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Abstract 

Network function virtualization provides programmable in-network middlewares by leveraging virtualization tech-
nologies and commodity hardware and has gained popularity among all mainstream network device manufacturers. 
Yet it is challenging to apply coverage-guided fuzzing, one of the state-of-the-art vulnerability discovery approaches, 
to those virtualized network devices, due to inevitable integrity protection adopted by those devices. In this paper, we 
propose a coverage-guided fuzzing framework NDFuzz for virtualized network devices with a novel integrity protec-
tion bypassing method, which is able to distinguish processes of virtualized network devices from hypervisors with 
a carefully designed non-intrusive page global directory inference technique. We implement NDFuzz atop of two 
black-box fuzzers and evaluate NDFuzz with three representative network protocols, SNMP , DHCP and NTP , on nine 
popular virtualized network devices. NDFuzz obtains an average 36% coverage improvement in comparison with its 
black-box counterparts. NDFuzz discovers 2 0-Day vulnerabilities and 1 1-Day vulnerability with coverage guidance 
while the black-box fuzzer can find only one of them. All discovered vulnerabilities are confirmed by corresponding 
vendors.
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Introduction
Network function virtualization (Paper 2012) (NFV) 
provides programmable in-network middlewares to 
construct network services which are more robust and 
scalable. The virtualized network functions (VNFs) are 
built upon commodity hardware, e.g. x86 machine, and 
naturally reuse the fruitful innovations in their software 
stacks, e.g. operating systems. Thus, VNFs are essentially 
software implementations of network functions and can 
be deployed as an isolated virtual machine with the same 
functionality of their physical proprietary counterparts 
(Mijumbi et al. 2016; Han et al. 2015). Table 1 summaries 

12 popular virtualized network devices across 9 main-
stream vendors with 5 distinct functionalities (Column 
3), showing a widespread application of NFV. As Table 1 
shows, leading network equipment vendors, including 
Cisco (Line 2, 3), Juniper (Line 11, 12), Fortinet (Line 
8) and more, are beginning to develop virtual network 
appliances based on mainstream open-source operating 
systems, e.g. Linux or Free BSD. shown in ’OS’ Column. 
Therefore, a running VNF consists of a customized ker-
nel and several userland processes which belong to differ-
ent network functionalities.
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Unfortunately, the VNFs, together with their physi-
cal proprietary counterparts, are facing a high-security 
threat from vulnerabilities, such as CVE-2016-63661of 
simple network management protocol (SNMP) , CVE-
2017-38812 of Cluster Management Protocol (CMP) and 
CDPWN3 of Cisco Discovery Protocol (CDP). They are 
harmful with all critical or high level according to CVSS 
3.0 . Thus, researchers seek to introduce automated vul-
nerability discovery for VNFs. Coverage-guided fuzzing 
is one of the most efficient methods to discover vulner-
abilities (Manèset al. 2019). Although numerous research 
work have been proposed to improve the effectiveness of 
coverage-guided fuzzing (Lyu et al. 2019; Yue et al. 2020; 
Böhme et al. 2017; Rawat et al. 2017; Gan et al. 2018), the 
main burden on applying such a fuzzing technique to 
the VNFs is to obtain the fine-grained runtime informa-
tion of userland processes, e.g., their execution paths and 
executing basic blocks (trace), for the reason that a VNF 
is indeed a virtual machine with built-in integrity protec-
tion. Table  1 highlights the various integrity protection 
techniques (“N.Shell” and “X.P.” columns) adopted by dif-
ferent vendors, 9 out of 12 devices are armed with at least 
one type of integrity protection technique. For example, 
CLI (Command-Line Interface) is the common interac-
tion interface to VNFs. But, it is often a trimmed shell 
with customized commands provided by vendors for 

VNFs, which leads to inability to invoke a normal shell, 
e.g. bash and any third-parity software.

From the perspective of hypervisor (also known as vir-
tual machine monitor, VMM), tracing userland processes 
is straightforward and has been well-studied as a part of 
virtual machine introspection (VMI) (Jain et  al. 2014). 
Unfortunately, current VMI techniques can not deal with 
VNFs due to their intrusive manner: most of approaches 
require injecting code into guest virtual machines while 
integrity protection of VNFs disallows such injection. 
First, restriction of launching any third-party software 
makes approaches like kernel data structures recon-
structing by drivers (Henderson et al. 2014; Yan and Yin 
2012, https://​libvmi.​com/, https://​github.​com/​Cisco-​
Talos/​pyreb​ox) and code implanting (Carbone et  al. 
2012; Sharif et al. 2009) infeasible, as all of those meth-
ods require compiling and launching drivers inside guest 
virtual machines. Second, the diversity of operating sys-
tems for different VNFs and a lack of specific kernel con-
figurations also make process outgrafting (Dolan-Gavitt 
et al. 2011; Fu and Lin 2012) and kernel data structures 
reconstructing by memory analysis (Socała and Cohen 
2016), both of which rely on detailed kernel configuration 
to generate tools for snapshotting userland programs, not 
suitable for VNFs.

Challenge Tracing userland processes is a vital step in 
applying coverage-guided fuzzing to VNFs. The integrity 
protection commonly adopted by existing VNFs poses a 
critical challenge: how to trace a specific userland process 
of VNFs through the hypervisor in a non-intrusive way?

Our Approach We propose a coverage-guided fuzzing 
framework for VNFs with a non-intrusive process locat-
ing technique. This technique is implemented by infer-
ring the the correct page global directory (PGD) value of 
the target process (target PGD for short) , which is widely 
treated as the process identification (Schumilo et al. 2017; 
Aschermann et  al. 2019; Henderson et  al. 2014, https://​
libvmi.​com/, https://​github.​com/​Cisco-​Talos/​pyreb​ox), 
from hypervisor view. Unlike traditional approaches lim-
ited by the integrity protection, we can infer target PGD 
with a lightweight differential analysis, which leverages 
two types of PGD-related information controlled by three 
controllable operations. The two types of side-channel 
information are enough to distinguish target PGD from 
others. Then we can extract the target process’s running 
trace from the system’s hybrid running traces with target 
PGD.

In this paper, a prototype of the coverage-guided fuzz-
ing framework NDFuzz has been implemented. For the 
target process to be fuzzed, its PGD value can be inferred 
in a non-intrusive way. With target PGD, the target 
process can be located by the hypervisor. During fuzz-
ing, NDFuzz collects the AFL-style bitmap of the target 

Table 1  Access control of popular virtualized network devices

aNormal Shell: whether the normal shell is supported
bExecution Permission: whether a third-party program can be executed

Model Vendor Type OS N.Shella X.P.b

vEOS Arista Switch Linux ✓ ✓
CSR1000v Cisco Router Linux ✗ ✗
ASAv Cisco Firewall Linux ✗ ✗
SRA Sonicwall SSLVPN Linux ✗ ✗
SMA Sonicwall Gateway Linux ✓ ✓
PSA Pulse Secure SSLVPN Linux ✗ ✗
CHR Mikrotik Router Linux ✗ ✗
FortiGate Fortinet Firewall Linux ✗ ✗
SG6000 Hillstone Firewall Linux ✗ ✗
VyOS VyOS Router Linux ✓ ✓
vSRX Juniper Firewall FreeBSD ✓ ✗
vMX Juniper Router FreeBSD ✓ ✗

1  A critical vulnerability of Cisco ASA written by the Equation Group and 
leaked by the Shadow Brokers.
2  A vulnerability for Cisco switches in Vault7, a large collection of docu-
ments of CIA released by WikiLeaks.
3  A set of five vulnerabilities affecting Cisco equipment (https://​www.​armis.​
com/​resea​rch/​cdpwn/).

https://libvmi.com/
https://github.com/Cisco-Talos/pyrebox
https://github.com/Cisco-Talos/pyrebox
https://libvmi.com/
https://libvmi.com/
https://github.com/Cisco-Talos/pyrebox
https://www.armis.com/research/cdpwn/
https://www.armis.com/research/cdpwn/
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process and feeds the information back to guide the fuzz-
ing. In order to monitor exceptional behaviors of target 
process, we provide a tracing-based in-VMM mecha-
nism to catch the SIGSEGV signal and a coverage-jump-
ing based out-of-VMM mechanism to deal with other 
exceptions.

We implement NDFuzz atop of two black-box fuzzers: 
a mature open-sourced fuzzer Mutiny (https://​github.​
com/​Cisco-​Talos/​mutiny-​fuzzer) and a in-house fuzzer 
tailored for DHCP protocol, supporting greybox cover-
age-guided fuzzing in both variants. We leverage NDFuzz 
to fuzz three widely used protocols, SNMP , DHCP and 
NTP , on nine popular VNFs from seven vendors. Com-
pared to its black-box counterparts, NDFuzz can notably 
improve the fuzzing performance of VNFs with at least 
an average 27 % coverage improvement. Furthermore, 
NDFuzz discovers 2 0-day vulnerabilities and 1 1-day 
vulnerability with coverage guidance while the black-box 
fuzzers can find only one of them. All discovered 3 vul-
nerabilities are confirmed by corresponding vendors.

This paper makes the following contributions:

•	 Differential analysis based PGD inference technique 
for VNFs The technique proposed can infer the PGD 
value of a given networking process of a VNF in a 
non-intrusive way. The key is to make the switching 
of target PGD value significantly different from other 
PGDs.

•	 A coverage-guided fuzzing framework for VNFs Lev-
eraging target PGD, NDFuzz can obtain the runtime 
information of a userland process, and feed the infor-
mation back to the fuzzer. Two monitoring mecha-
nisms, i.e., a tracing-based in-VMM mechanism and 
a coverage-jumping based out-of-VMM mechanism, 
are provided to catch as many exceptions as possible. 
As a framework, NDFuzz can be used to augment 
black-box fuzzers. NDFuzz integrates a fuzzer which 
is developed by ourselves for DHCP. We also improve 

an existing general protocol fuzzer Mutiny (https://​
github.​com/​Cisco-​Talos/​mutiny-​fuzzer) to support 
the coverage recording and guidance.

•	 Vulnerabilities discovered in various VNFs NDFuzz is 
leveraged to fuzz three protocols, SNMP, DHCP and 
NTP , in nine popular VNFs produced by seven ven-
dors. In total, three vulnerabilities are confirmed by 
vendors, including two newly discovered vulnerabili-
ties and one fixed vulnerability.

This paper is organized as follows: "Observation and 
motivation" section presents our observations and moti-
vation to overcome the challenges. "Technical back-
groud" section briefly introduces some crucial technical 
terms. "Overview" section shows the outline of NDFuzz 
containing two major phases which are introduced in the 
next two sections. "Phase I: target PGD inference" section 
explains the detail of PGD inference based on differen-
tial analysis. "Phase II: coverage-guided fuzzing" section 
describe the design and implementation of the fuzzing 
process. "Experiment and evaluation" section shows the 
result of NDFuzz. The shortcoming and future work are 
discussed in "Discussion" section. "Related Work" section 
lists the related work. Finally, "Conclusion" section sum-
marizes this paper.

Observation and motivation
Figure 1 illustrates a typical fuzzing procedure for a vir-
tualized network device running as a virtual machine 
containing several processes inside. Different processes 
handle different protocols, each with a corresponding 
process control block (PCB) in kernel space. The process 
is scheduled as a normal Linux kernel does. The kernel 
also dispatches exception signals such as SIGSEGV to the 
corresponding process when the process crashes.

Because of the integrity protections of VNFs, black-box 
fuzzing is one of the most straightforward ways to dis-
cover vulnerabilities, which is widely used in IoT devices 
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Fig. 1  Typical procedure to fuzz a network device

https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer
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fuzzing (Feng et al. 2021; Chen et al. 2018; Zhang et al. 
2019). The main fuzzing function is implemented in the 
packet sender, which can send a mutating request to the 
target process (yellow arrow in Fig.  1). Once the com-
munication is interrupted or responded with specific 
contents, a crash may occur, and the request is recorded. 
However, there are three limitations about the blackbox 
fuzzing: (1) The performance, such as code coverage, is 
hard to be evaluated. (2) The mutation is inefficient with-
out runtime information guidance such as coverage. (3) 
The response-based monitoring (also known as liveness-
check   Muench et al. 2018) mechanism is quite unrelia-
ble. Although the coverage-guided fuzzing is widely used 
in the software to overcome those shortcomings, it can 
not be employed for VNFs directly.

For coverage-guided fuzzing (greybox fuzzing), a 
fuzzing controller is introduced to guide the mutation 
according to the request-related coverage. However, the 
coverage of the VNFs is not easy to obtain because of the 
integrity checks. The potential way is to implant a pro-
gram into the virtualized network devices to monitor 
the runtime information (Gao et  al. 2020). The method 
requires two preconditions unsupported by the VNFs, 
i.e., the ability to implant a program and the permission 
to execute the program.

The only general way is to obtain code coverage in 
a non-intrusive way by leveraging the hypervisor. The 
non-intrusive way means no modification of the original 
VNF, no shell permission needed and no agent placed. 
Under this constraints, some hypervisor-assist works 
such as TriforceAFL (https://​github.​com/​nccgr​oup/​
Trifo​rceAFL), kAFL (Schumilo et al. 2017), REDQUEEN 
(Aschermann et  al. 2019) and FirmAFL (Zheng et  al. 
2019) all cannot work.

From the hypervisor view, all runtime information of 
the guest operating system, such as instructions, reg-
isters and memory can be obtained directly. However, 
the information is just raw data without semantic infor-
mation, which is the well-known semantic gap problem 
(Dolan-Gavitt et al. 2011). As described in Introduction, 
numerous works to solve the semantic gap with VMI 
technique are limited in our fuzzing scenario. As Table 1 
depicts, numerous VNFs are developed atop of the mod-
ern multi-tasking operating system (Linux, FreeBSD, 
etc.). Therefore different network services always run 
as different daemon processes and our fuzzing target is 
indeed the userland process of a VNF. The only thing we 
need for coverage guidance is the trace. Thus the major 
problem is solved once we can filter the correct trace of 
the target process from hybrid raw data from hypervisor 
view. Page global directory (PGD) of a process is suita-
ble for distinguishing different processes in our scenario 
with three features: (1) For the paging mechanism for a 

process, both Linux and FreeBSD adopt a multilevel pag-
ing model. The top-level is PGD, a physical page frame 
that is unique for different processes and can be treated 
as a process identification. (2) Unlike the target (i.e. 
image parser) whose lifecycle is just a round of pars-
ing in mainstream fuzzing (Gan et al. 2018, http://​lcamt​
uf.​cored​ump.​cx/​afl/, Lyu et  al. 2019; Aschermann et  al. 
2019), the network process always acts as a daemon pro-
cess and handles network requests persistently in a single 
process. Obviously, PGD value is constant unless the pro-
cess crashes or restarts. (3) When the kernel schedules a 
process, PGD is loaded into a special register (CR3 of x86 
and x86_64). The change of this register can be treated 
as a specific event of the hypervisor. In other words, 
once the PGD value of the target process is known, the 
hypervisor can know whether the target process is sched-
uled and running by monitoring the change of the CR3 
register.

These observations reveals that we can trace the target 
network service, a daemon process, in a non-intrusive 
way through obtaining the correct PGD values of the tar-
get process. NDFuzz focuses on the network service sat-
isfying three characters: (1) Its function is independent 
and works as a single daemon process. (2) The protocol 
is whole or partial stateless so that the requests are unre-
lated to each other. (3) The service is deployed in the C/S 
architecture, and the process works as a server while the 
fuzzer is the client.

Technical backgroud
In this section, we briefly introduce some crucial techni-
cal terms of this paper.

QEMU
QEMU is a hosted virtual machine monitor with JIT 
compilation that translates the target’s code to native 
instructions and executes at native speed. Tiny code 
generator (TCG) works by translating the guest basic 
block into an architecture-independent intermediate 
representation (IR), then the backend lowers the IR into 
native host instructions. There are two general modes 
as user mode and system mode. The user mode can exe-
cute a single process while the system mode emulates a 
full operating system (Virtual Machine, VM), including 
a processor and various peripherals. QEMU machine 
protocol4 (QMP) is used for system mode to control 
the virtual machine such as save/load a snapshot, dump 
memory, etc. In fuzzing, QEMU user mode is always 
used for single binary program fuzzing scenario such as 

4  https://​wiki.​qemu.​org/​Docum​entat​ion/​QMP.

https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://wiki.qemu.org/Documentation/QMP
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QEMU mode of AFL, system mode is always used for the 
target such as kernel which needs a whole system.

Network services
Simple network management protocol (SNMP) is an 
Internet Standard protocol used for the management and 
monitoring of network-connected devices. It is widely 
used in network management for network monitoring by 
different object identifiers (OID), the representation of 
device function.

Dynamic host configuration protocol (DHCP) is a 
client/server protocol for automatically assigning IP 
addresses and other communication parameters to 
devices connected to the network. DHCP is widely used 
in devices that have a LAN for connecting such as a 
router, gateway, firewall and more.

Network time protocol (NTP) is designed for Time 
synchronization between different network nodes over 
packet-switched, variable-latency data networks. It can 
provide high precision time correction for other clients 
in the network and keep the time consistency in the 
network.

Overview
Figure  2 describes the high-level overview of our fuzz-
ing framework NDFuzz. It consists of two critical phases: 
target PGD inference phase (Phase I) depending on the 
differential analysis of process switching to obtain the 
identification of target process, actually the PGD value 
of a process. Then phase II uses this PGD value to drive 
the coverage-guided fuzzing. Since the PGD is always 

changed when the process or system restarts, we take 
a snapshot for each given VNF image to avoid redun-
dant work. For a given VNF image, a snapshot with the 
PGD value of the target process can be treated as a fuzz-
ing instance. The fuzzing instance can be copied and 
deployed independently for different aims.

Phase I treats a running VNF as the input supported 
by the customized QEMU, the virtual machine monitor 
(VMM or hypervisor). Although the customized QEMU 
can obtain all runtime information of a VNF, the seman-
tic information is still unknown. Fortunately, we only 
need is the PGD value of the target process (TP) to drive 
the coverage-guided fuzzing. We record a set of PGD val-
ues of alive processes and their process switching times. 
With the two attributes, we can leverage a lightweight 
differential analysis to infer the correct PGD value of 
TP. In this side-channel way, we can automatically locate 
TP accurately and efficiently. The main steps are shown 
in the left half of Fig. 2. I-1: The customized hypervisor 
record a list of PGD values and the scheduled times. In 
order to ensure that TP will be scheduled, we continu-
ously make requests to TP during PGD recording. I-2: 
We disable or restart TP and another list of PGD values 
and schedule times are recorded. I-3: A lightweight dif-
ferential analysis is applied to the two lists of PGD values 
to obtain the target PGD.

Phase II is depicted in the right half of Fig. 2. During 
the fuzzing procedure, the fuzzing controller coordi-
nates the customized QEMU and the packet sender 
with control command. Fuzzing controller loads 
the configuration of target process (II-1), initializes 
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customized QEMU (II-2) and the packet sender (II-3). 
With the PGD value of the target process, customized 
QEMU can know if TP is scheduled by monitoring 
the change of CR3 register in x86 or x86_64 archi-
tecture. Therefore, the trace of the target process 
can be recorded when TP is running. The recording 
is related to the request handling. Before the packet 
sender sends a mutated request (II-4) , the fuzzing 
controller notifies QEMU to enable the trace record-
ing. Once the request is handled completely, the 
fuzzing controller disables recording and obtains the 
traces for coverage guidance from customized QEMU 
through QMP protocol and shared memory (II-5) . 
The customized QEMU can record AFL-style bitmap 
in a normal running loop. Once a crash occurs, we can 
monitor it with two mechanisms (II-6) . An in-VMM 
monitoring mechanism can catch the exception sig-
nal, such as SIGSEGV, accuracy through partial kernel 
tracing. Moreover, we also developed an out-of-VMM 
monitoring mechanism based on coverage-jumping to 
catch the exceptions missed by the in-VMM method. 
After recording the exceptional request, fuzzing con-
troller loads the initial snapshot of VNF to continue 
the fuzzing.

The whole procedure is entirely transparent for 
VNF because there is no modification of VNF, no shell 
permission needed and no agent program placed. It is 
a non-intrusive way to turn a black-box fuzzing into a 
gray-box fuzzing for VNF.

Phase I: target PGD inference
In this section, we illustrate the detailed implementation 
of process locating with the help of differential analysis. 
Due to the environment limitation of VNFs, it is difficult 
to obtain the specific kernel offset needed by mainstream 
VMI and memory analysis techniques. Thus, we cannot 
traditionally obtain the mapping of processes and their 
PGD values. However, our aim is different from the VMI. 
Instead of obtaining numerous information belonging to 
the process control block (PCB), we only need the PGD 
value of the target process to identify the target process. 
Although the VNF has several inherent limitations, we 
can still control part of the internal VNF  such as the sta-
tus of a network process.

Firstly, through CLI or other management methods 
(e.g. web interface), we can  enable, disable or restart 
a network service5, and the network service is related 
to a userland process which is corresponding to a spe-
cific PGD value. Specifically, enabling a network ser-
vice binds a PGD value and the process. Disabling or 
restarting6 the service will eliminate this relation. Sec-
ondly, from the view of hypervisor, all PGD values of 
the userland processes can be obtained by monitoring 
the switching of CR3 register. In a given period, we 
can not only record what PGD values are loaded into 
CR3 that reveals how many processes are switched, 
but the time of each PGD value that reveals the execu-
tion frequency of a PGD of process. Thirdly, the net-
work service always acts as the daemon process that 
stays in a loop like “waiting for a request—handling 
the request—waiting for the next request”. When a 
request reaches the VNF from outside, the kernel will 
wake up the corresponding process according to the 
port, and the process switching occurs. Finally, we 
can configure the VNF through CLI to create a “sta-
ble” environment. This environment consists of the 
target process, as few as unrelated processes by dis-
abling them, and the system services that cannot be 
configured.

These four points are corresponding to two types 
of side-channel information and three operations to 
change them. By controlling the binding (operation 1) 
and eliminating (operation 2) of the relation of PGD 
value of target process, we can obtain a set of PGD 
values containing the PGD value of target process and 
another set do not contain (information 1). By creat-
ing network requests to the target process (operation 
3), we can increase its schedule times, which equals 
the process switching time (information 2). Thus 
operation 3 makes the switching time of target PGD 
be quite more than the default. With the well-config-
ured environment, this method can significantly differ 
from other processes on process switching with less 
noise. Therefore, these operations and information 
are enough to ensure the correct PGD value of the tar-
get process through differential analysis.

5  Note that these operations might be executed more directly with the normal 
shell.
6  The PGD value is bound to a process, once a network service is restarted, 
the process is actually changed, so the PGD is always changed too.
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Algorithm 1: Process Locating by Differential Analysis.
Input: A running VNF V , a method trigger(TV )to request the target process TV .
Output: A fuzzing instance containing Vsnapshot and PGD value P of target process TV .

1 binding(TV );
2 Vsnapshot ← take snapshot(V ) ;
3 PGDs ← {} ;
4 while process switch time <N do
5 � Note this trigger running is concurrent with process switching recording ;
6 trigger(TV ) ;
7 PGD value ← monitor CR3 switching(V ) ;
8 if PGDs.has key(PGD value) then
9 PGDs[PGD value] ← PGDs[PGD value] + 1 ;

10 else
11 PGDs[PGD value] ← 1 ;

12 eliminating(TV );
13 PGDs without target ← {} ;
14 while process switch time <N do
15 PGD value ← monitor CR3 switching(V ) ;
16 if PGDs without target.has key(PGD value) then
17 PGDs without target[PGD value] ← PGDs without target[PGD value] + 1 ;

18 else
19 PGDs without target[PGD value] ← 1 ;

20 PGD set ← set(PGDs) \ set(PGDs without target);
21 P ← select PGD value with most switching(PGD set, PGDs);
22 return P , Vsnapshot ;

Algorithm  1 reveals how to infer PGD value of the 
target process TV  of a VNF V . We define operations 
binding(TV ) and eliminating(TV ) to represent opera-
tion 1 and operation 2 with correct configuration, and 
trigger(TV ) means a network request to target process 
TV  from outside of VNF (operation 3). We first bind TV  
with a PGD value by enabling the service and taking a 
snapshot for later fuzzing. As described in "Phase I: tar-
get PGD inference", once TV  is running and triggered by 
a network request, it will be scheduled. Therefore we use 
the hypervisor to record the process switching N times 
(we always use 1000) and trigger the process by network 
simultaneously. Then we obtain a list PGDs contain-
ing all PGD values with each process switching time. 
Because of our strategy, the target PGD value must be 
in PGDs with a top process switching times. Then we 
eliminate the relation of TV  and target PGD by disabling 
or restarting the service. We can similarly obtain the list 
PGDs_without_target . Next, we transform the PGDs and 
PGDs_without_target into sets of PGD values and obtain 
the difference set PGDset . Finally, we compare the ele-
ments which have the same PGD values of PGDset and 
PGDs list, and the PGD value with the most scheduled 
times is the PGD values of the target process.

This method to locate the process is general for vari-
ous multi-tasking operating systems such as Linux and 

FreeBSD. Obviously, the versions are hardly affected 
because it is a general design of the operating system. In 
x86 and x86_64 architecture, the CR3 register saves the 
PGD values and the instructions to read or write this 
register are specific. Although we cannot map all pro-
cesses and PGD values through memory analysis which 
depends on offsets or debug information, this method is 
enough for our scenario.

We customize QEMU as our hypervisor to record the 
PGD values by hooking the CR3 related instructions. 
The implement of trigger(TV ) is related to the proto-
col of TV  . The trigger is general for the target process of 
different VNF with the same protocol. The customiza-
tion is needed for a target process with a new protocol. 
Implementing a trigger is simple because it can just send 
a packet to the correct port of VNF. The packet can be 
captured from normal communication or crafted accord-
ing to the RFCs.

Phase II: coverage‑guided Fuzzing
With the process control information, we can trace and 
monitor a userland process via hypervisor and collect 
the runtime information to guide the fuzzing. In this 
section, we depicts the implementation of the fuzzing 
phase. "Driving the whole fuzzing" section illustrates the 
whole procedure of VNF fuzzing. "Monitoring a userland 
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program" section reveals how to monitor a crash from 
hypervisor view. "Customized hypervisor" section shows 
the implementation of the customized QEMU.

Driving the whole fuzzing
Figure 3 shows the whole fuzzing interaction of NDFuzz. 
Fuzzing controller drives the whole procedure by control-
ling customized QEMU and packet sender. Customized 
QEMU executes the dynamic binary instrumentation 
for monitoring exceptions and tracing the target pro-
cess. Packet sender crafts the packet and sends them by 
notification of fuzz controller. During the handling of a 
packet, QEMU record the real-time information. Fuzz-
ing controller determines the start and end of bitmap and 
tracing recording by the response from the userland pro-
gram with an acceptable timeout limitation. Then bitmap 
information of each request is synchronized by shared 
memory through customized QMP command. Accord-
ing to bitmap, the interesting case is put into the priority 
queue as guidance. At the same time, it synchronizes with 
QEMU about signal monitor and analysis the coverage 

for coverage monitor. Once an exception occurs, fuzz-
ing controller saves the corresponding information, then 
reloads the snapshot for later fuzzing. All command and 
control operations are transparent to the device atop the 
hypervisor, so the device treats all requests as usual.

We design an intermediate layer packet sender to be 
compatible with different customized protocols fuzzing, 
including the mutation interface used in the mutation 
thread and the sending interface used in the communi-
cation thread. The mutation thread is used to mutate the 
requests to satisfy the protocol specification and main-
tain the testing queue, and the communication thread 
communicates to the target process according to the 
rules and maintains the interesting queue. The mutation 
thread takes requests from the interesting queue and puts 
them into testing queue after mutation. The communica-
tion thread stores testcases by coverage growth into the 
interesting queue to support coverage guidance.

Besides customized protocols integrating, we also 
implemented the core functionality of fuzzing control-
ler as APIs to support the adaptation of the existing 
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Page 9 of 21Zhang et al. Cybersecurity            (2022) 5:21 	

black-box network fuzzer. A black-box fuzzer can easily 
obtain coverage to evaluate performance even support 
the coverage-guided fuzzing.

Monitoring a userland program
Tracing a userland program can provide the coverage 
information that drives the graybox fuzzing. Once an 
exception occurs, NDFuzz needs to know the termina-
tion and record the related testcase. Note that monitoring 
should also be non-intrusive. Liveness-check (Muench 
et  al. 2018) should work for part of our scenario but 
with apparent shortcomings. To monitor the exceptions 
through the hypervisor view, we develop two monitor-
ing mechanisms by tracing the exceptional handler and 
observing the coverage jumping of the userland process.

In-VMM Monitoring According to Muench’s research 
(Muench et  al. 2018), segment tracking can archive 
80% types of artificial vulnerabilities discovered in their 
experiment. For Linux and FreeBSD, detecting Segmen-
tation Fault (SIGSEGV) equals this technique. When a 
userland program triggers an access violation, the kernel 
will take over and notify the process with a SIGSEGV sig-
nal. For hypervisor, tracing the handler execution during 
the target process execution is a general in-VMM moni-
toring mechanism. Rule 1 indicates the in-VMM moni-
toring. The target PGD is known and the process handler 
is specific for different kernels. We locate the SIGSEGV 
handler by finding the kernel basic block address which 
contains some special strings access. For Linux, when a 
userspace program triggers SIGSEGV, kernel logs the 
exception information by calling printk() function with 
the format string “%s%s[%d]: segfault at ”. For FreeBSD, 
the feature string is “(core dumped)”. The kernel binary is 
not difficult to get by mounting the VNF images.

Out-of-VMM Monitoring Although monitoring SIG-
SEGV signal can cover most of the process crashes, 
some other exceptional situations can also cause process 
crash or termination, such as the crash by SIGABRT sig-
nal triggered by heap errors or restarting by a watchdog. 
Because the handle of the SIGABRT signal is quite more 
complex than SIGSEGV, it is not suitable to be caught in 
the In-VMM monitoring. In this situation, monitoring 
only by SIGSEGV signal might miss some exceptional 
testcases. However, if we ignore these false negatives, the 
whole graybox fuzzing which is related to the target PGD 
value will be broken. For example, once the target process 
is crashed by SIGABRT signal, the In-VMM mechanism 
will miss it but the watchdog might restart this process 
to recover its running. After the process restarting, it can 

(1)
{

PCVMM = SIGSEGVkernel

CR3VMM = PGDtarget_process

handle the network request as before but its PGD value 
has changed because of the restarting. Because NDFuzz 
uses target PGD value to obtain the runtime information 
of target process, the PGD change caused by false nega-
tives will make the whole fuzzing abnormal and is quite 
unacceptable.

Therefore, we also provide an additional monitor-
ing mechanism with code coverage based on an ingen-
ious observation of our userland program tracing. As 
described in "Phase I: target PGD inference" section, the 
PGD value never changed during the normal running 
of the target process and QEMU records the coverage 
information with the filter of this PGD value. So once the 
process is terminated, modified QEMU cannot trace any-
thing with the previous CR3 value. This causes a “coverage 
jumping” from non-zero to zero and reveals the exception 
that was missed by in-VMM monitoring. Out-of-VMM 
monitoring might catch some terminations which are not 
caused by a vulnerability in a few extreme situations, but 
we think these unexpected exits are also should be caught 
to ensure that the whole fuzzing works well.

Customized hypervisor
To support the graybox fuzzing, we developed the cus-
tomized QEMU based on QEMU-TCG. A fuzzing job 
can be deployed on just a PC or cloud with this low-level 
implementation. We hook the CR3 read and write opera-
tion of QEMU to know whether the target process is 
scheduled. We also modify the TCG engine for dynamic 
binary instrumentation and provide AFL-style bitmap for 
guidance (edge coverage). There could be three types of 
instruction during the userland process tracing: instruc-
tion of correct userland process, instruction of others 
userland processes, and kernel instructions. We use the 
PGD value of the target process to filter the correct user-
land process. Then we use the RIP or EIP value to filter 
the instructions of kernel space and userspace.

A straightforward way to dynamic instrument is to 
hook the TCG run-loop of cpu_exec() function of qemu/
accel/tcg/cpu-exec.c file. However, it will bring a huge 
performance overhead by disabling the block chain-
ing feature. Compared to the native code execution, the 
translation is expensive and translation blocks (TBs) are 
saved in the TCG cache in normal QEMU execution. 
When the TB is executed, QEMU will find the next basic 
block, and it also brings the extra performance overhead. 
Therefore QEMU provides the block chaining to link the 
adjacent TBs, such as a direct jump with the known des-
tination address. Without block chaining optimization, 
each basic block will be translated expensively repeti-
tively without cache. For our system-mode QEMU, the 
cost is quite unacceptable. AFL++ (Fioraldi et  al. 2020, 
https://​andre​afior​aldi.​github.​io/​artic​les/​2019/​07/​20/​

https://andreafioraldi.github.io/articles/2019/07/20/aflpp-qemu-compcov.html
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aflpp-​qemu-​compc​ov.​html) optimized this by inserting 
the bitmap calculation into the translation block and got 
3x–4x speedup.

Inspired by this optimization, we directly insert our 
helper function into the translation block for tracing and 
monitoring. The bitmap is saved in shared memory which 
is reset before each fuzzing iteration. The corresponding 
byte of the bitmap is incremented when an edge transi-
tion occurs. The implementation of monitoring is a little 
different from tracing. Because it focuses on monitoring 
the execution of the exception handler which is related to 
the address of a specific basic block, we insert the helper 
function when this basic block is translated. Therefore 
when the basic block is executed, the helper function will 
mark the signal to achieve the monitoring.

Experiment and evaluation
In this section, we evaluate the prototype implementa-
tion of NDFuzz. In short, we would like to answer the fol-
lowing research questions: 

1	 Generality Does our target PGD inference technique 
work well on different VNFs?

2	 Coverage improvement How much the coverage has 
been improved with coverage-guidance?

3	 Vulnerability discovery How effective is NDFuzz in 
finding the real vulnerabilities in VNFs?

4	 Overhead What is the overhead of NDFuzz about 
instrumentation?

5	 Case study How does coverage guide the vulnerabil-
ity discovery?

Experiment Setup We deployed our fuzzing on a Ubuntu 
20.04 LTS with Intel(R) Xeon(R) Gold 6242R CPU @ 
3.10GHz and 120GB memory. To avoid the potential 
noise among different devices (traffic of ARP, NDP, etc.) 
that might affect the fuzzing, we performed network iso-
lation for each fuzzing instance. More specifically, we 
prepare a whole virtual machine for one fuzzing instance 
and NDFuzz deployment. Each virtual machine is given 
8 GB memory and 50 GB virtual disk. The whole process 
from phase I to phase II is automatic with the only man-
ual effort of device configuration. Due to the significant 
difference among devices, it took us about 3 h per device 
to complete the configuration of the SNMP (version 

2c) , DHCP and NTP services to prepare for a fuzzing 
instance.

In order to verify the performance of NDFuzz in 
improving the coverage and finding crashes, we adopt 
four fuzzing engines which contain 2 general fuzzing 
engines (Mutiny-No-Feedback and Mutiny-Feedback) 
and 2 protocol customized fuzzing engines (ZDHCP-
No-Feedback and ZDHCP-Feedback). We totally tested 
18 fuzzing instances and each of them has been tested by 
several fuzzing engines by copying them. The total CPU 
hours of fuzzing is 3168 (9*2*72+4*4*72+5*2*72) h.

Code Size of NDFuzz Table  2 shows the statistic of 
NDFuzz. We added about 1.8k lines of C code to cus-
tomize QEMU for our requirement. Original Mutiny is 
about 2.0k lines of python code and we add 0.7k which 
contains the API of NDFuzz to enable the runtime 
information obtaining. For Mutiny-FB mode, we added 
about 0.8 k lines of Python on the original Mutiny. The 
ZDHCP-NFB is about 4.6 k lines of Python code with the 
NDFuzz API to record the coverage in black box fuzzing. 
The total NDFuzz is 6.2 k line of Python with ZDHCP-FB 
integrated.

Generality for different devices
In order to demonstrate the generality of NDFuzz, we 
selected nine real-world VNFs as fuzzing targets among 
seven famous vendors (Arista, Juniper, SonicWALL, 
Fortinet, Hillstone, Pulsesecure and Vyos). These devices 
belong to Switch, Router, Firewall, Gateway, and SSLVPN 
5 types. Table  3 illustrates the detailed information of 
our nine target VNFs. We can see 77.8% (7 of 9) devices 
are based on Linux of various versions except for Juni-
per which is based on FreeBSD. The kernel versions of 
Linux are all different with a 11-year gap from 2.6.32 to 
4.19.142. One of the seven Linux-based VNFs is x86 and 
others are x86_64. Although the two architectures are 
similar, they are still different such as calling convention. 
However, our lightweight target PGD inference tech-
nique can obtain the correct target PGD among different 
OS and versions. This is because the process scheduling 
mechanisms are general for various multi-tasking operat-
ing systems.

We selected SNMP, DHCP and NTP protocol as target 
service. SNMP is a typical stateless protocol that is used 
to manage a device according to different OID nodes. 

Table 2  Code size of fuzzing components

aContains well-adapted ZDHCP-FB

Fuzzer Mutiny ZDHCP NDFuzz NDFuzz a QEMU

Type ORI NFB F NFB – – –

LoC 2.0k 2.7k 2.8k 4.6k 3.6k 6.2k +1.8k (C)

https://andreafioraldi.github.io/articles/2019/07/20/aflpp-qemu-compcov.html
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DHCP is a little different because it contains the client 
and server side which is our fuzzing target. We also treat 
it stateless to focus on option parsing by fixing the IP 
address and marking each request with a unique session 
ID. NTP is simpler than SNMP and DHCP and is used for 
clock synchronization between different network nodes. 
The support of the three protocols in different devices is 
listed in the column 6–8 of Table 3. All of the devices can 
obtain target PGD in less than 20 s. This is efficient and 
negligible compared to the 72 h fuzzing.

We counted the proportion and rank for illustrating 
phase I and the detailed information are listed in Table 4 
. We first got the target PGD value through differential 
analysis of phase I. Then, we loaded the snapshot and 
counted the default switching times according to the cor-
rect PGD value. The percentage reveals the proportion 
of switching times of target PGD in total one thousand 
times switching. SNMP-T, DHCP-T and NTP-T are the 

statistic of target PGD with trigger operation. SNMP-N, 
DHCP-N and NTP-N shows statistic during the normal 
VNF running. From SNMP-N, DHCP-N and NTP-N, we 
can see that SNMP, DHCP or NTP processes are usually 
scheduled with a small proportion. SNMP-T, DHCP-T 
and NTP-T shows that these processes are always sched-
uled in a significantly larger proportion and top rank with 
the trigger operation . Among the 9 VNFs, we totally 
obtained the information of 18 PGD values, including 
9 for SNMP, 4 for DHCP and 5 for NTP . With trigger 
operation, 9 of 18 take the first place and others are sec-
ond. This is because some system processes might take a 
higher priority than target processes.

The mainstream way to obtain the PGD value is 
through the memory analysis  (https://​libvmi.​com/, 
https://​github.​com/​Cisco-​Talos/​pyreb​ox, Hender-
son et  al. 2014; Yan and Yin 2012, https://​github.​com/​
volat​ility​found​ation/​volat​ility), but on the premise of 

Table 3  Virtualized network devices and services for fuzzing

a We failed to enable its DHCP Server of vMX although have tried our best to configure it

Model Type OS Arch Kernel version Fuzzing protocol

SNMP DHCP NTP

vEOS Switch Linux x64 4.19.142 Yes No Yes

PSA SSLVPN Linux x64 2.6.32 Yes No No

SRA SSLVPN Linux x86 3.1.0 Yes No No

FortiGate Firewall Linux x64 3.2.16 Yes Yes Yes

SG6000 Firewall Linux x64 3.10.20 Yes Yes No

SMA Gateway Linux x64 4.4.12 Yes No No

VyOS Router Linux x64 3.13.11 Yes Yes Yes

vSRX Firewall FreeBSD x64 11.0 Yes Yes Yes

vMX Router FreeBSD x64 11.0 Yes Noa Yes

Table 4  Statistic of proportions and ranks of different processes

a T suffix means -Trigger, shows the ratio and rank of switching times of target PGD during the 1000 times process switching with trigger
b N suffix means -Normal, shows the ratio and rank of switching times of target PGD during the 1000 times process switching in normal running

Model SNMP-Ta SNMP-Nb DHCP-T DHCP-N NTP-T NTP-N

Prop. (%) Rank Prop. (%) Rank Prop. Rank Prop. Rank Ratio Rank Ratio Rank

vEOS 30.9 1 2.3 7 N/A N/A N/A N/A 35.7% 1 0.7% 15

PSA 58.0 1 0.3 37 N/A N/A N/A N/A N/A N/A N/A N/A

SRA 27.3 2 7.0 4 N/A N/A N/A N/A N/A N/A N/A N/A

FortiGate 52.6 1 3.1 9 35.5% 1 0.30% 50 31.3% 1 0.3% 23

SG6000 22.9 2 0.2 15 20.6% 2 0.20% 24 N/A N/A N/A N/A

SMA 16.0 2 0.9 19 N/A N/A N/A N/A N/A N/A N/A N/A

VyOS 54.0 1 16.0 7 27.5% 1 1.20% 15 31.9% 1 2% 7

vSRX 14.8 2 1.4 11 20.0% 2 1.5% 9 29.1% 2 0.2% 22

vMX 29.1 2 1.10 11 N/A N/A N/A N/A 43.6% 2 0.6% 19

https://libvmi.com/
https://github.com/Cisco-Talos/pyrebox
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
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non-intrusive, we cannot obtain the proper input in 
their way such as kernel data structures reconstruction 
by drivers and more. Thus this potential way is another 
question to be solved.

Our differential analysis solution can only infer the 
PGD and cannot obtain detailed information such as the 
process name which is related to this PGD value, while 
the potential way can obtain the accuracy content. This is 
the major disadvantage. On the other hand, the potential 
way needs to parse each kernel file to extract the needed 
information and then parse the whole memory snapshot, 
which is complex with more steps than our solution . 
This is the advantage of our solution .

Improvement of code coverage
We fuzzed all VNFs with a significantly lower cost of 
both fuzzing target and time with the help of virtualiza-
tion than physical devices. The fuzzing engines are illus-
trated as follows:

Mutiny-No-Feedback (Mutiny-NFB) Mutiny (https://​
github.​com/​Cisco-​Talos/​mutiny-​fuzzer) is a network 
fuzzing framework that mutates the requests of raw 
PCAPs. It is developed by Cisco Talos security team and 
uses Radamsa (https://​gitlab.​com/​akihe/​radam​sa) to per-
form mutations. As a mutation-based fuzzer, it treats 
the PCAP file as input and generates a fuzzing template 
according to the contents. Thus Mutiny is general for TCP 
or UDP protocols and is designed for black-box protocol 
fuzzing so that it can test VNFs. We select it as a bench-
mark to show the performance of block-box fuzzing. We 
adapt Mutiny with our APIs to record the coverage infor-
mation without modifying the original fuzzing logic. It 
can test all target protocols (SNMP, DHCP and NTP).

Mutiny-Feedback (Mutiny-FB) Based on coverage 
information, we further modified Mutiny with the cov-
erage guidance support. Actually, we added a priority 

queue to save the interesting requests to guide the muta-
tion. If the queue is empty, it will execute the original 
fuzzing logic.

ZDHCP-No-Feedback (ZDHCP-NFB) DHCP is a 
popular protocol of devices that use different options 
to indicate the function of a request. The DHCP client 
requests different information via various options from 
DHCP server. Then DHCP server resolves the options 
and responses to the client. One DHCP request can con-
tain several different options described in RFC 2132 and 
more. Therefore, we designed and implemented ZDHCP 
to fouces on mutation and combination of options 
instead of the completely random mutation as Mutiny. 
Figure 4 depicts the core idea of ZDHCP. In our imple-
mentation of ZDHCP, we use the 119 options imple-
mented in scapy (https://​scapy.​net/) to help us to build 
a legal DHCP packet. ZDHCP works as a client to fuzz 
the DHCP server and as a black-box fuzzer which is also 
adapted with APIs of NDFuzz to record coverage of tar-
get processes. 

ZDHCP-Feedback (ZDHCP-FB) As described in 
subsection Driving the Whole Fuzzing, we design an 
intermediate layer to be compatible with different pro-
tocol fuzzer implementations. The implementation of 
the mutation interface and sending interface is built in 
ZDHCP. Therefore, it is easy to integrate ZDHCP into 
NDFuzz. We use the coverage to guide the mutation of 
options.

For each VNF that supports SNMP, we deploy Mutiny-
FB, Mutiny-NFB with the same seeds for at least 72 
h. The seed of SNMP is related to the OIDs, which is 
obtained by a standard program snmpwalk (https://​linux.​
die.​net/​man/1/​snmpw​alk). Snmpwalk uses SNMP_GET-
NEXT requests to retrieve a subtree of management 
values. We use it to retrieve the root node and obtain 
all OIDs of a VNF. Then we convert the OIDs into the 
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Fig. 4  The core design of ZDHCP

https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer
https://gitlab.com/akihe/radamsa
https://scapy.net/
https://linux.die.net/man/1/snmpwalk
https://linux.die.net/man/1/snmpwalk
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format of Mutiny, the PCAP files. For DHCP, we deploy 
Mutiny-FB , Mutiny-NFB, ZDHCP-NFB and ZDHCP-FB 
with the same seeds. Because we do not find a program 
similar to snmpwalk, we get the seed of DHCP in 2 ways. 
One is to collect requests during the normal communica-
tion, the other one is to generate requests according to 
the specification, then filter the request which the DHCP 
server can reply.

Figure 5 depicts the edge trend during the 72h fuzzing 
of each fuzzing instance. The subfigure (a) to (i) are of 
SNMP , the (j) to (m) are of DHCP and the (n) to (r) are 
of NTP. Figure 6 shows the edge improvement about the 
different fuzzing engines for the same fuzzing instance. 
For SNMP (Fig.  6a), the comparison of Mutiny is intui-
tive and straightforward, Mutiny-FB performs an average 

of 56.93% more edge coverage than Mutiny-NFB from 
9.22% of SG6000 to 106.33% of vMX.

For DHCP (Fig. 6b), the comparison is more complex 
because there are four fuzzing engines. To compare the 
result in different aspects, we calculate four types of com-
parison as follows: 

1	 Mutiny-FB vs. Mutiny-NFB and ZDHCP-FB vs. 
ZDHCP-NFB Mutiny-FB has an average of 36.03% 
improvement than Mutiny-NFB from 7.33% of 
SG6000 to 68.32% of FortiGate. ZDHCP-FB has an 
average of 66.58% improvement than ZDHCP-NFB 
from 32.28% of VyOS to 98.56% of vMX of ZDHCP. 
Together with the result of SNMP, these comparisons 
prove the coverage guidance can indeed improve the 
edge for different protocols and fuzzing engines.

Fig. 5  Edge count trend of the 9 SNMP, 4 DHCP and 5 NTP fuzzing instances for 72 h
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2	 ZDHCP-NFB vs. Mutiny-NFB Our ZDHCP-NFB 
also performs better than Mutiny-NFB with an aver-
age improvement of 26.72% from 3.48% of VyOS 
to 77.57% of PSA. This proves the option-focusing 
mutation can generate the testcase which contains 
more complex crafted options.

3	 ZDHCP-FB vs. Mutiny-FB With coverage guidance, 
the ZDHCP-FB has an average 54.37% improvement 
than Mutiny-FB. This demonstrates the performance 
advantage of ZDHCP is further enhanced by the 
feedback.

4	 ZDHCP-FB vs. Mutiny-NFB Finally, we compare the 
ZDHCP-FB with Mutiny-NFB to reveal the improve-

ment by the cooperation of the fuzzing engine and 
coverage-guidance. The average is 113.67% from 
36.88% of VyOS to 208.82% of FortiGate.

The comparison of NTP (Fig.  6c) is similar to SNMP, 
Mutiny-FB performs an average of 27.25% more edge 
coverage than Mutiny-NFB from 4.32% of vMX to 72.31% 
of Fortinet.

Vulnerability discovery
Among the 72 h fuzzing of the 13 fuzzing instances, we 
totally found numerous crashes and analyzed them man-
ually. Table 5 illustrates the detail information about the 

Fig. 6  Edge improvement of SNMP and DHCP protocol
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finding. We have confirmed two unique crashes of DHCP 
protocol and one of SNMP. After we reported them to 
the vendors, two were confirmed as 0-Day vulnerabil-
ity (VUL1 and VUL3) and the other one is already fixed 
(VUL2). These three vulnerabilities can be both triggered 
by only one request. Although found from the virtualized 
network devices, they also affect the physical network 
devices according to the vendor’s response.

VUL1 is firstly found by ZDHCP-NFB in 24.95h and 
by ZDHCP-FB in 9.97h. This demonstrates the cover-
age guidance can accelerate the discovering of vulner-
ability. VUL2 is firstly found by Mutiny-FB in 33.7h and 
by ZDHCP-FB in 1.34h. Besides showing the advantage 
of coverage guidance, VUL2 also proves that our cus-
tomized ZDHCP performs quite better than the general 
fuzzer Mutiny by saving 96% time.

Compared to DHCP, SNMP has a strict format limita-
tion. Even though with coverage guidance, Mutiny only 
found one vulnerability about SNMP because it is hard 
to mutate a legal packet due to the OID encoding. SNMP 
uses Object Identifier (OID) to manage different objects 
and the OID parsing accounts for the major part of 
SNMP process. However, the OID is encoded using Basic 
Encoding Rules (BER), which is difficult to satisfy with 
random fuzzing of Mutiny and numerous mutations are 
dropped during the format check.

Table  6 shows the statistic of the performance of the 
In-VMM and Out-of-VMM monitoring mechanisms. In 
fact, this is the initial result without de-duplication, and 
the result after de-duplication is shown in Table  5. We 
only list FortiGate and vEOS because they are the two 
only devices that found vulnerabilities. The two moni-
toring mechanisms do not catch any crash on the other 

7 devices. Firstly, this table depicts that the number of 
crashes in DHCP is significantly increased with the cov-
erage guidance (551 vs. 2395), which also shows the effec-
tiveness of coverage guidance. Secondly, as described in 
Subsection Monitoring a Userland Program, if the In-
VMM monitoring cannot catch a crash immediately, the 
Out-of-VMM monitoring can catch it to avoid the false 
negatives, the “O” columns show the necessity of it.

Overhead of non‑intrusively tracing
Evaluating the overhead is not easy. The targets of the 
mainstream fuzzing benchmarks (Dolan-Gavitt et  al. 
2016; Hazimeh et  al. 2020) are not faced with the dae-
mon process fuzzing, and most of our target devices are 
unable to execute them. Thus we evaluate them based 
on our target protocol SNMP, which can always be tra-
versed by a standard program snmpwalk deployed out 
of the device. By obtaining the execution cost of snmp-
walk, we can evaluate the overhead more realistically. We 
collected the processing time of the snmpd program for 
communication established by snmpwalk as a benchmark 
to calculate the overhead from two dimensions.

We hook the CR3 switching function to compute the 
total time of the only target snmpd process and total 
operating system time, including all process running. 
Thus we can calculate the overhead of the only target 
process and the whole VNF (containing all processes). 
Figure 7 depicts the statistic of overhead. For each device, 
the blue bar is the overhead of the single SNMP process 
and the orange bar is the overhead of the whole VNF.

For the overhead of the edge recording, the whole VNF 
is from 3.0% (SG6000) to 24.5% (SMA) with an average of 
11.7%, this is significantly lower than the target process 

Table 5  Unique crashes statistic

ID Model Protocol Type Mutiny-NFB Mutiny-FB ZDHCP-NFB ZDHCP-FB

VUL1 FortiGate DHCP Integer overflow ✗ ✗ 24.95 h 9.97 h

VUL2 FortiGate DHCP Buffer overflow ✗ 33.76 h ✗ 1.34 h

VUL3 vEOS SNMP Buffer overflow ✗ 54.18 h Not support Not support

Table 6  Total crashes caught by different monitoring mechanisms

a I means In-VMM monitoring mechanism
b O means Out-of-VMM monitoring mechanism

Protocol SNMP DHCP

Fuzzer Mutiny-NFB Mutiny-FB Mutiny-NFB Mutiny-FB ZDHCP-NFB ZDHCP-FB

Monitor Ia Oa I O I O I O I O I O

FortiGate 0 0 0 0 0 0 0 361 40 511 134 1900

vEOS 0 0 0 5 N/A N/A N/A N/A N/A N/A N/A N/A
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from 9.3% (SG6000) to 37.0% (SMA ) with an average 
19.4%. This is because customized QEMU only traces the 
target process and few kernel instructions while other 
processes’ execution, and most kernel instructions are 
not affected. The overhead focuses on the whole VNF 
is more related to our real fuzzing scenario, which is 
acceptable for fuzzing.

Case study
Now we present a detailed case study about the VUL2 to 
reveal the assistance of coverage guidance. We compare 
the ZDHCP-NFB and ZDHCP-FB to demonstrate that it 
is difficult to find VUL2 without feedback.

Although VUL2 is a 1-Day issue, it is quite interest-
ing with the root cause of data section overflow. Figure 8 
reveals the abstract description about it. As subfigure (b) 
shows, content_buffer and format_buffer are two adjacent 
arrays. The format_buffer stores a format string such as 
“%s,%d” and content_buffer stores the formatted string 
which is corresponding to format_buffer. When the 
DHCP process receives a DHCP request, it parses each 
option and then calls related functions. Normally, the 
option types are different from each other but ZDHCP 
can mutate the request that contains options with the 
same type (dup-options for short). The DHCP process 
collects all the same type options and catenates their 
values as a single value to handle dup-options. Function 
merge_duplicated_options() and log_duplicated_options() 
of Fig. 8a depict the procedure. The root cause is the lack 
of the length check for the value after catenating. When 
the value are stored into content_buffer, a buffer overflow 
of data section might be triggered by vsprintf(). Dur-
ing the mutation, the content of the overflow might be 
changed, which makes the format_string argument of 

vsprintf() change during vsprintf() running to trigger a 
crash.

Figure  8d shows the mutation evolution and the 
colored zones show the buffer status after the request is 
handled. Based on an initial request I, the first mutation 
node D contains the options of duplicated type. Handling 
D would call log_duplicated_options() and the buffers 
is filled correctly without overflow. Then a more com-
plex request C could be evolved with the more complex 
option value based on D. This mutation leads to fill more 
content to content_buffer and might cause overflow 
to format_buffer. But the overflow might not trigger a 
crash if no special character overflows the format_buffer. 
This iteration triggers more edges than D because of the 
option parsing and catenating. The mutation based on 
C might gradually change the content and length until a 
final important request Cc . This mutation contains sev-
eral format placeholders such as “%s” and more, which 
leads to the vsprintf() access an illegal address to crash.

Table 7 compares the ratio of different request types of 
Subfigure (d) about ZDHCP-NFB and ZDHCP-FB. The 
initial seed contains 3 groups which contains 5, 10 and 20 
requests which have the same option to focus on VUL2 
detecting. Each fuzzing engine tests at most 1 h and 
stops when VUL2 is triggered. Although ZDHCP-FB and 
ZDHCP-NFB can both mutate the D and C types, FB has 
a quite larger probability (4.9x, 8.1x, 9.3x) to mutate a C 
type request than NFB.

Discussion
Well-known fuzzers integration We do not integrate well-
known gray-box fuzzers into NDFuzz such as AFL++, 
AFL and more, mainly due to they are not targeted at 
the network service and the fuzzing workflow are sig-
nificantly different. Besides, they always rely on static 

Fig. 7  Overhead of coverage collection
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instrumentation or dynamic binary instrumentation 
provided by QEMU user mode to obtain the coverage, 
which is inconsistent with the limitation of VNFs which 
is close-source, well-protected and running supported 
by QEMU system mode. Although AFLNET  (Pham et al. 
2020) focuses on the network protocol, but it still relies 
on source code to obtain the coverage. NDFuzz can 
obtain coverage and this mechanism might be adapted 

to AFLNET, but the whole fuzzing workflow needs to be 
heavily refactored especially the implementation of fork-
server and the interaction with QEMU system-level emu-
lation (instead of the user-level emulation of AFL-QEMU 
mode) to fit the VNFs. Therefore this is not a non-trivial 
workload. We will integrate these famous fuzzers which 
aim at the open-source software into NDFuzz to apply 
more excellent fuzzing strategies to VNFs.

Fig. 8  Detailed information about VUL2

Table 7  Ratios and time about request type of VUL2

Type 5 options 10 options 20 options

FB NFB FB NFB FB NFB

I 51.4% 68.2% 60.7% 66.2% 66.9% 69.9%

D 38.0% 29.7% 25.5% 32.1% 22.9% 29.0%

C 10.6% 2.15% 13.8% 1.7% 10.2% 1.1%

First D 0.0032h 0.0091h 0.0037h 0.00023h 0.0056h 0.0054h

First C 0.01h 0.069h 0.0224h 0.038h 0.0379h 0.0312h

Crash 0.738h < 1h 0.76h < 1h 0.56h < 1h
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Stateful protocol We do not consider fuzzing the state-
ful protocol because it is another measurement for pro-
tocol fuzzing. The VNF is also a pretty data set for this 
aim, especially some control plane protocols such as BGP, 
OSPF, and more. NDFuzz could adapt for them in our 
future work to combine the code coverage and protocol 
states.

Hardware assistance The implementation of the cus-
tomized QEMU is based on the TCG instead of KVM, 
because the KVM solution needs to modify host kernel 
and is dependent on the Intel-PT to collect the runtime 
information of the userland process. The TCG scheme 
has fewer limitations while the KVM scheme has a bet-
ter performance. This also is a future work to improve 
NDFuzz.

Architecture adaption We do not find any VNF that 
works on other architectures except x86 and x86_64, but 
our method is general and NDFuzz can be adapted to 
other architectures with minor modification.

Protocol adaption There are many protocols in the 
virtualized network device while we only implement a 
customization of DHCP. We will implement more cus-
tomized fuzzers for specific protocols in the future.

Related work
Fuzzing virtualized network device non-intrusively com-
bines several independent technique of security research. 
The most related virtual machine introspection (VMI) 
technique and several hypervisor-assisted greybox fuzz-
ing projects cannot satisify our requirement.

Network function virtualization
For a long time, network equipment has provided net-
work services in the form of proprietary hardware and 
customized software. This causes the so-called network 
ossification problem and make the service additions and 
network upgrades difficult (Li et al. 2018). To overcome 
these problems, European Telecommunications Stand-
ards Institute (ETSI) propose network function virtual-
ization (NFV) to virtualize the network functions that are 
previously provided by proprietary dedicated hardware 
(Paper 2012).

As one of the three main components of the NFV 
framework, Virtualized Network Functions (VNF) are 
software implementations of network device that can be 
deployed on a network function virtualization infrastruc-
ture (NFVI). The componets of VNF are various such as 
router, switch, SSL VPN gateways, virus scanners, etc. 
The famous vendors such as Cisco, Juniper, Fortinet and 
more are all have their NFV products and provide the 
virtual products. The software of the VNF is the same as 
the physical device of the same model.

Actually, the VNF can also be deployed on the COTS 
computer separately as a virtualized network device with 
the help of hypervisor such as QEMU/KVM, VMware 
and Hyper-V. From the view of security research, a virtual 
network can be tested with the blackbox fuzzing method 
as a physical network device for the same configuration 
and functions. However, the virtualized network device 
can also be treated as a virtual machine. It is obvious that 
we can obtain more runtime information than the physi-
cal network device with the help of customized hypervi-
sor and turn the blackbox fuzzing into coverage-guided 
greybox fuzzing.

Virtual machine introspection and memory analysis
Over the past decades, virtualization technique has been 
widely used in numerous fields especially the cloud com-
puting and data centers. The hypervisor (VMM), as the 
infrastructure of this technique located at the low-level 
of operating system, pushed system monitoring from 
traditional in-VM monitoring to out-of-VM monitoring 
which is known as virtual machine introspection (VMI). 
Through extracting and reconstructing the guest OS 
states in the host, VMI takes advantage of the isolation 
and management of hypervisor and has been widely used 
in security applications ranging from instrusion detec-
tion (Payne et al. 2008), malware analysis (Dolan-Gavitt 
et  al. 2011; Fu and Lin 2012, https://​github.​com/​Cisco-​
Talos/​pyreb​ox), virtual machine management (Sharif 
et  al. 2009; Srinivasan et  al. 2011, https://​libvmi.​com/) 
and memory forensics (Fu and Lin 2012, https://​github.​
com/​volat​ility​found​ation/​volat​ility).

The well-known challenge in VMI is semantic gap 
problem (Dolan-Gavitt et  al. 2011), which obstable the 
extraction of high-level semantic information (e.g., pro-
cess information of guest) from low-level data such as OS 
memory dump. A wide solution is related to the kernel 
data structures obtained from the source code analysis 
or specific driver execution (Wang et  al. 2015, https://​
libvmi.​com/, https://​github.​com/​Cisco-​Talos/​pyreb​
ox, https://​github.​com/​volat​ility​found​ation/​volat​ility). 
Virtuoso (Dolan-Gavitt et  al. 2011) and VMST (Fu and 
Lin 2012) are to directly reuse the legacy binary code 
of some native inspection programs (e.g., ps, lsmod) to 
automatically bridge the semantic gap without previous 
kernel data structure. However, they both bring hugh 
performance overhead. Hybrid-Bridge (Saberi et al. 2014) 
combined the offline training from Virtuoso and kernel 
data redirection from VMST to improvement the per-
formance. It needs both trusted VMs in Fast-Bridge and 
Slow-Bridge delopy the same OS version as the untrusted 
VMs.

Memory analysis techniques have a great intersection 
with VMI techniques in terms of semantic information 

https://github.com/Cisco-Talos/pyrebox
https://github.com/Cisco-Talos/pyrebox
https://libvmi.com/
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://libvmi.com/
https://libvmi.com/
https://github.com/Cisco-Talos/pyrebox
https://github.com/Cisco-Talos/pyrebox
https://github.com/volatilityfoundation/volatility
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acquisition. The major difference is that memory analy-
sis focuses more on obtaining semantic information with 
static analysis such as reverse engineering (Case et  al. 
2010) data signatures (Lin et al. 2011; Dolan-Gavitt et al. 
2009) for kernel semantic information. Firmadyne (Socała 
and Cohen 2016) provide a straightforword method to 
emulating-compilation method to predict the struct lay-
out according to the version and config file to obtain the 
accuracy semantic information. ORIGEN (Feng et  al. 
2016) combines the data flow analysis and binary search 
technique to extract some offset-reveal instructions 
among different versions. However, the signature of a sin-
gle version and the instruction search might not reliable 
when handle the significant different versions.

Graybox fuzzing with hypervisor
Graybox fuzzing technique is in middle of blackbox 
fuzzing (Beizer 1995; Myers et  al. 2004) and whitebox 
fuzzing (Godefroid et  al. 2008). Greybox fuzzers lever-
age the runtime information such as code coverage to 
guide the fuzzing run. The famous modern fuzzing AFL 
(http://​lcamt​uf.​cored​ump.​cx/​afl/) provide two ways to 
collect the runtime information: static instrumentation 
for open-source target or dynamic instrumentation for 
close-source target (binary). The dynamic instrumenta-
tion depend on the QEMU (Bellard 2005) tiny code gen-
erator (TCG) mechanism.

The binary fuzzing of AFL works in QEMU user mode 
which can launch single process. However, it is limited 
for scenarios related the running operation system such 
as kernel or emulated firmware fuzzing. TriforceAFL 
(https://​github.​com/​nccgr​oup/​Trifo​rceAFL) and kAFL 
(Schumilo et  al. 2017) obtain the coverage information 
by customizing the hypervisor to fuzz the kernel without 
the source code. REDQUEEN (Aschermann et al. 2019), 
developed atop of kAFL, can fuzzing the userland pro-
gram with coverage guidance with QEMU system mode. 
With the help of hypervisor, it can patch the code related 
to checksum checks. Firm-AFL (Zheng et al. 2019) which 
based on Firmadyne (Chen et  al. 2016) and DECAF 
(Henderson et al. 2014) leverage the hypervisor to handle 
the I/O and syscall support. Fuzzing can take advantage 
of hypervisor at a little expense of lightweight equipment.

Although graybox fuzzing with hypervisor and VMI 
both leverage the hypervisor to monitor the runtime 
information of guest, there are different because of the 
aim. Different from VMI technique which aims at a 
macro perspective, fuzzing always foucus on the runtime 
information such as coverage and process status of a sin-
gle process or module. Actually, fuzzing with hypervisor 
only use a small subset of semantic information of VMI, 
so the semantic gap can be solved with acceptable cost.

Fuzzing embedded devices
Actually, the communication of embedded devices fuzz-
ing is similar to network devices. There have been several 
works based on networking communication in recent 
years. IoTFuzzer (Chen et  al. 2018) aims at finding the 
memory corruptions based on hooking the communi-
cation logic of related Android apps. SRFuzzer (Zhang 
et al. 2019) is an automatic blackbox fuzzing framework 
to discover multi-type vulnerabilities. The shortcomings 
of black-box fuzzing have been discussed for a long time. 
Therefore , Snipuzz (Feng et  al. 2021) propose a way to 
infer the running traces by analyzing the response con-
tents to overcome these limitations . Its effectiveness 
depends on the quality of message snippets which is 
contingent on how much information could be obtained 
from devices’ responses. Thus it is limited on numerous 
protocols without this feature (e.g., SNMP , DHCP, NTP 
and more ). Firm-AFL (Zheng et  al. 2019) collects the 
complete trace with AFL-style bitmap with the emulation 
supported by Firmadyne (Chen et al. 2016). The emula-
tion environment is controllable with a customized ker-
nel, which can not be satisfied by VNFs.

Conclusion
In this paper, we propose a lightweight PGD inference 
mechanism with differential analysis without any intru-
sive operations. Leveraging the target PGD values, we 
present a modular designed framework NDFuzz to fuzz 
the virtualized network devices with coverage guidance 
in a non-intrusive way. We have fuzzed nine popular 
VNFs among seven vendors with NDFuzz and finally 
found 3 issues during 72h fuzzing with four fuzzing 
engines.
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