm. We review it in Algorithm 1. 

Lemma 7  The variable x output by Algorithm 1 obeys 
the exponential distribution.

Proof  We first analyze the probability that n is odd in 
step7 of Algorithm 1 for any x2 ∈ [0, 1) . If n = n0 in step 
7, there are n0 + 1 variables u1,u2, ...,un0+1 uniformly 
sampled from [0, 1) in step 2 and step 5. These vari-
ables satisfy that x2 > u1 > ... > un0 and un0 ≤ un0+1 . 
The probability that u1, ...,un0 are all less than x2 is xn02  . 
In addition, the probability that they are in descending 
order, which is one of the possible n0! permutations, is 
x
n0
2 /n0! . As un0 ≤ un0+1 , the probability that n = n0 in 

step 7 is xn02 /n0! − x
n0+1
2 /(n0 + 1)! . For any x2 ∈ [0, 1) , 

the probability that n is even in step 7 is

Because x2 is sampled from [0,  1) uniformly, 
the probability that n is odd averaged over x2 is 
∫ 1
0 (1− exp(−x2))dx2 = exp(−1) . Thus, the probability 

density that the algorithm terminates with a particular 
value of x1 and x2 is exp(−(x1 + x2)) , as required. �

A tool: exponential Bernoulli sampling algorithm
In this section, we propose a tool, the exponential Ber-
noulli sampling algorithm, to construct the Gaussian 
samplers based on rejection samplings. We first intro-
duce the basic algorithm and analyze its relative error. 
Then we show how to make it isochronous in the par-
ticular application. Finally, we apply it to the FALCON 
signature.

Basic exponential Bernoulli sampling algorithm
When sampling a Bernoulli variable with parameter 
exp(−x) , the polynomial approximation method needs 14 
floating-point multiplications in which 12 floating-point 
multiplications are used to compute the exponential func-
tion (Zhao et al. 2020b; Prest et al. 2020). To avoid these 
12 floating-point multiplications, we can sample the Ber-
noulli variable utilizing step 2- step 6 in Algorithm 1 for 
any x ∈ [0, 1) . For any x ≥ 0 , let x = u1 ln 2+ u2 where u1 
is a non-negative integer and 0 ≤ u2 < ln 2 , then exp(−x) 
can be written as exp(−x) = 2−u1 exp(−u2) . The first 
part 2−u1 can be sampled efficiently in binary form, and 
the second part exp(−u2) can be sampled efficiently too 
as u2 ∈ [0, 1) . We present the basic exponential Bernoulli 
sampling algorithm in Algorithm 2. 

1− x2 +
x22
2! −

x32
3! + ... = exp(−x2).
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Theorem 1  The output b of Algorithm 2 obeys the Ber-
noulli distribution with parameter exp(−x).

Proof  The probability that the variable b1 is true is 2−u1 . 
Because step 5–step 9 in Algorithm 2 is equivalent to step 
2–step 6 in Algorithm 1, the probability that the variable 
b2 is true is exp(−u2) according to the proof of Lemma 7. 
As x = u1 ln 2+ u2 , the probability that the output b is 
true is exp(−x) . � �

In the next theorem, we estimate the expected sam-
pling number of r3 which is closely related to the effi-
ciency of Algorithm 2.

Theorem  2  For any u2 ∈ [0, ln 2) , in one running pro-
cess of Algorithm 2, the expected sampling number S of 
r3 is less than 2.

Proof  The probability that n = n0 in step 10 of Algo-
rithm 2 is un02 /n0! − u

n0+1
2 /(n0 + 1)! . If n = n0 in step 10, 

the sampling number of r3 is n0 + 1 . The expected sam-
pling number S of r3 can be written as

the last inequality is deduced from u2 < ln 2. � �

When we prove the correctness of Algorithm 2 in The-
orem 1, we treat it as an ideal algorithm that samples the 
variables b1 and b2 with the exact parameters 2−u1 and 
exp(−x + u1 ∗ ln 2) . In practice, it is necessary to bound 
the relative error of Algorithm 2 due to the approxima-
tions of u2 and r3.

Theorem 3  Let P(R) be the probability that the output b 
of the real algorithm is true where the floating numbers 
u2 , r2 , r3 of Algorithm 2 keep m ( m ≥ 5 ) significant bits. 
Let P(I) be the probability that the output b of the ideal 
algorithm is true where u2 , r2 , r3 have infinite significant 
bits. Then the relative error between P(R) and P(I) satisfies 
that

Proof  Let P(R)
1  and P(R)

2  be the probabilities that the vari-
ables b1 and b2 of the real algorithm are true respectively, 

S =
∞∑

n0=0

(

u
n0
2

n0!
− u

n0+1
2

(n0 + 1)!

)

· (n0 + 1) = exp(u2) < 2,

|P(R) − P(I)|
P(I)

≤ 2−m + 2−2m + 2−m+3.

P
(I)
1  and P(I)

2  be the probabilities that the variables b1 and 
b2 of the ideal algorithm are true respectively. Because 
u1 is an integer and the sampling process of b1 (step 2–
step 3) only involves the integer operations, P(R)

1  and 
P
(I)
1  should be the same exactly. Thus, the relative error 

between P(R) and P(I) is the same as that between P(R)
2  

and P(I)
2

The difference between P(R)
2  and P(I)

2  stems from the 
approximations of u2 and r3 . We define an intermedi-
ate algorithm where u2 has m significant bits and r2 and 
r3 have infinite bits. Let P(IN )

2  be the probability that the 
variable b2 in the intermediate algorithm is true. Then we 
have

As u2 retains m significant bits and u2 ∈ [0, ln 2) , the dif-
ference between the approximate number u(R)2  and the 
accurate number u(I)2  is not greater than 2−m . So we have

We will next analyze the process of the while loop (step 
6 - step 9) of Algorithm 2. For the i-th while loop ( i ≥ 1 ), 
we denote Ai as the event r2 = r3 , Bi as the event r2 > r3 
and Ci as the event r2 < r3 . In the intermediate algorithm, 
the uniformly random floating-point number r(I)3  has infi-
nite significant bits, so event Ai will never happen for any 
i ≥ 1 . In the real algorithm, both r(R)2  and r(R)3  have m sig-
nificant bits and r(R)3  is sampled uniformly, the probability 
of event Ai is exactly 2−m for any i ≥ 1 . Our goal is to cal-
culate the probability sum of all Ai in the real algorithm 
which is the upper bound of |P(R)

2 − P
(IN )
2 |.

For i ≥ 2 , event Bi−1 must have happened before the i-th 
loop, which means Pr{Bi} = Pr{Bi−1} · r(R)2  and 
Pr{Ai} = Pr{Bi−1} · 2−m . Because r(R)2  is always no more 
than u

(R)
2  and u

(R)
2 ≤ u

(I)
2 + 2−m , we have 

Pr{Ai} ≤(

u
(I)
2

+ 2
−m

)i−1

· 2−m for any i ≥ 1 . As u(I)2 ∈ [0, ln 2) and 
m ≥ 5 , we can give an upper bound:

(1)

|P(R) − P(I)|
P(I)

= |P(R)
1 P

(R)
2 − P

(I)
1 P

(I)
2 |

P
(I)
1 P

(I)
2

= |P(R)
2 − P

(I)
2 |

P
(I)
2

.

(2)
|P(R)

2 − P
(I)
2 |

P
(I)
2

≤ |P(R)
2 − P

(IN )
2 |

P
(I)
2

+ |P(IN )
2 − P

(I)
2 |

P
(I)
2

(3)

|P(IN )
2

− P
(I)
2
|

P
(I)
2

=
∣
∣
∣
∣
∣

exp(−u
(R)
2

)− exp(−u
(I)
2
)

exp(−u
(I)
2
)

∣
∣
∣
∣
∣

=
∣
∣
∣exp(−(u

(R)
2

− u
(I)
2
))− 1

∣
∣
∣

≤
∣
∣
∣u

(R)
2

− u
(I)
2

∣
∣
∣+

(

u
(R)
2

− u
(I)
2

)2

≤ 2
−m + 2

−2m
.
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Combining the constraints (1) (2) (3) (4), we can bound 
the relative error between P(R) and P(I),

which concludes the proof. � �

In our implementation of Algorithm  2, we use the 
double type meeting the IEEE-754 standard in the float-
ing-point arithmetics and 64-bit integers to approxi-
mate the floating numbers u2 , r2, r3 , so the number m 
of significant bits is at least 52. The relative error of our 
implementation is no more than

(4)

|P(R)
2

− P
(IN )
2

|
P
(I)
2

≤

∞∑

i=1

Pr{Ai}

exp

(

−u
(I)
2

)

≤ 2
−m+1 ·

∞∑

i=0

(

u
(I)
2

+ 2
−m

)i

≤ 2
−m+3

.

∣
∣P(R) − P(I)

∣
∣

P(I)
≤ 2−m + 2−2m + 2−m+3,

Isochronous exponential Bernoulli sampling algorithm
In this subsection, we focus on how to design an isoch-
ronous exponential Bernoulli sampling algorithm to 
resist timing attacks. It seems difficult to make the 
input and output of Algorithm  2 isochronous with 
respect to its running time while retaining its effi-
ciency. Because the sampling number of r3 determining 
the value of b2 is closely related to the running time of 
Algorithm 2. To overcome the obstacle, we restrict the 
application of our algorithm to the rejection sampling 
algorithm. In these applications, the distribution of 
output b only relies on the rejection probability of the 
rejection sampling algorithm. For the rejection sam-
pling algorithm resisting timing attacks, the rejection 
probability can not reveal the information of the sen-
sitive variables. Therefore there is no need to hide the 
value of output b. In Algorithm 3, we successfully make 
the input independent of the running time while retain-
ing the efficiency. 

2−52 + 2−104 + 2−49 ≤ 2−48.
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Theorem 4  The output of Algorithm 3 obeys the Ber-
noulli distribution with parameter exp(−x).

Proof  After step 3, r1 is a uniformly random integer in 
[0, 2u1 − 1] . The probability that b1 is true is 2−u1 . There 
are two cases where b2 is true. The first one is u2 < r3 in 
step 7, and the second one is that u2 > r3 in step 7 and n 
is even in step 12. As u2 < t , their probabilities are 1− u2 
and 

∑∞
i=1

(

u2i2 /(2i)! − u2i+1
2 /(2i + 1)!

)

 respectively. We 
can get that the probability that b2 is true is exp(−u2) by 
adding the two probabilities, which concludes the proof. �
� �

Theorem  5  Algorithm  3 is perfectly isochronous with 
respect to its input x. What’s more, in one running pro-
cess of Algorithm 3, the expected sampling number S of 
r3 is exp(t).

Proof  We need to prove that in Algorithm  3, u1 and 
u2 are respectively independent of the running times of 
sampling b1 and b2 . The sample of b1 consists of one uni-
form sampling, one AND operation, and one compari-
son, which is independent of u1 . The sample of b2 consists 
of the uniform samplings of r3 , the comparisons of r2 and 
r3 , one comparison of u2 and r3 . The sampling number 
of r3 is the same as the number of comparisons between 
r2 and r3 . The distribution of the sampling number of 
r3 depends on t rather than u2 . The expected sampling 
number S of r3 is

� �

In our implementation of Algorithm  3, we set 
t = 178 ∗ 2−8 to avoid the error of the floating-point 
number. So the relative error of Algorithm 3 stems from 
the approximations of u2 and r3 , which is the same as 
Algorithm 2. With the almost same proof of Theorem 3, 
we can get the same upper bound of the relative error of 
Algorithm 3 in practice.

Laziness Technique. When we use 64-bit integers to 
represent r1 , r2 , and r3 , there are at most 64 · (1+ e) 
bits randomness required on average during each run 
of Algorithm  3. These integers are only involved in the 
comparison operations, so we can employ the laziness 
technique (Ducas and Nguyen 2012; Howe et  al. 2020) 
to speed up the implementation of Algorithm  3. When 
at least one of the two compared 64-bit integers is sam-
pled uniformly, the comparison can be determined by the 

S =
∞∑

n0=0

(
tn0

n0!
− tn0+1

(n0 + 1)!

)

· (n0 + 1) = exp(t).

first i significant bits, except with probability 2−i (exactly 
when the first i bits of the two integers match). Therefore 
it is unnecessary to sample all bits of the integers at one 
time. In our implementation, the 64-bit integer is sam-
pled 8 bits by 8 bits until the comparison is determined 
or all 64 bits are sampled. It is easy to estimate that each 
sampled integer needs less than 9 random bits on average 
in this way. So the expected number of random bits is less 
than 9 · (1+ e) in one running process of Algorithm  3 
with this technique.

It should be noted that the random number r3 in step 
6 of Algorithm 3 has to be compared with t and u2 . We 
need to carefully select a value of the public parameter 
t to ensure that these two comparisons with the lazi-
ness technique don’t reveal the information of u2 . It is 
another reason why we set t = 178 ∗ 2−8 . The compari-
son between r3 and 178 ∗ 2−8 only needs the first 8 bits. If 
r3 ≥ 178 ∗ 2−8 , we can determine r3 > ln 2 > u2 through 
the first 8 bits. Otherwise, r3 is a uniform random num-
ber in [0, 178 ∗ 2−8) . In this case, for the first 8 bits of r3 
and u2 , the probability that they are equal is 1/178. For 
the i-th bits of r3 and u2 ( i ≥ 9 ), the probability that they 

Table 2  Number of Gaussian samples of FALCON per second at 
3.6 GHz

Number of 
samples (× 
106/s)

Original Implementation 6.31

Our Implementation 7.53

Table 3  Signature generation time of FALCON at 3.6 GHz

Ring degree 512 1024

Original implementation 211.27 µs 418.62 µs

Our implementation 182.58 µs 361.38 µs

Table 4  Number of exponential Bernoulli samples per second at 
3.6 GHz

PRNG ChaCha20 (× 107/s) AES-NI  (× 
107/s)

Algorithm in FALCON 6.19 6.36

Algorithm 3 7.76 9.47
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are equal is 1/2. Therefore the value of u2 does not impact 
the running time of the two comparisons.

Applications and performances
Our exponential Bernoulli sampling algorithm can be 
applied to Gaussian samplers based on rejection sam-
plings. In this section, we choose FALCON, a lattice-
based signature scheme of the third-round candidates in 
the NIST PQ project, as an example of the application of 
Algorithm 3.

The Gaussian sampler in FALCON is based on rejec-
tion sampling, so it needs to sample an exponen-
tial Bernoulli variable Bp with p = exp(−x) (x ≥ 0) . 
Under the parameter sets of FALCON, we can assume 
x ∈ [0, 64 · ln 2] . To achieve the security goal of FAL-
CON, the relative error between the ideal and real prob-
abilities can not be greater than 2−43 (Howe et al. 2020; 
Prest et al. 2020). The relative error of our algorithm is 
not greater than 2−48 , which satisfies the requirement of 
FALCON. In the latest implementations of FALCON, it 
uses a polynomial approximation Pfacct(x) (Zhao et  al. 
2020a) of the exponential function exp(x) on [− ln 2, 0] to 
sample Bp.

In the round 3 NIST package, FALCON contains 
the optimized implementations at two security levels. 
There are three implementations at each security level. 
Because we don’t consider the specific instruction set 
optimization, we choose the ones relying on the IEEE-
754 floating-point type to perform our benchmark test. 
They can work on x68, ARM, and POWER/PowerPC 
systems.

We apply Algorithm  3 to FALCON and compile the 
implementations with the compiler option -O3 enabled. 
The benchmark results are showed in Tables  2 and 3. 
The new discrete Gaussian sampling implementation is 
about 1.19x faster than the original. While the LDL tree 
has been built upon the secret key, the new signature 
generation implementation is about 1.15x–1.16x faster 
than the original. In this paper, all our experiments are 
performed on a single Intel Core i7-4790 CPU core at 
3.6 GHz.

The implementation of FALCON does not offer the 
interface to invoke the algorithm for sampling the 
exponential Bernoulli variable. So we separate this 
module and compare it with Algorithm  3. We choose 
the ChaCha20 in OpenSSL and the AES256 counter 
mode with hardware AES instructions (AES-NI) as 
the pseudorandom number generators (PRNG) and 
use g++ 7.5.0 to compile our implementations with 

the compiler options -O3 and -maes enabled5. Table 4 
lists the efficiencies of different implementations. If 
the ChaCha20 in OpenSSL is used as the PRNG, Algo-
rithm 3 is 1.25x faster than the algorithm in FALCON. 
Algorithm 3 with AES-NI is 1.49x faster than the algo-
rithm in FALCON. The reason is that Algorithm  3 
avoids a large number of floating-point multiplications 
and needs more random numbers. The efficiency of 
the PRNG has more influence on Algorithm 3 than the 
algorithm in FALCON.

Sampling integers using a discrete Gaussian 
distribution with a small standard deviation
In this section, we first introduce our new Gaussian sam-
pler based on rejection sampling, and analyze its cor-
rectness and the requirements . Then we use our tool 
Algorithm  3 to implement our Gaussian sampler and 
make it isochronous concerning its inputs and output. 
Finally, we compare our implementations with previous 
works, and apply it to the lattice-based cryptography 
library PALISADE.

New discrete Gaussian sampling algorithm
We build our Gaussian sampler by employing the 
rejection sampling strategy of Karney’s sampler and 
present it in Algorithm  4. The rejection sampling 
strategy of Karney’s sampler can be viewed as the 
generalization of that of the Gaussian sampler in the 
BLISS signature scheme (BLISS sampler) (Ducas et al. 
2013). The strategy of Karney’s sampler is suitable for 
the distribution with arbitrary σ > σ0 and c, while the 
strategy of the BLISS sampler is only suitable for the 
distribution with σ being an integral multiple of σ0 and 
c = 0 . Du et  al. (2019) proposed a similar algorithm 
based on the rejection sampling strategy of Karney’s 
sampler. Although it is faster than Karney’s sampler, 
it does not solve the crucial security problem of Kar-
ney’s Sampler. To make Algorithm 4 resistant to timing 
attacks and not affecting the security of cryptographic 
schemes, we need to craft the modules in Algorithm 4, 
especially the base sampler (step 3) and the algorithm 
sampling the exponential Bernoulli variable (step 9). 
In addition, we also use C(σ ) ∈ (0, 1] to make σ inde-
pendent from the rejection rate of Algorithm 4. These 
are the necessary steps for the practicality of Karney’s 
sampler, which are also our main contributions in this 
section. 

5  -maes is only used to compile AES-NI. It can be removed while the imple-
mentation does not involve AES-NI.
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Table 5  The approximate CDT of DN,1 with 80-bit precision

z CDT(z)  (× 2−80) z CDT(z)  (× 2−80)

0 519416855270223991024635 5 10517004221616016

1 101208528248637278136991 6 15796660852944

2 7893637264903720998210 7 8733832501

3 233884566914685871813 8 1776829

4 2580077773372372849 9 132

To prove the correctness of Algorithm 4, there are two 
issues to be addressed: (1). After step 10 and step 11 in 
Algorithm 4, each integer z∗ can be calculated by exactly 
one tuple (x∗, y∗, s∗) ; (2). We need to show the prob-
ability of sampling z∗ is exactly proportional to ρZ,σ ,c(z∗) . 
Because our rejection sampling strategy is the same as 
that of Karney’s sampler, the idea of proof is implicit in 
Karney (2016), Du et al. (2019). We provide the detailed 
proof in “Appendix” for completeness.

Theorem  6  The output z sampled by Algorithm  4 is 
distributed as DZ,σ ,c.

The floating-point error in Algorithm  4 causes the 
error of the Bernoulli variable Bprej , so the error of Algo-
rithm  4 stems from the approximate distribution D(R)

N,σ0
 

and the approximate Bernoulli variable B(R)
prej , which is 

the same as FALCON’s sampler. We utilize the technique 
in Howe et al. (2020) to estimate the security loss of the 
cryptographic scheme invoking Algorithm 4 in practice.

Theorem  7  Let �(I) (resp. �(R) ) be the security param-
eter of an implementation using the ideal distributions 
D
(I)
N,σ0

 and B(I)
prej (resp. the real distributions D(R)

N,σ0
 and 

B
(R)
prej ). Let the numbers of sampling from DN,σ0 and Bprej 

be Qbs and Qexp . If the following conditions are respected, 
at most two bits of security are lost. In other words, 
�
(I) − �

(R) ≤ 2.

In the proof of Theorem 7, we can first bound the R ́enyi 
divergence between B(R)

prej and B(I)
prej by Lemma  6 and the 

first condition of Theorem 7. Then, combining Lemma 4 
and the upper bound of R2�(R)+1

(

D
(R)
N,σ0

,D
(I)
N,σ0

)

 , we can 

∀ prej ≥ 0,

∣
∣
∣
∣
∣

B
(R)
prej − B

(I)
prej

B
(I)
prej

∣
∣
∣
∣
∣
≤

√

�(R)

Qexp(2�(R) + 1)2
,

R2�(R)+1(D
(R)
N,σ0

,D
(I)
N,σ0

) ≤ 1+ 1

4Qbs
.
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estimate the security loss. We provide the detailed proof 
in “Appendix”.

As suggested by the NIST PQ project, an attacker can 
make no more than 264 signature or decryption queries. 
The lattice dimension of a cryptographic scheme is usu-
ally less than 212 . Therefore, it is reasonable to assume 
that the cryptographic scheme calls Algorithm 4 less than 
276 in most applications. According to the acceptance 
probability of Algorithm 4 in Lemma 8, if σ0 > 1/

√
2 ln 2 , 

the expected number of trials of Algorithm 4 is no more 
than 3. Then we have Qbs = Qexp ≤ 3 · 276 ≤ 278 . If a 
cryptographic scheme invoking algorithm  4 has 256-bit 
security, the concrete numerical values of the conditions 
in Theorem 7 are

Isochronous implementations
In this subsection, we first analyze the conditions to make 
Algorithm  4 isochronous with respect to the standard 
deviation σ , the center c, and its output z, then introduce 
how to implement Algorithm 4 and select the appropri-
ate parameters to satisfy those conditions.

To get an isochronous implementation of Algorithm 4, 
there are five necessary conditions: 

1.	 The base sampler sampling from DN,σ0 does not leak 
any information of x.

2.	 The sampling time of b is independent of 
−d(d + 2kx)/(2σ 2).

3.	 The acceptance probability of Algorithm 4 does not 
rely on c.

4.	 The sampling time of y is independent of k.
5.	 The acceptance probability of Algorithm 4 does not 

rely on σ.

The implementation isochronous concerning z and c 
needs to satisfy the first three conditions. The imple-
mentation isochronous concerning z, c, and σ needs to 
satisfy all five conditions.

For the first condition, we adopt two samplers to 
instantiate Algorithm 4 respectively. The first one is the 
CDT sampler. We precompute the approximate cumu-
lative distribution table of DN,1 with 80-bit precision 
shown in Table 5. To produce a sample, we generate a 
random value r in [0,  1) with the same precision and 
return the index of the last entry in the table that is 
greater than r. To make the running time isochronous 
with respect to the output, the CDT sampler has to 
read the entire table and compare r with each entry. For 
any a ≤ 512 , our experiment shows that the R ́enyi 
Divergence Ra

(

D
(R)
N,1,D

(I)
N,1

)

 between the real distribu-

√

�(R)

Qexp(2�(R) + 1)2
≈ 2−44, 1+ 1

4Qbs
≈ 1+ 2−80.

tion D(R)
N,1

 and the ideal distribution D(I)
N,1 is bounded by 

1+ 2−80 , which satisfies the second condition in Theo-
rem 7. The advantage of the CDT sampler is that it has 
a very attractive performance.

Another one is the binary sampler, which is intro-
duced in the BLISS sampler Ducas et al. (2013). It sam-
ple from the distribution D

N,1/
√
2 ln 2 . In Algorithm 5, we 

show how to make the binary sampler isochronous con-
cerning its output. We cut the tail of the distribution 
and only sample the non-negative integers no more than 
8. Moreover, the while loop in Algorithm 5 never termi-
nates in advance even if the sample has been deter-
mined. As each probability of D

N,1/
√
2 ln 2 can be 

accurately represented in binary form, the output distri-
bution D(R)

N,1/
√
2 ln 2

 does’t have a relative error. By some 
simple calculations and Lemma 5, for any a ∈ (1,+∞) , 
we have Ra

(

D
(R)

N,1/
√
2 ln 2

,D
(I)

N,1/
√
2 ln 2

)

≤ 1+ 2−80 satisfy-
ing the second condition in Theorem 7. The advantage 
of the binary sampler is that it does not need any 
precomputation. 

For the second condition, as C(σ ) ∈ (0, 1] , it is straight-
forward to sample the exponential Bernoulli variable 
Bprej through Algorithm  3. The relative error of Algo-
rithm 3 is no more than 2−48 meeting the first condition 
in Theorem 7.

For the fourth condition, we use Algorithm 6 to sample 
y. In our implementation, the public parameter h is equal 
to 32. The acceptance probability of Algorithm 6 is 0.5, so 
its running time is independent of k. 
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Both third and fifth conditions are related to the 
acceptance probability of Algorithm  4. We utilize the 
technique in FALCON’s sampler to satisfy these two 
conditions. In the following lemma, we prove that 
σ ≥ η+ǫ (Z) is sufficient for the independence between c 
and the acceptance probability of Algorithm 4. Moreo-
ver, if σ ≥ tσ0 , where t, σ0 are public parameters, and 
C(σ ) in Algorithm  4 has an appropriate value, the 
acceptance probability could not rely on σ.

Lemma 8  Let ǫ ∈ (0, 1) , c ∈ R , k = σ
σ0

 and t be a posi-
tive integer. If the standard deviation σ meets the condi-
tion that σ ≥ η+ǫ (Z) , we can set C(σ ) = 1 and 
pσ = ρσ (Z)

2⌈k⌉ρσ0 (N)
 . The acceptance probability Ptrue(σ , c) of 

the while loop in Algorithm 4 satisfies

If the standard deviations σ0 , σ meet the condition that 
σ ≥ max{η+ǫ (Z), tσ0} , we can set C(σ ) = t⌈k⌉

(t+1)k ≤ 1 and 
p = tσ0

√
2π

2(t+1)ρσ0 (N)
 . The acceptance probability Ptrue(σ , c) of 

the while loop in Algorithm 4 satisfies

Proof  We use T to represent the set of all tuples 
(x∗, y∗, s∗) that satisfies the conditions in step 10 and 
step 11 in Algorithm 4. According to the proof of Theo-
rem  6, each integer z∗ can be calculated by exactly one 
tuple (x∗, y∗, s∗) in set T. Thus, the acceptance probability 
Ptrue(σ , c) of the while loop in Algorithm 4 is:

For any ǫ ∈ (0, 1) , if σ ≥ η+ǫ (Z) ≥ ηǫ(Z) and C(σ ) = 1 , it 
holds from Lemma 2 that

Ptrue(σ , c) ∈ pσ · [1− 2ǫ, 1].

Ptrue(σ , c) ∈ p · [1− 2ǫ, 1+ ǫ].

Ptrue(σ , c) =
∑

(x∗,y∗,s∗)∈T

ρσ0(x
∗)

ρσ0(N)
︸ ︷︷ ︸

x∗←DN,σ0

· 1

⌈k⌉
︸︷︷︸

y∗←{0,...,⌈k⌉−1}

· 1

2
︸︷︷︸

s∗←{1,−1}

·C(σ ) · ρσ ,c(z
∗)

ρσ0(x
∗)

︸ ︷︷ ︸

Pr{Bprej
=1}

=
∑

z∗∈Z

C(σ ) · ρσ ,c(z∗)
2⌈k⌉ · ρσ0(N)

= C(σ ) · ρσ ,c(Z)
2⌈k⌉ · ρσ0(N)

Ptrue(σ , c) ∈
ρσ (Z)

2⌈k⌉ · ρσ0(N)
·
[
1− ǫ

1+ ǫ
, 1

]

∈ ρσ (Z)

2⌈k⌉ · ρσ0(N)
· [1− 2ǫ, 1],
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which concludes the first part of Lemma 8.

To make Ptrue(σ , c) independent of σ , we need to bound 
ρσ (Z) . For any ǫ ∈ (0, 1) , if σ ≥ η+ǫ (Z) ≥ ηǫ(Z) , the fol-
lowing relationship holds from Lemmas 2 and 3:

Now, we can use C(σ ) to eliminate σ and ⌈k⌉ . As 
k = σ

σ0
 , t is a positive integer and σ ≥ tσ0 , we can set 

C(σ ) = t⌈k⌉
(t+1)k ≤ 1 . Then, we have:

which concludes the second part of Lemma 8. � �

In the remaining part of this subsection, we will ana-
lyze the influence of the acceptance probability Ptrue(σ , c) 
on the running time of Algorithm  4 and the adversary 
advantage. We only consider the scenarios where both 
σ and c are secret. If σ is public, we can ignore the last 
two conditions. This means we don’t need Algorithm  6 
and parameter C(σ ) to hide σ . In this case, we can uti-
lize a similar method to analyze the success probability of 

Ptrue(σ , c) ∈
C(σ ) · σ

√
2π

2⌈k⌉ · ρσ0(N)
· [1− 2ǫ, 1+ ǫ].

Ptrue(σ , c) ∈
tσ0

√
2π

2(t + 1)ρσ0(N)
· [1− 2ǫ, 1+ ǫ],

the adversary by the first part of Lemma 8. We omit the 
details here.

In the following Theorem 8, we show that Algorithm 4 
is perfect isochronous with respect to z and statistically 
isochronous for the R ́enyi divergence with respect to σ , c.

Theorem  8  Let ǫ ∈ (0, 1) , c ∈ R , k = σ
σ0

 and t be an 
positive integer. Let σ0 , σ be the standard deviations such 
that σ0 ∈ [ 1√

2 ln(2)
, 1] , σ ≥ max{η+ǫ (Z), tσ0} . Let 

C(σ ) = t⌈k⌉
(t+1)k ≤ 1 , p = tσ0

√
2π

2(t+1)ρσ0 (N)
 be constants in (0, 1). 

Suppose that the implementation of Algorithm 4 satisfies 
the first, second, and fourth conditions. Its running time 
follows a distribution T (σ , c) such that:

for some distribution T independent of σ , c, and z.

In the following Theorem  9, we leverage Theorem  8 
to prove that the running time of Algorithm 4 does not 
help an adversary to break the cryptographic scheme. As 
is analyzed in Howe et  al. (2020), we consider that the 
adversary has access to some function g(DZ,σ ,c) as well 
as the running time of Algorithm  4. This is intended to 
capture the fact that in most applications, the output of 
Algorithm  4 is not given directly to the adversary, but 
processed by some function g before.

Theorem 9  Consider an adversary A making Qs queries 
to g(DZ,σ ,c) for some randomized function g, and solving 
a search problem with success probability 2−� for some 
� ≥ 1 . With the notations of Theorem  8, suppose that 
ǫ ≤ 1√

24�Qs
 . Learning the running time of each call to 

Algorithm 4 does not increase the success probability of 
A by more than a constant factor.

To prove Theorem 8, we need to analyze the running 
time T0 of one iteration of the while loop in Algorithm 4 

Ra(T (σ , c),T ) � 1+ 4aǫ2 max

(
1− p

p2
,

1

1− p

)

≤ 1+ 24aǫ2

Table 6  Number of samples per second at 3.6 GHz for our new 
Gaussian sampler Algorithm 4

σ Type I Isochrony Type II Isochrony

Binary sampler  
(× 106/s)

CDT sampler  
(× 106/s)

Binary sampler  
(× 106/s)

CDT sampler  
(× 106/s)

2 6.97 7.13 9.91 13.62

8 6.70 7.12 10.96 13.72

32 6.77 7.20 11.20 13.55

215 6.76 7.16 11.54 13.99

220 6.74 7.32 11.34 14.14

Table 7  Summary of previous works at 3.6 GHz

Algorithm σ Memory (KB) Number of samples  
(× 106/s)

Twin-CDT sampler Melchor and Ricosset (2018) 2 1.4/4.6/46 43.73/53.53/65.51

Twin-CDT sampler Melchor and Ricosset (2018) 8 3/10/100 32.31/45.69/54.44

Twin-CDT sampler Melchor and Ricosset (2018) 32 9.5/32/318 29.47/34.08/36.51

Convolution sampler Micciancio and Walter (2017) 215 25.4 10.59 (online)
1.53 (online+offline)

Karney’s sampler Karney (2016) 1–220 < 1 8.10

DWZ sampler Du et al. (2019) 4–220 < 1 13.97

FALCON’s sampler Howe et al. (2020) 1.29–1.82 < 1 7.53
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and the number I(σ , c) of iterations. Let I be the num-
ber of iterations in the ideal case. I(σ , c) (resp. I) is 
determined by the probability Ptrue(σ , c) (resp. p). As 
the floating-point operations are isochronous and 
the first, second, and fourth conditions are satisfied, 
T0 follows a distribution independent of σ , c, and z. 
By Lemma  4, we have Ra(T (σ , c),T ) = Ra(I(σ , c), I) . 
We can deduce the upper bound of Ra(I(σ , c), I) from 
the relation Ptrue(σ , c) ∈ p · [1− 2ǫ, 1+ 2ǫ] and prove 
the first part of the inequality. The second part can be 
derived from p ∈ [0.34, 0.36] . The proof of Theorem  9 
requires the flexible applications of the three proper-
ties in Lemma  4. We put the detailed deductions in 
“Appendix”.

Applications and performances
For simplifying the description, we use Type I isoch-
rony and Type II isochrony to clarify whether the 
implementation hides the information of σ . The two 
isochronous properties satisfy the requirements of 
the GPV trapdoor sampler and the MP trapdoor sam-
pler. We offer four different implementations of Algo-
rithm  4. The implementations of Type I isochrony are 
the same as those of Type II isochrony except utilizing 
Algorithm  6 and parameter C(σ ) to hide σ . The base 
samplers are the CDT sampler and the binary sampler. 
The binary sampler does not need any precomputa-
tion, while the CDT sampler need to store the cumula-
tive distribution table in Table 5. Each 80-bit integer is 
represented by two 64-bit integers in our implementa-
tions, so the table consumes 20 · 8 = 160 bytes. All four 
implementations need at most several hundred bytes of 
memory consumption containing other precomputed 
values such as k and 1/(2σ 2).

We choose the AES256 counter mode with the AES-
NI instruction set as the PRNG and use g++ 7.5.0 to 
compile the four implementations of Algorithm 4 with 
the compiler options -O3 and -maes enabled. In each 
test, we produce 104 random centers c in [0,1) for each 
σ , then generate 103 samples with the same σ and c and 
measure the consumed time. We calculate the bench-
mark results in Table  6 based on the measured times. 
The implementations based on the CDT sampler are 
a little faster than those based on the binary sampler. 

In the implementations of Type I isochrony, we set 
the parameter C(σ ) equal to (2⌈k⌉)/(3k) for σ ≥ 2σ0

6. 
It causes a significant decline in the performances. If 
σ is far greater than σ0 , we can adjust C(σ ) to get bet-
ter performances. For example, if σ ≥ 32σ0 , we can 
set C(σ ) equal to (32⌈k⌉)/(33k) . The implementations 
based on the binary sampler and the CDT sampler gen-
erate 9.68× 106 and 10.23× 106 samples per second for 
σ = 32.

We summarize the performances of previous works in 
Table 7. We scale all the numbers to be based on 3.6 GHz. 
The TwinCDT sampler (Melchor and Ricosset 2018) is 
isochronous concerning c and z. It offers three different 
tradeoffs between the running time and the precomputa-
tion storage. Although it is at least two times faster than 
our implementations of Type II isochrony for σ ∈ [2, 32] , 
it has two serious problems. First, it is not generic. For the 
distributions with different σ , TwinCDT sampler needs 
different precomputations. This problem will reduce the 
portability of the algorithm and will require to precom-
pute for n distributions with different σ in GPV trapdoor 
sampler, where n is the dimension of the lattice. Second, 
its precomputation storage increases significantly along 
with σ increasing, so it is not suitable for the distribu-
tion with large σ . The convolution sampler (Micciancio 
and Walter 2017) satisfies Type I isochrony. Our imple-
mentations of Type I isochrony are at least four times 
faster than the convolution sampler. If we only measure 
the time during the online phase, our implementations 
will generate the base samples during the offline phase. 
We can assume σ ≥ 13 > 4

√
2ηǫ(Z) for reasonable ǫ just 

as the benchmark test in Micciancio and Walter (2017)7. 
With C(σ ) = (13⌈k⌉)/(14k) , our implementations of 
Type I isochrony generate 12.43× 106 and 13.11× 106 
samples per second for σ = 215 during the online phase, 
which are faster than the convolution sampler.

The DWZ sampler (Du et al. 2019) and Karney’s sam-
pler could not resist timing attacks, though the DWZ 
sampler is faster than our implementations. FALCON’s 
sampler (Howe et  al. 2020) satisfies Type I isochrony. It 
is faster than our implementations of Type I isochrony. 
However, its storage and running time increase rapidly 
along with the maximum standard deviation increas-
ing. In addition, if the minimum standard deviation 
is larger than 2, our implementations will have better 
performances.

We apply Algorithm  4 to the lattice-based cryptog-
raphy library PALISADE (Cousins et  al. 2018) and use 

Table 8  Running time of the G-lattice sampling algorithm in 
PALISADE at 3.6 GHz

Running 
time (ms)

Original Implementation 3.74

Our Implementation 2.09

7  The smoothing parameter in Micciancio and Walter (2017) is 
√
2π  times 

that in this paper.

6 σ0 in our implementations is 1 or 1/
√
2 ln 2.
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its latest version as of this writing8 to evaluate the per-
formances. We replace Karney’s sampler in PALISADE 
with our implementations based on the CDT sampler 
to sample from the Gaussian distributions over the inte-
gers. PALISADE uses the BLAKE2 hash function9 as 
the PRNG. In PALISADE, Karney’s sampler generates 
2.49× 106 samples per second, while our implementa-
tions generate 5.92× 106 and 3.21× 106 samples.

PALISADE contains the implementations (Gür et  al. 
2019) of IBE (Micciancio and Peikert 2012) and CP-ABE 
(Zhang and Zhang 2011). Both rely on the latest MP trap-
door sampler (Genise and Micciancio 2018). We mainly 
focus on the G-lattice sampling algorithm in the MP 
trapdoor sampler. It determines the running time dur-
ing the online phase. All standard deviations are public 
in the G-lattice sampling algorithm, so we make it invoke 
the implementation of Type II isochrony. The parameters 
include the modulus q, the dimension n of lattice, the 
base b for the gadget lattice G, and the standard devia-
tion σ . Let (q, n, b, σ) = (12289, 256, 2, 100) . The bench-
mark results are shown in Table 8. Our implementation is 
1.79x faster than the original.

Sampling integers using a normal distribution
In this section, we first introduce the rejection sampling 
strategy of the new COSAC sampler, then analyze its cor-
rectness and security requirements. Finally, we imple-
ment it to confirm the theoretical analysis and compare it 
with Algorithm 4.

New COSAC sampler
The COSAC sampler (Zhao et al. 2020a) uses the normal 
distribution N (0, σ) and the rejection sampling to sample 
from the distributions DZ\{0},σ ,cF with cF ∈ [−1/2, 1/2] . 
The original rejection sampling strategy is independent 
of cF and requires about two trials on average to output a 

sample. Our new rejection sampling strategy varies with 
cF . The expected number of trials of the new sampler is 
about half of that of the original.

The original COSAC sampler utilizes two normal 
distributions N1(0, σ) and N2(0, σ) to sample from 
the distributions DZ\{0},σ ,cF with cF ∈ [−1/2, 1/2] . 
N1(0, σ) and N2(0, σ) are used to sample the posi-
tive and negative integers respectively. In each trial, 
the sampler chooses N1(0, σ) or N2(0, σ) with equal 
probability. Assume N1(0, σ) is chosen and x∗ is sam-
pled from N1(0, σ) . If there exists a positive integer z∗ 
such that x∗ ∈ (z∗ − 3/2, z∗ − 1/2] , the positive integer 
z∗ is accepted with the probability ρσ ,cF (z∗)/ρσ (x∗) . 
Assume N2(0, σ) is chosen and x∗ is sampled from 
N2(0, σ) . If there exists a negative integer z∗ such that 
x∗ ∈ [z∗ + 1/2, z∗ + 3/2) , the negative integer z∗ is 
accepted with the probability ρσ ,cF (z∗)/ρσ (x∗) . No mat-
ter which normal distribution is chosen, the trial fails 
with a probability of about 0.5.

The new COSAC sampler only needs one normal 
distribution N (0, σ) to sample from the distribu-
tions DZ\{0},σ ,cF with cF ∈ [−1/2, 1/2] . In each trial, 
the sampler sample x∗ from N (0, σ) . If x∗ + cF >= 0 
and x∗ ∈ [z∗ − 1− cF , z

∗ − cF ) , the positive integer 
z∗ is accepted with the probability ρσ ,cF (z∗)/ρσ (x∗) ; 
If x∗ + cF < 0 and x∗ ∈ [z∗ − cF , z

∗ + 1− cF ) , the 
negative integer z∗ is accepted with the probability 
ρσ ,cF (z

∗)/ρσ (x∗).
Our sampler is represented in Algorithm 8. It invokes 

Algorithm 7 to sample from the distributions DZ\{0},σ ,cF 
with cF ∈ [−1/2, 1/2] . The correctness of Algorithm  8 
and Algorithm  7 is followed by our analysis above and 
some simple integral calculations. Theorem 10 indicates 
that the acceptance probability of Algorithm 7 converges 
to 1 as σ increases. In theory, Algorithm 8 is almost two 
times faster than the original COSAC sampler. 

Table 9  Comparison between the original COSAC sampler and 
the new COSAC sampler at 3.6 GHz

σ Number of samples  (× 106/s) Average number of 
trials

Original New Original New

2 6.81 11.07 2.49 1.24

8 8.23 12.20 2.10 1.05

32 8.73 13.09 2.03 1.01

215 8.89 13.19 2.00 1.00

220 8.94 13.23 2.00 1.00

8  https://​gitlab.​com/​palis​ade/​palis​ade-​devel​opmen​t/-/​tree/​relea​se-​v1.​10.6.
9  https://​www.​blake2.​net.

https://gitlab.com/palisade/palisade-development/-/tree/release-v1.10.6
https://www.blake2.net
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Theorem  10  The outputs of Algorithm  7 and Algo-
rithm  8 are distributed as DZ\{0},σ ,cF and DZ,σ ,c respec-
tively. Let ǫ ∈ (0, 1) , and σ > ηǫ(Z) , the acceptance prob-
ability Ptrue(σ , cF ) of Algorithm 7 satisfies

Due to the impossibility of achieving perfect distribu-
tions in practice, we need Theorem  11 to estimate the 
security loss of the cryptographic schemes invoking 
Algorithm  8. The error of Algorithm  8 stems from the 
approximate distribution N (R)(0, 1) and the approximate 
Bernoulli variables B(R)

p0  , B(R)
prej . The proof of Theorem 11 is 

similar to that of Theorem 7, except estimating the influ-
ence of the continuous distribution N (0, 1) . We provide 
the detailed proofs of Theorems 10 and 11 in “Appendix”.

Theorem 11  Let �(I) (resp. �(R) ) be the security param-
eter of an implementation using the ideal distributions 
N (I)(0, 1) and B(I)

p  (resp. the real distributions N (R)(0, 1) 
and B(R)

p  ). Let the numbers of sampling from N (0, 1) and 
Bp be Qbs and Qexp , the absolute error of the sample val-
ues between N (I)(0, 1) and N (R)(0, 1) be �N  . If the fol-
lowing conditions are respected, at most two bits of secu-
rity are lost. In other words, �(I) − �

(R) ≤ 2.

Ptrue(σ , cF ) ≥ 1− ǫ − 1

σ
√
2π

.

∀ p ≥ 0,

∣
∣
∣
∣
∣

B
(I)
p − B

(R)
p

B
(I)
p

∣
∣
∣
∣
∣
≤

√

�(R)

Qexp(2�(R) + 1)2
,

�N ≤ 1

2σ
√

(4�(R) + 2)Qbs

.

Performance of new COSAC sampler
We implement Algorithm 8 by modifying the implemen-
tation of the original COSAC sampler. The implementa-
tion utilizes AVX2 intrinsic instructions to improve the 
performance and employ the Box–Muller continuous 
Gaussian sampler (Hülsing et  al. 2018) to sample from 
N (0, 1) . The AES256 counter mode with the ASE-NI 
instructions is used as the PRNG. For convenience, we 
use g++ 7.5.0 to compile the implementations with the 
same compiler options -O3 -march=native enable as 
Zhao et al. (2020a). The benchmark results are shown in 
Table 9.

In Table  9, the average numbers of trials are basically 
consistent with the theoretical results. However, the new 
COSAC sampler is 1.46x–1.63x faster than the original. 
The main reason is the additional operations to hide z. 
As claimed in Zhao et  al. (2020a), our implementation 
of Algorithm  8 may also reveal σ . Although the imple-
mentation involves AVX2 intrinsic instructions, we com-
pare it with the implementations of Type II isochrony 
in Table  6. The new COSAC sampler is faster than the 
implementation based on the binary sampler but slower 
than the implementation based on the CDT sampler. It 
is noteworthy that the absolute error of the Box–Muller 
continuous Gaussian sampler is no more than 2−48 . For 
σ ∈ [2, 220] and �(R) = 256 , the provable security is acces-
sible only for Qbs ≤ 244 based on the second condition in 
Theorem 11.
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Conclusions
In this work, we mainly proposed three algorithms to 
design a generic, secure and efficient Gaussian sam-
pling algorithm over the integers. They are Algorithm 3, 
Algorithm 4, and Algorithm 8. Algorithm 3 is to sam-
ple the exponential Bernoulli variables. Compared with 
the polynomial approximation method, our algorithm 
reduces the floating-point multiplications significantly. 
We applied it to FALCON to decrease the signature 
generation time. One interesting phenomenon is that 
the polynomial approximation method can benefit 
from the Haswell microarchitecture developed by Intel 
as the fourth-generation core. If the compiler options 
include -march=haswell, the running time of the poly-
nomial approximation method will decrease by about 
45% on a single Intel Core i7-4790 CPU at 3.6 GHz. It is 
an important issue how to improve the performance of 
our algorithm on the specific architecture.

Algorithm  4 can sample from the Gaussian distri-
butions over the integers while hiding the standard 
deviation, center, and output. It can be used as the 
fundamental operation modular in the lattice-based 
cryptography library. We applied it to PALISADE and 
obtained a more secure and efficient implementation of 
the MP trapdoor sampler. We can utilize the constant-
time implementation of the Knuth-Yao sampler (Kar-
makar et al. 2019) as the base sampler and improve the 
performances of our implementations further. Besides, 
Theorem  9 is only available for search problems. For 
decision problems, one may prove the security by the 
techniques in Micciancio and Walter (2018).

Algorithm  8 also samples from the Gaussian distri-
butions over the integers. It is not as competitive as 
Algorithm 4 so far. However, it has the lowest expected 
number of trials among the algorithms based on rejec-
tion sampling. It is necessary to find a more efficient 
algorithm sampling from the normal distribution to 
improve the performance. In addition, it also deserves 
further research to make the acceptance probability of 
Algorithm 8 independent of the standard deviation and 
center to resist timing attacks.

Appendix
Proof of Lemma 3
Proof  By the Fourier transform of ρσ (x) and the Pois-
son summation formula, we have: ρσ (Z) = σ

√
2π ·(

1+ 2
∑

i≥1
exp(−2i2π2σ 2)

)
 . If ǫ ∈ (0, 1) and 

σ > η+ǫ (Z) , the inequality holds from Lemma 1: 

exp
(
−2π2σ 2

)
≤ ǫ/(2(1+ ǫ)) . Combining these two 

relations with ǫ ∈ (0, 1) , we can complete the proof

� �

Proof of Theorem 6
Proof  We first prove that each integer z∗ is calculated by 
exactly one tuple (x∗, y∗, s∗) . We can write c as c = c1 + c2 
in which c1 ∈ [0, 1) and c2 ∈ Z . Then we have

If c1  = 0 , z ≤ c2 for s = −1 , and z > c2 for s = 1 . However, 
if c1 = 0 , z = c2 can be calculated by two tuples (0, 0, -1) 
and (0, 0, 1). The step 11 makes z greater than c2 for s = 1 
no matter whether c1 is equal to 0, which solves the prob-
lem. Next, we analyze that each integer z∗ > c2 can be cal-
culated by exactly one tuple (x∗, y∗, s∗) for s = 1 . For any 
x ≥ 0 , ⌈k⌉ − 1 ≤ ⌈k(x + 1)+ sc1⌉ − ⌈kx + sc1⌉ ≤ ⌈k⌉ . As 
y ∈ {0, ..., ⌈k⌉ − 1} , each integer z∗ > c2 can be calculated 
by at least one tuple (x∗, y∗, s∗) . However, if some xbad sat-
isfies that ⌈k(xbad + 1)+ sc1⌉ − ⌈kxbad + sc1⌉ = ⌈k⌉ − 1 , 
then z = ⌈k(xbad + 1)+ sc1⌉ + c2 could be calculated 
by two tuples (xbad , ⌈k⌉ − 1, 1) and (xbad + 1, 0, 1) . Due 
to the fact that ⌈k(x + 1)+ sc1⌉ > ⌈kx + sc1⌉ + ⌈k⌉ − 1 
is equivalent to k(x + 1)+ sc1 > ⌈kx + sc1⌉ + ⌈k⌉ − 1 , 
the tuple (xbad , ⌈k⌉ − 1, 1) is rejected after the step 10. 
Then, each integer z∗ > c2 is calculated by exactly one 
tuple. For s = −1 , it is similar to prove that each integer 
z∗ <= c2 is also calculated by exactly one tuple.

Now, we calculate the probability that each inte-
ger z∗ is sampled. Assume that z∗ is calculated by the 
tuple (x∗, y∗, s∗) , i.e. z∗ = s∗ · ⌈kx∗ + y∗ + s∗c⌉ . Let 
z∗0 = ⌈kx∗ + y∗ + s∗c⌉ and d∗ = z∗0 − (kx∗ + s∗c) , then we 
have:

ρσ (Z) = σ
√
2π ·



1+ 2

�

i≥1

exp(−2i2π2σ 2)





≤ σ
√
2π ·



1+
�

i≥1

2 ·
�

ǫ

2(1+ ǫ)

�i2




≤ σ
√
2π · (1+ ǫ).

d = ⌈kx + sc1⌉ + y− (kx + sc1),

z = s · (⌈kx + sc1⌉ + y)+ c2.
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which concludes the proof.�  �

Proof of Theorem 7
Proof  We first define three different cases: 

1.	 (Ideal Case) The implementation uses two ideal dis-
tributions D(I)

N,σ0
 and B(I)

prej.
2.	 (Intermediate Case) The implementation uses a real 

distribution D(R)
N,σ0

 and an ideal distribution B(I)
prej.

3.	 (Real Case) The implementation uses two real distri-
butions D(R)

N,σ0
 and B(R)

prej.

We recall that �(I) (resp. �(R) ) is the security parameter 
of the Ideal (resp. Real) Case. We aim at computing 
�� = �

(I) − �
(R).

We set the order a = 2�(R) + 1 . Let ǫI (resp. ǫIN , ǫR ) be 
the probability that the adversary breaks the scheme in 
the use of the Ideal (resp. Intermediate, Real) Case. By 
data processing inequality and probability preservation of 
the R ́enyi divergence in Lemma 4:

By definition, ǫR = 2−�
(R) , so we can deduce the relation-

ship between ǫI and ǫR using ǫ
a

a−1
R = ǫR/

√
2:

So we have:

Pr[z = z∗] ∝ exp

(

− x∗2

2σ 2

0

)

· C(σ ) exp
(

−d∗(d∗ + 2kx∗)

2σ 2

)

= C(σ ) exp

(

− (z∗
0
− s∗c)2

2σ 2

)

= C(σ ) exp

(

− (z∗ − c)2

2σ 2

)

∝ DZ,σ ,c(z
∗),

ǫI ≥ ǫ
a

a−1

IN /Ra

(

D
(R)
N,σ0

,D
(I)
N,σ0

)Qbs
,

ǫIN ≥ ǫ
a

a−1

R /Ra

(

B(R)
prej

,B(I)
prej

)Qexp

.

ǫIN ≥ǫR/

(√
2 · Ra

(

B(R)
prej

,B(I)
prej

)Qexp
)

,

ǫI ≥ǫR/

(√
2

a
a−1

+1 · Ra

(

B(R)
prej

,B(I)
prej

) aQexp
a−1

· Ra

(

D
(R)
N,σ0

,D
(I)
N,σ0

)Qbs
)

.

(5)
�� ≤ log

(√
2

a
a−1+1 · Ra

(

B(R)
prej

,B(I)
prej

) aQexp
a−1

· Ra

(

D
(R)
N,σ0

,D
(I)
N,σ0

)Qbs
)

.

Based on the first condition in Theorem  7 and 
a = 2�(R) + 1 , an application of Lemma 6 yields to

By combining (5) (6) and the second condition in Theo-
rem 7, we get

where the second inequality is deduced from 
(
1+ x

n

)n ≤ exp(x) for x, n > 0 . �

Proof of Theorem 8
The number of iterations of the while loop in Algo-
rithm  4 follows a geometric distribution of its accept-
ance probability. When proving Theorem  8, we will 
need the following lemma (Howe et  al. 2020) to 
bound the R ́enyi divergence between two geometric 
distributions.

Lemma 9  Let P and Q be geometric distribu-
tions of parameters p, q ∈ (0, 1) . Suppose there exists 
δ = o(1/(a+ 1)) such that:

Then the R ́enyi divergence between P and Q is bounded 
as follows:

Now we can prove Theorem 8.

Proof  Let T0 denote the running time of one iteration of 
the while loop in Algorithm 4. If the floating-point opera-
tions are isochronous, the basic sampler is isochronous 
with respect to its output and the algorithms sampling 
b and y is isochronous with respect to their inputs and 

(6)Ra

(

B(R)
prej

,B(I)
prej

)

≤ 1+ a− 1

4aQexp
.

�� ≤ log




√
2

a
a−1+1

�

1+ a− 1

4aQexp

� aQexp
a−1

�

1+ 1

4Qbs

�Qbs





≤ log

�√
2

a
a−1+1 · exp(1/4)2

�

≤ log

�√
2

a
a−1+1 · 2

�

≤ 2,

exp(−δ) ≤ p/q ≤ exp(δ), exp(−δ)

≤ (1− p)/(1− q) ≤ exp(δ).

Ra(P ,Q) � 1+ a(1− p)δ2

p2

(

∼ 1+ a(1− q)δ2

q2

)

.
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outputs, then T0 follows a distribution which is inde-
pendent of σ , c, z.

Let I(σ , c) (resp. I) denote the number of iterations of the 
while loop when each iteration accepts with probability 
Ptrue(σ , c) (resp. p). I(σ , c) (resp. I) is a geometric distri-
bution of parameter Ptrue(σ , c) (resp. p). By Lemma 9, we 
have Ptrue(σ , c) ∈ p · [1− ǫ, 1+ 2ǫ] . Through a few sim-
ple computations, we can get the following inequalities:

Let δ = 2ǫ ·max(1, p
1−p ) . If ǫ is small enough, it follows 

from Lemma 9 that:

The total running time T (resp. T (σ , c) ) of Algorithm 4 is 
a function of T0 and I (resp. I(σ , c) ) for some function f. 
This allows to apply the data-processing inequality:

Since σ0 ∈ [ 1√
2 ln 2

, 1] and p = tσ0
√
2π

2(t+1)ρσ0 (N)
∈ [0.34, 0.36] , 

we can get the final conclusion:

� �

Proof of Theorem 9
Proof  Let D denote the output distribution of g(DZ,σ ,c) . 
In the real (resp. ideal) case, we can consider without loss 
of generality that the adversary can query the joint distri-
bution (D,T (σ , c)) (resp. (D, T)), where T (σ , c) (resp. T) is 
the running time of Algorithm 4 in the real (resp. ideal) 
case. In the proof of Theorem 8, we have shown that both 
T and T (σ , c) are independent of the output z. Thus, both 
T and T (σ , c) are independent of the distribution D. Let 
a = � , and P0 , P1 denote the success probabilities of A in 
the ideal and real cases, respectively. Since P0 = 2−� and 
ǫ ≤ 1√

24�Qs
 , it holds from Lemma 4 and Theorem 8 that:

1− 2ǫ ≤ Ptrue(σ , c)

p
≤ 1+ 2ǫ, 1− p

1− p
·

2ǫ ≤ 1− Ptrue(σ , c)

1− p
≤ 1+ p

1− p
· 2ǫ.

Ra(I(σ , c), I) � 1+ a(1− p)δ2

p2

� 1+ 4aǫ2 ·max

(
1− p

p2
,

1

1− p

)

Ra(T (σ , c),T ) = Ra(f (T0, I(σ , c)), f (T0, I))

≤ Ra(I(σ , c), I) � 1

+ 4aǫ2 ·max

(
1− p

p2
,

1

1− p

)

.

Ra(T (σ , c),T ) � 1+ 4aǫ2 max

(
1− p

p2
,

1

1− p

)

≤ 1+ 24aǫ2.

which concludes the proof.�  �

Proof of Theorem 10
Proof  To prove that the output of Algorithm 7 is distrib-
uted as DZ\{0},σ ,cF , we need to calculate the probability 
that each non-zero integer z∗ is sampled. If z∗ > 0 , z∗ is 
calculated from x∗ in the interval [z∗ − 1− cF , z

∗ − cF ) , 
then we can obtain the probability of z∗

If z∗ < 0 , z∗ is calculated from x∗ in the inter-
val [z∗ − cF , z

∗ + 1− cF ) , then it is easy to check 
that Pr[z = z∗|z∗ ∈ Z, z∗ < 0] ∝ DZ\{0},σ ,cF (z

∗) . So, 
for any non-zero integer z∗ , we can conclude that 
Pr[z = z∗] ∝ DZ\{0},σ ,cF (z

∗).

In Algorithm  8, Pr[z = 0] = exp(−c2F/(2σ
2))/S = DZ,σ ,cF (0) . 

Therefore, variable z is distributed as DZ,σ ,cF . Since 
c = cI + cF , z + cI is distributed as DZ,σ ,c.

Now, let’s estimate the acceptance probability Ptrue(σ , cF ) 
of Algorithm 7:

where the last inequality is deduced from Lemma 2 and 
ρσ ,cF (0) ≤ 1 . � �

P1 ≤
(

P0 · Ra((D,T (σ , c))Qs , (D,T )Qs)

) a−1
a

≤
(

P0 · Ra((D,T (σ , c)), (D,T ))Qs

) a−1
a

≤
(

P0 · Ra(T (σ , c),T )Qs

) a−1
a

�

(

P0 ·
(

1+ 24aǫ2
)Qs

) a−1
a

�

(

P0 ·
(

1+ 1

Qs

)Qs
) �−1

�

� 2−(�−1) · e,

Pr[z = z∗|z∗ > 0] =
∫ z∗−cF

z∗−1−cF

ρσ (x
∗)

σ
√
2π

︸ ︷︷ ︸

x∗←N (0,σ)

· ρσ ,cF (z
∗)

ρσ (x∗)
︸ ︷︷ ︸

Pr{Bprej
=1}

dx

=
∫ z∗−cF

z∗−1−cF

ρσ ,cF (z
∗)

σ
√
2π

dx

=ρσ ,cF (z
∗)

σ
√
2π

∝ DZ\{0},σ ,cF (z
∗).

Ptrue(σ , cF ) = Pr[z = z∗|z∗ > 0] + Pr[z = z∗|z∗ < 0]

=
∞∑

i=1

(
ρσ ,cF (i)

σ
√
2π

+ ρσ ,cF (−i)

σ
√
2π

)

= ρσ ,cF (Z\{0})
σ
√
2π

= ρσ ,cF (Z)− ρσ ,cF (0)

σ
√
2π

≥ 1− ǫ − 1

σ
√
2π

,
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Proof of Theorem 11
Proof  The proof of Theorem 11 is very similar to that of 
Theorem 7. The only difference is that we need to evalu-
ate the impact of the error of the normal distribution 
N (0, 1) on security. We first define three different cases: 

1.	 (Ideal Case) The implementation uses two ideal dis-
tributions N (I)(0, 1) and B(I)

p .
2.	 (Intermediate Case) The implementation uses a real 

distribution N (R)(0, 1) and an ideal distribution B(I)
p .

3.	 (Real Case) The implementation uses two real distri-
butions N (R)(0, 1) and B(I)

p .

Our goal is to compute �� = �
(I) − �

(R) . Let the order a 
of the R ́enyi divergence be 2�(R) + 1 . Let ǫI (resp. ǫIN , ǫR ) 
be the probability that the adversary breaks the scheme 
in the use of the Ideal (resp. Intermediate, Real) Case. Let 
D
(I)
Z\{0},σ ,cF (resp. D(IN )

Z\{0},σ ,cF
10) be the output distribution 

of Algorithm 7 in the use of the the Ideal (resp. Interme-
diate) Case. By data processing inequality and probability 
preservation of the R ́enyi divergence in Lemma 4:

By the definitions, we have ǫR = 2−�
(R) , ǫI = 2−�

(I) and 
ǫ

a
a−1
R = ǫR/

√
2 , then

Based on the second condition of Theorem  11, we 
can bound the relative error between D(IN )

Z\{0},σ ,cF and 
D
(I)
Z\{0},σ ,cF . For any positive integer z∗,

ǫI ≥ ǫ
a

a−1

IN /Ra

(

D
(IN )
Z\{0},σ ,cF ,D

(I)
Z\{0},σ ,cF

)Qbs
,

ǫIN ≥ ǫ
a

a−1

R /Ra

(

B(R)
p ,B(I)

p

)Qexp

.

�� ≤ log

(√
2

a
a−1+1 · Ra

(

B(R)
p ,B(I)

p

) aQexp
a−1

· Ra

(

D
(IN )
Z\{0},σ ,cF ,D

(I)
Z\{0},σ ,cF

)Qbs
)

.

∣
∣
∣
∣
∣

D
(IN )
Z\{0},σ ,cF (z

∗)− D
(I)
Z\{0},σ ,cF (z

∗)

D
(I)
Z\{0},σ ,cF (z

∗)

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∫ z∗−cF+σ�N

z∗−1−cF−σ�N

ρσ ,cF (z
∗)

σ
√
2π

dx − ρσ ,cF (x
∗)

σ
√
2π

ρσ ,cF (x
∗)

σ
√
2π

∣
∣
∣
∣
∣
∣

= 2σ�N ≤ 1
√

(4�(R) + 2)Qbs

.

The same result holds for any negative integer. Therefore, 
the relative error between D(IN )

Z\{0},σ ,cF and D(I)
Z\{0},σ ,cF is no 

more than 1√
(4�(R)+2)Qbs

.

By combining Lemma 6 and the bounds of the relative 
errors, we can get:

Thus, we have

concluding the proof.�  �
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Bernoulli distribution is perfect in the Intermediate Case.
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