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Abstract 

Grey-box fuzzing techniques have been widely used in software bug finding. In general, there are many decisions 
to make in the fuzzing process, including which code block in the target program should be explored first, which 
bytes of an input seed should be mutated to reach the target code block, and how to mutate the chosen input bytes. 
However, existing solutions usually rely on random exploration or certain heuristics to choose where and how to fuzz, 
which limits the efficiency of fuzzing. In this paper, we propose a novel solution CAMFuzz to guide the fuzzing process 
with explainable decisions in explainable artificial intelligence (XAI). First, we propose a dynamic weight adjustment 
algorithm, which considers both the difficulty of reaching a block and the number of unvisited blocks nearby, to find 
code blocks worthy to explore first. Second, we utilize a widely used local interpretation technique, i.e., class activa-
tion mapping (CAM), to recognize which part of an input seed should be mutated to reach a given target code block. 
Therefore, CAMFuzz can distinguish which part of code in the program is more important and which positions in 
the input file should be mutated first, in order to achieve a better code coverage and bug finding efficiency. Third, to 
further help the fuzzer increase fuzzing efficiency, we leverage a lightweight static program analysis to help the fuzzer 
identify magic values. We implement a prototype of CAMFuzz and evaluate it on 13 real-world programs (including 
11 open source targets, 2 closed-source commercial products including a Microsoft component and Hancom Office) 
Results show that CAMFuzz outperforms state-of-the-art fuzzers in both code coverage and bug finding. To detail, 
CAMFuzz on average achieves 2.07× more bugs and 1.17× coverage improvements. In total, it found 19 previously 
unknown vulnerabilities, of which 6 have been assigned by CVE so far.
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Introduction
Recently, grey-box fuzzing techniques have become the 
most popular solution in finding bugs. One of the unique 
tools is American Fuzzy Lop (AFL) (Zalewski 2014). It 
has been proven effective when finding bugs in real-
world software.

Challenges:  Despite the success of its genetic algo-
rithm, AFL has many blind spots and makes random 
decisions in the fuzzing process, including which bytes of 
an input seed should be mutated to trigger the unvisited 

code block, how to mutate the chosen input bytes, and 
it does not distinguish the code blocks with different 
weights. These all limit the efficiency of fuzzing (Gan 
et  al. 2020; Lemieux and Sen 2018; Wang et  al. 2020). 
There are several solutions proposed to address these 
problems. Generally, they will (1) figure out more signifi-
cant parts such as branches or code with higher weight, 
(2) analyze which input bytes may have a relation with the 
code using taint analysis, or (3) mutate these bytes with 
higher priority and replace them with specific values.

First, to prioritize code blocks to explore, many stud-
ies focus on counting unvisited code blocks, e.g., used 
in CollAFL (Gan et al. 2018) and FairFuzz (Lemieux and 
Sen 2018). However, we believe this strategy is not suf-
ficient. For example, although more unvisited child nodes 
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connect to some code blocks, the unvisited nodes may 
hardly be reached. For example, the code responsible for 
handling the failure of malloc operation with a fixed size 
is useless in fuzzing. Thus, it is a waste of power if the 
fuzzer focuses on those blocks.

Second, given target code blocks to explore, the most 
straightforward solution to find out related critical input 
bytes is data-flow or symbolic execution analysis. Never-
theless, it is time-consuming. For example, TaintScope 
(Wang et al. 2010) uses dynamic instrumentation to per-
form traditional data-flow analysis (e.g., taint analysis), 
which will decrease the fuzzing efficiency. Some light-
weight data-flow analyses have been  proposed to speed 
up the taint analysis, e.g., GreyOne (Gan et al. 2020), Pro-
Fuzzer (You et  al. 2019). However, they still face much 
manual work to define rules when doing data-flow analy-
sis (e.g., defining a rule to infer the type of input field) or 
under-taint issues (Kang et al. 2011).

Recently, machine-learning-based methods have been 
proposed to guide the fuzzer on where to fuzz, such as 
NEUZZ (She et al. 2019) and Rajpal et al. (2017). How-
ever, existing techniques are still in the early stage and 
have limitations. For example, Rajpal et  al. (2017) use 
LSTM to predict good locations to fuzz. However, the 
training stage of the model lasts long. NEUZZ uses the 
gradient derived from the neural network to locate criti-
cal bytes in the input to mutate and outperforms state-
of-the-art fuzzing techniques. However, as shown in RQ3 
in the Evaluation section, the gradient is unstable and 
will introduce much noise. The noise itself may cause the 
fuzzer to waste power on mutating unrelated input posi-
tions when given a code block.

Third, given input bytes to mutate, several solutions 
employ data-flow analysis to infer which values should 
be used for mutation. For instance, VUzzer (Rawat et al. 
2017) relies on static and dynamic analysis to infer criti-
cal values, including magic numbers, etc., to replace 
target input bytes. Nevertheless, it may produce false 
negatives in calculating constant values, and it needs 
traditional data-flow analysis to calculate the positions 
related to these values.

Our Solution:      To solve the challenges, we present 
a novel solution named CAMFuzz to guide the fuzzing 
process with explainable decisions. Specifically, it lever-
ages the explainable artificial intelligence (XAI) and pro-
gram comprehension to determine which code blocks 
in target programs should be explored first, which input 
bytes should be prioritized to mutate to reach target code 
blocks, and how to mutate these bytes (i.e., which value 
to use).

First, we propose a dynamic weight adjustment algo-
rithm to prioritize code blocks (i.e., nodes in the con-
trol flow graph) to explore. For each candidate node, our 

algorithm considers not only the number of its unvisited 
children in the CFG but also the difficulty of reaching it. 
We intend to explore those easier-to-reach blocks first, 
then the rest. Second, we utilize XAI techniques to deter-
mine which input bytes to mutate to explore target code 
blocks. XAI is used to help humans understand why the 
AI model makes the specific decision. For example, given 
a picture of a cat, XAI can help us understand which part 
in the picture plays the most crucial role when the model 
predicts it as a cat. We utilize local interpretation tech-
nique in XAI field to speculate the input positions with 
a strong relationship given a target code block. After a 
thorough consideration (as shown in Explainable Arti-
ficial Intelligence section), we choose one of the local 
interpretation techniques, Class Activation Mapping 
(CAM), to interpret which input bytes are more valu-
able to mutate to reach a given code block. Lastly, we 
leverage static program analysis to extract magic value, 
enumeration, and other values of interest from target 
programs, to determine how to mutate the chosen input 
bytes (i.e., what values to use during mutation). We use 
the term “magic value” in this paper to represent not only 
the signature of a file format (e.g., “0x5A4D” stands for a 
PE file), but also constant values of other fields that have 
a set of predefined values in the file (e.g., the MARKER 
field in JPEG format, or E_TYPE in ELF format)

Results:      We implement a prototype of CAMFuzz 
and evaluate it on 13 real-world programs. We com-
pare it with AFL, AFLFast (Böhme et al. 2017), FairFuzz, 
NEUZZ, Angora (Chen and Chen 2018), TortoiseFuzz 
(Wang et  al. 2020), WinAFL (Fratric 2017), and Win-
aflfast (Bohme 2018). The results show that CAMFuzz 
outperforms the other fuzzers in both code coverage 
and bug finding. We find 19 previously unknown vul-
nerabilities consisting of 13 from open-source programs 
and 6 from commercial products. Six of them have been 
assigned with CVEs so far. In this paper, we make the fol-
lowing contributions: 

*	 We propose a solution CAMFuzz, which utilizes 
the local explanation method (i.e., CAM) to locate 
critical input bytes and guides fuzzers to spend more 
energy on mutating these bytes.

*	 We propose a dynamic weight adjustment (DWA) 
algorithm to determine which code blocks should be 
explored first and guide fuzzers to skip hard to reach 
blocks.

*	 We implement a prototype of CAMFuzz and evalu-
ate it on programs with and without source code. It 
has found 19 unknown vulnerabilities and we have 
reported them to vendors, among which six have 
been assigned with CVEs.
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Background
Grey‑box fuzzing
Current grey-box fuzzing techniques mainly utilize code 
coverage to figure out good seeds. Researchers use this 
technique to test different programs such as brows-
ers (Aschermann et  al. 2019a), language engines (Groß 
2018), and kernels (Jeong et  al. 2019). The fundamen-
tal intuition behind the grey-box fuzzing technique is 
that increasing code coverage likely leads to more bugs 
(Takanen et al. 2018). Although grey-box fuzzing is very 
efficient in increasing code coverage, there are still some 
limitations. For example, some fuzzers do not distinguish 
which code block should be explored first; the power 
schedule is not intelligent enough to increase the fuzz-
ing efficiency (Yue et  al. 2020). Several methods based 
on symbolic execution and taint analysis have been pro-
posed to help the fuzzer decide which bytes should be 
mutated first and which code is more important. How-
ever, symbolic execution based methods such as S2E 
(Chipounov et  al. 2011) and Angr (Shoshitaishvili et  al. 
2016) have been proven to suffer from path explosion and 
have difficulties solving complex constraints. These prob-
lems have hindered its application in fuzzing, especially 
in complex real-world programs. In addition to symbolic 
execution, many researchers utilize machine learning to 
guide fuzzers towards specific input bytes. This paper 
uses the explainable AI technique to guide the fuzzer to 
concentrate on valuable input positions.

Explainable artificial intelligence
Machine learning, especially deep learning, has been 
used to solve many complex tasks. For example, in com-
puter vision (Pishchulin et  al. 2016), natural language 
processing (Dong et  al. 2019),  and autonomous driving 
(Casanova et  al. 2018). Although machine learning has 
achieved great success in solving many complex tasks, 
it is still difficult for humans to understand the working 
principles of the model. This is due to a complex model 
structure and a large number of hyper-parameters, 
which makes the results obtained by the model difficult 
to understand. The interpretability of neural networks 
(Ghorbani et  al. 2019) can help people understand the 
working principles of the model more directly. At pre-
sent, interpretability can be divided into global inter-
pretation and local interpretation (Guidotti et  al. 2018). 
Local interpretability helps us understand the reason why 
a model makes a specific decision. This paper focuses 
on the local interpretability: we train a special model to 
map an input to its code coverage. Different from existing 
AI-based methods, we power the model with the ability 
to locate promising input parts. When given a block of 
code, we expect the local interpretation to tell us which 
part of the input contributes to the code block the most.

There are several studies on local interpretation. As we 
intend to figure out which input bytes contribute to the 
decision, this is a kind of outcome explanation (Guidotti 
et  al. 2018). Simonyan et  al. (2013) use the gradient to 
build a saliency map to help understand which part of the 
input the model focuses on. However, as Smilkov et  al. 
(2017) claim, the gradient-based method will introduce 
noise. In the fuzzing task, these noises will not contrib-
ute to fuzzing efficiency, which we will explain in RQ3 
in Evaluation. Zhou et  al. (2016) use the global average 
pooling (GAP) layer to restore the partial information in 
the input, which can be called Class Activation Mapping 
(CAM). The limitation of CAM is that it has to change 
the network structure and replace the fully connected 
layer with GAP. In our task scene, since we can build the 
neural network, we use CAM to be our interpretation 
technique.

Approach
Overview. The overall architecture of our framework 
is shown in Fig.  1. We have four core modules: Model 
Training, Explanation, Node Selection, and Magic Value 
Identification. The term “Magic Value” in this paper not 
only means the signature of a file format, but it also rep-
resents constant values(e.g., enumeration type) in other 
fields. The core idea of our fuzzer is to utilize the local 
explanation technique in XAI to recognize critical input 
bytes related to code blocks and guide the fuzzer to focus 
on a worthy part of the input to mutate first. Since a 
neural network is the premise of explanations, we need 
to train a model to map an input to the coverage map. 
Besides, we use a Node Selection module to help the 
fuzzer focus on the more critical code, which may bring 
new coverage. Finally, we use the Magic Value Identifica-
tion module to extract particular values that will guide 
the fuzzer on how to fuzz during mutation.

Training. We aim to train a model that can simulate 
the behavior of a program: given a seed input, the model 
can predict the code coverage map. We use a classifica-
tion model to achieve the goal. First, we collect the seeds 
and their corresponding coverage map to preprocess. 
Then we train a convolution neural network with global 
average pooling (GAP) instead of a fully connected layer 
next to the last convolution layer.

Local Explanation. The local explanation is the core 
module we use to locate critical positions of the input 
to mutate. Here we consider the critical positions as the 
part of the input, which could unlock unvisited CFG 
nodes with mutations. In this module, we use the GAP 
layer to help us in interpretation. GAP brings the ability 
to localize an object in the input (Zhou et  al. 2016). In 
the fuzzing task, since we have trained a model to map 
the input (similar to pictures in computer vision) to the 
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coverage map (similar to labels), our intuition is to feed 
the explanation module with a block in the coverage map. 
Then the module may guide us with positions which have 
a tight connection with it. Once the input positions are 
known, we can guide the fuzzer to focus on mutations to 
this part with higher priority.

Node Selection. In the Local Explanation module, we 
intend to feed the model with a code block. But which 
block should be chosen first? We have two considerations 
when choosing the code to explore: 

(i)	� Many nodes in the CFG have not been visited, and 
we cannot choose them directly because the expla-
nation module does not understand how to explain 
this “label” since the trained model does not know 
this feature.

(ii)	� Some CFG nodes are hard to reach in fuzzing. For 
example, in a call to malloc with a fixed size, the 
failure branch may never be reached in fuzzing 
since the memory might be big enough to ensure 
the malloc a success. Focus on these hard-to-reach 
nodes first will waste time.

Based on the above considerations, our idea is to feed 
the model with visited nodes. These nodes should have 
more unvisited code blocks connected to them  and are 
easier to reach. We have two main steps to select code to 
be explored.

The first step is inspired by CollAFL. We analyze the 
CFG of the program and choose the nodes which directly 
connect unvisited child nodes. Then we initialize them 
with weights depending on how many untouched child 
nodes they have. The nodes chosen in this step are visited 

ones, but they have unvisited nodes directly connected 
to, which means mutation to input bytes related to this 
code may affect the conditional branch of the node. 
Therefore we are more likely to reach a new path.

The second step is to consider the difficulty of reach-
ing the code. During the mutation process by local expla-
nation, we found some nodes are hard to be explored. 
It means even if we mutate the positions extracted by 
local interpretation many times, we still cannot cover 
its directly connected children nodes. We apply the 
Dynamic Weight Adjustment (DWA) algorithm to 
decrease the weight of these nodes to focus on easier-to-
reach nodes first.

Magic Value Identification. Since we have figured out 
which code blocks should be explored and which bytes 
of the input have a strong relationship with the blocks, 
we use a lightweight static analyzer to identify if there are 
constant values we can extract to help the fuzzer know 
how to fuzz, for instance, file signature, enumeration 
value, and loop count.

Training
Data preprocess
Data preprocessing is fundamental in the training pro-
cess as the training data quality will directly affect the 
performance of the model (García et al. 2015). We need 
to collect two data types from the original fuzzing pro-
gress: seed file and coverage map. For the seed file, since 
we cannot clarify every file structure, we treat the input 
as raw bytes, the value of each byte is from 0 to 255. For 
the coverage map, we use binary instrumentation to 
obtain the map. If a specific block is covered, we set it to 
1, otherwise 0.
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labels which has few seeds covered. This step is essential 
because the original code coverage is usually imbalanced. 
We choose readelf as a target to illustrate, we randomly 
choose 120 ELF files as seeds, then run readelf with the 
seeds. The total block number we traced is 4001. We then 
draw a histogram of code coverage distribution in Fig. 3. 
The X-axis indicates the intervals that show the count 
of test cases. The max value is 120, the same as the total 
amount of the seeds. The Y-axis indicates the count of 
distinct blocks. Before preprocessing, the sum of all the 
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Fig. 2  Coverage distribution histograms

We describe the algorithm of preprocessing in Algo-
rithm 1 . We first figure out the largest file in the training 
data, set the file size with Smax , then pad the rest of the 
data to Smax with byte 0x00. Note the sequence of line 5 
and line 6 in Algorithm 1. After padding the file, we run 
the program because the code coverage may be different 
while parsing the padded file and original file.

After running all the padded files and get code cover-
age, we then prune the code coverage using the under-
sampling method and directly discard some coverage 
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columns in Fig. 2a equals to 4001, which is the total num-
ber of basic blocks covered by the seeds. In Fig.  2a, we 
observe that the distribution data is hugely imbalanced. 
At the very left of Fig. 2a, There are almost 1600 blocks 
covered by a small number (about less than 10) of cases. 
At the right of Fig. 2a, some nodes are covered by almost 
all cases. It is easy to uncover the reason: some common 
blocks can be covered by most of the seeds while some of 
the unique seeds may cover a number of rare blocks.

Imbalanced class distribution data will negatively affect 
the training model. There are many studies to deal with 
such problem, such as Castillo et  al. (1997) and Prov-
ost (2000). We follow the basic principles to process the 
imbalanced data: we use the under-sampling (Baran-
dela et al. 2004) approach to reduce the data in majority 
classes and discard some minority classes data to rebal-
ance the training data.

Figure 2b shows the distribution of the coverage after 
being pruned. The data is more balanced than those in 
Fig. 2a and the training model will benefit from the prun-
ing process.

Model
We use a convolution neural network (CNN) model in 
the training process, and the model is used to map seed 
input to coverage map. That is to say, given a well-trained 
model f and a corresponding input (consists of bytes 

x1, . . . xi . . . , xn ), the model can predict if a node covi can 
be covered or not.

Denote that xi is between [0x0,  0xFF] and covi is the 
probability which is between [0, 1].

Here we detail three critical points in our model. 

(i)	� We use a GAP layer instead of a fully connected 
layer.

(ii)	� We set the shape of our feature map produced by 
the last convolution layer to 128.

(iii)	� As we are clear that the count of code blocks may 
be huge when we run the seeds. To improve effi-
ciency, we design a segmental training algorithm 
shown in Algorithm 2.

In this algorithm, we firstly count the preprocessed 
nodes and sort them by the number of occurrences. Then 
for each turn, we select the top window of labels to train 
the model. Note that the sort procedure is essential since 
each turn, there might be new edges after sorting, which 
will be added to the tail, and these features can be trained 
later.

(1)
f
( x1

255
, . . .

xi

255
. . . ,

xn

255

)

= (cov0, . . . , covi, . . . , covm)

Fig. 3  Sample code and CFG
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We choose CNN as our model for the following two 
reasons: First, a CNN is usually used to do classification 
tasks. For example, given several panda pictures, a CNN 
automatically learns the hidden feature in these pictures. 
Later, when we feed the model with a new image, the 
model may tell us whether there is a panda in the picture. 
In our task, given a seed input, we want the model to pre-
dict whether a specific node can be covered or not. Both 
of these two scenarios are classification tasks.

Second, a CNN can easily filter out the background 
information in the target input. The model will focus 
on the main object by using the convolution and pool-
ing operation, which means the background has less 
effect on the final decision. That is very similar to pro-
gram analysis: the input file usually consists of metadata 
and data. Mutations to metadata will significantly influ-
ence the code coverage, whereas mutating data may bring 
less coverage variance. CNN has been demonstrated its 
ability to filter out the background in the picture. We uti-
lize this characteristic in fuzzing: filter out useless parts 
of data and focus on those which may have a significant 
influence on code coverage.

Local interpretation
Local interpretation helps us understand why the model 
gives the decision in classification tasks, especially which 
part of input contributes to the prediction. In the fuzzing 
progress, we can collect a large amount of training data, 
which are input files and the corresponding covered code 
blocks. We can train a model to map the input to visited 
code blocks. After the model is well trained, we provide 
a block that is visited but has unvisited nodes connected. 
We expect local interpretation to tell us which bytes are 
highly related to this block, then by mutating the input 
bytes instructed by the interpretation, we have a higher 
possibility to reach those unvisited nodes.

Note that, although the model only learns the map-
ping between input bytes and visited blocks, it can 
report input bytes related to visited blocks, including 
those related to the entry condition and the exit condi-
tion of the visited block. Mutating input bytes related to 
the entry condition may lead the program to explore the 
sibling blocks of the visited block, while mutating input 
bytes related to the exit condition may lead the program 
to explore children blocks of the visited block, including 
those unvisited children.
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If we know which byte is the variable related to the 
branch, we can reach the unvisited branch by mutating 
the enumeration bytes. For example, the header parser 
function will generally process the header part of the 
input file rather than the data section. If we feed the local 
interpretation module with a block in this function, this 
block has unreached nodes connected. It will guide the 
fuzzer to mutate bytes in the header to the unvisited 
blocks covered.

We will review one of the local explanation techniques 
named CAM (Zhou et  al. 2016). The core ideas behind 
CAM are: 

(i)	� Use a GAP layer to replace the fully connected 
layer.

(ii)	� Take advantage of partial information in the fea-
ture map produced by the last convolution layer 
behind GAP and the weight produced by GAP to 
generate localization information.

We will look at how the localization information is 
calculated: suppose we have an input with shape (h, w). 
The last convolution layer locates at Lth layer in the net-
work, and its output shape is (m, n, k), where k means the 
number of features, (m,n) means the shape of one feature 
map. The GAP accepts the (m,  n,  k) feature maps and 
produces (1, 1, k) values which represent the global aver-
age value of each feature in the Lth layer. wc

i  is the weight 
regarding class c. The final score, S, of class c is calculated 
as:

In this formula, Fi is the feature map produced by the Lth 
layer. Note that after the CAM is calculated, the size of 
the heatmap is (m,  n), which means we should restore 
this map to the shape of the original input. The general 
way is to upsampling the CAM to the input size, which 
is the final heatmap. In our framework, we design the 
network and set the size of the last convolution layer as 
128 of the input size. We have the following considera-
tions when we choose the size. Foremost, we do not have 
to keep the shape of the feature map the same as raw 
input since only parts of the input significantly influence 
the code coverage. Simultaneously, if we keep the origi-
nal size, there would be lots of convolution calculations, 
which would cause the training of the network to slow 
down.

(2)S =

k
∑

i=1

Fi ∗ w
c
i

Node selection
By using the local interpretation, we can guide the fuzzer 
on the part of the input strongly related to the given code. 
Here we aim to use the Node Selection to choose the 
more valuable code as an explanation target.

Consider the sample code in Fig.  3a and its CFG in 
Fig. 3b. The buggy function will be called if the initializa-
tion of object o fails. In the CFG, black nodes are covered 
while white ones have not been covered yet. Node B, D, 
and G will be called if the malloc fails, Node F represents 
the buggy function call. We should focus on C more than 
A because it is almost impossible to cover B, D, and G, 
although more new nodes are connected to A than C.

Initial Selection. We will first choose those nodes 
with more untouched nodes connected through initial 
selection. As general knowledge, a trained model can 
only map and explain the features that it has learned. For 
those unknown features, the model cannot do anything. 
That is, we cannot use the model to help us increase the 
code coverage if we feed the model with unvisited nodes.

To solve the gap, we select the nodes which are near 
unvisited ones. In Figure  3b, we will choose nodes A 
and C (untouched node B directly connected to A and F 
directly connected to C). Inspired by CollAFL, we first 
count the unvisited nodes connected to A and C. Then 
assign them with the initial weight based on the number 
of untouched nodes.

Dynamic Weight Adjustment (DWA). By using the 
DWA algorithm, we intend to decrease the weight of the 
hard-to-reach code. Considering the code snippet in Fig. 3a 
and its CFG in Fig. 3b. Nodes B, D, and G represent lines 
3-5, and the code will be executed if malloc fails. Generally, 
almost all the cases will succeed in malloc operation during 
fuzzing. Thus Node B, D, G are very hard to be touched. If 
we only use the initial weight to evaluate the importance of 
the node, we may waste the power on useless nodes. So our 
solution is to decrease the weight of node A dynamically 
even it has more untouched child nodes at the beginning.

Suppose we have N cases that can cover node A and 
node C at the beginning. The initial weights for these 
two nodes are 3 and 2. Choosing a case Ni to mutate, we 
feed the interpretation module with node A and get the 
related positions in the input. If node B is not covered 
after the fuzzer mutates the positions, we will subtract 
the current weight with 1N  , then the weight of node A will 
be updated as 3− 1

N  . As fuzzing goes on, the weight of 
node A will be decreased during mutation. Note that the 
N keeps the same during one iteration, which means it 
will only change after the model is retrained.
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Magic value identification
We augment the original mutator of AFL with external magic 
values embedded in CFG nodes. The term “magic value” in 
this paper not only means the signature of a file format, but 
it also represents constant values(e.g., enumeration type) of 
other fields in the file. In our design, magic values can be 
extracted in two ways: constant values and switch cases. For 
constant values, we implement a static analyzer similar to 
Vuzzer (Rawat et al. 2017). For switch cases, since the assem-
bly code will use a jump table rather than cmp instructions, 
we design a method to identify switch cases in the assembly 
code and extract the magic values. Different as REDQUEEN 
(Aschermann et al. 2019b): they try to find subtractions to 
identify switch-case, which can be improved by a more gen-
eralized way to extract case values in switch-case.

Here we detail the idea on how to extract case values 
embedded in switch-case. First, choose the nodes which 
have more than three successors since we consider 
switch-case usually has more than three branches. Then, 
convert the code in the node to intermediate representa-
tion and find the base address of the jump table. At last, 
for each successor of this node, calculate the difference 

between the offset of the successor and the offset of the 
base address of the jump table. The results are the case 
values, which can guide the fuzzer on how to mutate. The 
extraction algorithm is shown in Algorithm 3.

From line 18 to line 21 in Algorithm 3, instead of just 
using the constant values directly, we set a threshold to 
mutate sufficiently. The reason behind this is that if the 
value represents a loop count or a size, we may want to 
mutate the value around.

Implementation
Main framework
We implement the AI component of CAMFuzz with 
Python. While for the fuzzing part, we rewrite the original 
AFL to support open source targets. To support binary-only 
fuzzing on Windows, we build CAMFuzz on top of Win-
AFL (Fratric 2017), which is a port of AFL for the Windows 
platform. CAMFuzz utilizes the bitmap provided by AFL 
and WinAFL as feedback respectively. We also add extra AI 
mutation and magic value mutation strategy to the origi-
nal AFL. The detailed algorithm of CAMFuzz is shown in 
Algorithm 4.
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Model training
We collect the training data, such as seeds and coverage, 
with the help of DynamoRIO (2020) during fuzzing. We 
use online training along with fuzzing. Specifically, CAM-
Fuzz collects training data during fuzzing, then trains 
the model with Keras to guide the fuzzer. To increase 
the fuzzing efficiency, we first trim the code coverage as 
described in Data Preprocess section. Then we use a seg-
mental training method as described in Algorithm 2. Both 

of the two steps can help to decrease the dimension of the 
label in the model, and then the training time can be short 
enough as the experiment shows in GPU resource occupa-
tion section. We implement CNN with five hidden layers 
embedded. The last hidden layer is the GAP layer, which 
we use to keep the partial information produced by the 
convolution layer. The optimizer we use is adam, and we 
use binary_crossentropy as the loss function.

Table 1  Summary of 13 applications to test

Program Descirption Parameter

giflib Image parser ./gif2rgb @@

jhead Image parser ./jhead @@

libjpeg Image parser ./djpeg @@

tcpdump Network packet parser ./tcpdump -nr @@

libde265 Video processor ./dec265 @@

zlib Compression tool ./minigzip -c @@

catdoc Document parser ./catdoc @@

catppt Document parser ./catppt @@

xls2csv Document parser ./xls2csv @@

Hancom Office Document parser N/A

readelf ELF parser ./readelf -a @@

objdump Binary file parser ./objdump -x @@

Microsoft JetEngine Database engine N/A

AI mutation
Here we use the local explanation to guide the fuzzer on 
where to fuzz, and we use values extracted from CFG 
nodes on how to fuzz. For those valuable positions pro-
duced by the local explanation, we choose the top 256 
related ones. During magic value extraction, we trans-
form the assembly code to intermediate representation 
with VEX (Shoshitaishvili 2014).

Node selection
To calculate the weight of the nodes, we use two levels 
of iteration to calculate the number of unvisited nodes 
with the help of Angr (Wang and Shoshitaishvili 2017). 
For instance, if there is a call instruction in an unvisited 
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node, we will count the number of nodes in the call. The 
DWA algorithm will be invoked on the completion of 
every AI mutation cycle for efficiency reasons.

Evaluation
In this section, we evaluate CAMFuzz and answer the 
following questions:

•	 RQ1: What is the performance of CAMFuzz, com-
paring to other state-of-the-art fuzzers?

•	 RQ2: What is the performance of the neural network 
model used in CAMFuzz?

•	 RQ3: Can the CAM help the fuzzer focus on related 
positions better than the gradient-based method?

Evaluation setup
Fuzzers.To answer the questions above, we compare 
CAMFuzz with both AFL and WinAFL. Additionally, 
we compare it with six other state-of-the-art fuzzers: 
Winaflfast, NEUZZ, AFLFast, AFL-rb, Angora, and Tor-
toiseFuzz. Here we choose NEUZZ because it is the first 
fuzzer to use the gradient-based method in the AI field 
to guide fuzzing for improvement, and it significantly 
improved in finding new paths. For AFL, being the most 
popular fuzzer and extensively studied, it is valuable to 

be included as a baseline benchmark comparison. For 
AFLFast, TortoiseFuzz, and AFL-rb, they are all based on 
AFL and equipped with additional interesting mutation 
strategies. For Angora, it uses taint analysis and gradient 
descent to increase fuzzing efficiency. These are some of 
the state-of-the-art traditional fuzzing tools. It is impor-
tant to compare our AI-based fuzzer with traditional 
fuzzing techniques. For WinAFL and Winaflfast, since 
CAMFuzz can be applied in closed-source targets, we 
choose WinAFL and Winaflfast to experiment on closed-
source targets in Windows.

Target Programs. We consider multiple factors when 
choosing the target programs to be tested, such as pop-
ularity, functionality, and frequency of updates. From 
Klees et  al. (2018), the median number of real-world 
programs tested by 32 different papers in recent years is 
7. We evaluate the fuzzers with 13 real-world programs 
listed in Table  1. We choose these targets because they 
are popular and are used to process different kinds of 
input, such as pictures, network traffic, compressed files, 
and multimedia files. They come from different develop-
ers, which can ensure the variety of code and the gen-
erality of CAMFuzz. CAMFuzz can not process textual 
inputs which rely much on semantics, such as XML, 
HTML, PDF, etc. We leave this kind of input in further 
work. Despite the real-world programs, we also evaluate 

Table 3  Unique bugs found by different fuzzers (known/unknown)

*The fuzzer failed to run on the target over the whole run

Program version AFL AFLFast NEUZZ AFL-rb Angora TortoiseFuzz WinAFL CAMFuzz WinAFLFast

giflib 5.2 0/0 0/0 0/0 0/0 0/0 0/0 N/A 0/1 N/A

jhead 3.04 3/0 1/0 N/A* 0/1 2/1 2/0 N/A 1/2 N/A

libde265 1.0.5 2/0 3/0 N/A* 1/0 3/0 4/0 N/A 7/1 N/A

catdoc 0.95 0/1 0/1 0/2 0/1 0/1 0/1 N/A 0/3 N/A

catppt 0.95 2/1 3/1 3/1 2/0 2/2 1/1 N/A 2/3 N/A

xls2csv 0.95 1/2 1/0 0/2 1/1 1/2 0/2 N/A 0/3 N/A

Hancom 9.6.1.7749 N/A N/A N/A N/A N/A N/A 0/1 0/3 0/0

Ms. Jet Multiple N/A N/A N/A N/A N/A N/A 0/1 0/3 0/1

Total N/A 8/4 8/0 3/5 4/3 8/6 7/4 0/2 10/19 0/1

Table 4  Bugs found in LAVA-M test suites

*We use the experiment results from the paper of NEUZZ since it is not open-sourced

Program AFL AFLFast AFL-Magic AFLFast-Magic NEUZZ* Vuzzer CAMFuzz Angora

base64 1 1 13 18 48 16 48 48

md5sum 0 0 17 18 60 19 57 56

uniq 0 2 15 14 29 24 28 28

who 4 3 41 49 1582 48 1623 1541
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CAMFuzz on the LAVA-M benchmark, a popular perfor-
mance benchmark suite for fuzzers.

Seeds. We randomly choose the initial seed files pro-
vided by the target program, or from the Internet if 
they do not provide the sample seeds. We use the same 
thresholds described in Data Preprocess section.

RQ1: What is the fuzzing performance
To determine the effectiveness of CAMFuzz, we measure 
two metrics: basic block coverage and crashes found.

Basic block coverage
The experiment lasted for 24 h, and we fed all the fuzz-
ers with the same seed set when testing one target. For 
the hardware configuration, we use a machine with 8GB 
RAM, Intel Xeon CPU E5-2650, and GTX 1060 6GB 
GPU to train the AI model for NEUZZ and CAMFuzz. 
For the closed-source targets, we run the fuzzers on Win-
dows 10. For the open-source targets, we use Ubuntu 
18.04 to finish the experiment.

We repeat the experiment 5 times to mitigate the ran-
domness issue. The final amount of basic block coverage 
after 24 h of fuzzing is shown in Table 2. We calculate the 
mean amount of basic blocks using DynamoRIO (Bruen-
ing 2020) in the experiment. In Table 2, we also measure 
the improvement of CAMFuzz (DWA+MAGIC+AI) 
over the second-best fuzzer, on average coverage 
increased 17.32%. From the final result, we can see that 
our fuzzer outperforms the rest of the fuzzers.

For programs responsible for parsing complex file 
structures, such as readelf, libjpeg, and Microsoft Jet, 
CAMFuzz outperforms other fuzzers significantly. The 
reason is that the file format consists of several meta-
data sections, such as headers, data definitions, tables, 

etc. Different parts of code are responsible for process-
ing different file sections, and CAMFuzz can learn the 
relationship between the input and the code coverage. 
At the same time, our node selection module will pick 
nodes that are easier to touch first, along with critical val-
ues such as magic value and enumeration. Then the local 
interpretation may produce the prioritized fuzzing posi-
tions given a node from CFG.

To determine how the magic values extracted from the 
code affect the final result, we extend the original AFL 
with magic values extracted from our Magic Value Iden-
tification module. Interestingly, the final coverage of AFL 
with magic is less than the original AFL in several targets. 
When we analyze the reason, we find that AFL does not 
know where to place these magic values properly. It ran-
domly selects positions to mutate with the magic value, 
which will waste much power in useless mutation. How-
ever, for CAMFuzz, since it is aware that where the magic 
value comes from and which bytes of the input have a 
strong relationship with the code, it can mutate the input 
more precisely.

From the result, we can conclude that when we apply 
the magic value and DWA strategies, the fuzzer performs 
much better.

This is because DWA helps the fuzzer focus on those 
unvisited nodes which may be covered with higher 

Table 5  Contribution of different components (basic blocks in 24 h)

Program AFL/WinAFL CAMFuzz(MAGIC) CAMFuzz(AI+DWA) CAMFuzz(AI) CAMFuzz(AI+MAGIC) CAMFuzz(AI+MAGIC+DWA)

giflib 1618 1594 ( − 1.48%) 1980 (22.37%) 1881 (16.25%) 1923 (18.85%) 2051 (26.76%)

jhead 1161 1161 (0.0%) 1166 (0.43%) 1160 ( − 0.09%) 1157 ( − 0.34%) 1164 (0.26%)

libjpeg 3352 3208 ( − 4.3%) 5744 (71.36%) 5302 (58.17%) 5686 (69.63%) 5899 (75.98%)

tcpdump 25280 22854 ( − 9.6%) 32991 (30.5%) 31213 (23.47%) 32132 (27.1%) 33729 (33.42%)

libde265 3617 3539 ( − 2.16%) 4079 (12.77%) 3902 (7.88%) 4088 (13.02%) 4092 (13.13%)

zlib 1901 1878 ( − 1.21%) 1907 (0.32%) 1911 (0.53%) 1908 (0.37%) 1919 (0.95%)

xls2csv 2102 1996 ( − 5.04%) 2469 (17.46%) 2400 (14.18%) 2438 (15.98%) 2517 (19.74%)

Hancom 5229 4857 ( − 7.11%) 8683 (66.05%) 8093 (54.77%) 8422 (61.06%) 8943 (71.03%)

readelf 11201 10397 ( − 7.18%) 15933 (42.25%) 14687 (31.12%) 15443 (37.87%) 16211 (44.73%)

objdump 7204 6973 ( − 3.21%) 8863 (23.03%) 8500 (17.99%) 8644 (19.99%) 9006 (25.01%)

Microsoft Jet 7390 6946 ( − 6.01%) 13085 (77.06%) 12437 (68.29%) 12901 (74.57%) 13406 (81.41%)

Average − 4.30% 33.05% 26.60% 30.74% 35.67%

Table 6  The impact on different seeds sizes

Size Coverage (AFL/CAMFuzz) Accuracy (%)

10kb 9787/14336 (+ 46.48%) 81

20kb 10122/13312 (+ 31.52%) 82

40kb 10634/13124 (+ 23.42%) 82
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possibility. Then in the mutation stage, the fuzzer knows 
how to mutate.

Bugs found by different fuzzers
Since the purpose of a fuzzer is to find bugs in soft-
ware, the number of unique bugs found is a critical 
metric when we assess the fuzzers. Table  3 repre-
sents the unique bugs found by CAMFuzz compar-
ing with other fuzzers. Some fuzzers do not apply to 
the targets. For example, only CAMFuzz supports 

both open-source targets and binaries, so some fuzz-
ers regarding Hancom and Microsoft Jet are marked 
as N/As. We found 19 previously unknown bugs in 
7 days. 6 of them got CVEs so far: 3 from Microsoft 
and 3 from Hancom Office. From the results, we can 
conclude that CAMFuzz has a good ability to find new 
vulnerabilities in both closed-source and open-source 
targets.

Evaluation on LAVA-M Database There are four pro-
grams in the LAVA-M database suites, each of which 
contains several bugs injected. We also compare the 
number of bugs found by AFL, AFLFast, NEUZZ, Vuzzer, 
Angora, and CAMFuzz with the same seeds for 5 h. Since 
CAMFuzz is equipped with magic values, we also com-
pare AFL and AFLFast with magic values. The result is 
shown in Table  4. We use the result from the paper of 
NEUZZ directly since they use a custom LLVM to find 
the magic value, and that part is not open source. From 
the result, we can see that AFL and AFLFast found fewer 
bugs than others. This is because most of the bugs in 
LAVA-M are injected and triggered with magic values. 
However, when we extend both fuzzers with magic val-
ues, CAMFuzz still outperforms them. That is because 
the local interpretation can help the fuzzer to put magic 
value in the right place. For Angora and NEUZZ, we con-
sider they have a competitive mutation strategy targeting 
such bugs in LAVA-M. For CAMFuzz, the static analysis 
helps CAMFuzz identify magic values automatically, and 
the AI can provide valuable information on positions to 
mutate.

Table 7  GPU time during 24 h testing

Target Duration (mm:ss) Train times

giflib 17:03 10

tcpdump 35:15 10

jhead 22:24 10

libjpeg 32:05 13

libde265 31:33 12

zlib 29:21 13

catdoc 30:11 11

catppt 29:40 11

objdump 31:01 12

xls2csv 30:21 11

readelf 31:42 8

Hancom 45:33 11

Microsoft Jet 44:22 10

Average 31:34 11

Fig. 4  Heatmap produced by the CAM (left) versus the gradient (right). Highlight parts represent importance
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Further analysis
To further understand the contribution of different com-
ponents, we first evaluate CAMFuzz with different com-
ponent combinations.

We run 11 programs for 24 h due to a time  limit. We 
calculated the amount of reached basic blocks. We set 
the original AFL/WinAFL as a baseline to calculate the 
percentage of basic block improvement. The result is 
shown in Table 5. From the result, we have the following 
conclusions:

First, local interpretation contributes the most regard-
ing DWA and Magic Value Identification strategies: the 
average improvement of CAMFuzz with AI outper-
forms 26.60% than AFL/WinAFL, while AI+DWA and 
AI+Magic outperform AFL/WinAFL by 33.05% and 
30.74% respectively. This means the AI strategy in CAM-
Fuzz makes the most contribution. Second, when we 
equip the fuzzer with magic values only, the fuzzer per-
forms worse. The reason is that the fuzzer does not know 
where to put this magic value when mutating the input, 
and it wastes much time in the magic value mutation 
stage.

RQ2: Performance of the NN model
Since the model itself is fundamental, we will train the 
model multiple times during fuzzing. We will evaluate 
how the seed size could affect the training, how much 
GPU resource it consumes, and the accuracy of the train-
ing model.

Size of seeds
The cost of model training is proportional to seed sizes, 
and this phenomenon is similar to the probing/reprob-
ing stage in You et  al. (2019). This section will evaluate 
how the seed sizes could affect the accuracy of model and 
code coverage.

We use readelf as the target, and we split the seeds 
into different groups by size. Then we run CAMFuzz 
and AFL with the seeds, respectively. The result is 
shown in Table 6. We can conclude from the result: 1) 
there is an inverse relationship between seed sizes and 
the code coverage growth. The reason which causes the 
growth to decrease is: as the size of seeds grows, the 
training stage will get slower. 2) The accuracy of the 
model stays stable among different sizes, and the accu-
racy is calculated as:

Where CTP is the number of nodes covered and predicted 
as 1 by the model. CTN is the number of nodes that are 
uncovered and predicted as 0 by the model. Cnodes is the 
total number of nodes used in the training progress.

GPU resource occupation
We use the extra resource, i.e., GTX 1060 GPU, to 
help improve our fuzzer, while other traditional fuzz-
ers can not use GPU in fuzzing. We will evaluate how 
much GPU time our fuzzer takes up during fuzzing to 
ensure CAMFuzz consumes reasonable GPU resources 
and the design of online training is practical. We run 
CAMFuzz with the target programs for 24  h, and we 
calculate the accumulated GPU occupation time. From 
the result in Table  7, the average training time dur-
ing 24 h is 31  min, and there are on average 11 train-
ing iterations. Note that the re-train happens when all 
the model labels are enumerated and interpreted, and 
the number of re-train iterations changes with different 
target programs.

To conclude, we use an extra 2.15%(31min/24*60min) 
GPU time, but we achieve 117% code coverage improve-
ment and 207% extra bugs found.

(3)Accuracy = (CTP + CTN )/Cnodes

Fig. 5  Manually analyzed case
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the tail for proper display, so there is a dark portion in 
our picture at the end. For the jhead, we can see the high-
lighted concentrates at the front, which is the jpeg file 
header. That means for this program, we need to mutate 
the front part with high priority rather than the rest of 
the file. Interestingly, the highlighted part in giflib mostly 
locates at the tail part. When we investigate it, we find 
that the nodes we choose are responsible for processing 
the data part of the gif file. For minigzip, as we use the 
command line to compress the target file, we can see the 
highlighted is uniformly distributed across the file.

To further analyze the details, we can see that the CAM 
based method has better interpretation ability for fuzzing 
in the following aspects:

First, the continuity is better than the gradient-based 
method. This can help the fuzzer explore more adjacent 
positions. For example, many fields consist of multiple bytes, 
and these bytes are continuous for 2 bytes, 4 bytes, etc.

Second, there is less noise than the gradient-based 
method. This means that when we feed the model with 
a given code block and input vector, the gradient-based 
method will produce more unrelated positions, which 
will cause a waste of time in mutation. To illustrate this 
problem we manually analyzed nearly 100 cases in dif-
ferent programs and different nodes. Here we choose a 
readelf one to explain.

We pick a CFG node that is responsible for reading the 
section type structure in the section header table. We 
calculate the CAM based heatmap and gradient-based 

Fig. 6  OpenDatabase function

RQ3: Can the CAM help the fuzzer focus on related 
positions better than the gradient‑based method?
Here we want to see how local interpretation helps the 
fuzzer locate those critical input positions. Does our 
method outperform the gradient-based method in posi-
tion locating? To answer this question, we visualize the 
positions that our fuzzer focused on during fuzzing. 
Then we analyze some cases manually.

We choose six targets to draw the heatmap, and we 
observe similar results on the rest programs. Our bench-
mark is the gradient-based method, and we design our 
experiment as follows: using the same training set and 
model to train for 50 epochs. After the model is well 
trained, we choose the nodes in distinguishable func-
tions, such as header parsing functions, instead of those 
in library functions like print,  error, and malloc from 
the training data. For each node, we use CAM and the 
gradient-based method to calculate positions related to 
this node. We select the top 256 related positions and vir-
tualize the importance of positions with a heatmap. We 
reshape the original input size to squares and the results 
are shown in Fig. 4.

We first conclude that both CAM and the gradient-
based method can effectively help the fuzzers focus on 
metadata from the heatmap.

For readelf, we know that the ELF file header is located 
at the front of the file and the section header table at the 
end of the file. In the heatmap, we can see the front and 
the tail are highlighted. Note that we pad the heatmap at 
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heatmap separately and the result is shown in Fig. 5. We 
find that the information CAM provided is more accurate 
and is with less noise. Figure 5a is calculated with CAM, 
Fig. 5b is built with gradient, and Fig. 5c is the file format 
structure. As we can see that the highlights provided by 
the CAM output are mostly in the section table, while 
the gradient-based provides us more noise, e.g. the front 
of the file and the middle of the file. The fuzzer may waste 
time in mutating the noise part.

Case study
Microsoft Jet database Engine type confusion vulnerability
In the experiment discussed in the Evaluation section, 
we found several Microsoft vulnerabilities and they 
have been fixed. We choose one of them to analyze, 
and the call stack at the program crash site is listed in 
Listing 1.w

Fig. 6 while the whole CFG is shown in Fig. 6b. There is a 
call to Connection::FindDatabase in the first node. Dur-
ing the entire fuzzing process, we find that FindDatabase 
always returns 0, which we consider as a success status. The 
call to FindDatabase seems to ensure that the database 
exists and can be connected to before further processing. 
We count the 13 nodes on the left and 11 on the right sepa-
rately in Fig. 6b. The number represents the initial weight.

If we do not apply DWA, more power will be spent on 
the left since it has more unvisited blocks than that on the 
right. Nevertheless, in our case, DWA helps the fuzzer 
decrease the weight of the left part dynamically. When 
fuzzing progresses, DWA finds it too hard to reach the 
left part, and the fuzzer will decrease the weight. When 
we finally reach the crash, we find that the weight for the 
first block has been decreased to a negative value, which 

To trigger the bug, we first need to guide the program 
to call msjet40!ErrOpenDatabase. Then we have to craft a 
TblPage object in the PoC to trigger the final crash. Since 
the MDB file format is very complicated, we do not ana-
lyze the format itself. Instead, we focus on how the DWA 
and local interpretation help the fuzzer find it.

We try recalling how our fuzzer finds the bug and record 
the intermediate data, such as the changes of weight for 
different nodes under the DWA strategy and the input 
positions our fuzzer focused on with local interpretation.

When we analyze the Session  :    : OpenDatabase (line 5 
in Listing 1)function, we find that the DWA strategy helps 
the fuzzer avoid wasting time in useless nodes in this func-
tion very well. Part of the CFG for this function is shown in 

means this block is not as important as initially marked. 
Also, we find that when feeding our trained model with 
the first node of InitTable, the Local Interpretation mod-
ule provides us positions mostly in the Table Definition, 
an essential structure in .MDB file. It is also where the 
fuzzer mutates and causes the final crash. In this case, the 
DWA strategy helps the fuzzer focus on more valuable 
blocks, while the Local Interpretation module helps the 
fuzzer identify where to fuzz.

Jhead out of bounds read bug
Jhead is a command-line tool for processing photo EXIF 
information and it is shipped with Fedora by default.
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2019) uses a neural network to make a smooth approxi-
mation of the branching behavior in target programs. 
However, the gradient may bring noise and thus cause a 
waste of time in mutating useless positions. MTFuzz (She 
et  al. 2020) considers multiple factors such as context 
and mutation approach when training the NN to predict 
coverage. FuzzGuard (Zong et  al. 2020) uses the NN to 
predict whether the seed file can achieve the target. It is 
a kind of Directed Grey-box Fuzzing (DGF) technique. 
CAMFuzz tries to solve different problems in fuzzing 
than both of these two fuzzers.

Another type is to use algorithms to learn the file for-
mat (Blazytko et al. 2019; Lee et al. 2020; Wang et al. 2017; 
You et al. 2019; Godefroid et al. 2017; Sivakorn et al. 2017; 
Mathis et al. 2020; Fioraldi et al. 2020). These algorithms 
could automatically learn the format or the grammar and 
then make changes within the specification scope. Differ-
ent from these solutions, our intuition is to determine the 
relationship between input and CFG. Although CAMFuzz 
does not infer the input format, it can know which part of 
code is easier to be covered and which input part is highly 
related to a given code block. By knowing the informa-
tion, CAMFuzz can mutate the input better.

Guided fuzzing
Some research works try to make the fuzzing more effi-
ciently based on different guidance methods. Angora 
(Chen and Chen 2018), TaintScope (Wang et  al. 2010), 
Steelix (Li et al. 2017), and some other works like Wagner 
(2009); Cadar et al. (2008); Godefroid et al. (2012, 2008); 
Rawat et  al. (2017); Yun et  al. (2018); Stephens et  al. 
(2016); Choi et al. (2019) use taint analysis or a combina-
tion of symbolic execution to obtain coverage and other 
information to guide the fuzzing based on the detailed 
feedback information.

We take the discovery of a known vulnerability in jhead, 
CVE-2020-6624, as an example to demonstrate the meth-
odology of CAMFuzz. The code in Listing  2 shows the 
critical part to trigger the bug. It is responsible for using 
the marker type of Jpeg section and traversing the Data to 
build different tables.

To trigger the bug, the magic bytes of the section must be 
equal to M_DQT, then Data will be processed as the DQT 
section. We check the critical values found by the static 
analysis module and find it interesting that the fuzzer finds 
both M_DQT and 64, which is a loop count. As we have 
claimed in Magic Value Identification, after identifying the 
critical values, we will add several adjacent values to criti-
cal values to mutate the space sufficiently. Taking this case 
as an example, we choose a random threshold of T and add 
(64 − T , 64 + T ) as candidate values.

Related work
The previous grey-box fuzzing studies have achieved 
great success, including various learning-based and 
guided fuzzing methods.

Learning‑based fuzzing
Several learning-based methods have been proposed to 
help improve the fuzzing efficiency.

The first kind studies the relationship between input 
and code coverage. Rajpal et  al. (2017) train the model 
to predict which part of the modification is promising to 
mutate. The intuition is that during fuzzing, mutations 
to some positions may trigger new path coverage while 
others do not. Instead of just predicting which input part 
may bring new coverage, CAMFuzz knows which part 
of the input has a high relationship with a given CFG 
node, and by assigning different weights to the nodes, it 
can mutate the input more targeted. NEUZZ (She et al. 
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VUzzer (Rawat et al. 2017) proposes a fuzzing method 
without any prior knowledge of the application or input 
format. It collects information based on the control flow 
and data flow results provided by Pin (Luk et  al. 2005) 
and then uses it to generate more interesting seeds. These 
traditional methods rely on the CPU heavily, but there is 
a disproportion between the growth of CPU and fuzzing 
performance, since there are nonlinear constraints in the 
execution path for the solver. Traditional methods may 
get stuck when solving the constraints.

Unlike these approaches, with a prediction-based 
method, we do not need symbolic execution or data-flow 
analysis which may be considered as heavy and cause the 
fuzzing stuck. Our method relies on GPU and we have 
proven that a low-cost GPU can achieve more improve-
ment than traditional fuzzers. We use static analysis to 
extract particular values in the code blocks, while during 
fuzzing, we use the DWA strategy to determine which 
block is more important than others.

Conslusion
This paper proposes a novel fuzzing technique mainly 
based on the local interpretation technique in machine 
learning. Combined with static analysis and DWA strat-
egy, CAMFuzz can guide the fuzzer on where and how to 
fuzz. By the experiment, it shows that CAMFuzz outper-
forms state-of-the-art fuzzers, and CAMFuzz also found 
19 previously unknown vulnerabilities in the Microsoft 
Jet engine, Hancom Office, and several open-source 
programs.
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