
Shi et al. Cybersecurity (2022) 5:17
https://doi.org/10.1186/s42400-022-00116-x

RESEARCH

CAMFuzz: Explainable Fuzzing with Local
Interpretation
Ji Shi1,2,3,4, Wei Zou1,2,3,4, Chao Zhang5*  , Lingxiao Tan1,2,3,4, Yanyan Zou1,2,3,4, Yue Peng1,2,3,4 and Wei Huo1,2,3,4 

Abstract 

Grey-box fuzzing techniques have been widely used in software bug finding. In general, there are many decisions
to make in the fuzzing process, including which code block in the target program should be explored first, which
bytes of an input seed should be mutated to reach the target code block, and how to mutate the chosen input bytes.
However, existing solutions usually rely on random exploration or certain heuristics to choose where and how to fuzz,
which limits the efficiency of fuzzing. In this paper, we propose a novel solution CAMFuzz to guide the fuzzing process
with explainable decisions in explainable artificial intelligence (XAI). First, we propose a dynamic weight adjustment
algorithm, which considers both the difficulty of reaching a block and the number of unvisited blocks nearby, to find
code blocks worthy to explore first. Second, we utilize a widely used local interpretation technique, i.e., class activa-
tion mapping (CAM), to recognize which part of an input seed should be mutated to reach a given target code block.
Therefore, CAMFuzz can distinguish which part of code in the program is more important and which positions in
the input file should be mutated first, in order to achieve a better code coverage and bug finding efficiency. Third, to
further help the fuzzer increase fuzzing efficiency, we leverage a lightweight static program analysis to help the fuzzer
identify magic values. We implement a prototype of CAMFuzz and evaluate it on 13 real-world programs (including
11 open source targets, 2 closed-source commercial products including a Microsoft component and Hancom Office)
Results show that CAMFuzz outperforms state-of-the-art fuzzers in both code coverage and bug finding. To detail,
CAMFuzz on average achieves 2.07× more bugs and 1.17× coverage improvements. In total, it found 19 previously
unknown vulnerabilities, of which 6 have been assigned by CVE so far.

Keywords:  Fuzzing, Explainable artificial intelligence, Grey-box fuzzing

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Recently, grey-box fuzzing techniques have become the
most popular solution in finding bugs. One of the unique
tools is American Fuzzy Lop (AFL) (Zalewski 2014). It
has been proven effective when finding bugs in real-
world software.

Challenges: Despite the success of its genetic algo-
rithm, AFL has many blind spots and makes random
decisions in the fuzzing process, including which bytes of
an input seed should be mutated to trigger the unvisited

code block, how to mutate the chosen input bytes, and
it does not distinguish the code blocks with different
weights. These all limit the efficiency of fuzzing (Gan
et al. 2020; Lemieux and Sen 2018; Wang et al. 2020).
There are several solutions proposed to address these
problems. Generally, they will (1) figure out more signifi-
cant parts such as branches or code with higher weight,
(2) analyze which input bytes may have a relation with the
code using taint analysis, or (3) mutate these bytes with
higher priority and replace them with specific values.

First, to prioritize code blocks to explore, many stud-
ies focus on counting unvisited code blocks, e.g., used
in CollAFL (Gan et al. 2018) and FairFuzz (Lemieux and
Sen 2018). However, we believe this strategy is not suf-
ficient. For example, although more unvisited child nodes

Open Access

Cybersecurity

*Correspondence: chaoz@tsinghua.edu.cn
5 Institute for Network Sciences and Cyberspace, Tsinghua University,
Beijing, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7894-8828
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00116-x&domain=pdf

Page 2 of 20Shi et al. Cybersecurity (2022) 5:17

connect to some code blocks, the unvisited nodes may
hardly be reached. For example, the code responsible for
handling the failure of malloc operation with a fixed size
is useless in fuzzing. Thus, it is a waste of power if the
fuzzer focuses on those blocks.

Second, given target code blocks to explore, the most
straightforward solution to find out related critical input
bytes is data-flow or symbolic execution analysis. Never-
theless, it is time-consuming. For example, TaintScope
(Wang et al. 2010) uses dynamic instrumentation to per-
form traditional data-flow analysis (e.g., taint analysis),
which will decrease the fuzzing efficiency. Some light-
weight data-flow analyses have been proposed to speed
up the taint analysis, e.g., GreyOne (Gan et al. 2020), Pro-
Fuzzer (You et al. 2019). However, they still face much
manual work to define rules when doing data-flow analy-
sis (e.g., defining a rule to infer the type of input field) or
under-taint issues (Kang et al. 2011).

Recently, machine-learning-based methods have been
proposed to guide the fuzzer on where to fuzz, such as
NEUZZ (She et al. 2019) and Rajpal et al. (2017). How-
ever, existing techniques are still in the early stage and
have limitations. For example, Rajpal et al. (2017) use
LSTM to predict good locations to fuzz. However, the
training stage of the model lasts long. NEUZZ uses the
gradient derived from the neural network to locate criti-
cal bytes in the input to mutate and outperforms state-
of-the-art fuzzing techniques. However, as shown in RQ3
in the Evaluation section, the gradient is unstable and
will introduce much noise. The noise itself may cause the
fuzzer to waste power on mutating unrelated input posi-
tions when given a code block.

Third, given input bytes to mutate, several solutions
employ data-flow analysis to infer which values should
be used for mutation. For instance, VUzzer (Rawat et al.
2017) relies on static and dynamic analysis to infer criti-
cal values, including magic numbers, etc., to replace
target input bytes. Nevertheless, it may produce false
negatives in calculating constant values, and it needs
traditional data-flow analysis to calculate the positions
related to these values.

Our Solution: To solve the challenges, we present
a novel solution named CAMFuzz to guide the fuzzing
process with explainable decisions. Specifically, it lever-
ages the explainable artificial intelligence (XAI) and pro-
gram comprehension to determine which code blocks
in target programs should be explored first, which input
bytes should be prioritized to mutate to reach target code
blocks, and how to mutate these bytes (i.e., which value
to use).

First, we propose a dynamic weight adjustment algo-
rithm to prioritize code blocks (i.e., nodes in the con-
trol flow graph) to explore. For each candidate node, our

algorithm considers not only the number of its unvisited
children in the CFG but also the difficulty of reaching it.
We intend to explore those easier-to-reach blocks first,
then the rest. Second, we utilize XAI techniques to deter-
mine which input bytes to mutate to explore target code
blocks. XAI is used to help humans understand why the
AI model makes the specific decision. For example, given
a picture of a cat, XAI can help us understand which part
in the picture plays the most crucial role when the model
predicts it as a cat. We utilize local interpretation tech-
nique in XAI field to speculate the input positions with
a strong relationship given a target code block. After a
thorough consideration (as shown in Explainable Arti-
ficial Intelligence section), we choose one of the local
interpretation techniques, Class Activation Mapping
(CAM), to interpret which input bytes are more valu-
able to mutate to reach a given code block. Lastly, we
leverage static program analysis to extract magic value,
enumeration, and other values of interest from target
programs, to determine how to mutate the chosen input
bytes (i.e., what values to use during mutation). We use
the term “magic value” in this paper to represent not only
the signature of a file format (e.g., “0x5A4D” stands for a
PE file), but also constant values of other fields that have
a set of predefined values in the file (e.g., the MARKER
field in JPEG format, or E_TYPE in ELF format)

Results: We implement a prototype of CAMFuzz
and evaluate it on 13 real-world programs. We com-
pare it with AFL, AFLFast (Böhme et al. 2017), FairFuzz,
NEUZZ, Angora (Chen and Chen 2018), TortoiseFuzz
(Wang et al. 2020), WinAFL (Fratric 2017), and Win-
aflfast (Bohme 2018). The results show that CAMFuzz
outperforms the other fuzzers in both code coverage
and bug finding. We find 19 previously unknown vul-
nerabilities consisting of 13 from open-source programs
and 6 from commercial products. Six of them have been
assigned with CVEs so far. In this paper, we make the fol-
lowing contributions:

*	 We propose a solution CAMFuzz, which utilizes
the local explanation method (i.e., CAM) to locate
critical input bytes and guides fuzzers to spend more
energy on mutating these bytes.

*	 We propose a dynamic weight adjustment (DWA)
algorithm to determine which code blocks should be
explored first and guide fuzzers to skip hard to reach
blocks.

*	 We implement a prototype of CAMFuzz and evalu-
ate it on programs with and without source code. It
has found 19 unknown vulnerabilities and we have
reported them to vendors, among which six have
been assigned with CVEs.

Page 3 of 20Shi et al. Cybersecurity (2022) 5:17 	

Background
Grey‑box fuzzing
Current grey-box fuzzing techniques mainly utilize code
coverage to figure out good seeds. Researchers use this
technique to test different programs such as brows-
ers (Aschermann et al. 2019a), language engines (Groß
2018), and kernels (Jeong et al. 2019). The fundamen-
tal intuition behind the grey-box fuzzing technique is
that increasing code coverage likely leads to more bugs
(Takanen et al. 2018). Although grey-box fuzzing is very
efficient in increasing code coverage, there are still some
limitations. For example, some fuzzers do not distinguish
which code block should be explored first; the power
schedule is not intelligent enough to increase the fuzz-
ing efficiency (Yue et al. 2020). Several methods based
on symbolic execution and taint analysis have been pro-
posed to help the fuzzer decide which bytes should be
mutated first and which code is more important. How-
ever, symbolic execution based methods such as S2E
(Chipounov et al. 2011) and Angr (Shoshitaishvili et al.
2016) have been proven to suffer from path explosion and
have difficulties solving complex constraints. These prob-
lems have hindered its application in fuzzing, especially
in complex real-world programs. In addition to symbolic
execution, many researchers utilize machine learning to
guide fuzzers towards specific input bytes. This paper
uses the explainable AI technique to guide the fuzzer to
concentrate on valuable input positions.

Explainable artificial intelligence
Machine learning, especially deep learning, has been
used to solve many complex tasks. For example, in com-
puter vision (Pishchulin et al. 2016), natural language
processing (Dong et al. 2019), and autonomous driving
(Casanova et al. 2018). Although machine learning has
achieved great success in solving many complex tasks,
it is still difficult for humans to understand the working
principles of the model. This is due to a complex model
structure and a large number of hyper-parameters,
which makes the results obtained by the model difficult
to understand. The interpretability of neural networks
(Ghorbani et al. 2019) can help people understand the
working principles of the model more directly. At pre-
sent, interpretability can be divided into global inter-
pretation and local interpretation (Guidotti et al. 2018).
Local interpretability helps us understand the reason why
a model makes a specific decision. This paper focuses
on the local interpretability: we train a special model to
map an input to its code coverage. Different from existing
AI-based methods, we power the model with the ability
to locate promising input parts. When given a block of
code, we expect the local interpretation to tell us which
part of the input contributes to the code block the most.

There are several studies on local interpretation. As we
intend to figure out which input bytes contribute to the
decision, this is a kind of outcome explanation (Guidotti
et al. 2018). Simonyan et al. (2013) use the gradient to
build a saliency map to help understand which part of the
input the model focuses on. However, as Smilkov et al.
(2017) claim, the gradient-based method will introduce
noise. In the fuzzing task, these noises will not contrib-
ute to fuzzing efficiency, which we will explain in RQ3
in Evaluation. Zhou et al. (2016) use the global average
pooling (GAP) layer to restore the partial information in
the input, which can be called Class Activation Mapping
(CAM). The limitation of CAM is that it has to change
the network structure and replace the fully connected
layer with GAP. In our task scene, since we can build the
neural network, we use CAM to be our interpretation
technique.

Approach
Overview. The overall architecture of our framework
is shown in Fig. 1. We have four core modules: Model
Training, Explanation, Node Selection, and Magic Value
Identification. The term “Magic Value” in this paper not
only means the signature of a file format, but it also rep-
resents constant values(e.g., enumeration type) in other
fields. The core idea of our fuzzer is to utilize the local
explanation technique in XAI to recognize critical input
bytes related to code blocks and guide the fuzzer to focus
on a worthy part of the input to mutate first. Since a
neural network is the premise of explanations, we need
to train a model to map an input to the coverage map.
Besides, we use a Node Selection module to help the
fuzzer focus on the more critical code, which may bring
new coverage. Finally, we use the Magic Value Identifica-
tion module to extract particular values that will guide
the fuzzer on how to fuzz during mutation.

Training. We aim to train a model that can simulate
the behavior of a program: given a seed input, the model
can predict the code coverage map. We use a classifica-
tion model to achieve the goal. First, we collect the seeds
and their corresponding coverage map to preprocess.
Then we train a convolution neural network with global
average pooling (GAP) instead of a fully connected layer
next to the last convolution layer.

Local Explanation. The local explanation is the core
module we use to locate critical positions of the input
to mutate. Here we consider the critical positions as the
part of the input, which could unlock unvisited CFG
nodes with mutations. In this module, we use the GAP
layer to help us in interpretation. GAP brings the ability
to localize an object in the input (Zhou et al. 2016). In
the fuzzing task, since we have trained a model to map
the input (similar to pictures in computer vision) to the

Page 4 of 20Shi et al. Cybersecurity (2022) 5:17

coverage map (similar to labels), our intuition is to feed
the explanation module with a block in the coverage map.
Then the module may guide us with positions which have
a tight connection with it. Once the input positions are
known, we can guide the fuzzer to focus on mutations to
this part with higher priority.

Node Selection. In the Local Explanation module, we
intend to feed the model with a code block. But which
block should be chosen first? We have two considerations
when choosing the code to explore:

(i)	� Many nodes in the CFG have not been visited, and
we cannot choose them directly because the expla-
nation module does not understand how to explain
this “label” since the trained model does not know
this feature.

(ii)	� Some CFG nodes are hard to reach in fuzzing. For
example, in a call to malloc with a fixed size, the
failure branch may never be reached in fuzzing
since the memory might be big enough to ensure
the malloc a success. Focus on these hard-to-reach
nodes first will waste time.

Based on the above considerations, our idea is to feed
the model with visited nodes. These nodes should have
more unvisited code blocks connected to them and are
easier to reach. We have two main steps to select code to
be explored.

The first step is inspired by CollAFL. We analyze the
CFG of the program and choose the nodes which directly
connect unvisited child nodes. Then we initialize them
with weights depending on how many untouched child
nodes they have. The nodes chosen in this step are visited

ones, but they have unvisited nodes directly connected
to, which means mutation to input bytes related to this
code may affect the conditional branch of the node.
Therefore we are more likely to reach a new path.

The second step is to consider the difficulty of reach-
ing the code. During the mutation process by local expla-
nation, we found some nodes are hard to be explored.
It means even if we mutate the positions extracted by
local interpretation many times, we still cannot cover
its directly connected children nodes. We apply the
Dynamic Weight Adjustment (DWA) algorithm to
decrease the weight of these nodes to focus on easier-to-
reach nodes first.

Magic Value Identification. Since we have figured out
which code blocks should be explored and which bytes
of the input have a strong relationship with the blocks,
we use a lightweight static analyzer to identify if there are
constant values we can extract to help the fuzzer know
how to fuzz, for instance, file signature, enumeration
value, and loop count.

Training
Data preprocess
Data preprocessing is fundamental in the training pro-
cess as the training data quality will directly affect the
performance of the model (García et al. 2015). We need
to collect two data types from the original fuzzing pro-
gress: seed file and coverage map. For the seed file, since
we cannot clarify every file structure, we treat the input
as raw bytes, the value of each byte is from 0 to 255. For
the coverage map, we use binary instrumentation to
obtain the map. If a specific block is covered, we set it to
1, otherwise 0.

Seeds
from AFL

queue

Data
preproces

s

Node

Explanation
Module

The highlight part
indicates strong
relationship with given
node .

A

B C

D E F

G H I

Node Selection
Module

CNN

0
1
1
0
0
0
1
0
1

0

code
coverage

GAP

Seeds
(ELF as example)

Training Module

model can map input to coverage

raw input from AFL
queue

Augment-AFL

Entry

Normal
code

Buggy Code

return

Module

Select a seed from
queue

how to fuzz

Focus on the
highlight part when

mutation

Original AFL
mutation

Model

Input
vector

Where to fuzz

ELF Header
Program table

.data
.text

Section table

Aligned data

ELF Header
Program table

.data

.text

Section table

Aligned data

Retrain

Fig. 1  Architecture of CAMFuzz

Page 5 of 20Shi et al. Cybersecurity (2022) 5:17 	

labels which has few seeds covered. This step is essential
because the original code coverage is usually imbalanced.
We choose readelf as a target to illustrate, we randomly
choose 120 ELF files as seeds, then run readelf with the
seeds. The total block number we traced is 4001. We then
draw a histogram of code coverage distribution in Fig. 3.
The X-axis indicates the intervals that show the count
of test cases. The max value is 120, the same as the total
amount of the seeds. The Y-axis indicates the count of
distinct blocks. Before preprocessing, the sum of all the

60
Intervals (Count of Test Cases)

80

C
ou

nt
of

B
B

s

(a) before preprocessing

60
Intervals (Count of Test Cases)

C
ou

nt
 o

f B
B

s

(b) after preprocessing
Fig. 2  Coverage distribution histograms

We describe the algorithm of preprocessing in Algo-
rithm 1 . We first figure out the largest file in the training
data, set the file size with Smax , then pad the rest of the
data to Smax with byte 0x00. Note the sequence of line 5
and line 6 in Algorithm 1. After padding the file, we run
the program because the code coverage may be different
while parsing the padded file and original file.

After running all the padded files and get code cover-
age, we then prune the code coverage using the under-
sampling method and directly discard some coverage

Page 6 of 20Shi et al. Cybersecurity (2022) 5:17

columns in Fig. 2a equals to 4001, which is the total num-
ber of basic blocks covered by the seeds. In Fig. 2a, we
observe that the distribution data is hugely imbalanced.
At the very left of Fig. 2a, There are almost 1600 blocks
covered by a small number (about less than 10) of cases.
At the right of Fig. 2a, some nodes are covered by almost
all cases. It is easy to uncover the reason: some common
blocks can be covered by most of the seeds while some of
the unique seeds may cover a number of rare blocks.

Imbalanced class distribution data will negatively affect
the training model. There are many studies to deal with
such problem, such as Castillo et al. (1997) and Prov-
ost (2000). We follow the basic principles to process the
imbalanced data: we use the under-sampling (Baran-
dela et al. 2004) approach to reduce the data in majority
classes and discard some minority classes data to rebal-
ance the training data.

Figure 2b shows the distribution of the coverage after
being pruned. The data is more balanced than those in
Fig. 2a and the training model will benefit from the prun-
ing process.

Model
We use a convolution neural network (CNN) model in
the training process, and the model is used to map seed
input to coverage map. That is to say, given a well-trained
model f and a corresponding input (consists of bytes

x1, . . . xi . . . , xn ), the model can predict if a node covi can
be covered or not.

Denote that xi is between [0x0, 0xFF] and covi is the
probability which is between [0, 1].

Here we detail three critical points in our model.

(i)	� We use a GAP layer instead of a fully connected
layer.

(ii)	� We set the shape of our feature map produced by
the last convolution layer to 128.

(iii)	� As we are clear that the count of code blocks may
be huge when we run the seeds. To improve effi-
ciency, we design a segmental training algorithm
shown in Algorithm 2.

In this algorithm, we firstly count the preprocessed
nodes and sort them by the number of occurrences. Then
for each turn, we select the top window of labels to train
the model. Note that the sort procedure is essential since
each turn, there might be new edges after sorting, which
will be added to the tail, and these features can be trained
later.

(1)
f
(x1

255
, . . .

xi

255
. . . ,

xn

255

)

= (cov0, . . . , covi, . . . , covm)

Fig. 3  Sample code and CFG

Page 7 of 20Shi et al. Cybersecurity (2022) 5:17 	

We choose CNN as our model for the following two
reasons: First, a CNN is usually used to do classification
tasks. For example, given several panda pictures, a CNN
automatically learns the hidden feature in these pictures.
Later, when we feed the model with a new image, the
model may tell us whether there is a panda in the picture.
In our task, given a seed input, we want the model to pre-
dict whether a specific node can be covered or not. Both
of these two scenarios are classification tasks.

Second, a CNN can easily filter out the background
information in the target input. The model will focus
on the main object by using the convolution and pool-
ing operation, which means the background has less
effect on the final decision. That is very similar to pro-
gram analysis: the input file usually consists of metadata
and data. Mutations to metadata will significantly influ-
ence the code coverage, whereas mutating data may bring
less coverage variance. CNN has been demonstrated its
ability to filter out the background in the picture. We uti-
lize this characteristic in fuzzing: filter out useless parts
of data and focus on those which may have a significant
influence on code coverage.

Local interpretation
Local interpretation helps us understand why the model
gives the decision in classification tasks, especially which
part of input contributes to the prediction. In the fuzzing
progress, we can collect a large amount of training data,
which are input files and the corresponding covered code
blocks. We can train a model to map the input to visited
code blocks. After the model is well trained, we provide
a block that is visited but has unvisited nodes connected.
We expect local interpretation to tell us which bytes are
highly related to this block, then by mutating the input
bytes instructed by the interpretation, we have a higher
possibility to reach those unvisited nodes.

Note that, although the model only learns the map-
ping between input bytes and visited blocks, it can
report input bytes related to visited blocks, including
those related to the entry condition and the exit condi-
tion of the visited block. Mutating input bytes related to
the entry condition may lead the program to explore the
sibling blocks of the visited block, while mutating input
bytes related to the exit condition may lead the program
to explore children blocks of the visited block, including
those unvisited children.

Page 8 of 20Shi et al. Cybersecurity (2022) 5:17

If we know which byte is the variable related to the
branch, we can reach the unvisited branch by mutating
the enumeration bytes. For example, the header parser
function will generally process the header part of the
input file rather than the data section. If we feed the local
interpretation module with a block in this function, this
block has unreached nodes connected. It will guide the
fuzzer to mutate bytes in the header to the unvisited
blocks covered.

We will review one of the local explanation techniques
named CAM (Zhou et al. 2016). The core ideas behind
CAM are:

(i)	� Use a GAP layer to replace the fully connected
layer.

(ii)	� Take advantage of partial information in the fea-
ture map produced by the last convolution layer
behind GAP and the weight produced by GAP to
generate localization information.

We will look at how the localization information is
calculated: suppose we have an input with shape (h, w).
The last convolution layer locates at Lth layer in the net-
work, and its output shape is (m, n, k), where k means the
number of features, (m,n) means the shape of one feature
map. The GAP accepts the (m, n, k) feature maps and
produces (1, 1, k) values which represent the global aver-
age value of each feature in the Lth layer. wc

i is the weight
regarding class c. The final score, S, of class c is calculated
as:

In this formula, Fi is the feature map produced by the Lth
layer. Note that after the CAM is calculated, the size of
the heatmap is (m, n), which means we should restore
this map to the shape of the original input. The general
way is to upsampling the CAM to the input size, which
is the final heatmap. In our framework, we design the
network and set the size of the last convolution layer as
128 of the input size. We have the following considera-
tions when we choose the size. Foremost, we do not have
to keep the shape of the feature map the same as raw
input since only parts of the input significantly influence
the code coverage. Simultaneously, if we keep the origi-
nal size, there would be lots of convolution calculations,
which would cause the training of the network to slow
down.

(2)S =

k
∑

i=1

Fi ∗ w
c
i

Node selection
By using the local interpretation, we can guide the fuzzer
on the part of the input strongly related to the given code.
Here we aim to use the Node Selection to choose the
more valuable code as an explanation target.

Consider the sample code in Fig. 3a and its CFG in
Fig. 3b. The buggy function will be called if the initializa-
tion of object o fails. In the CFG, black nodes are covered
while white ones have not been covered yet. Node B, D,
and G will be called if the malloc fails, Node F represents
the buggy function call. We should focus on C more than
A because it is almost impossible to cover B, D, and G,
although more new nodes are connected to A than C.

Initial Selection. We will first choose those nodes
with more untouched nodes connected through initial
selection. As general knowledge, a trained model can
only map and explain the features that it has learned. For
those unknown features, the model cannot do anything.
That is, we cannot use the model to help us increase the
code coverage if we feed the model with unvisited nodes.

To solve the gap, we select the nodes which are near
unvisited ones. In Figure 3b, we will choose nodes A
and C (untouched node B directly connected to A and F
directly connected to C). Inspired by CollAFL, we first
count the unvisited nodes connected to A and C. Then
assign them with the initial weight based on the number
of untouched nodes.

Dynamic Weight Adjustment (DWA). By using the
DWA algorithm, we intend to decrease the weight of the
hard-to-reach code. Considering the code snippet in Fig. 3a
and its CFG in Fig. 3b. Nodes B, D, and G represent lines
3-5, and the code will be executed if malloc fails. Generally,
almost all the cases will succeed in malloc operation during
fuzzing. Thus Node B, D, G are very hard to be touched. If
we only use the initial weight to evaluate the importance of
the node, we may waste the power on useless nodes. So our
solution is to decrease the weight of node A dynamically
even it has more untouched child nodes at the beginning.

Suppose we have N cases that can cover node A and
node C at the beginning. The initial weights for these
two nodes are 3 and 2. Choosing a case Ni to mutate, we
feed the interpretation module with node A and get the
related positions in the input. If node B is not covered
after the fuzzer mutates the positions, we will subtract
the current weight with 1N  , then the weight of node A will
be updated as 3− 1

N  . As fuzzing goes on, the weight of
node A will be decreased during mutation. Note that the
N keeps the same during one iteration, which means it
will only change after the model is retrained.

Page 9 of 20Shi et al. Cybersecurity (2022) 5:17 	

Magic value identification
We augment the original mutator of AFL with external magic
values embedded in CFG nodes. The term “magic value” in
this paper not only means the signature of a file format, but
it also represents constant values(e.g., enumeration type) of
other fields in the file. In our design, magic values can be
extracted in two ways: constant values and switch cases. For
constant values, we implement a static analyzer similar to
Vuzzer (Rawat et al. 2017). For switch cases, since the assem-
bly code will use a jump table rather than cmp instructions,
we design a method to identify switch cases in the assembly
code and extract the magic values. Different as REDQUEEN
(Aschermann et al. 2019b): they try to find subtractions to
identify switch-case, which can be improved by a more gen-
eralized way to extract case values in switch-case.

Here we detail the idea on how to extract case values
embedded in switch-case. First, choose the nodes which
have more than three successors since we consider
switch-case usually has more than three branches. Then,
convert the code in the node to intermediate representa-
tion and find the base address of the jump table. At last,
for each successor of this node, calculate the difference

between the offset of the successor and the offset of the
base address of the jump table. The results are the case
values, which can guide the fuzzer on how to mutate. The
extraction algorithm is shown in Algorithm 3.

From line 18 to line 21 in Algorithm 3, instead of just
using the constant values directly, we set a threshold to
mutate sufficiently. The reason behind this is that if the
value represents a loop count or a size, we may want to
mutate the value around.

Implementation
Main framework
We implement the AI component of CAMFuzz with
Python. While for the fuzzing part, we rewrite the original
AFL to support open source targets. To support binary-only
fuzzing on Windows, we build CAMFuzz on top of Win-
AFL (Fratric 2017), which is a port of AFL for the Windows
platform. CAMFuzz utilizes the bitmap provided by AFL
and WinAFL as feedback respectively. We also add extra AI
mutation and magic value mutation strategy to the origi-
nal AFL. The detailed algorithm of CAMFuzz is shown in
Algorithm 4.

Page 10 of 20Shi et al. Cybersecurity (2022) 5:17

Model training
We collect the training data, such as seeds and coverage,
with the help of DynamoRIO (2020) during fuzzing. We
use online training along with fuzzing. Specifically, CAM-
Fuzz collects training data during fuzzing, then trains
the model with Keras to guide the fuzzer. To increase
the fuzzing efficiency, we first trim the code coverage as
described in Data Preprocess section. Then we use a seg-
mental training method as described in Algorithm 2. Both

of the two steps can help to decrease the dimension of the
label in the model, and then the training time can be short
enough as the experiment shows in GPU resource occupa-
tion section. We implement CNN with five hidden layers
embedded. The last hidden layer is the GAP layer, which
we use to keep the partial information produced by the
convolution layer. The optimizer we use is adam, and we
use binary_crossentropy as the loss function.

Table 1  Summary of 13 applications to test

Program Descirption Parameter

giflib Image parser ./gif2rgb @@

jhead Image parser ./jhead @@

libjpeg Image parser ./djpeg @@

tcpdump Network packet parser ./tcpdump -nr @@

libde265 Video processor ./dec265 @@

zlib Compression tool ./minigzip -c @@

catdoc Document parser ./catdoc @@

catppt Document parser ./catppt @@

xls2csv Document parser ./xls2csv @@

Hancom Office Document parser N/A

readelf ELF parser ./readelf -a @@

objdump Binary file parser ./objdump -x @@

Microsoft JetEngine Database engine N/A

AI mutation
Here we use the local explanation to guide the fuzzer on
where to fuzz, and we use values extracted from CFG
nodes on how to fuzz. For those valuable positions pro-
duced by the local explanation, we choose the top 256
related ones. During magic value extraction, we trans-
form the assembly code to intermediate representation
with VEX (Shoshitaishvili 2014).

Node selection
To calculate the weight of the nodes, we use two levels
of iteration to calculate the number of unvisited nodes
with the help of Angr (Wang and Shoshitaishvili 2017).
For instance, if there is a call instruction in an unvisited

Page 11 of 20Shi et al. Cybersecurity (2022) 5:17 	

Ta
bl

e 
2 

Vi
si

te
d

ba
si

c
bl

oc
ks

 o
f d

iff
er

en
t f

uz
ze

rs
 in

 2
4

h
(m

ed
ia

n
va

lu
e)

*T
he

 fu
zz

er
 fa

ile
d

to
 ru

n
on

 th
e

ta
rg

et
 o

ve
r 2

4
h

Pr
og

ra
m

ve
rs

io
n

A
FL

A
FL

-M
A

G
IC

A
FL

Fa
st

N
EU

ZZ
A

FL
-r

b
A

ng
or

a
To

rt
oi

se
Fu

zz
W

in
A

FL
W

in
A

FL
Fa

st
CA

M
Fu

zz
 (A

I+
M

A
G

IC
+

D
W

A
)

gi
fli

b
5.

2
16

33
16

01
16

91
18

79
17

22
18

21
17

35
N

/A
N

/A
20

50
 (+

 9
.1

0%
)

jh
ea

d
3.

04
11

61
11

61
11

60
N

/A
*

11
58

12
07

11
60

N
/A

N
/A

11
64

 (-
 3

.5
6%

)
lib

jp
eg

2.
0.

4
33

61
32

15
34

31
49

22
40

53
37

45
35

43
N

/A
N

/A
59

10
 (+

 2
0.

07
%

)
tc

pd
um

p
4.

10
.0

25
30

4
22

98
2

25
44

2
29

80
6

28
33

5
30

50
1

26
53

3
N

/A
N

/A
33

72
9

(+
 1

0.
58

%
)

lib
de

26
5

1.
0.

5
36

33
35

57
37

19
N

/A
*

40
07

38
02

40
02

N
/A

N
/A

40
96

 (+
 2

.2
2%

)
zl

ib
1.

2.
11

19
03

18
81

18
98

19
06

19
20

19
55

19
12

N
/A

N
/A

19
19

 (-
 1

.8
4%

)
ca

tp
pt

0.
95

57
7

55
5

60
1

61
0

68
6

72
1

73
2

N
/A

N
/A

89
8

(+
 2

2.
68

%
)

ca
td

oc
0.

95
13

13
12

13
13

51
N

/A
*

14
15

14
58

15
21

N
/A

N
/A

17
86

 (+
 1

7.
42

%
)

re
ad

el
f

2.
32

11
32

3
10

40
4

12
35

9
13

39
3

13
12

2
14

78
2

14
19

2
N

/A
N

/A
16

22
3

(+
 9

.7
5%

)
ob

jd
um

p
2.

32
72

32
65

02
75

72
82

67
82

60
81

82
78

01
N

/A
N

/A
90

16
 (+

 9
.1

5%
)

xl
s2

cs
v

0.
95

21
13

19
02

22
98

23
01

23
18

23
23

24
35

N
/A

N
/A

25
17

 (+
 3

.3
7%

)
H

an
co

m
9.

6.
1.

77
49

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

53
22

57
28

89
43

 (+
 5

6.
13

%
)

M
ic

ro
so

ft
 J

et
M

ul
tip

le
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
74

30
78

82
13

40
6

(+
 7

0.
08

%
)

A
ve

ra
ge

+
 1

7.
32

%

Page 12 of 20Shi et al. Cybersecurity (2022) 5:17

node, we will count the number of nodes in the call. The
DWA algorithm will be invoked on the completion of
every AI mutation cycle for efficiency reasons.

Evaluation
In this section, we evaluate CAMFuzz and answer the
following questions:

•	 RQ1: What is the performance of CAMFuzz, com-
paring to other state-of-the-art fuzzers?

•	 RQ2: What is the performance of the neural network
model used in CAMFuzz?

•	 RQ3: Can the CAM help the fuzzer focus on related
positions better than the gradient-based method?

Evaluation setup
Fuzzers.To answer the questions above, we compare
CAMFuzz with both AFL and WinAFL. Additionally,
we compare it with six other state-of-the-art fuzzers:
Winaflfast, NEUZZ, AFLFast, AFL-rb, Angora, and Tor-
toiseFuzz. Here we choose NEUZZ because it is the first
fuzzer to use the gradient-based method in the AI field
to guide fuzzing for improvement, and it significantly
improved in finding new paths. For AFL, being the most
popular fuzzer and extensively studied, it is valuable to

be included as a baseline benchmark comparison. For
AFLFast, TortoiseFuzz, and AFL-rb, they are all based on
AFL and equipped with additional interesting mutation
strategies. For Angora, it uses taint analysis and gradient
descent to increase fuzzing efficiency. These are some of
the state-of-the-art traditional fuzzing tools. It is impor-
tant to compare our AI-based fuzzer with traditional
fuzzing techniques. For WinAFL and Winaflfast, since
CAMFuzz can be applied in closed-source targets, we
choose WinAFL and Winaflfast to experiment on closed-
source targets in Windows.

Target Programs. We consider multiple factors when
choosing the target programs to be tested, such as pop-
ularity, functionality, and frequency of updates. From
Klees et al. (2018), the median number of real-world
programs tested by 32 different papers in recent years is
7. We evaluate the fuzzers with 13 real-world programs
listed in Table 1. We choose these targets because they
are popular and are used to process different kinds of
input, such as pictures, network traffic, compressed files,
and multimedia files. They come from different develop-
ers, which can ensure the variety of code and the gen-
erality of CAMFuzz. CAMFuzz can not process textual
inputs which rely much on semantics, such as XML,
HTML, PDF, etc. We leave this kind of input in further
work. Despite the real-world programs, we also evaluate

Table 3  Unique bugs found by different fuzzers (known/unknown)

*The fuzzer failed to run on the target over the whole run

Program version AFL AFLFast NEUZZ AFL-rb Angora TortoiseFuzz WinAFL CAMFuzz WinAFLFast

giflib 5.2 0/0 0/0 0/0 0/0 0/0 0/0 N/A 0/1 N/A

jhead 3.04 3/0 1/0 N/A* 0/1 2/1 2/0 N/A 1/2 N/A

libde265 1.0.5 2/0 3/0 N/A* 1/0 3/0 4/0 N/A 7/1 N/A

catdoc 0.95 0/1 0/1 0/2 0/1 0/1 0/1 N/A 0/3 N/A

catppt 0.95 2/1 3/1 3/1 2/0 2/2 1/1 N/A 2/3 N/A

xls2csv 0.95 1/2 1/0 0/2 1/1 1/2 0/2 N/A 0/3 N/A

Hancom 9.6.1.7749 N/A N/A N/A N/A N/A N/A 0/1 0/3 0/0

Ms. Jet Multiple N/A N/A N/A N/A N/A N/A 0/1 0/3 0/1

Total N/A 8/4 8/0 3/5 4/3 8/6 7/4 0/2 10/19 0/1

Table 4  Bugs found in LAVA-M test suites

*We use the experiment results from the paper of NEUZZ since it is not open-sourced

Program AFL AFLFast AFL-Magic AFLFast-Magic NEUZZ* Vuzzer CAMFuzz Angora

base64 1 1 13 18 48 16 48 48

md5sum 0 0 17 18 60 19 57 56

uniq 0 2 15 14 29 24 28 28

who 4 3 41 49 1582 48 1623 1541

Page 13 of 20Shi et al. Cybersecurity (2022) 5:17 	

CAMFuzz on the LAVA-M benchmark, a popular perfor-
mance benchmark suite for fuzzers.

Seeds. We randomly choose the initial seed files pro-
vided by the target program, or from the Internet if
they do not provide the sample seeds. We use the same
thresholds described in Data Preprocess section.

RQ1: What is the fuzzing performance
To determine the effectiveness of CAMFuzz, we measure
two metrics: basic block coverage and crashes found.

Basic block coverage
The experiment lasted for 24 h, and we fed all the fuzz-
ers with the same seed set when testing one target. For
the hardware configuration, we use a machine with 8GB
RAM, Intel Xeon CPU E5-2650, and GTX 1060 6GB
GPU to train the AI model for NEUZZ and CAMFuzz.
For the closed-source targets, we run the fuzzers on Win-
dows 10. For the open-source targets, we use Ubuntu
18.04 to finish the experiment.

We repeat the experiment 5 times to mitigate the ran-
domness issue. The final amount of basic block coverage
after 24 h of fuzzing is shown in Table 2. We calculate the
mean amount of basic blocks using DynamoRIO (Bruen-
ing 2020) in the experiment. In Table 2, we also measure
the improvement of CAMFuzz (DWA+MAGIC+AI)
over the second-best fuzzer, on average coverage
increased 17.32%. From the final result, we can see that
our fuzzer outperforms the rest of the fuzzers.

For programs responsible for parsing complex file
structures, such as readelf, libjpeg, and Microsoft Jet,
CAMFuzz outperforms other fuzzers significantly. The
reason is that the file format consists of several meta-
data sections, such as headers, data definitions, tables,

etc. Different parts of code are responsible for process-
ing different file sections, and CAMFuzz can learn the
relationship between the input and the code coverage.
At the same time, our node selection module will pick
nodes that are easier to touch first, along with critical val-
ues such as magic value and enumeration. Then the local
interpretation may produce the prioritized fuzzing posi-
tions given a node from CFG.

To determine how the magic values extracted from the
code affect the final result, we extend the original AFL
with magic values extracted from our Magic Value Iden-
tification module. Interestingly, the final coverage of AFL
with magic is less than the original AFL in several targets.
When we analyze the reason, we find that AFL does not
know where to place these magic values properly. It ran-
domly selects positions to mutate with the magic value,
which will waste much power in useless mutation. How-
ever, for CAMFuzz, since it is aware that where the magic
value comes from and which bytes of the input have a
strong relationship with the code, it can mutate the input
more precisely.

From the result, we can conclude that when we apply
the magic value and DWA strategies, the fuzzer performs
much better.

This is because DWA helps the fuzzer focus on those
unvisited nodes which may be covered with higher

Table 5  Contribution of different components (basic blocks in 24 h)

Program AFL/WinAFL CAMFuzz(MAGIC) CAMFuzz(AI+DWA) CAMFuzz(AI) CAMFuzz(AI+MAGIC) CAMFuzz(AI+MAGIC+DWA)

giflib 1618 1594 ( − 1.48%) 1980 (22.37%) 1881 (16.25%) 1923 (18.85%) 2051 (26.76%)

jhead 1161 1161 (0.0%) 1166 (0.43%) 1160 ( − 0.09%) 1157 ( − 0.34%) 1164 (0.26%)

libjpeg 3352 3208 ( − 4.3%) 5744 (71.36%) 5302 (58.17%) 5686 (69.63%) 5899 (75.98%)

tcpdump 25280 22854 ( − 9.6%) 32991 (30.5%) 31213 (23.47%) 32132 (27.1%) 33729 (33.42%)

libde265 3617 3539 ( − 2.16%) 4079 (12.77%) 3902 (7.88%) 4088 (13.02%) 4092 (13.13%)

zlib 1901 1878 ( − 1.21%) 1907 (0.32%) 1911 (0.53%) 1908 (0.37%) 1919 (0.95%)

xls2csv 2102 1996 ( − 5.04%) 2469 (17.46%) 2400 (14.18%) 2438 (15.98%) 2517 (19.74%)

Hancom 5229 4857 ( − 7.11%) 8683 (66.05%) 8093 (54.77%) 8422 (61.06%) 8943 (71.03%)

readelf 11201 10397 ( − 7.18%) 15933 (42.25%) 14687 (31.12%) 15443 (37.87%) 16211 (44.73%)

objdump 7204 6973 ( − 3.21%) 8863 (23.03%) 8500 (17.99%) 8644 (19.99%) 9006 (25.01%)

Microsoft Jet 7390 6946 ( − 6.01%) 13085 (77.06%) 12437 (68.29%) 12901 (74.57%) 13406 (81.41%)

Average − 4.30% 33.05% 26.60% 30.74% 35.67%

Table 6  The impact on different seeds sizes

Size Coverage (AFL/CAMFuzz) Accuracy (%)

10kb 9787/14336 (+ 46.48%) 81

20kb 10122/13312 (+ 31.52%) 82

40kb 10634/13124 (+ 23.42%) 82

Page 14 of 20Shi et al. Cybersecurity (2022) 5:17

possibility. Then in the mutation stage, the fuzzer knows
how to mutate.

Bugs found by different fuzzers
Since the purpose of a fuzzer is to find bugs in soft-
ware, the number of unique bugs found is a critical
metric when we assess the fuzzers. Table 3 repre-
sents the unique bugs found by CAMFuzz compar-
ing with other fuzzers. Some fuzzers do not apply to
the targets. For example, only CAMFuzz supports

both open-source targets and binaries, so some fuzz-
ers regarding Hancom and Microsoft Jet are marked
as N/As. We found 19 previously unknown bugs in
7 days. 6 of them got CVEs so far: 3 from Microsoft
and 3 from Hancom Office. From the results, we can
conclude that CAMFuzz has a good ability to find new
vulnerabilities in both closed-source and open-source
targets.

Evaluation on LAVA-M Database There are four pro-
grams in the LAVA-M database suites, each of which
contains several bugs injected. We also compare the
number of bugs found by AFL, AFLFast, NEUZZ, Vuzzer,
Angora, and CAMFuzz with the same seeds for 5 h. Since
CAMFuzz is equipped with magic values, we also com-
pare AFL and AFLFast with magic values. The result is
shown in Table 4. We use the result from the paper of
NEUZZ directly since they use a custom LLVM to find
the magic value, and that part is not open source. From
the result, we can see that AFL and AFLFast found fewer
bugs than others. This is because most of the bugs in
LAVA-M are injected and triggered with magic values.
However, when we extend both fuzzers with magic val-
ues, CAMFuzz still outperforms them. That is because
the local interpretation can help the fuzzer to put magic
value in the right place. For Angora and NEUZZ, we con-
sider they have a competitive mutation strategy targeting
such bugs in LAVA-M. For CAMFuzz, the static analysis
helps CAMFuzz identify magic values automatically, and
the AI can provide valuable information on positions to
mutate.

Table 7  GPU time during 24 h testing

Target Duration (mm:ss) Train times

giflib 17:03 10

tcpdump 35:15 10

jhead 22:24 10

libjpeg 32:05 13

libde265 31:33 12

zlib 29:21 13

catdoc 30:11 11

catppt 29:40 11

objdump 31:01 12

xls2csv 30:21 11

readelf 31:42 8

Hancom 45:33 11

Microsoft Jet 44:22 10

Average 31:34 11

Fig. 4  Heatmap produced by the CAM (left) versus the gradient (right). Highlight parts represent importance

Page 15 of 20Shi et al. Cybersecurity (2022) 5:17 	

Further analysis
To further understand the contribution of different com-
ponents, we first evaluate CAMFuzz with different com-
ponent combinations.

We run 11 programs for 24 h due to a time limit. We
calculated the amount of reached basic blocks. We set
the original AFL/WinAFL as a baseline to calculate the
percentage of basic block improvement. The result is
shown in Table 5. From the result, we have the following
conclusions:

First, local interpretation contributes the most regard-
ing DWA and Magic Value Identification strategies: the
average improvement of CAMFuzz with AI outper-
forms 26.60% than AFL/WinAFL, while AI+DWA and
AI+Magic outperform AFL/WinAFL by 33.05% and
30.74% respectively. This means the AI strategy in CAM-
Fuzz makes the most contribution. Second, when we
equip the fuzzer with magic values only, the fuzzer per-
forms worse. The reason is that the fuzzer does not know
where to put this magic value when mutating the input,
and it wastes much time in the magic value mutation
stage.

RQ2: Performance of the NN model
Since the model itself is fundamental, we will train the
model multiple times during fuzzing. We will evaluate
how the seed size could affect the training, how much
GPU resource it consumes, and the accuracy of the train-
ing model.

Size of seeds
The cost of model training is proportional to seed sizes,
and this phenomenon is similar to the probing/reprob-
ing stage in You et al. (2019). This section will evaluate
how the seed sizes could affect the accuracy of model and
code coverage.

We use readelf as the target, and we split the seeds
into different groups by size. Then we run CAMFuzz
and AFL with the seeds, respectively. The result is
shown in Table 6. We can conclude from the result: 1)
there is an inverse relationship between seed sizes and
the code coverage growth. The reason which causes the
growth to decrease is: as the size of seeds grows, the
training stage will get slower. 2) The accuracy of the
model stays stable among different sizes, and the accu-
racy is calculated as:

Where CTP is the number of nodes covered and predicted
as 1 by the model. CTN is the number of nodes that are
uncovered and predicted as 0 by the model. Cnodes is the
total number of nodes used in the training progress.

GPU resource occupation
We use the extra resource, i.e., GTX 1060 GPU, to
help improve our fuzzer, while other traditional fuzz-
ers can not use GPU in fuzzing. We will evaluate how
much GPU time our fuzzer takes up during fuzzing to
ensure CAMFuzz consumes reasonable GPU resources
and the design of online training is practical. We run
CAMFuzz with the target programs for 24 h, and we
calculate the accumulated GPU occupation time. From
the result in Table 7, the average training time dur-
ing 24 h is 31 min, and there are on average 11 train-
ing iterations. Note that the re-train happens when all
the model labels are enumerated and interpreted, and
the number of re-train iterations changes with different
target programs.

To conclude, we use an extra 2.15%(31min/24*60min)
GPU time, but we achieve 117% code coverage improve-
ment and 207% extra bugs found.

(3)Accuracy = (CTP + CTN)/Cnodes

Fig. 5  Manually analyzed case

Page 16 of 20Shi et al. Cybersecurity (2022) 5:17

the tail for proper display, so there is a dark portion in
our picture at the end. For the jhead, we can see the high-
lighted concentrates at the front, which is the jpeg file
header. That means for this program, we need to mutate
the front part with high priority rather than the rest of
the file. Interestingly, the highlighted part in giflib mostly
locates at the tail part. When we investigate it, we find
that the nodes we choose are responsible for processing
the data part of the gif file. For minigzip, as we use the
command line to compress the target file, we can see the
highlighted is uniformly distributed across the file.

To further analyze the details, we can see that the CAM
based method has better interpretation ability for fuzzing
in the following aspects:

First, the continuity is better than the gradient-based
method. This can help the fuzzer explore more adjacent
positions. For example, many fields consist of multiple bytes,
and these bytes are continuous for 2 bytes, 4 bytes, etc.

Second, there is less noise than the gradient-based
method. This means that when we feed the model with
a given code block and input vector, the gradient-based
method will produce more unrelated positions, which
will cause a waste of time in mutation. To illustrate this
problem we manually analyzed nearly 100 cases in dif-
ferent programs and different nodes. Here we choose a
readelf one to explain.

We pick a CFG node that is responsible for reading the
section type structure in the section header table. We
calculate the CAM based heatmap and gradient-based

Fig. 6  OpenDatabase function

RQ3: Can the CAM help the fuzzer focus on related
positions better than the gradient‑based method?
Here we want to see how local interpretation helps the
fuzzer locate those critical input positions. Does our
method outperform the gradient-based method in posi-
tion locating? To answer this question, we visualize the
positions that our fuzzer focused on during fuzzing.
Then we analyze some cases manually.

We choose six targets to draw the heatmap, and we
observe similar results on the rest programs. Our bench-
mark is the gradient-based method, and we design our
experiment as follows: using the same training set and
model to train for 50 epochs. After the model is well
trained, we choose the nodes in distinguishable func-
tions, such as header parsing functions, instead of those
in library functions like print, error, and malloc from
the training data. For each node, we use CAM and the
gradient-based method to calculate positions related to
this node. We select the top 256 related positions and vir-
tualize the importance of positions with a heatmap. We
reshape the original input size to squares and the results
are shown in Fig. 4.

We first conclude that both CAM and the gradient-
based method can effectively help the fuzzers focus on
metadata from the heatmap.

For readelf, we know that the ELF file header is located
at the front of the file and the section header table at the
end of the file. In the heatmap, we can see the front and
the tail are highlighted. Note that we pad the heatmap at

Page 17 of 20Shi et al. Cybersecurity (2022) 5:17 	

heatmap separately and the result is shown in Fig. 5. We
find that the information CAM provided is more accurate
and is with less noise. Figure 5a is calculated with CAM,
Fig. 5b is built with gradient, and Fig. 5c is the file format
structure. As we can see that the highlights provided by
the CAM output are mostly in the section table, while
the gradient-based provides us more noise, e.g. the front
of the file and the middle of the file. The fuzzer may waste
time in mutating the noise part.

Case study
Microsoft Jet database Engine type confusion vulnerability
In the experiment discussed in the Evaluation section,
we found several Microsoft vulnerabilities and they
have been fixed. We choose one of them to analyze,
and the call stack at the program crash site is listed in
Listing 1.w

Fig. 6 while the whole CFG is shown in Fig. 6b. There is a
call to Connection::FindDatabase in the first node. Dur-
ing the entire fuzzing process, we find that FindDatabase
always returns 0, which we consider as a success status. The
call to FindDatabase seems to ensure that the database
exists and can be connected to before further processing.
We count the 13 nodes on the left and 11 on the right sepa-
rately in Fig. 6b. The number represents the initial weight.

If we do not apply DWA, more power will be spent on
the left since it has more unvisited blocks than that on the
right. Nevertheless, in our case, DWA helps the fuzzer
decrease the weight of the left part dynamically. When
fuzzing progresses, DWA finds it too hard to reach the
left part, and the fuzzer will decrease the weight. When
we finally reach the crash, we find that the weight for the
first block has been decreased to a negative value, which

To trigger the bug, we first need to guide the program
to call msjet40!ErrOpenDatabase. Then we have to craft a
TblPage object in the PoC to trigger the final crash. Since
the MDB file format is very complicated, we do not ana-
lyze the format itself. Instead, we focus on how the DWA
and local interpretation help the fuzzer find it.

We try recalling how our fuzzer finds the bug and record
the intermediate data, such as the changes of weight for
different nodes under the DWA strategy and the input
positions our fuzzer focused on with local interpretation.

When we analyze the Session : : OpenDatabase (line 5
in Listing 1)function, we find that the DWA strategy helps
the fuzzer avoid wasting time in useless nodes in this func-
tion very well. Part of the CFG for this function is shown in

means this block is not as important as initially marked.
Also, we find that when feeding our trained model with
the first node of InitTable, the Local Interpretation mod-
ule provides us positions mostly in the Table Definition,
an essential structure in .MDB file. It is also where the
fuzzer mutates and causes the final crash. In this case, the
DWA strategy helps the fuzzer focus on more valuable
blocks, while the Local Interpretation module helps the
fuzzer identify where to fuzz.

Jhead out of bounds read bug
Jhead is a command-line tool for processing photo EXIF
information and it is shipped with Fedora by default.

Page 18 of 20Shi et al. Cybersecurity (2022) 5:17

2019) uses a neural network to make a smooth approxi-
mation of the branching behavior in target programs.
However, the gradient may bring noise and thus cause a
waste of time in mutating useless positions. MTFuzz (She
et al. 2020) considers multiple factors such as context
and mutation approach when training the NN to predict
coverage. FuzzGuard (Zong et al. 2020) uses the NN to
predict whether the seed file can achieve the target. It is
a kind of Directed Grey-box Fuzzing (DGF) technique.
CAMFuzz tries to solve different problems in fuzzing
than both of these two fuzzers.

Another type is to use algorithms to learn the file for-
mat (Blazytko et al. 2019; Lee et al. 2020; Wang et al. 2017;
You et al. 2019; Godefroid et al. 2017; Sivakorn et al. 2017;
Mathis et al. 2020; Fioraldi et al. 2020). These algorithms
could automatically learn the format or the grammar and
then make changes within the specification scope. Differ-
ent from these solutions, our intuition is to determine the
relationship between input and CFG. Although CAMFuzz
does not infer the input format, it can know which part of
code is easier to be covered and which input part is highly
related to a given code block. By knowing the informa-
tion, CAMFuzz can mutate the input better.

Guided fuzzing
Some research works try to make the fuzzing more effi-
ciently based on different guidance methods. Angora
(Chen and Chen 2018), TaintScope (Wang et al. 2010),
Steelix (Li et al. 2017), and some other works like Wagner
(2009); Cadar et al. (2008); Godefroid et al. (2012, 2008);
Rawat et al. (2017); Yun et al. (2018); Stephens et al.
(2016); Choi et al. (2019) use taint analysis or a combina-
tion of symbolic execution to obtain coverage and other
information to guide the fuzzing based on the detailed
feedback information.

We take the discovery of a known vulnerability in jhead,
CVE-2020-6624, as an example to demonstrate the meth-
odology of CAMFuzz. The code in Listing 2 shows the
critical part to trigger the bug. It is responsible for using
the marker type of Jpeg section and traversing the Data to
build different tables.

To trigger the bug, the magic bytes of the section must be
equal to M_DQT, then Data will be processed as the DQT
section. We check the critical values found by the static
analysis module and find it interesting that the fuzzer finds
both M_DQT and 64, which is a loop count. As we have
claimed in Magic Value Identification, after identifying the
critical values, we will add several adjacent values to criti-
cal values to mutate the space sufficiently. Taking this case
as an example, we choose a random threshold of T and add
(64 − T , 64 + T) as candidate values.

Related work
The previous grey-box fuzzing studies have achieved
great success, including various learning-based and
guided fuzzing methods.

Learning‑based fuzzing
Several learning-based methods have been proposed to
help improve the fuzzing efficiency.

The first kind studies the relationship between input
and code coverage. Rajpal et al. (2017) train the model
to predict which part of the modification is promising to
mutate. The intuition is that during fuzzing, mutations
to some positions may trigger new path coverage while
others do not. Instead of just predicting which input part
may bring new coverage, CAMFuzz knows which part
of the input has a high relationship with a given CFG
node, and by assigning different weights to the nodes, it
can mutate the input more targeted. NEUZZ (She et al.

Page 19 of 20Shi et al. Cybersecurity (2022) 5:17 	

VUzzer (Rawat et al. 2017) proposes a fuzzing method
without any prior knowledge of the application or input
format. It collects information based on the control flow
and data flow results provided by Pin (Luk et al. 2005)
and then uses it to generate more interesting seeds. These
traditional methods rely on the CPU heavily, but there is
a disproportion between the growth of CPU and fuzzing
performance, since there are nonlinear constraints in the
execution path for the solver. Traditional methods may
get stuck when solving the constraints.

Unlike these approaches, with a prediction-based
method, we do not need symbolic execution or data-flow
analysis which may be considered as heavy and cause the
fuzzing stuck. Our method relies on GPU and we have
proven that a low-cost GPU can achieve more improve-
ment than traditional fuzzers. We use static analysis to
extract particular values in the code blocks, while during
fuzzing, we use the DWA strategy to determine which
block is more important than others.

Conslusion
This paper proposes a novel fuzzing technique mainly
based on the local interpretation technique in machine
learning. Combined with static analysis and DWA strat-
egy, CAMFuzz can guide the fuzzer on where and how to
fuzz. By the experiment, it shows that CAMFuzz outper-
forms state-of-the-art fuzzers, and CAMFuzz also found
19 previously unknown vulnerabilities in the Microsoft
Jet engine, Hancom Office, and several open-source
programs.

Acknowledgements
Thanks for the anonymous reviewers.

Author contributions
All authors read and approved the final manuscript.

Funding
This work was supported in part by Innovative Research Group Project of the
National Natural Science Foundation of China (62032010), National Key R&D
Program of China (2021YFB2701000) and National Natural Science Foundation
of China under Grant 61972224.

Availability of data and materials
Not applicable.

Declarations

Competing interests
No potential competing interest was reported by the authors.

Author details
1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China. 2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China. 3 Key Laboratory of Network Assessment Technology, CAS,
Beijing, China. 4 Beijing Key Laboratory of Network Security and Protection
Technology, Beijing, China. 5 Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing, China.

Received: 8 December 2021 Accepted: 14 February 2022

References
Aschermann C, Frassetto T, Holz T, Jauernig P, Sadeghi A-R, Teuchert D (2019a)

Nautilus: fishing for deep bugs with grammars. In: NDSS
Aschermann C, Schumilo S, Blazytko T, Gawlik R, Holz T (2019b) Redqueen:

fuzzing with input-to-state correspondence. In: NDSS, vol 19, pp 1–15
Barandela R, Valdovinos RM, Sánchez JS, Ferri FJ (2004) The imbalanced train-

ing sample problem: Under or over sampling? In: Joint IAPR international
workshops on statistical techniques in pattern recognition (SPR) and
structural and syntactic pattern recognition (SSPR). Springer, pp 806–814

Blazytko T, Bishop M, Aschermann C, Cappos J, Schlögel M, Korshun N, Abbasi
A, Schweighauser M, Schinzel S, Schumilo S et al (2019) {GRIMOIRE} : Syn-
thesizing structure while fuzzing. In: 28th {USENIX} Security Symposium
( {USENIX} Security 19), pp 1985–2002

Bohme M (2018) Winaflfast. https://​github.​com/​mboeh​me/​winaf​lfast
Böhme M, Pham V-T, Roychoudhury A (2017) Coverage-based greybox fuzzing

as markov chain. IEEE Trans Softw Eng 45(5):489–506
Bruening D (2020) QZ: Dynamorio: dynamic instrumentation tool platform
Cadar C, Dunbar D, Engler DR et al (2008) Klee: unassisted and automatic

generation of high-coverage tests for complex systems programs. In:
OSDI, vol 8, pp 209–224

Casanova A, Cucurull G, Drozdzal M, Romero A, Bengio Y (2018) On the itera-
tive refinement of densely connected representation levels for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pp 978–987

Castillo B, Di Gennaro S, Monaco S, Normand-Cyrot D (1997) On regulation
under sampling. IEEE Trans Autom Control 42(6):864–868

Chen P, Chen H (2018) Angora: efficient fuzzing by principled search. In: 2018
IEEE symposium on security and privacy (SP). IEEE, pp 711–725

Chipounov V, Kuznetsov V, Candea G (2011) S2e: a platform for in-vivo multi-
path analysis of software systems. In: ACM SIGARCH computer architec-
ture news, vol 39. ACM, pp 265–278

Choi J, Jang J, Han C, Cha SK (2019) Grey-box concolic testing on binary code.
In: 2019 IEEE/ACM 41st international conference on software engineering
(ICSE). IEEE, pp 736–747

Dong L, Yang N, Wang W, Wei F, Liu X, Wang Y, Gao J, Zhou M, Hon H-W (2019)
Unified language model pre-training for natural language understanding
and generation. In: Advances in neural information processing systems,
pp 13042–13054

DynamoRIO (2020) DynamoRIO. https://​dynam​orio.​org/
Fioraldi A, D’Elia DC, Coppa E (2020) Weizz: automatic grey-box fuzzing for

structured binary formats. In: Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and analysis, pp 1–13

Fratric I (2017) WinAFL: a fork of AFL for fuzzing Windows binaries
Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, Chen Z (2018) Collafl: path sensitive

fuzzing. In: 2018 IEEE symposium on security and privacy (SP). IEEE, pp
679–696

Gan S, Zhang C, Chen P, Zhao B, Qin X, Wu D, Chen Z (2020) Greyone: data flow
sensitive fuzzing. In: 29th USENIX security symposium (USENIX Security
20). USENIX Association, Boston. https://​www.​Usenix.​Org/​confe​rence/​
useni​xsecu​rity20/​prese​ntati​on/​gan

García, S, Luengo J, Herrera F (2015) Data preprocessing in data mining, vol 72.
Springer

Ghorbani A, Abid A, Zou J (2019) Interpretation of neural networks is fragile. In:
Proceedings of the AAAI conference on artificial intelligence, vol 33, pp
3681–3688

Godefroid P, Levin MY, Molnar DA et al (2008) Automated whitebox fuzz test-
ing. In: NDSS, vol 8, pp 151–166

Godefroid P, Levin MY, Molnar D (2012) Sage: whitebox fuzzing for security
testing. Commun ACM 55(3):40–44

Godefroid P, Peleg H, Singh R (2017) Learn&fuzz: machine learning for input
fuzzing. In: Proceedings of the 32nd IEEE/ACM international conference
on automated software engineering. IEEE Press, pp 50–59

https://github.com/mboehme/winaflfast
https://dynamorio.org/
https://www.Usenix.Org/conference/usenixsecurity20/presentation/gan
https://www.Usenix.Org/conference/usenixsecurity20/presentation/gan

Page 20 of 20Shi et al. Cybersecurity (2022) 5:17

Groß S (2018) Fuzzil: coverage guided fuzzing for javascript engines. PhD
thesis, TU Braunschweig

Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D (2018) A
survey of methods for explaining black box models. ACM Comput Surv
51(5):1–42

Jeong DR, Kim K, Shivakumar B, Lee B, Shin I (2019) Razzer: finding kernel race
bugs through fuzzing. In: 2019 IEEE symposium on security and privacy
(SP). IEEE, pp 754–768

Kang MG, McCamant S, Poosankam P, Song D (2011) Dta++: dynamic taint
analysis with targeted control-flow propagation. In: NDSS

Klees G, Ruef A, Cooper B, Wei S, Hicks M (2018) Evaluating fuzz testing. In:
Proceedings of the 2018 ACM SIGSAC conference on computer and com-
munications security. ACM, pp 2123–2138

Lee S, Han H, Cha SK, Son S (2020) Montage: a neural network language
model-guided Javascript engine fuzzer. arXiv preprint arXiv:​2001.​04107

Lemieux C, Sen K (2018) Fairfuzz: a targeted mutation strategy for increas-
ing greybox fuzz testing coverage. In: the 33rd ACM/IEEE international
conference

Li Y, Chen B, Chandramohan M, Lin S-W, Liu Y, Tiu A (2017) Steelix: program-
state based binary fuzzing. In: Proceedings of the 2017 11th joint meet-
ing on foundations of software engineering, pp 627–637

Luk CK, Cohn RS, Muth R, Patil H, Klauser A, Lowney PG, Wallace S, Reddi VJ,
Hazelwood KM (2005) Pin: building customized program analysis tools
with dynamic instrumentation. Acm Sigplan Notices 40(6):190–200

Mathis B, Gopinath R, Zeller A (2020) Learning input tokens for effective fuzz-
ing. In: Proceedings of the 29th ACM SIGSOFT international symposium
on software testing and analysis, pp 27–37

Pishchulin L, Insafutdinov E, Tang S, Andres B, Andriluka M, Gehler PV, Schiele B
(2016) Deepcut: joint subset partition and labeling for multi person pose
estimation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 4929–4937

Provost F (2000) Machine learning from imbalanced data sets 101. In: Proceed-
ings of the AAAI’2000 workshop on imbalanced data sets, vol 68. AAAI
Press, pp 1–3

Rajpal M, Blum W, Singh R (2017) Not all bytes are equal: neural byte sieve for
fuzzing. arXiv preprint arXiv:​1711.​04596

Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C, Bos H (2017) Vuzzer: applica-
tion-aware evolutionary fuzzing. In: NDSS, vol 17, pp 1–14

She D, Pei K, Epstein D, Yang J, Ray B, Jana S (2019) Neuzz: efficient fuzzing with
neural program smoothing. IEEE Secur Privacy 6:66

She D, Krishna R, Yan L, Jana S, Ray B (2020) Mtfuzz: fuzzing with a multi-task
neural network. In: Proceedings of the 28th ACM joint meeting on
European software engineering conference and symposium on the
foundations of software engineering, pp 737–749

Shoshitaishvili Y (2014) Python bindings for Valgrind’s VEX IR
Shoshitaishvili Y, Wang R, Salls C, Stephens N, Polino M, Dutcher A, Grosen

J, Feng S, Hauser C, Kruegel C et al (2016) Sok:(state of) the art of war:
offensive techniques in binary analysis. In: 2016 IEEE symposium on
security and privacy (SP). IEEE, pp 138–157

Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv
preprint arXiv:​1312.​6034

Sivakorn S, Argyros G, Pei K, Keromytis AD, Jana S (2017) Hvlearn: automated
black-box analysis of hostname verification in ssl/tls implementations. In:
2017 IEEE symposium on security and privacy (SP). IEEE, pp 521–538

Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M (2017) Smoothgrad: remov-
ing noise by adding noise. arXiv preprint arXiv:​1706.​03825

Stephens N, Grosen J, Salls C, Dutcher A, Wang R, Corbetta J, Shoshitaishvili Y,
Kruegel C, Vigna G (2016) Driller: augmenting fuzzing through selective
symbolic execution. In: NDSS, vol 16, pp 1–16

Takanen A, Demott JD, Miller C, Kettunen A (2018) Fuzzing for software secu-
rity testing and quality assurance. Artech House

Wagner D (2009) Dynamic test generation to find integer bugs in x86 binary
Linux programs. In: Proceedings of the 18th USENIX Security Symposium,
Montreal, Canada, August 10–14, 2009

Wang F, Shoshitaishvili Y (2017) Angr—the next generation of binary analysis.
In: 2017 IEEE cybersecurity development (SecDev), pp. 8–9. IEEE

Wang T, Wei T, Gu G, Zou W (2010) Taintscope: a checksum-aware directed
fuzzing tool for automatic software vulnerability detection. In: 2010 IEEE
symposium on security and privacy. IEEE, pp 497–512

Wang J, Chen B, Wei L, Liu Y (2017) Skyfire: data-driven seed generation for
fuzzing. In: 2017 IEEE symposium on security and privacy (SP). IEEE, pp
579–594

Wang Y, Jia X, Liu Y, Zeng K, Su P (2020) Not all coverage measurements are
equal: fuzzing by coverage accounting for input prioritization. In: Net-
work and distributed system security symposium

You W, Wang X, Ma S, Huang J, Zhang X, Wang X, Liang B (2019) Profuzzer: on-
the-fly input type probing for better zero-day vulnerability discovery. In:
2019 IEEE symposium on security and privacy (SP). IEEE, pp 769–786

Yue T, Wang P, Tang Y, Wang E, Yu B, Lu K, Zhou X (2020) Ecofuzz: adaptive
energy-saving greybox fuzzing as a variant of the adversarial multi-armed
bandit. In: 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Boston, MA. https://​www.​Usenix.​Org/​confe​rence/​useni​xsecu​
rity20/​prese​ntati​on/​gan

Yun I, Lee S, Xu M, Jang Y, Kim T (2018) {QSYM} : a practical concolic execution
engine tailored for hybrid fuzzing. In: 27th {USENIX} security symposium
( {USENIX} Security 18), pp 745–761

Zalewski M (2014) American fuzzy lop
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep

features for discriminative localization. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 2921–2929

Zong P, Lv T, Wang D, Deng Z, Liang R, Chen K (2020) Fuzzguard: Filtering out
unreachable inputs in directed grey-box fuzzing through deep learn-
ing. In: 29th {USENIX} Security Symposium ( {USENIX Security} 20), pp
2255–2269

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2001.04107
http://arxiv.org/abs/1711.04596
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1706.03825
https://www.Usenix.Org/conference/usenixsecurity20/presentation/gan
https://www.Usenix.Org/conference/usenixsecurity20/presentation/gan

	CAMFuzz: Explainable Fuzzing with Local Interpretation
	Abstract
	Introduction
	Background
	Grey-box fuzzing
	Explainable artificial intelligence

	Approach
	Training
	Data preprocess
	Model

	Local interpretation
	Node selection
	Magic value identification

	Implementation
	Main framework
	Model training
	AI mutation
	Node selection

	Evaluation
	Evaluation setup
	RQ1: What is the fuzzing performance
	Basic block coverage
	Bugs found by different fuzzers
	Further analysis

	RQ2: Performance of the NN model
	Size of seeds
	GPU resource occupation

	RQ3: Can the CAM help the fuzzer focus on related positions better than the gradient-based method?

	Case study
	Microsoft Jet database Engine type confusion vulnerability
	Jhead out of bounds read bug

	Related work
	Learning-based fuzzing
	Guided fuzzing

	Conslusion
	Acknowledgements
	References

