
Zhang et al. Cybersecurity (2022) 5:21
https://doi.org/10.1186/s42400-022-00120-1

RESEARCH

NDFuzz: a non‑intrusive coverage‑guided
fuzzing framework for virtualized network
devices
Yu Zhang1,2,3,4, Nanyu Zhong1,2,3,4, Wei You5, Yanyan Zou1,2,3,4*  , Kunpeng Jian1,2,3,4, Jiahuan Xu1,2,3,4,
Jian Sun1,2,3,4, Baoxu Liu1,2,3,4 and Wei Huo1,2,3,4 

Abstract 

Network function virtualization provides programmable in-network middlewares by leveraging virtualization tech-
nologies and commodity hardware and has gained popularity among all mainstream network device manufacturers.
Yet it is challenging to apply coverage-guided fuzzing, one of the state-of-the-art vulnerability discovery approaches,
to those virtualized network devices, due to inevitable integrity protection adopted by those devices. In this paper, we
propose a coverage-guided fuzzing framework NDFuzz for virtualized network devices with a novel integrity protec-
tion bypassing method, which is able to distinguish processes of virtualized network devices from hypervisors with
a carefully designed non-intrusive page global directory inference technique. We implement NDFuzz atop of two
black-box fuzzers and evaluate NDFuzz with three representative network protocols, SNMP , DHCP and NTP , on nine
popular virtualized network devices. NDFuzz obtains an average 36% coverage improvement in comparison with its
black-box counterparts. NDFuzz discovers 2 0-Day vulnerabilities and 1 1-Day vulnerability with coverage guidance
while the black-box fuzzer can find only one of them. All discovered vulnerabilities are confirmed by corresponding
vendors.

Keywords:  Coverage-guided fuzzing, Network devices, Network function virtualization

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Network function virtualization (Paper 2012) (NFV)
provides programmable in-network middlewares to
construct network services which are more robust and
scalable. The virtualized network functions (VNFs) are
built upon commodity hardware, e.g. x86 machine, and
naturally reuse the fruitful innovations in their software
stacks, e.g. operating systems. Thus, VNFs are essentially
software implementations of network functions and can
be deployed as an isolated virtual machine with the same
functionality of their physical proprietary counterparts
(Mijumbi et al. 2016; Han et al. 2015). Table 1 summaries

12 popular virtualized network devices across 9 main-
stream vendors with 5 distinct functionalities (Column
3), showing a widespread application of NFV. As Table 1
shows, leading network equipment vendors, including
Cisco (Line 2, 3), Juniper (Line 11, 12), Fortinet (Line
8) and more, are beginning to develop virtual network
appliances based on mainstream open-source operating
systems, e.g. Linux or Free BSD. shown in ’OS’ Column.
Therefore, a running VNF consists of a customized ker-
nel and several userland processes which belong to differ-
ent network functionalities.

Open Access

Cybersecurity

*Correspondence: zouyanyan@iie.ac.cn
1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4787-4832
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00120-1&domain=pdf

Page 2 of 21Zhang et al. Cybersecurity (2022) 5:21

Unfortunately, the VNFs, together with their physi-
cal proprietary counterparts, are facing a high-security
threat from vulnerabilities, such as CVE-2016-63661of
simple network management protocol (SNMP) , CVE-
2017-38812 of Cluster Management Protocol (CMP) and
CDPWN3 of Cisco Discovery Protocol (CDP). They are
harmful with all critical or high level according to CVSS
3.0 . Thus, researchers seek to introduce automated vul-
nerability discovery for VNFs. Coverage-guided fuzzing
is one of the most efficient methods to discover vulner-
abilities (Manèset al. 2019). Although numerous research
work have been proposed to improve the effectiveness of
coverage-guided fuzzing (Lyu et al. 2019; Yue et al. 2020;
Böhme et al. 2017; Rawat et al. 2017; Gan et al. 2018), the
main burden on applying such a fuzzing technique to
the VNFs is to obtain the fine-grained runtime informa-
tion of userland processes, e.g., their execution paths and
executing basic blocks (trace), for the reason that a VNF
is indeed a virtual machine with built-in integrity protec-
tion. Table 1 highlights the various integrity protection
techniques (“N.Shell” and “X.P.” columns) adopted by dif-
ferent vendors, 9 out of 12 devices are armed with at least
one type of integrity protection technique. For example,
CLI (Command-Line Interface) is the common interac-
tion interface to VNFs. But, it is often a trimmed shell
with customized commands provided by vendors for

VNFs, which leads to inability to invoke a normal shell,
e.g. bash and any third-parity software.

From the perspective of hypervisor (also known as vir-
tual machine monitor, VMM), tracing userland processes
is straightforward and has been well-studied as a part of
virtual machine introspection (VMI) (Jain et al. 2014).
Unfortunately, current VMI techniques can not deal with
VNFs due to their intrusive manner: most of approaches
require injecting code into guest virtual machines while
integrity protection of VNFs disallows such injection.
First, restriction of launching any third-party software
makes approaches like kernel data structures recon-
structing by drivers (Henderson et al. 2014; Yan and Yin
2012, https://​libvmi.​com/, https://​github.​com/​Cisco-​
Talos/​pyreb​ox) and code implanting (Carbone et al.
2012; Sharif et al. 2009) infeasible, as all of those meth-
ods require compiling and launching drivers inside guest
virtual machines. Second, the diversity of operating sys-
tems for different VNFs and a lack of specific kernel con-
figurations also make process outgrafting (Dolan-Gavitt
et al. 2011; Fu and Lin 2012) and kernel data structures
reconstructing by memory analysis (Socała and Cohen
2016), both of which rely on detailed kernel configuration
to generate tools for snapshotting userland programs, not
suitable for VNFs.

Challenge Tracing userland processes is a vital step in
applying coverage-guided fuzzing to VNFs. The integrity
protection commonly adopted by existing VNFs poses a
critical challenge: how to trace a specific userland process
of VNFs through the hypervisor in a non-intrusive way?

Our Approach We propose a coverage-guided fuzzing
framework for VNFs with a non-intrusive process locat-
ing technique. This technique is implemented by infer-
ring the the correct page global directory (PGD) value of
the target process (target PGD for short) , which is widely
treated as the process identification (Schumilo et al. 2017;
Aschermann et al. 2019; Henderson et al. 2014, https://​
libvmi.​com/, https://​github.​com/​Cisco-​Talos/​pyreb​ox),
from hypervisor view. Unlike traditional approaches lim-
ited by the integrity protection, we can infer target PGD
with a lightweight differential analysis, which leverages
two types of PGD-related information controlled by three
controllable operations. The two types of side-channel
information are enough to distinguish target PGD from
others. Then we can extract the target process’s running
trace from the system’s hybrid running traces with target
PGD.

In this paper, a prototype of the coverage-guided fuzz-
ing framework NDFuzz has been implemented. For the
target process to be fuzzed, its PGD value can be inferred
in a non-intrusive way. With target PGD, the target
process can be located by the hypervisor. During fuzz-
ing, NDFuzz collects the AFL-style bitmap of the target

Table 1  Access control of popular virtualized network devices

aNormal Shell: whether the normal shell is supported
bExecution Permission: whether a third-party program can be executed

Model Vendor Type OS N.Shella X.P.b

vEOS Arista Switch Linux ✓ ✓
CSR1000v Cisco Router Linux ✗ ✗
ASAv Cisco Firewall Linux ✗ ✗
SRA Sonicwall SSLVPN Linux ✗ ✗
SMA Sonicwall Gateway Linux ✓ ✓
PSA Pulse Secure SSLVPN Linux ✗ ✗
CHR Mikrotik Router Linux ✗ ✗
FortiGate Fortinet Firewall Linux ✗ ✗
SG6000 Hillstone Firewall Linux ✗ ✗
VyOS VyOS Router Linux ✓ ✓
vSRX Juniper Firewall FreeBSD ✓ ✗
vMX Juniper Router FreeBSD ✓ ✗

1  A critical vulnerability of Cisco ASA written by the Equation Group and
leaked by the Shadow Brokers.
2  A vulnerability for Cisco switches in Vault7, a large collection of docu-
ments of CIA released by WikiLeaks.
3  A set of five vulnerabilities affecting Cisco equipment (https://​www.​armis.​
com/​resea​rch/​cdpwn/).

https://libvmi.com/
https://github.com/Cisco-Talos/pyrebox
https://github.com/Cisco-Talos/pyrebox
https://libvmi.com/
https://libvmi.com/
https://github.com/Cisco-Talos/pyrebox
https://www.armis.com/research/cdpwn/
https://www.armis.com/research/cdpwn/

Page 3 of 21Zhang et al. Cybersecurity (2022) 5:21 	

process and feeds the information back to guide the fuzz-
ing. In order to monitor exceptional behaviors of target
process, we provide a tracing-based in-VMM mecha-
nism to catch the SIGSEGV signal and a coverage-jump-
ing based out-of-VMM mechanism to deal with other
exceptions.

We implement NDFuzz atop of two black-box fuzzers:
a mature open-sourced fuzzer Mutiny (https://​github.​
com/​Cisco-​Talos/​mutiny-​fuzzer) and a in-house fuzzer
tailored for DHCP protocol, supporting greybox cover-
age-guided fuzzing in both variants. We leverage NDFuzz
to fuzz three widely used protocols, SNMP , DHCP and
NTP , on nine popular VNFs from seven vendors. Com-
pared to its black-box counterparts, NDFuzz can notably
improve the fuzzing performance of VNFs with at least
an average 27 % coverage improvement. Furthermore,
NDFuzz discovers 2 0-day vulnerabilities and 1 1-day
vulnerability with coverage guidance while the black-box
fuzzers can find only one of them. All discovered 3 vul-
nerabilities are confirmed by corresponding vendors.

This paper makes the following contributions:

•	 Differential analysis based PGD inference technique
for VNFs The technique proposed can infer the PGD
value of a given networking process of a VNF in a
non-intrusive way. The key is to make the switching
of target PGD value significantly different from other
PGDs.

•	 A coverage-guided fuzzing framework for VNFs Lev-
eraging target PGD, NDFuzz can obtain the runtime
information of a userland process, and feed the infor-
mation back to the fuzzer. Two monitoring mecha-
nisms, i.e., a tracing-based in-VMM mechanism and
a coverage-jumping based out-of-VMM mechanism,
are provided to catch as many exceptions as possible.
As a framework, NDFuzz can be used to augment
black-box fuzzers. NDFuzz integrates a fuzzer which
is developed by ourselves for DHCP. We also improve

an existing general protocol fuzzer Mutiny (https://​
github.​com/​Cisco-​Talos/​mutiny-​fuzzer) to support
the coverage recording and guidance.

•	 Vulnerabilities discovered in various VNFs NDFuzz is
leveraged to fuzz three protocols, SNMP, DHCP and
NTP , in nine popular VNFs produced by seven ven-
dors. In total, three vulnerabilities are confirmed by
vendors, including two newly discovered vulnerabili-
ties and one fixed vulnerability.

This paper is organized as follows: "Observation and
motivation" section presents our observations and moti-
vation to overcome the challenges. "Technical back-
groud" section briefly introduces some crucial technical
terms. "Overview" section shows the outline of NDFuzz
containing two major phases which are introduced in the
next two sections. "Phase I: target PGD inference" section
explains the detail of PGD inference based on differen-
tial analysis. "Phase II: coverage-guided fuzzing" section
describe the design and implementation of the fuzzing
process. "Experiment and evaluation" section shows the
result of NDFuzz. The shortcoming and future work are
discussed in "Discussion" section. "Related Work" section
lists the related work. Finally, "Conclusion" section sum-
marizes this paper.

Observation and motivation
Figure 1 illustrates a typical fuzzing procedure for a vir-
tualized network device running as a virtual machine
containing several processes inside. Different processes
handle different protocols, each with a corresponding
process control block (PCB) in kernel space. The process
is scheduled as a normal Linux kernel does. The kernel
also dispatches exception signals such as SIGSEGV to the
corresponding process when the process crashes.

Because of the integrity protections of VNFs, black-box
fuzzing is one of the most straightforward ways to dis-
cover vulnerabilities, which is widely used in IoT devices

SNMP
process

Hypervisor(QEMU)

Hardware

HostDHCP
process ...

Virtual Network
Device

Userland

Fuzzing
Controller

Packet
Sender

Network Communica�on

Control Command

Process Run�me Informa�on

PCB KernelPCB PCB

schedule signal dispatch

Fig. 1  Typical procedure to fuzz a network device

https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer

Page 4 of 21Zhang et al. Cybersecurity (2022) 5:21

fuzzing (Feng et al. 2021; Chen et al. 2018; Zhang et al.
2019). The main fuzzing function is implemented in the
packet sender, which can send a mutating request to the
target process (yellow arrow in Fig. 1). Once the com-
munication is interrupted or responded with specific
contents, a crash may occur, and the request is recorded.
However, there are three limitations about the blackbox
fuzzing: (1) The performance, such as code coverage, is
hard to be evaluated. (2) The mutation is inefficient with-
out runtime information guidance such as coverage. (3)
The response-based monitoring (also known as liveness-
check Muench et al. 2018) mechanism is quite unrelia-
ble. Although the coverage-guided fuzzing is widely used
in the software to overcome those shortcomings, it can
not be employed for VNFs directly.

For coverage-guided fuzzing (greybox fuzzing), a
fuzzing controller is introduced to guide the mutation
according to the request-related coverage. However, the
coverage of the VNFs is not easy to obtain because of the
integrity checks. The potential way is to implant a pro-
gram into the virtualized network devices to monitor
the runtime information (Gao et al. 2020). The method
requires two preconditions unsupported by the VNFs,
i.e., the ability to implant a program and the permission
to execute the program.

The only general way is to obtain code coverage in
a non-intrusive way by leveraging the hypervisor. The
non-intrusive way means no modification of the original
VNF, no shell permission needed and no agent placed.
Under this constraints, some hypervisor-assist works
such as TriforceAFL (https://​github.​com/​nccgr​oup/​
Trifo​rceAFL), kAFL (Schumilo et al. 2017), REDQUEEN
(Aschermann et al. 2019) and FirmAFL (Zheng et al.
2019) all cannot work.

From the hypervisor view, all runtime information of
the guest operating system, such as instructions, reg-
isters and memory can be obtained directly. However,
the information is just raw data without semantic infor-
mation, which is the well-known semantic gap problem
(Dolan-Gavitt et al. 2011). As described in Introduction,
numerous works to solve the semantic gap with VMI
technique are limited in our fuzzing scenario. As Table 1
depicts, numerous VNFs are developed atop of the mod-
ern multi-tasking operating system (Linux, FreeBSD,
etc.). Therefore different network services always run
as different daemon processes and our fuzzing target is
indeed the userland process of a VNF. The only thing we
need for coverage guidance is the trace. Thus the major
problem is solved once we can filter the correct trace of
the target process from hybrid raw data from hypervisor
view. Page global directory (PGD) of a process is suita-
ble for distinguishing different processes in our scenario
with three features: (1) For the paging mechanism for a

process, both Linux and FreeBSD adopt a multilevel pag-
ing model. The top-level is PGD, a physical page frame
that is unique for different processes and can be treated
as a process identification. (2) Unlike the target (i.e.
image parser) whose lifecycle is just a round of pars-
ing in mainstream fuzzing (Gan et al. 2018, http://​lcamt​
uf.​cored​ump.​cx/​afl/, Lyu et al. 2019; Aschermann et al.
2019), the network process always acts as a daemon pro-
cess and handles network requests persistently in a single
process. Obviously, PGD value is constant unless the pro-
cess crashes or restarts. (3) When the kernel schedules a
process, PGD is loaded into a special register (CR3 of x86
and x86_64). The change of this register can be treated
as a specific event of the hypervisor. In other words,
once the PGD value of the target process is known, the
hypervisor can know whether the target process is sched-
uled and running by monitoring the change of the CR3
register.

These observations reveals that we can trace the target
network service, a daemon process, in a non-intrusive
way through obtaining the correct PGD values of the tar-
get process. NDFuzz focuses on the network service sat-
isfying three characters: (1) Its function is independent
and works as a single daemon process. (2) The protocol
is whole or partial stateless so that the requests are unre-
lated to each other. (3) The service is deployed in the C/S
architecture, and the process works as a server while the
fuzzer is the client.

Technical backgroud
In this section, we briefly introduce some crucial techni-
cal terms of this paper.

QEMU
QEMU is a hosted virtual machine monitor with JIT
compilation that translates the target’s code to native
instructions and executes at native speed. Tiny code
generator (TCG) works by translating the guest basic
block into an architecture-independent intermediate
representation (IR), then the backend lowers the IR into
native host instructions. There are two general modes
as user mode and system mode. The user mode can exe-
cute a single process while the system mode emulates a
full operating system (Virtual Machine, VM), including
a processor and various peripherals. QEMU machine
protocol4 (QMP) is used for system mode to control
the virtual machine such as save/load a snapshot, dump
memory, etc. In fuzzing, QEMU user mode is always
used for single binary program fuzzing scenario such as

4  https://​wiki.​qemu.​org/​Docum​entat​ion/​QMP.

https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://wiki.qemu.org/Documentation/QMP

Page 5 of 21Zhang et al. Cybersecurity (2022) 5:21 	

QEMU mode of AFL, system mode is always used for the
target such as kernel which needs a whole system.

Network services
Simple network management protocol (SNMP) is an
Internet Standard protocol used for the management and
monitoring of network-connected devices. It is widely
used in network management for network monitoring by
different object identifiers (OID), the representation of
device function.

Dynamic host configuration protocol (DHCP) is a
client/server protocol for automatically assigning IP
addresses and other communication parameters to
devices connected to the network. DHCP is widely used
in devices that have a LAN for connecting such as a
router, gateway, firewall and more.

Network time protocol (NTP) is designed for Time
synchronization between different network nodes over
packet-switched, variable-latency data networks. It can
provide high precision time correction for other clients
in the network and keep the time consistency in the
network.

Overview
Figure 2 describes the high-level overview of our fuzz-
ing framework NDFuzz. It consists of two critical phases:
target PGD inference phase (Phase I) depending on the
differential analysis of process switching to obtain the
identification of target process, actually the PGD value
of a process. Then phase II uses this PGD value to drive
the coverage-guided fuzzing. Since the PGD is always

changed when the process or system restarts, we take
a snapshot for each given VNF image to avoid redun-
dant work. For a given VNF image, a snapshot with the
PGD value of the target process can be treated as a fuzz-
ing instance. The fuzzing instance can be copied and
deployed independently for different aims.

Phase I treats a running VNF as the input supported
by the customized QEMU, the virtual machine monitor
(VMM or hypervisor). Although the customized QEMU
can obtain all runtime information of a VNF, the seman-
tic information is still unknown. Fortunately, we only
need is the PGD value of the target process (TP) to drive
the coverage-guided fuzzing. We record a set of PGD val-
ues of alive processes and their process switching times.
With the two attributes, we can leverage a lightweight
differential analysis to infer the correct PGD value of
TP. In this side-channel way, we can automatically locate
TP accurately and efficiently. The main steps are shown
in the left half of Fig. 2. I-1: The customized hypervisor
record a list of PGD values and the scheduled times. In
order to ensure that TP will be scheduled, we continu-
ously make requests to TP during PGD recording. I-2:
We disable or restart TP and another list of PGD values
and schedule times are recorded. I-3: A lightweight dif-
ferential analysis is applied to the two lists of PGD values
to obtain the target PGD.

Phase II is depicted in the right half of Fig. 2. During
the fuzzing procedure, the fuzzing controller coordi-
nates the customized QEMU and the packet sender
with control command. Fuzzing controller loads
the configuration of target process (II-1), initializes

VNF

Userland

Network Communica�on Control Command Process Run�me Informa�on

Kernel

Customized QEMU

Fuzzing
Controller

Packet Sender

PGD of Target Process

SNMP ...

Target Process
(TP)

schedule signal dispatch
Coverage Info.

and
Excep�on Info.

Dynamic Binary Instrumenta�on In-VMM Monitoring

Phase II: Coverage-guided Fuzzing

Normal Workflow

Out-of-VMM
Monitoring

Crash
Sync

Bitmap
Sync

QMP

Differen�al Analyzer

Record Process Switching

PGDs do not
contain TP's

PGDs contain
TP's

Target
Process
Trigger

Other
Processes

Disable Target Process

Phase I: Target PGD Inference

I-1

I-3

II-1

II-2

II-4

II-3

II-5

II-6

Running Support

Crash

I-2

Fig. 2  Overview of NDFuzz

Page 6 of 21Zhang et al. Cybersecurity (2022) 5:21

customized QEMU (II-2) and the packet sender (II-3).
With the PGD value of the target process, customized
QEMU can know if TP is scheduled by monitoring
the change of CR3 register in x86 or x86_64 archi-
tecture. Therefore, the trace of the target process
can be recorded when TP is running. The recording
is related to the request handling. Before the packet
sender sends a mutated request (II-4) , the fuzzing
controller notifies QEMU to enable the trace record-
ing. Once the request is handled completely, the
fuzzing controller disables recording and obtains the
traces for coverage guidance from customized QEMU
through QMP protocol and shared memory (II-5) .
The customized QEMU can record AFL-style bitmap
in a normal running loop. Once a crash occurs, we can
monitor it with two mechanisms (II-6) . An in-VMM
monitoring mechanism can catch the exception sig-
nal, such as SIGSEGV, accuracy through partial kernel
tracing. Moreover, we also developed an out-of-VMM
monitoring mechanism based on coverage-jumping to
catch the exceptions missed by the in-VMM method.
After recording the exceptional request, fuzzing con-
troller loads the initial snapshot of VNF to continue
the fuzzing.

The whole procedure is entirely transparent for
VNF because there is no modification of VNF, no shell
permission needed and no agent program placed. It is
a non-intrusive way to turn a black-box fuzzing into a
gray-box fuzzing for VNF.

Phase I: target PGD inference
In this section, we illustrate the detailed implementation
of process locating with the help of differential analysis.
Due to the environment limitation of VNFs, it is difficult
to obtain the specific kernel offset needed by mainstream
VMI and memory analysis techniques. Thus, we cannot
traditionally obtain the mapping of processes and their
PGD values. However, our aim is different from the VMI.
Instead of obtaining numerous information belonging to
the process control block (PCB), we only need the PGD
value of the target process to identify the target process.
Although the VNF has several inherent limitations, we
can still control part of the internal VNF such as the sta-
tus of a network process.

Firstly, through CLI or other management methods
(e.g. web interface), we can enable, disable or restart
a network service5, and the network service is related
to a userland process which is corresponding to a spe-
cific PGD value. Specifically, enabling a network ser-
vice binds a PGD value and the process. Disabling or
restarting6 the service will eliminate this relation. Sec-
ondly, from the view of hypervisor, all PGD values of
the userland processes can be obtained by monitoring
the switching of CR3 register. In a given period, we
can not only record what PGD values are loaded into
CR3 that reveals how many processes are switched,
but the time of each PGD value that reveals the execu-
tion frequency of a PGD of process. Thirdly, the net-
work service always acts as the daemon process that
stays in a loop like “waiting for a request—handling
the request—waiting for the next request”. When a
request reaches the VNF from outside, the kernel will
wake up the corresponding process according to the
port, and the process switching occurs. Finally, we
can configure the VNF through CLI to create a “sta-
ble” environment. This environment consists of the
target process, as few as unrelated processes by dis-
abling them, and the system services that cannot be
configured.

These four points are corresponding to two types
of side-channel information and three operations to
change them. By controlling the binding (operation 1)
and eliminating (operation 2) of the relation of PGD
value of target process, we can obtain a set of PGD
values containing the PGD value of target process and
another set do not contain (information 1). By creat-
ing network requests to the target process (operation
3), we can increase its schedule times, which equals
the process switching time (information 2). Thus
operation 3 makes the switching time of target PGD
be quite more than the default. With the well-config-
ured environment, this method can significantly differ
from other processes on process switching with less
noise. Therefore, these operations and information
are enough to ensure the correct PGD value of the tar-
get process through differential analysis.

5  Note that these operations might be executed more directly with the normal
shell.
6  The PGD value is bound to a process, once a network service is restarted,
the process is actually changed, so the PGD is always changed too.

Page 7 of 21Zhang et al. Cybersecurity (2022) 5:21 	

Algorithm 1: Process Locating by Differential Analysis.
Input: A running VNF V , a method trigger(TV)to request the target process TV .
Output: A fuzzing instance containing Vsnapshot and PGD value P of target process TV .

1 binding(TV);
2 Vsnapshot ← take snapshot(V) ;
3 PGDs ← {} ;
4 while process switch time <N do
5 � Note this trigger running is concurrent with process switching recording ;
6 trigger(TV) ;
7 PGD value ← monitor CR3 switching(V) ;
8 if PGDs.has key(PGD value) then
9 PGDs[PGD value] ← PGDs[PGD value] + 1 ;

10 else
11 PGDs[PGD value] ← 1 ;

12 eliminating(TV);
13 PGDs without target ← {} ;
14 while process switch time <N do
15 PGD value ← monitor CR3 switching(V) ;
16 if PGDs without target.has key(PGD value) then
17 PGDs without target[PGD value] ← PGDs without target[PGD value] + 1 ;

18 else
19 PGDs without target[PGD value] ← 1 ;

20 PGD set ← set(PGDs) \ set(PGDs without target);
21 P ← select PGD value with most switching(PGD set, PGDs);
22 return P , Vsnapshot ;

Algorithm 1 reveals how to infer PGD value of the
target process TV of a VNF V . We define operations
binding(TV) and eliminating(TV) to represent opera-
tion 1 and operation 2 with correct configuration, and
trigger(TV) means a network request to target process
TV from outside of VNF (operation 3). We first bind TV
with a PGD value by enabling the service and taking a
snapshot for later fuzzing. As described in "Phase I: tar-
get PGD inference", once TV is running and triggered by
a network request, it will be scheduled. Therefore we use
the hypervisor to record the process switching N times
(we always use 1000) and trigger the process by network
simultaneously. Then we obtain a list PGDs contain-
ing all PGD values with each process switching time.
Because of our strategy, the target PGD value must be
in PGDs with a top process switching times. Then we
eliminate the relation of TV and target PGD by disabling
or restarting the service. We can similarly obtain the list
PGDs_without_target . Next, we transform the PGDs and
PGDs_without_target into sets of PGD values and obtain
the difference set PGDset . Finally, we compare the ele-
ments which have the same PGD values of PGDset and
PGDs list, and the PGD value with the most scheduled
times is the PGD values of the target process.

This method to locate the process is general for vari-
ous multi-tasking operating systems such as Linux and

FreeBSD. Obviously, the versions are hardly affected
because it is a general design of the operating system. In
x86 and x86_64 architecture, the CR3 register saves the
PGD values and the instructions to read or write this
register are specific. Although we cannot map all pro-
cesses and PGD values through memory analysis which
depends on offsets or debug information, this method is
enough for our scenario.

We customize QEMU as our hypervisor to record the
PGD values by hooking the CR3 related instructions.
The implement of trigger(TV) is related to the proto-
col of TV  . The trigger is general for the target process of
different VNF with the same protocol. The customiza-
tion is needed for a target process with a new protocol.
Implementing a trigger is simple because it can just send
a packet to the correct port of VNF. The packet can be
captured from normal communication or crafted accord-
ing to the RFCs.

Phase II: coverage‑guided Fuzzing
With the process control information, we can trace and
monitor a userland process via hypervisor and collect
the runtime information to guide the fuzzing. In this
section, we depicts the implementation of the fuzzing
phase. "Driving the whole fuzzing" section illustrates the
whole procedure of VNF fuzzing. "Monitoring a userland

Page 8 of 21Zhang et al. Cybersecurity (2022) 5:21

program" section reveals how to monitor a crash from
hypervisor view. "Customized hypervisor" section shows
the implementation of the customized QEMU.

Driving the whole fuzzing
Figure 3 shows the whole fuzzing interaction of NDFuzz.
Fuzzing controller drives the whole procedure by control-
ling customized QEMU and packet sender. Customized
QEMU executes the dynamic binary instrumentation
for monitoring exceptions and tracing the target pro-
cess. Packet sender crafts the packet and sends them by
notification of fuzz controller. During the handling of a
packet, QEMU record the real-time information. Fuzz-
ing controller determines the start and end of bitmap and
tracing recording by the response from the userland pro-
gram with an acceptable timeout limitation. Then bitmap
information of each request is synchronized by shared
memory through customized QMP command. Accord-
ing to bitmap, the interesting case is put into the priority
queue as guidance. At the same time, it synchronizes with
QEMU about signal monitor and analysis the coverage

for coverage monitor. Once an exception occurs, fuzz-
ing controller saves the corresponding information, then
reloads the snapshot for later fuzzing. All command and
control operations are transparent to the device atop the
hypervisor, so the device treats all requests as usual.

We design an intermediate layer packet sender to be
compatible with different customized protocols fuzzing,
including the mutation interface used in the mutation
thread and the sending interface used in the communi-
cation thread. The mutation thread is used to mutate the
requests to satisfy the protocol specification and main-
tain the testing queue, and the communication thread
communicates to the target process according to the
rules and maintains the interesting queue. The mutation
thread takes requests from the interesting queue and puts
them into testing queue after mutation. The communica-
tion thread stores testcases by coverage growth into the
interesting queue to support coverage guidance.

Besides customized protocols integrating, we also
implemented the core functionality of fuzzing control-
ler as APIs to support the adaptation of the existing

Load process control
informa�on

Fuzzing Controller Customized QEUM Kernel Target ProcessPacket Sender

Set configura�on

Load NFV Snapshot
DBI for In­VMM

monitoring

DBI for Target Process

TCG
transla�on

Reset bitmap

Load Snapshot

Start fuzzing

Enable coverage recording
Sending request

Disable coverage recording
Response

Update Coverage

Add interes�ng Packet

SIGSEGV Signal
Sync

Record crash
Reload snapshot

Record basic block

Record bitmap

Fuzzing
Loop

Config
Setup

In­VMM Monitoring

Judge coverage jumping

Record crash
Reload snapshot

Out­of­VMM Monitoring

Muta�on

Networking configura�on

Load seeds

TCG
transla�on

Fig. 3  Overview of the fuzzing interaction

Page 9 of 21Zhang et al. Cybersecurity (2022) 5:21 	

black-box network fuzzer. A black-box fuzzer can easily
obtain coverage to evaluate performance even support
the coverage-guided fuzzing.

Monitoring a userland program
Tracing a userland program can provide the coverage
information that drives the graybox fuzzing. Once an
exception occurs, NDFuzz needs to know the termina-
tion and record the related testcase. Note that monitoring
should also be non-intrusive. Liveness-check (Muench
et al. 2018) should work for part of our scenario but
with apparent shortcomings. To monitor the exceptions
through the hypervisor view, we develop two monitor-
ing mechanisms by tracing the exceptional handler and
observing the coverage jumping of the userland process.

In-VMM Monitoring According to Muench’s research
(Muench et al. 2018), segment tracking can archive
80% types of artificial vulnerabilities discovered in their
experiment. For Linux and FreeBSD, detecting Segmen-
tation Fault (SIGSEGV) equals this technique. When a
userland program triggers an access violation, the kernel
will take over and notify the process with a SIGSEGV sig-
nal. For hypervisor, tracing the handler execution during
the target process execution is a general in-VMM moni-
toring mechanism. Rule 1 indicates the in-VMM moni-
toring. The target PGD is known and the process handler
is specific for different kernels. We locate the SIGSEGV
handler by finding the kernel basic block address which
contains some special strings access. For Linux, when a
userspace program triggers SIGSEGV, kernel logs the
exception information by calling printk() function with
the format string “%s%s[%d]: segfault at ”. For FreeBSD,
the feature string is “(core dumped)”. The kernel binary is
not difficult to get by mounting the VNF images.

Out-of-VMM Monitoring Although monitoring SIG-
SEGV signal can cover most of the process crashes,
some other exceptional situations can also cause process
crash or termination, such as the crash by SIGABRT sig-
nal triggered by heap errors or restarting by a watchdog.
Because the handle of the SIGABRT signal is quite more
complex than SIGSEGV, it is not suitable to be caught in
the In-VMM monitoring. In this situation, monitoring
only by SIGSEGV signal might miss some exceptional
testcases. However, if we ignore these false negatives, the
whole graybox fuzzing which is related to the target PGD
value will be broken. For example, once the target process
is crashed by SIGABRT signal, the In-VMM mechanism
will miss it but the watchdog might restart this process
to recover its running. After the process restarting, it can

(1)
{

PCVMM = SIGSEGVkernel

CR3VMM = PGDtarget_process

handle the network request as before but its PGD value
has changed because of the restarting. Because NDFuzz
uses target PGD value to obtain the runtime information
of target process, the PGD change caused by false nega-
tives will make the whole fuzzing abnormal and is quite
unacceptable.

Therefore, we also provide an additional monitor-
ing mechanism with code coverage based on an ingen-
ious observation of our userland program tracing. As
described in "Phase I: target PGD inference" section, the
PGD value never changed during the normal running
of the target process and QEMU records the coverage
information with the filter of this PGD value. So once the
process is terminated, modified QEMU cannot trace any-
thing with the previous CR3 value. This causes a “coverage
jumping” from non-zero to zero and reveals the exception
that was missed by in-VMM monitoring. Out-of-VMM
monitoring might catch some terminations which are not
caused by a vulnerability in a few extreme situations, but
we think these unexpected exits are also should be caught
to ensure that the whole fuzzing works well.

Customized hypervisor
To support the graybox fuzzing, we developed the cus-
tomized QEMU based on QEMU-TCG. A fuzzing job
can be deployed on just a PC or cloud with this low-level
implementation. We hook the CR3 read and write opera-
tion of QEMU to know whether the target process is
scheduled. We also modify the TCG engine for dynamic
binary instrumentation and provide AFL-style bitmap for
guidance (edge coverage). There could be three types of
instruction during the userland process tracing: instruc-
tion of correct userland process, instruction of others
userland processes, and kernel instructions. We use the
PGD value of the target process to filter the correct user-
land process. Then we use the RIP or EIP value to filter
the instructions of kernel space and userspace.

A straightforward way to dynamic instrument is to
hook the TCG run-loop of cpu_exec() function of qemu/
accel/tcg/cpu-exec.c file. However, it will bring a huge
performance overhead by disabling the block chain-
ing feature. Compared to the native code execution, the
translation is expensive and translation blocks (TBs) are
saved in the TCG cache in normal QEMU execution.
When the TB is executed, QEMU will find the next basic
block, and it also brings the extra performance overhead.
Therefore QEMU provides the block chaining to link the
adjacent TBs, such as a direct jump with the known des-
tination address. Without block chaining optimization,
each basic block will be translated expensively repeti-
tively without cache. For our system-mode QEMU, the
cost is quite unacceptable. AFL++ (Fioraldi et al. 2020,
https://​andre​afior​aldi.​github.​io/​artic​les/​2019/​07/​20/​

https://andreafioraldi.github.io/articles/2019/07/20/aflpp-qemu-compcov.html

Page 10 of 21Zhang et al. Cybersecurity (2022) 5:21

aflpp-​qemu-​compc​ov.​html) optimized this by inserting
the bitmap calculation into the translation block and got
3x–4x speedup.

Inspired by this optimization, we directly insert our
helper function into the translation block for tracing and
monitoring. The bitmap is saved in shared memory which
is reset before each fuzzing iteration. The corresponding
byte of the bitmap is incremented when an edge transi-
tion occurs. The implementation of monitoring is a little
different from tracing. Because it focuses on monitoring
the execution of the exception handler which is related to
the address of a specific basic block, we insert the helper
function when this basic block is translated. Therefore
when the basic block is executed, the helper function will
mark the signal to achieve the monitoring.

Experiment and evaluation
In this section, we evaluate the prototype implementa-
tion of NDFuzz. In short, we would like to answer the fol-
lowing research questions:

1	 Generality Does our target PGD inference technique
work well on different VNFs?

2	 Coverage improvement How much the coverage has
been improved with coverage-guidance?

3	 Vulnerability discovery How effective is NDFuzz in
finding the real vulnerabilities in VNFs?

4	 Overhead What is the overhead of NDFuzz about
instrumentation?

5	 Case study How does coverage guide the vulnerabil-
ity discovery?

Experiment Setup We deployed our fuzzing on a Ubuntu
20.04 LTS with Intel(R) Xeon(R) Gold 6242R CPU @
3.10GHz and 120GB memory. To avoid the potential
noise among different devices (traffic of ARP, NDP, etc.)
that might affect the fuzzing, we performed network iso-
lation for each fuzzing instance. More specifically, we
prepare a whole virtual machine for one fuzzing instance
and NDFuzz deployment. Each virtual machine is given
8 GB memory and 50 GB virtual disk. The whole process
from phase I to phase II is automatic with the only man-
ual effort of device configuration. Due to the significant
difference among devices, it took us about 3 h per device
to complete the configuration of the SNMP (version

2c) , DHCP and NTP services to prepare for a fuzzing
instance.

In order to verify the performance of NDFuzz in
improving the coverage and finding crashes, we adopt
four fuzzing engines which contain 2 general fuzzing
engines (Mutiny-No-Feedback and Mutiny-Feedback)
and 2 protocol customized fuzzing engines (ZDHCP-
No-Feedback and ZDHCP-Feedback). We totally tested
18 fuzzing instances and each of them has been tested by
several fuzzing engines by copying them. The total CPU
hours of fuzzing is 3168 (9*2*72+4*4*72+5*2*72) h.

Code Size of NDFuzz Table 2 shows the statistic of
NDFuzz. We added about 1.8k lines of C code to cus-
tomize QEMU for our requirement. Original Mutiny is
about 2.0k lines of python code and we add 0.7k which
contains the API of NDFuzz to enable the runtime
information obtaining. For Mutiny-FB mode, we added
about 0.8 k lines of Python on the original Mutiny. The
ZDHCP-NFB is about 4.6 k lines of Python code with the
NDFuzz API to record the coverage in black box fuzzing.
The total NDFuzz is 6.2 k line of Python with ZDHCP-FB
integrated.

Generality for different devices
In order to demonstrate the generality of NDFuzz, we
selected nine real-world VNFs as fuzzing targets among
seven famous vendors (Arista, Juniper, SonicWALL,
Fortinet, Hillstone, Pulsesecure and Vyos). These devices
belong to Switch, Router, Firewall, Gateway, and SSLVPN
5 types. Table 3 illustrates the detailed information of
our nine target VNFs. We can see 77.8% (7 of 9) devices
are based on Linux of various versions except for Juni-
per which is based on FreeBSD. The kernel versions of
Linux are all different with a 11-year gap from 2.6.32 to
4.19.142. One of the seven Linux-based VNFs is x86 and
others are x86_64. Although the two architectures are
similar, they are still different such as calling convention.
However, our lightweight target PGD inference tech-
nique can obtain the correct target PGD among different
OS and versions. This is because the process scheduling
mechanisms are general for various multi-tasking operat-
ing systems.

We selected SNMP, DHCP and NTP protocol as target
service. SNMP is a typical stateless protocol that is used
to manage a device according to different OID nodes.

Table 2  Code size of fuzzing components

aContains well-adapted ZDHCP-FB

Fuzzer Mutiny ZDHCP NDFuzz NDFuzz a QEMU

Type ORI NFB F NFB – – –

LoC 2.0k 2.7k 2.8k 4.6k 3.6k 6.2k +1.8k (C)

https://andreafioraldi.github.io/articles/2019/07/20/aflpp-qemu-compcov.html

Page 11 of 21Zhang et al. Cybersecurity (2022) 5:21 	

DHCP is a little different because it contains the client
and server side which is our fuzzing target. We also treat
it stateless to focus on option parsing by fixing the IP
address and marking each request with a unique session
ID. NTP is simpler than SNMP and DHCP and is used for
clock synchronization between different network nodes.
The support of the three protocols in different devices is
listed in the column 6–8 of Table 3. All of the devices can
obtain target PGD in less than 20 s. This is efficient and
negligible compared to the 72 h fuzzing.

We counted the proportion and rank for illustrating
phase I and the detailed information are listed in Table 4
. We first got the target PGD value through differential
analysis of phase I. Then, we loaded the snapshot and
counted the default switching times according to the cor-
rect PGD value. The percentage reveals the proportion
of switching times of target PGD in total one thousand
times switching. SNMP-T, DHCP-T and NTP-T are the

statistic of target PGD with trigger operation. SNMP-N,
DHCP-N and NTP-N shows statistic during the normal
VNF running. From SNMP-N, DHCP-N and NTP-N, we
can see that SNMP, DHCP or NTP processes are usually
scheduled with a small proportion. SNMP-T, DHCP-T
and NTP-T shows that these processes are always sched-
uled in a significantly larger proportion and top rank with
the trigger operation . Among the 9 VNFs, we totally
obtained the information of 18 PGD values, including
9 for SNMP, 4 for DHCP and 5 for NTP . With trigger
operation, 9 of 18 take the first place and others are sec-
ond. This is because some system processes might take a
higher priority than target processes.

The mainstream way to obtain the PGD value is
through the memory analysis (https://​libvmi.​com/,
https://​github.​com/​Cisco-​Talos/​pyreb​ox, Hender-
son et al. 2014; Yan and Yin 2012, https://​github.​com/​
volat​ility​found​ation/​volat​ility), but on the premise of

Table 3  Virtualized network devices and services for fuzzing

a We failed to enable its DHCP Server of vMX although have tried our best to configure it

Model Type OS Arch Kernel version Fuzzing protocol

SNMP DHCP NTP

vEOS Switch Linux x64 4.19.142 Yes No Yes

PSA SSLVPN Linux x64 2.6.32 Yes No No

SRA SSLVPN Linux x86 3.1.0 Yes No No

FortiGate Firewall Linux x64 3.2.16 Yes Yes Yes

SG6000 Firewall Linux x64 3.10.20 Yes Yes No

SMA Gateway Linux x64 4.4.12 Yes No No

VyOS Router Linux x64 3.13.11 Yes Yes Yes

vSRX Firewall FreeBSD x64 11.0 Yes Yes Yes

vMX Router FreeBSD x64 11.0 Yes Noa Yes

Table 4  Statistic of proportions and ranks of different processes

a T suffix means -Trigger, shows the ratio and rank of switching times of target PGD during the 1000 times process switching with trigger
b N suffix means -Normal, shows the ratio and rank of switching times of target PGD during the 1000 times process switching in normal running

Model SNMP-Ta SNMP-Nb DHCP-T DHCP-N NTP-T NTP-N

Prop. (%) Rank Prop. (%) Rank Prop. Rank Prop. Rank Ratio Rank Ratio Rank

vEOS 30.9 1 2.3 7 N/A N/A N/A N/A 35.7% 1 0.7% 15

PSA 58.0 1 0.3 37 N/A N/A N/A N/A N/A N/A N/A N/A

SRA 27.3 2 7.0 4 N/A N/A N/A N/A N/A N/A N/A N/A

FortiGate 52.6 1 3.1 9 35.5% 1 0.30% 50 31.3% 1 0.3% 23

SG6000 22.9 2 0.2 15 20.6% 2 0.20% 24 N/A N/A N/A N/A

SMA 16.0 2 0.9 19 N/A N/A N/A N/A N/A N/A N/A N/A

VyOS 54.0 1 16.0 7 27.5% 1 1.20% 15 31.9% 1 2% 7

vSRX 14.8 2 1.4 11 20.0% 2 1.5% 9 29.1% 2 0.2% 22

vMX 29.1 2 1.10 11 N/A N/A N/A N/A 43.6% 2 0.6% 19

https://libvmi.com/
https://github.com/Cisco-Talos/pyrebox
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility

Page 12 of 21Zhang et al. Cybersecurity (2022) 5:21

non-intrusive, we cannot obtain the proper input in
their way such as kernel data structures reconstruction
by drivers and more. Thus this potential way is another
question to be solved.

Our differential analysis solution can only infer the
PGD and cannot obtain detailed information such as the
process name which is related to this PGD value, while
the potential way can obtain the accuracy content. This is
the major disadvantage. On the other hand, the potential
way needs to parse each kernel file to extract the needed
information and then parse the whole memory snapshot,
which is complex with more steps than our solution .
This is the advantage of our solution .

Improvement of code coverage
We fuzzed all VNFs with a significantly lower cost of
both fuzzing target and time with the help of virtualiza-
tion than physical devices. The fuzzing engines are illus-
trated as follows:

Mutiny-No-Feedback (Mutiny-NFB) Mutiny (https://​
github.​com/​Cisco-​Talos/​mutiny-​fuzzer) is a network
fuzzing framework that mutates the requests of raw
PCAPs. It is developed by Cisco Talos security team and
uses Radamsa (https://​gitlab.​com/​akihe/​radam​sa) to per-
form mutations. As a mutation-based fuzzer, it treats
the PCAP file as input and generates a fuzzing template
according to the contents. Thus Mutiny is general for TCP
or UDP protocols and is designed for black-box protocol
fuzzing so that it can test VNFs. We select it as a bench-
mark to show the performance of block-box fuzzing. We
adapt Mutiny with our APIs to record the coverage infor-
mation without modifying the original fuzzing logic. It
can test all target protocols (SNMP, DHCP and NTP).

Mutiny-Feedback (Mutiny-FB) Based on coverage
information, we further modified Mutiny with the cov-
erage guidance support. Actually, we added a priority

queue to save the interesting requests to guide the muta-
tion. If the queue is empty, it will execute the original
fuzzing logic.

ZDHCP-No-Feedback (ZDHCP-NFB) DHCP is a
popular protocol of devices that use different options
to indicate the function of a request. The DHCP client
requests different information via various options from
DHCP server. Then DHCP server resolves the options
and responses to the client. One DHCP request can con-
tain several different options described in RFC 2132 and
more. Therefore, we designed and implemented ZDHCP
to fouces on mutation and combination of options
instead of the completely random mutation as Mutiny.
Figure 4 depicts the core idea of ZDHCP. In our imple-
mentation of ZDHCP, we use the 119 options imple-
mented in scapy (https://​scapy.​net/) to help us to build
a legal DHCP packet. ZDHCP works as a client to fuzz
the DHCP server and as a black-box fuzzer which is also
adapted with APIs of NDFuzz to record coverage of tar-
get processes.

ZDHCP-Feedback (ZDHCP-FB) As described in
subsection Driving the Whole Fuzzing, we design an
intermediate layer to be compatible with different pro-
tocol fuzzer implementations. The implementation of
the mutation interface and sending interface is built in
ZDHCP. Therefore, it is easy to integrate ZDHCP into
NDFuzz. We use the coverage to guide the mutation of
options.

For each VNF that supports SNMP, we deploy Mutiny-
FB, Mutiny-NFB with the same seeds for at least 72
h. The seed of SNMP is related to the OIDs, which is
obtained by a standard program snmpwalk (https://​linux.​
die.​net/​man/1/​snmpw​alk). Snmpwalk uses SNMP_GET-
NEXT requests to retrieve a subtree of management
values. We use it to retrieve the root node and obtain
all OIDs of a VNF. Then we convert the OIDs into the

htype hops xidhlen

others fields

53(message-type)

37(tcp_�l)

12(hostname)

3

100

ubuntu

htype hops xidhlen

others fields

53(message-type)

12(hostname)

3

ubuntu

htype hops xidhlen

others fields

53(message-type)

12(hostname)

65535

uuuuuuuu

htype hops xidhlen

others fields

53(message-type) 3

Header

Op�ons
(to mutate)

Modify value of op�on
Add op�on(s)

Remove
op�on(s)

Fig. 4  The core design of ZDHCP

https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer
https://gitlab.com/akihe/radamsa
https://scapy.net/
https://linux.die.net/man/1/snmpwalk
https://linux.die.net/man/1/snmpwalk

Page 13 of 21Zhang et al. Cybersecurity (2022) 5:21 	

format of Mutiny, the PCAP files. For DHCP, we deploy
Mutiny-FB , Mutiny-NFB, ZDHCP-NFB and ZDHCP-FB
with the same seeds. Because we do not find a program
similar to snmpwalk, we get the seed of DHCP in 2 ways.
One is to collect requests during the normal communica-
tion, the other one is to generate requests according to
the specification, then filter the request which the DHCP
server can reply.

Figure 5 depicts the edge trend during the 72h fuzzing
of each fuzzing instance. The subfigure (a) to (i) are of
SNMP , the (j) to (m) are of DHCP and the (n) to (r) are
of NTP. Figure 6 shows the edge improvement about the
different fuzzing engines for the same fuzzing instance.
For SNMP (Fig. 6a), the comparison of Mutiny is intui-
tive and straightforward, Mutiny-FB performs an average

of 56.93% more edge coverage than Mutiny-NFB from
9.22% of SG6000 to 106.33% of vMX.

For DHCP (Fig. 6b), the comparison is more complex
because there are four fuzzing engines. To compare the
result in different aspects, we calculate four types of com-
parison as follows:

1	 Mutiny-FB vs. Mutiny-NFB and ZDHCP-FB vs.
ZDHCP-NFB Mutiny-FB has an average of 36.03%
improvement than Mutiny-NFB from 7.33% of
SG6000 to 68.32% of FortiGate. ZDHCP-FB has an
average of 66.58% improvement than ZDHCP-NFB
from 32.28% of VyOS to 98.56% of vMX of ZDHCP.
Together with the result of SNMP, these comparisons
prove the coverage guidance can indeed improve the
edge for different protocols and fuzzing engines.

Fig. 5  Edge count trend of the 9 SNMP, 4 DHCP and 5 NTP fuzzing instances for 72 h

Page 14 of 21Zhang et al. Cybersecurity (2022) 5:21

2	 ZDHCP-NFB vs. Mutiny-NFB Our ZDHCP-NFB
also performs better than Mutiny-NFB with an aver-
age improvement of 26.72% from 3.48% of VyOS
to 77.57% of PSA. This proves the option-focusing
mutation can generate the testcase which contains
more complex crafted options.

3	 ZDHCP-FB vs. Mutiny-FB With coverage guidance,
the ZDHCP-FB has an average 54.37% improvement
than Mutiny-FB. This demonstrates the performance
advantage of ZDHCP is further enhanced by the
feedback.

4	 ZDHCP-FB vs. Mutiny-NFB Finally, we compare the
ZDHCP-FB with Mutiny-NFB to reveal the improve-

ment by the cooperation of the fuzzing engine and
coverage-guidance. The average is 113.67% from
36.88% of VyOS to 208.82% of FortiGate.

The comparison of NTP (Fig. 6c) is similar to SNMP,
Mutiny-FB performs an average of 27.25% more edge
coverage than Mutiny-NFB from 4.32% of vMX to 72.31%
of Fortinet.

Vulnerability discovery
Among the 72 h fuzzing of the 13 fuzzing instances, we
totally found numerous crashes and analyzed them man-
ually. Table 5 illustrates the detail information about the

Fig. 6  Edge improvement of SNMP and DHCP protocol

Page 15 of 21Zhang et al. Cybersecurity (2022) 5:21 	

finding. We have confirmed two unique crashes of DHCP
protocol and one of SNMP. After we reported them to
the vendors, two were confirmed as 0-Day vulnerabil-
ity (VUL1 and VUL3) and the other one is already fixed
(VUL2). These three vulnerabilities can be both triggered
by only one request. Although found from the virtualized
network devices, they also affect the physical network
devices according to the vendor’s response.

VUL1 is firstly found by ZDHCP-NFB in 24.95h and
by ZDHCP-FB in 9.97h. This demonstrates the cover-
age guidance can accelerate the discovering of vulner-
ability. VUL2 is firstly found by Mutiny-FB in 33.7h and
by ZDHCP-FB in 1.34h. Besides showing the advantage
of coverage guidance, VUL2 also proves that our cus-
tomized ZDHCP performs quite better than the general
fuzzer Mutiny by saving 96% time.

Compared to DHCP, SNMP has a strict format limita-
tion. Even though with coverage guidance, Mutiny only
found one vulnerability about SNMP because it is hard
to mutate a legal packet due to the OID encoding. SNMP
uses Object Identifier (OID) to manage different objects
and the OID parsing accounts for the major part of
SNMP process. However, the OID is encoded using Basic
Encoding Rules (BER), which is difficult to satisfy with
random fuzzing of Mutiny and numerous mutations are
dropped during the format check.

Table 6 shows the statistic of the performance of the
In-VMM and Out-of-VMM monitoring mechanisms. In
fact, this is the initial result without de-duplication, and
the result after de-duplication is shown in Table 5. We
only list FortiGate and vEOS because they are the two
only devices that found vulnerabilities. The two moni-
toring mechanisms do not catch any crash on the other

7 devices. Firstly, this table depicts that the number of
crashes in DHCP is significantly increased with the cov-
erage guidance (551 vs. 2395), which also shows the effec-
tiveness of coverage guidance. Secondly, as described in
Subsection Monitoring a Userland Program, if the In-
VMM monitoring cannot catch a crash immediately, the
Out-of-VMM monitoring can catch it to avoid the false
negatives, the “O” columns show the necessity of it.

Overhead of non‑intrusively tracing
Evaluating the overhead is not easy. The targets of the
mainstream fuzzing benchmarks (Dolan-Gavitt et al.
2016; Hazimeh et al. 2020) are not faced with the dae-
mon process fuzzing, and most of our target devices are
unable to execute them. Thus we evaluate them based
on our target protocol SNMP, which can always be tra-
versed by a standard program snmpwalk deployed out
of the device. By obtaining the execution cost of snmp-
walk, we can evaluate the overhead more realistically. We
collected the processing time of the snmpd program for
communication established by snmpwalk as a benchmark
to calculate the overhead from two dimensions.

We hook the CR3 switching function to compute the
total time of the only target snmpd process and total
operating system time, including all process running.
Thus we can calculate the overhead of the only target
process and the whole VNF (containing all processes).
Figure 7 depicts the statistic of overhead. For each device,
the blue bar is the overhead of the single SNMP process
and the orange bar is the overhead of the whole VNF.

For the overhead of the edge recording, the whole VNF
is from 3.0% (SG6000) to 24.5% (SMA) with an average of
11.7%, this is significantly lower than the target process

Table 5  Unique crashes statistic

ID Model Protocol Type Mutiny-NFB Mutiny-FB ZDHCP-NFB ZDHCP-FB

VUL1 FortiGate DHCP Integer overflow ✗ ✗ 24.95 h 9.97 h

VUL2 FortiGate DHCP Buffer overflow ✗ 33.76 h ✗ 1.34 h

VUL3 vEOS SNMP Buffer overflow ✗ 54.18 h Not support Not support

Table 6  Total crashes caught by different monitoring mechanisms

a I means In-VMM monitoring mechanism
b O means Out-of-VMM monitoring mechanism

Protocol SNMP DHCP

Fuzzer Mutiny-NFB Mutiny-FB Mutiny-NFB Mutiny-FB ZDHCP-NFB ZDHCP-FB

Monitor Ia Oa I O I O I O I O I O

FortiGate 0 0 0 0 0 0 0 361 40 511 134 1900

vEOS 0 0 0 5 N/A N/A N/A N/A N/A N/A N/A N/A

Page 16 of 21Zhang et al. Cybersecurity (2022) 5:21

from 9.3% (SG6000) to 37.0% (SMA) with an average
19.4%. This is because customized QEMU only traces the
target process and few kernel instructions while other
processes’ execution, and most kernel instructions are
not affected. The overhead focuses on the whole VNF
is more related to our real fuzzing scenario, which is
acceptable for fuzzing.

Case study
Now we present a detailed case study about the VUL2 to
reveal the assistance of coverage guidance. We compare
the ZDHCP-NFB and ZDHCP-FB to demonstrate that it
is difficult to find VUL2 without feedback.

Although VUL2 is a 1-Day issue, it is quite interest-
ing with the root cause of data section overflow. Figure 8
reveals the abstract description about it. As subfigure (b)
shows, content_buffer and format_buffer are two adjacent
arrays. The format_buffer stores a format string such as
“%s,%d” and content_buffer stores the formatted string
which is corresponding to format_buffer. When the
DHCP process receives a DHCP request, it parses each
option and then calls related functions. Normally, the
option types are different from each other but ZDHCP
can mutate the request that contains options with the
same type (dup-options for short). The DHCP process
collects all the same type options and catenates their
values as a single value to handle dup-options. Function
merge_duplicated_options() and log_duplicated_options()
of Fig. 8a depict the procedure. The root cause is the lack
of the length check for the value after catenating. When
the value are stored into content_buffer, a buffer overflow
of data section might be triggered by vsprintf(). Dur-
ing the mutation, the content of the overflow might be
changed, which makes the format_string argument of

vsprintf() change during vsprintf() running to trigger a
crash.

Figure 8d shows the mutation evolution and the
colored zones show the buffer status after the request is
handled. Based on an initial request I, the first mutation
node D contains the options of duplicated type. Handling
D would call log_duplicated_options() and the buffers
is filled correctly without overflow. Then a more com-
plex request C could be evolved with the more complex
option value based on D. This mutation leads to fill more
content to content_buffer and might cause overflow
to format_buffer. But the overflow might not trigger a
crash if no special character overflows the format_buffer.
This iteration triggers more edges than D because of the
option parsing and catenating. The mutation based on
C might gradually change the content and length until a
final important request Cc . This mutation contains sev-
eral format placeholders such as “%s” and more, which
leads to the vsprintf() access an illegal address to crash.

Table 7 compares the ratio of different request types of
Subfigure (d) about ZDHCP-NFB and ZDHCP-FB. The
initial seed contains 3 groups which contains 5, 10 and 20
requests which have the same option to focus on VUL2
detecting. Each fuzzing engine tests at most 1 h and
stops when VUL2 is triggered. Although ZDHCP-FB and
ZDHCP-NFB can both mutate the D and C types, FB has
a quite larger probability (4.9x, 8.1x, 9.3x) to mutate a C
type request than NFB.

Discussion
Well-known fuzzers integration We do not integrate well-
known gray-box fuzzers into NDFuzz such as AFL++,
AFL and more, mainly due to they are not targeted at
the network service and the fuzzing workflow are sig-
nificantly different. Besides, they always rely on static

Fig. 7  Overhead of coverage collection

Page 17 of 21Zhang et al. Cybersecurity (2022) 5:21 	

instrumentation or dynamic binary instrumentation
provided by QEMU user mode to obtain the coverage,
which is inconsistent with the limitation of VNFs which
is close-source, well-protected and running supported
by QEMU system mode. Although AFLNET (Pham et al.
2020) focuses on the network protocol, but it still relies
on source code to obtain the coverage. NDFuzz can
obtain coverage and this mechanism might be adapted

to AFLNET, but the whole fuzzing workflow needs to be
heavily refactored especially the implementation of fork-
server and the interaction with QEMU system-level emu-
lation (instead of the user-level emulation of AFL-QEMU
mode) to fit the VNFs. Therefore this is not a non-trivial
workload. We will integrate these famous fuzzers which
aim at the open-source software into NDFuzz to apply
more excellent fuzzing strategies to VNFs.

Fig. 8  Detailed information about VUL2

Table 7  Ratios and time about request type of VUL2

Type 5 options 10 options 20 options

FB NFB FB NFB FB NFB

I 51.4% 68.2% 60.7% 66.2% 66.9% 69.9%

D 38.0% 29.7% 25.5% 32.1% 22.9% 29.0%

C 10.6% 2.15% 13.8% 1.7% 10.2% 1.1%

First D 0.0032h 0.0091h 0.0037h 0.00023h 0.0056h 0.0054h

First C 0.01h 0.069h 0.0224h 0.038h 0.0379h 0.0312h

Crash 0.738h < 1h 0.76h < 1h 0.56h < 1h

Page 18 of 21Zhang et al. Cybersecurity (2022) 5:21

Stateful protocol We do not consider fuzzing the state-
ful protocol because it is another measurement for pro-
tocol fuzzing. The VNF is also a pretty data set for this
aim, especially some control plane protocols such as BGP,
OSPF, and more. NDFuzz could adapt for them in our
future work to combine the code coverage and protocol
states.

Hardware assistance The implementation of the cus-
tomized QEMU is based on the TCG instead of KVM,
because the KVM solution needs to modify host kernel
and is dependent on the Intel-PT to collect the runtime
information of the userland process. The TCG scheme
has fewer limitations while the KVM scheme has a bet-
ter performance. This also is a future work to improve
NDFuzz.

Architecture adaption We do not find any VNF that
works on other architectures except x86 and x86_64, but
our method is general and NDFuzz can be adapted to
other architectures with minor modification.

Protocol adaption There are many protocols in the
virtualized network device while we only implement a
customization of DHCP. We will implement more cus-
tomized fuzzers for specific protocols in the future.

Related work
Fuzzing virtualized network device non-intrusively com-
bines several independent technique of security research.
The most related virtual machine introspection (VMI)
technique and several hypervisor-assisted greybox fuzz-
ing projects cannot satisify our requirement.

Network function virtualization
For a long time, network equipment has provided net-
work services in the form of proprietary hardware and
customized software. This causes the so-called network
ossification problem and make the service additions and
network upgrades difficult (Li et al. 2018). To overcome
these problems, European Telecommunications Stand-
ards Institute (ETSI) propose network function virtual-
ization (NFV) to virtualize the network functions that are
previously provided by proprietary dedicated hardware
(Paper 2012).

As one of the three main components of the NFV
framework, Virtualized Network Functions (VNF) are
software implementations of network device that can be
deployed on a network function virtualization infrastruc-
ture (NFVI). The componets of VNF are various such as
router, switch, SSL VPN gateways, virus scanners, etc.
The famous vendors such as Cisco, Juniper, Fortinet and
more are all have their NFV products and provide the
virtual products. The software of the VNF is the same as
the physical device of the same model.

Actually, the VNF can also be deployed on the COTS
computer separately as a virtualized network device with
the help of hypervisor such as QEMU/KVM, VMware
and Hyper-V. From the view of security research, a virtual
network can be tested with the blackbox fuzzing method
as a physical network device for the same configuration
and functions. However, the virtualized network device
can also be treated as a virtual machine. It is obvious that
we can obtain more runtime information than the physi-
cal network device with the help of customized hypervi-
sor and turn the blackbox fuzzing into coverage-guided
greybox fuzzing.

Virtual machine introspection and memory analysis
Over the past decades, virtualization technique has been
widely used in numerous fields especially the cloud com-
puting and data centers. The hypervisor (VMM), as the
infrastructure of this technique located at the low-level
of operating system, pushed system monitoring from
traditional in-VM monitoring to out-of-VM monitoring
which is known as virtual machine introspection (VMI).
Through extracting and reconstructing the guest OS
states in the host, VMI takes advantage of the isolation
and management of hypervisor and has been widely used
in security applications ranging from instrusion detec-
tion (Payne et al. 2008), malware analysis (Dolan-Gavitt
et al. 2011; Fu and Lin 2012, https://​github.​com/​Cisco-​
Talos/​pyreb​ox), virtual machine management (Sharif
et al. 2009; Srinivasan et al. 2011, https://​libvmi.​com/)
and memory forensics (Fu and Lin 2012, https://​github.​
com/​volat​ility​found​ation/​volat​ility).

The well-known challenge in VMI is semantic gap
problem (Dolan-Gavitt et al. 2011), which obstable the
extraction of high-level semantic information (e.g., pro-
cess information of guest) from low-level data such as OS
memory dump. A wide solution is related to the kernel
data structures obtained from the source code analysis
or specific driver execution (Wang et al. 2015, https://​
libvmi.​com/, https://​github.​com/​Cisco-​Talos/​pyreb​
ox, https://​github.​com/​volat​ility​found​ation/​volat​ility).
Virtuoso (Dolan-Gavitt et al. 2011) and VMST (Fu and
Lin 2012) are to directly reuse the legacy binary code
of some native inspection programs (e.g., ps, lsmod) to
automatically bridge the semantic gap without previous
kernel data structure. However, they both bring hugh
performance overhead. Hybrid-Bridge (Saberi et al. 2014)
combined the offline training from Virtuoso and kernel
data redirection from VMST to improvement the per-
formance. It needs both trusted VMs in Fast-Bridge and
Slow-Bridge delopy the same OS version as the untrusted
VMs.

Memory analysis techniques have a great intersection
with VMI techniques in terms of semantic information

https://github.com/Cisco-Talos/pyrebox
https://github.com/Cisco-Talos/pyrebox
https://libvmi.com/
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://libvmi.com/
https://libvmi.com/
https://github.com/Cisco-Talos/pyrebox
https://github.com/Cisco-Talos/pyrebox
https://github.com/volatilityfoundation/volatility

Page 19 of 21Zhang et al. Cybersecurity (2022) 5:21 	

acquisition. The major difference is that memory analy-
sis focuses more on obtaining semantic information with
static analysis such as reverse engineering (Case et al.
2010) data signatures (Lin et al. 2011; Dolan-Gavitt et al.
2009) for kernel semantic information. Firmadyne (Socała
and Cohen 2016) provide a straightforword method to
emulating-compilation method to predict the struct lay-
out according to the version and config file to obtain the
accuracy semantic information. ORIGEN (Feng et al.
2016) combines the data flow analysis and binary search
technique to extract some offset-reveal instructions
among different versions. However, the signature of a sin-
gle version and the instruction search might not reliable
when handle the significant different versions.

Graybox fuzzing with hypervisor
Graybox fuzzing technique is in middle of blackbox
fuzzing (Beizer 1995; Myers et al. 2004) and whitebox
fuzzing (Godefroid et al. 2008). Greybox fuzzers lever-
age the runtime information such as code coverage to
guide the fuzzing run. The famous modern fuzzing AFL
(http://​lcamt​uf.​cored​ump.​cx/​afl/) provide two ways to
collect the runtime information: static instrumentation
for open-source target or dynamic instrumentation for
close-source target (binary). The dynamic instrumenta-
tion depend on the QEMU (Bellard 2005) tiny code gen-
erator (TCG) mechanism.

The binary fuzzing of AFL works in QEMU user mode
which can launch single process. However, it is limited
for scenarios related the running operation system such
as kernel or emulated firmware fuzzing. TriforceAFL
(https://​github.​com/​nccgr​oup/​Trifo​rceAFL) and kAFL
(Schumilo et al. 2017) obtain the coverage information
by customizing the hypervisor to fuzz the kernel without
the source code. REDQUEEN (Aschermann et al. 2019),
developed atop of kAFL, can fuzzing the userland pro-
gram with coverage guidance with QEMU system mode.
With the help of hypervisor, it can patch the code related
to checksum checks. Firm-AFL (Zheng et al. 2019) which
based on Firmadyne (Chen et al. 2016) and DECAF
(Henderson et al. 2014) leverage the hypervisor to handle
the I/O and syscall support. Fuzzing can take advantage
of hypervisor at a little expense of lightweight equipment.

Although graybox fuzzing with hypervisor and VMI
both leverage the hypervisor to monitor the runtime
information of guest, there are different because of the
aim. Different from VMI technique which aims at a
macro perspective, fuzzing always foucus on the runtime
information such as coverage and process status of a sin-
gle process or module. Actually, fuzzing with hypervisor
only use a small subset of semantic information of VMI,
so the semantic gap can be solved with acceptable cost.

Fuzzing embedded devices
Actually, the communication of embedded devices fuzz-
ing is similar to network devices. There have been several
works based on networking communication in recent
years. IoTFuzzer (Chen et al. 2018) aims at finding the
memory corruptions based on hooking the communi-
cation logic of related Android apps. SRFuzzer (Zhang
et al. 2019) is an automatic blackbox fuzzing framework
to discover multi-type vulnerabilities. The shortcomings
of black-box fuzzing have been discussed for a long time.
Therefore , Snipuzz (Feng et al. 2021) propose a way to
infer the running traces by analyzing the response con-
tents to overcome these limitations . Its effectiveness
depends on the quality of message snippets which is
contingent on how much information could be obtained
from devices’ responses. Thus it is limited on numerous
protocols without this feature (e.g., SNMP , DHCP, NTP
and more). Firm-AFL (Zheng et al. 2019) collects the
complete trace with AFL-style bitmap with the emulation
supported by Firmadyne (Chen et al. 2016). The emula-
tion environment is controllable with a customized ker-
nel, which can not be satisfied by VNFs.

Conclusion
In this paper, we propose a lightweight PGD inference
mechanism with differential analysis without any intru-
sive operations. Leveraging the target PGD values, we
present a modular designed framework NDFuzz to fuzz
the virtualized network devices with coverage guidance
in a non-intrusive way. We have fuzzed nine popular
VNFs among seven vendors with NDFuzz and finally
found 3 issues during 72h fuzzing with four fuzzing
engines.

Abbreviations
NFV: Network function virtualization; VNF: Virtualized network function; OS:
Operating system; CLI: Command-line interface; VMM: Virtual machine moni-
tor; VMI: Virtual machine introspection; PGD: Page global directory; TCG​: Tiny
code generator; DBI: Dynamic binary instrumentation; ARP: Address resolution
protocol; NDP: Neighbor discovery protocol; SNMP: Simple network manage-
ment protocol; OID: Object identifier; DHCP: Dynamic host configuration
protocol; KVM: Kernel-based virtual machine.

Acknowledgements
Not applicable.

Authors’ contributions
YZ, YYZ and WH designed this research. YZ, NYZ, YYZ, KPJ built this frame-
work and performed experiments. YZ wrote this paper. WY, YYZ, WH, CZ,
LBX reviewed and edited the manuscript. All authors read and approved the
manuscript.

Funding
 This work is supported in part by Chinese National Natural Science Founda-
tion (61802394, U1836209, 62032010). Strategic Priority Research Program of
the CAS (XDC02040100).

http://lcamtuf.coredump.cx/afl/
https://github.com/nccgroup/TriforceAFL

Page 20 of 21Zhang et al. Cybersecurity (2022) 5:21

Availability of data and materials
All public dataset sources are as described in the paper.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China. 2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China. 3 Key Laboratory of Network Assessment Technology, Chinese
Academy of Sciences, Beijing, China. 4 Beijing Key Laboratory of Network Secu-
rity and Protection Technology, Beijing, China. 5 Renmin University of China,
Beijing, China.

Received: 24 December 2021 Accepted: 5 March 2022

References
Aschermann C, Schumilo S, Blazytko T, Gawlik R, Holz T (2019) Redqueen: fuzz-

ing with input-to-state correspondence. In: NDSS, vol 19, pp 1–15
Beizer B (1995) Black-box testing: techniques for functional testing of software

and systems. Wiley, New York
Bellard F (2005) Qemu, a fast and portable dynamic translator. In: USENIX

annual technical conference, FREENIX Track, California, USA, vol 41, p 46
Böhme M, Pham V-T, Roychoudhury A (2017) Coverage-based Greybox fuzzing

as Markov chain. IEEE Trans Softw Eng 45(5):489–506
Carbone M, Conover M, Montague B, Lee W (2012) Secure and robust

monitoring of virtual machines through guest-assisted introspection.
In: International workshop on recent advances in intrusion detection.
Springer, pp 22–41

Case A, Marziale L, Richard GG III (2010) Dynamic recreation of kernel data
structures for live forensics. Digit Investig 7:32–40

Chen DD, Woo M, Brumley D, Egele M (2016) Towards automated dynamic
analysis for Linux-based embedded firmware. In: NDSS, vol 1, pp 1

Chen J, Diao W, Zhao Q, Zuo C, Lin Z, Wang X, Lau WC, Sun M, Yang R, Zhang
K (2018) Iotfuzzer: Discovering memory corruptions in IoT through app-
based fuzzing. In: NDSS

Cisco-Talos: mutiny fuzzing framework. https://​github.​com/​Cisco-​Talos/​
mutiny-​fuzzer

Compare coverage for AFL++ QEMU. https://​andre​afior​aldi.​github.​io/​artic​les/​
2019/​07/​20/​aflpp-​qemu-​compc​ov.​html

Dolan-Gavitt B, Srivastava A, Traynor P, Giffin J (2009) Robust signatures for
kernel data structures. In: Proceedings of the 16th ACM conference on
computer and communications security, pp 566–577

Dolan-Gavitt B, Leek T, Zhivich M, Giffin J, Lee W (2011) Virtuoso: narrowing the
semantic gap in virtual machine introspection. In: 2011 IEEE symposium
on security and privacy. IEEE, pp 297–312

Dolan-Gavitt B, Hulin P, Kirda E, Leek T, Mambretti A, Robertson W, Ulrich F,
Whelan R (2016) Lava: large-scale automated vulnerability addition. In:
2016 IEEE symposium on security and privacy (SP), pp 110–121. https://​
doi.​org/​10.​1109/​SP.​2016.​15

Feng Q, Prakash A, Wang M, Carmony C, Yin H (2016) Origen: automatic extrac-
tion of offset-revealing instructions for cross-version memory analysis.
In: Proceedings of the 11th ACM on Asia conference on computer and
communications security, pp 11–22

Feng X, Sun R, Zhu X, Xue M, Wen S, Liu D, Nepal S, Xiang Y (2021) Snipuzz:
black-box fuzzing of IoT firmware via message snippet inference. arXiv:​
2105.​05445

Fioraldi A, Maier D, Eißfeldt H, Heuse M (2020) Afl++: combining incremen-
tal steps of fuzzing research. In: 14th {USENIX} workshop on offensive
technologies ( {WOOT} 20)

Fu Y, Lin Z (2012) Space traveling across vm: automatically bridging the
semantic gap in virtual machine introspection via online kernel data
redirection. In: 2012 IEEE symposium on security and privacy. IEEE, pp
586–600

Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, Chen Z (2018) Collafl: path sensitive
fuzzing. In: 2018 IEEE symposium on security and privacy (SP). IEEE, pp
679–696

Gao Z, Dong W, Chang R, Wang Y (2020) Fw-fuzz: a code coverage-guided
fuzzing framework for network protocols on firmware. Concurr Comput
Pract Exp

Godefroid P, Levin MY, Molnar DA et al (2008) Automated whitebox fuzz test-
ing. In: NDSS , vol 8, pp 151–166

Han B, Gopalakrishnan V, Ji L, Lee S (2015) Network function virtualization:
challenges and opportunities for innovations. IEEE Commun Mag
53(2):90–97. https://​doi.​org/​10.​1109/​MCOM.​2015.​70453​96

Hazimeh A, Herrera A, Payer M (2020) Magma: a ground-truth fuzzing
benchmark. In: Proceedings of the ACM on measurement and analysis of
computing systems, vol 4, no 3. https://​doi.​org/​10.​1145/​34283​34

Helin A. Radamsa, a general-purpose fuzzer. https://​gitlab.​com/​akihe/​radam​sa
Henderson A, Prakash A, Yan LK, Hu X, Wang X, Zhou R, Yin H (2014) Make

it work, make it right, make it fast: building a platform-neutral whole-
system dynamic binary analysis platform. In: Proceedings of the 2014
international symposium on software testing and analysis, pp 248–258

Jain B, Baig MB, Zhang D, Porter DE, Sion R (2014) Sok: introspections on trust
and the semantic gap. In: 2014 IEEE symposium on security and privacy.
IEEE, pp 605–620

Li J, Zhao B, Zhang C (2018) Fuzzing: a survey. Cybersecurity 1(1):1–13
LibVMI. https://​libvmi.​com/
Lin Z, Rhee J, Zhang X, Xu D, Jiang X (2011) Siggraph: brute force scanning of

kernel data structure instances using graph-based signatures. In: Ndss
Lyu C, Ji S, Zhang C, Li Y, Lee W-H, Song Y, Beyah R (2019) {MOPT} : optimized

mutation scheduling for fuzzers. In: 28th {USENIX} security symposium ( {
USENIX} security 19), pp 1949–1966

Manès VJM, Han H, Han C, Cha SK, Egele M, Schwartz EJ, Woo M (2019) The
art, science, and engineering of fuzzing: a survey. IEEE Trans Softw Eng
47:2312–2331

Mijumbi R, Serrat J, Gorricho J-L, Bouten N, De Turck F, Boutaba R (2016)
Network function virtualization: state-of-the-art and research challenges.
IEEE Commun Surv Tutor 18(1):236–262. https://​doi.​org/​10.​1109/​COMST.​
2015.​24770​41

Muench M, Stijohann J, Kargl F, Francillon A, Balzarotti D (2018) What you cor-
rupt is not what you crash: Challenges in fuzzing embedded devices. In:
Network and distributed system security symposium (NDSS)

Myers GJ, Badgett T, Thomas TM, Sandler C (2004) The art of software testing,
vol 2. Wiley, New York

NCCGroup: Project Triforce: run AFL on everything! https://​github.​com/​nccgr​
oup/​Trifo​rceAFL

Paper NW (2012) Network functions virtualisation: an introduction, benefits,
enablers, challenges & call for action. Issue 1

Payne BD, Carbone M, Sharif M, Lee W (2008) Lares: an architecture for secure
active monitoring using virtualization. In: 2008 IEEE symposium on secu-
rity and privacy (sp 2008). IEEE, pp 233–247

Pham V-T, Böhme M, Roychoudhury A (2020) Aflnet: a greybox fuzzer for net-
work protocols. In: 2020 IEEE 13th international conference on software
testing, validation and verification (ICST). IEEE, pp 460–465

PyREBox. https://​github.​com/​Cisco-​Talos/​pyreb​ox
Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C, Bos H (2017) Vuzzer: applica-

tion-aware evolutionary fuzzing. In: NDSS, vol 17, pp 1–14
Saberi A, Fu Y, Lin Z (2014) Hybrid-bridge: efficiently bridging the semantic gap

in virtual machine introspection via decoupled execution and training
memoization. In: Proceedings of the 21st annual network and distributed
system security symposium (NDSS’14)

Scapy. https://​scapy.​net/
Schumilo S, Aschermann C, Gawlik R, Schinzel S, Holz T (2017) kafl: hardware-

assisted feedback fuzzing for {OS} kernels. In: 26th {USENIX} security
symposium ( {USENIX} security 17), pp 167–182

Sharif MI, Lee W, Cui W, Lanzi A (2009) Secure in-vm monitoring using
hardware virtualization. In: Proceedings of the 16th ACM conference on
computer and communications security, pp 477–487

snmpwalk. https://​linux.​die.​net/​man/1/​snmpw​alk
Socała A, Cohen M (2016) Automatic profile generation for live Linux memory

analysis. Digit Investig 16:11–24
Srinivasan D, Wang Z, Jiang X, Xu D (2011) Process out-grafting: an efficient

“out-of-vm” approach for fine-grained process execution monitoring. In:

https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer
https://andreafioraldi.github.io/articles/2019/07/20/aflpp-qemu-compcov.html
https://andreafioraldi.github.io/articles/2019/07/20/aflpp-qemu-compcov.html
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
http://arxiv.org/abs/2105.05445
http://arxiv.org/abs/2105.05445
https://doi.org/10.1109/MCOM.2015.7045396
https://doi.org/10.1145/3428334
https://gitlab.com/akihe/radamsa
https://libvmi.com/
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/COMST.2015.2477041
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://github.com/Cisco-Talos/pyrebox
https://scapy.net/
https://linux.die.net/man/1/snmpwalk

Page 21 of 21Zhang et al. Cybersecurity (2022) 5:21 	

Proceedings of the 18th ACM Conference on computer and communica-
tions security, pp 363–374

Volatility framework—volatile memory extraction utility framework. https://​
github.​com/​volat​ility​found​ation/​volat​ility

Wang G, Estrada ZJ, Pham C, Kalbarczyk Z, Iyer RK (2015) Hypervisor introspec-
tion: a technique for evading passive virtual machine monitoring. In: 9th
{USENIX} workshop on offensive technologies ( {WOOT} 15)

Yan LK, Yin H (2012) Droidscope: seamlessly reconstructing the {OS} and dalvik
semantic views for dynamic android malware analysis. In: 21st {USENIX}
security symposium ( {USENIX} security 12), pp 569–584

Yue T, Wang P, Tang Y, Wang E, Yu B, Lu K, Zhou X (2020) Ecofuzz: adaptive
energy-saving greybox fuzzing as a variant of the adversarial multi-armed
bandit. In: 29th {USENIX} security symposium ( {USENIX} security 20), pp
2307–2324

Zalewski M. American fuzzy lop. http://​lcamt​uf.​cored​ump.​cx/​afl/
Zhang Y, Huo W, Jian K, Shi J, Lu H, Liu L, Wang C, Sun D, Zhang C, Liu B (2019)

Srfuzzer: an automatic fuzzing framework for physical SOHO router
devices to discover multi-type vulnerabilities. In: Proceedings of the 35th
annual computer security applications conference, pp 544–556

Zheng Y, Davanian A, Yin H, Song C, Zhu H, Sun L (2019) Firm-afl: high-
throughput greybox fuzzing of iot firmware via augmented process
emulation. In: 28th {USENIX} security symposium ( {USENIX} security 19),
pp 1099–1114

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
http://lcamtuf.coredump.cx/afl/

	NDFuzz: a non-intrusive coverage-guided fuzzing framework for virtualized network devices
	Abstract
	Introduction
	Observation and motivation
	Technical backgroud
	QEMU
	Network services

	Overview
	Phase I: target PGD inference
	Phase II: coverage-guided Fuzzing
	Driving the whole fuzzing
	Monitoring a userland program
	Customized hypervisor

	Experiment and evaluation
	Generality for different devices
	Improvement of code coverage
	Vulnerability discovery
	Overhead of non-intrusively tracing
	Case study

	Discussion
	Related work
	Network function virtualization
	Virtual machine introspection and memory analysis
	Graybox fuzzing with hypervisor
	Fuzzing embedded devices

	Conclusion
	Acknowledgements
	References

