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Abstract 

Domain name system (DNS), as one of the most critical internet infrastructure, has been abused by various cyber 
attacks. Current malicious domain detection capabilities are limited by insufficient credible label information, severe 
class imbalance, and incompact distribution of domain samples in different malicious activities. This paper proposes 
a malicious domain detection framework named PUMD, which innovatively introduces Positive and Unlabeled (PU) 
learning solution to solve the problem of insufficient label information, adopts customized sample weight to improve 
the impact of class imbalance, and effectively constructs evidence features based on resource overlapping to reduce 
the intra-class distance of malicious samples. Besides, a feature selection strategy based on permutation importance 
and binning is proposed to screen the most informative detection features. Finally, we conduct experiments on the 
open source real DNS traffic dataset provided by QI-ANXIN Technology Group to evaluate the PUMD framework’s abil-
ity to capture potential command and control (C&C) domains for malicious activities. The experimental results prove 
that PUMD can achieve the best detection performance under different label frequencies and class imbalance ratios.
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Introduction
As an important technical support of modern internet, 
DNS provides services for mapping domain name to IP 
address space. While providing users with convenient 
network services, domains have also been widely abused 
in malicious attacks, such as malware distribution, C&C 
communication, botnet control, phishing and spam.

The conduct of cyber attack activities often requires 
malicious domains as core resources to undertake the 
communication functions between the infected host 
and the attacker. Therefore, the detection of malicious 
domains is helpful to immediately block malicious activi-
ties and trace the source of attacks. In order to make the 
entire malicious infrastructure more robust, attackers 
often adopt resilient communication technologies such 
as Domain-flux or IP-flux. Thus, malicious domains are 

also different from benign domain names in characteris-
tics of character level composition and communication 
traffic. In addition, due to the limited cost of attackers, 
they often register malicious domain names in batches or 
reuse malicious resources. Malicious domains can also be 
captured through domain registration information and 
the association among domains. In this paper, we focus 
on the detection scheme of active malicious domains 
that undertake communication functions in cyber attack 
activities, and capture malicious domains by analyzing 
character-level, traffic and registration characteristics, as 
well as the resource overlap of domains.

Most malicious domain detection solutions can be 
divided into three categories: black/white lists-based 
method (Sato et al. 2012; Kang and Lee 2007; Cao et al. 
2008), knowledge-based method (Choi et  al. 2007; 
Morales et  al. 2009; Prieto et  al. 2011; Villamarín-
Salomón and Brustoloni 2009) , and machine learning-
based method (Schiavoni et al. 2014; Yan et al. 2019; Sun 
et  al. 2019; Shi et  al. 2018; Liu et  al. 2018; Wang et  al. 
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2020; Tran et  al. 2018; Tong et  al. 2016; Du Peng 2020; 
Ma et al. 2014). In order to provide flexibility and resil-
ience of communication, highly dynamic Domian-to-IP 
mapping was adopted in malicious infrastructure, static 
black/white list protection strategies are no longer appli-
cable. Constructing malicious domain detection rules 
based on empirical knowledge is manpower consuming 
and easily bypassed. The mainstream detection methods 
use machine learning methods to automatically learn 
complex detection models. And the main problems faced 
by machine learning solutions include:

•	 Insufficient credible label information: Due to 
the high cost of manual labeling, labeled samples 
mostly come from public blacklists (The Spam-
haus Project Ltd 2021; Phishtank 2021; Andre Cor-
rea 2021; SURBL.ORG 2021) and popular domain 
list (ALEXA-INTERNET 2021), which are insuf-
ficient and unreliable. Specifically, Stevanovic et  al. 
(2015) cross-checks the Alexa Top 1M sites which 
are often used as benign domains and confirmed that 
about 15% of these popular domains had appeared 
in at least one blacklist, which makes the labeling of 
benign domains more challenging.

•	 Class imbalance: Malicious attack activities are hid-
den in voluminous normal DNS communications. 
Collecting real DNS traffic will build a data set with 
a severe imbalance between malicious and benign 
domains. Training directly on imbalanced data will 
make the classifier pay more attention to the major-
ity class, while ignoring the ability to describe the 
minority malicious domains.

•	 Incompact distribution of domains adopted by differ-
ent malicious activities: Indeed, the abnormal charac-
teristics of malicious domains may differ from activ-
ity to activity, such as special communication modes 
or abnormal character-level combinations. This is 
because different malicious activities may adopt dif-
ferent malicious communication technologies and 
domain name composition skills. Therefore, mali-
cious domain samples of different activities loosely 
distribute in feature space, which affects classification 
performance.

Considering the above problems, we propose a mali-
cious domain detection framework named PUMD. And 
the specific solutions and contributions of this paper are 
summarized as follows:

•	 Propose a malicious domain detection framework 
based on PU learning. This framework can alleviate 
the problem of insufficient credible label information 
by using only a small number of labeled malicious 

domains to train classifier, and improve the impact 
of class imbalance via customizing sample weight to 
construct a cost-sensitive objective function.

•	 Construct detection features from two perspectives: 
the single domain and the domain association. In 
particular, we propose novel evidence features based 
on resource overlapping association to improve the 
incompact distribution of malicious domain samples. 
Besides, we also introduce a feature selection strat-
egy based on permutation importance and binning 
to enhance the characterization capabilities of feature 
set.

•	 Compare PUMD with common machine learn-
ing methods and existing works on an open-source 
realistic imbalanced data set. Experiments prove 
that PUMD has the best detection performance and 
maintains system robustness under different label 
frequencies and class imbalance ratios.

The rest of this paper is organized as follows. “Back-
ground and motivation” section introduces the related 
works and explores the suitability of PU learning for 
malicious domain detection, “Proposed method” section 
describes the PUMD’s framework and technical details, 
and “Experiments” section shows the experiments and 
results. We discuss the superiority of PUMD compared 
with existing works and the future work in “Discussion 
and future work” section, and summarize our work in 
“Conclusion” section.

Background and motivation
Malicious domain detection
This section briefly describes related malicious domain 
detection works and clarifies why the PUMD is better 
than existing solutions. A comprehensive comparison 
will be made in “Discussion and future work” section.

Insufficient credible label information
Some solutions are designed to reduce the required label 
information. Schiavoni et al. (2014) and Yan et al. (2019) 
both use a strategy of filtering first and then cluster-
ing to compress the required label information. Besides, 
HinDom (Sun et al. 2019) adopts metapath-based trans-
duction classification on the heterogeneous information 
network of malicious domain communication associa-
tions, which can reduce the proportion of initial label 
samples. However, these works do not solve the unrelia-
ble problem of using popular domains as benign domain. 
In addition, some solutions set filtering rules to filter out 
benign domains with low confidence. For example, Shi 
et  al. (2018) requires labeled benign domain persist for 
three months in the Alexa Top 10K. This kind of solu-
tions limits the benign learning samples of the detection 
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model to popular domains, and lacks the ability to char-
acterize unpopular benign domains. PUMD adopts PU 
learning model to solve the problem of insufficient cred-
ible label information, only a small amount of labeled 
malicious domains is required, and a wide range of unla-
beled domain names are screened for credible benign 
domains. While compressing the required label infor-
mation, PUMD enhances the ability to characterize the 
benign domains.

Class imbalance
The main solutions can be divided into two categories: 
(1) Data-level solutions, typically with data resampling 
strategy. Liu et  al. (2018) undersamples the majority 
benign domains, which will lose part of the label informa-
tion. While KSDom (Wang et al. 2020) oversamples the 
labeled malicious domains, which will increase the risk of 
overfitting, due to the similar construction of samples. (2) 
Algorithm-level solutions, typically with cost-sensitive 
methods. Tran et  al. (2018) adopts cost-sensitive LSTM 
to alleviate the influence of class imbalance. However, 
considering the high calculation cost of the cost matrix, 
they set a fixed category weight, which requires prior 
knowledge of class imbalance ratio and not universal. 
PUMD adopts a customized sample weighting method, 
which effectively sets different sample weights accord-
ing to the confidence each unlabeld sample labeling as 
benign receives and constructs a cost-sensitive objective 
function to solve the problem of class imbalance.

Incompact distribution of domain samples in different 
malicious activities
The malicious domain clusters with similar abnormal 
characteristics can be called “family” and there are three 
division schemes: DGA, malware, and malicious activ-
ity. The DGA family is identified by different DGA algo-
rithms, mostly divided by character similarity (Schiavoni 
et  al. 2014; Tong et  al. 2016; Du Peng 2020). Besides, 
domain families determined by the malware type are 
detected by the similarity of malicious resources, such 
as the IP address or NS server (Ma et al. 2014). In addi-
tion, a malicious activity requires the coordination of 
different malicious domains, for example, a spam distri-
bution activity involves the coordination of botnet C&C 
domains, malicious resource downloading domains, and 
spam content providing domains. It can be detected 
based on the characteristics of high co-occurrence prob-
ability and strong communication correlation (Sun et al. 
2019). The existing binary classification works have not 
yet considered the incompact distribution of malicious 
domain samples. PUMD adopts novel evidence features 
based on resource overlapping association to effectively 

increase inter-class distance and reduce intra-class 
distance.

PU learning
PU learning is a semi-supervised learning technique that 
builds a binary classifier based on positive samples and 
unlabeled samples, in order to predict unlabeled sam-
ples. PU learning is suitable for dealing with problems in 
binary classification where one category of data is impure 
or only one category of label is available. Early works 
(Lee and Liu 2003; Elkan and Noto 2008) have confirmed 
that PU learning can reach the performance of standard 
supervised learning. Since PU learning only requires one 
category of label information and has excellent perfor-
mance, it has aroused widespread interest in the field of 
machine learning, and has been applied in practical sce-
narios such as knowledge base completion, medical diag-
nosis, financial risk control.

In recent years, the cyber security field has also consid-
ered introducing PU learning to solve a series of security 
threat discovery problems (Zhang et  al. 2017; Sun et  al. 
2017; Luo et  al. 2018; Wu et  al. 2019; Dhamnani et  al. 
2021). A typical application is a malicious URL attack 
detection system POSTER (Zhang et  al. 2017). Spe-
cifically, considering the highly dynamic composition 
of URLs, it is difficult to manually label a large number 
of URL requests, POSTER combines two-step and cost-
sensitive PU learning strategies, and uses a small num-
ber of malicious URLs and a large number of unmarked 
URLs to train binary classifiers and help network security 
engineers effectively discover potential attack patterns. In 
addition, PU learning also has typical applications in mal-
ware detection problem. Researchers usually take apps 
downloaded from trusted sources as benign samples. 
Sun et al. (2017) pays attention to the behavior of cyber 
attackers publishing malware on trusted sources, and 
proposes PUDROID, an Android malware detection sys-
tem based on PU learning. Experiments have proved that 
PUDROID can find nearly 100% of the mixed malware.

Motivation
In this paper, we try to address an anomaly detection 
problem where the given dataset has the following three 
characteristics:

•	 Dataset only has one class of credible label.
•	 The number of credible annotated samples is rather 

small.
•	 Dataset has severe class imbalance.

Current malicious domain name detection works 
mostly adopt supervised, unsupervised and traditional 
semi-supervised learning schemes. However, since 
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both supervised and traditional semi-supervised learn-
ing schemes require the use of two classes of available 
label information, it is still necessary to use popular 
domains as benign domains, which leads to the noise 
problem in the labeled benign samples. Even though 
the malicious domains mixed in the popular domains 
can be eliminated by setting filtering rules, supervised 
and traditional semi-supervised learning schemes still 
limit the learning samples of benign domains to popu-
lar domains, resulting in the problem of poor modeling 
ability for non-popular benign domains. Beseides, the 
unsupervised learning schemes waste the guidance 
information of one class of credible label. Therefore, we 
can conclude that supervised, traditional semi-super-
vised and unsupervised learning schemes are not suit-
able for the research scenarios of this paper. In recent 
years, PU Learning schemes have agreat effect on deal-
ing with one class of data that is impure and unavail-
able, which is very suitable for the characteristics of the 
dataset we introduced earlier. Therefore, we adopt the 
PU learning scheme to solve the problem of malicious 
domain name detection.

We further discuss why PU learning is effective for 
malicious domain detection problems. As we stated in 
“Introduction” section, constructing a benign domain 
ground truth is a difficult task, because we cannot 
identify a domain as a benign sample, even if it never 
appears in any known blacklist, but a batch of high-
quality malicious domain labels can be obtained 
through pubilic blacklists or analysis by security 
researchers. This is just in line with the applicable sce-
nario of PU learning, that is, the situation where one 
category of label information is hard to obtain. There-
fore, we can use known malicious domains as labeled 
positive samples, and the domains to be detected as 
unlabeled samples, so as to obtain a malicious domain 
detection model through PU learning. Solve the 

problem of insufficient credible label information from 
the perspective of labeling dataset composition.

Proposed method
This section will introduce the framework and technical 
details of PUMD, as shown in Fig. 1, there are three main 
modules:

•	 “Feature Extraction” module: Extract four types of 
typical features from two perspectives of the sin-
gle domain and associations between domains, and 
a novel evidence feature is proposed to alleviate 
the influence of incompactly distributed malicious 
domains on detection performance.

•	 “Feature Selection” module: Perform a feature selec-
tion strategy based on permutation importance and 
binning to find the most discriminative and informa-
tive feature subset among plenty of original features, 
which enhances the characterization capabilities of 
feature set.

•	 “Two-Step PU  Learning” module: Perform two-step 
PU learning processing to solve the problem of insuf-
ficient credible label information and class imbalance, 
in which step one is to obtain reliable negative(RN) 
samples based on iForest algorithm, and step two is 
to customize sample weight and train the classifier on 
a cost-sensitive objective function.

Feature extraction
Existing works either extract local detection features 
from the character composition, the traffic behavior or 
auxiliary information of a single domain (Shi et al. 2018; 
Liu et  al. 2018; Schüppen et  al. 2018; Almashhadani 
et  al. 2020; Antonakakis et  al. 2010; Huang et  al. 2010), 
or extract global detection features from the perspective 
of correlation and resource overlaping among domain 
names (Sun et al. 2019; He et al. 2019). We combine two 

Fig. 1  High-level overview of PUMD
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feature extraction ideas to extract character, traffic, and 
whois features from single domain and propose a novel 
evidence feature based on resource overlapping associa-
tion, capturing the association between the domains to 
be detected and the known malicious domain families. 
This section introduces the four types of typical mali-
cious domain identification features and explains why 
these features can characterize malicious nature.

Character feature
Distinguish benign domains and malicious domains from 
the perspective of domain name character-level com-
position, see Table  1. Structural features focus on the 
structural attributes of the domain name: Since most 
short domain names have been registered, attackers usu-
ally increase the domain name length and the number 
of subdomains to obtain a larger domain name struc-
ture space (Shi et al. 2018; Liu et al. 2018), so we extract 
two structural features: domain name length (F1), num-
ber of subdomains (F2). Linguistic features capture the 
deviation of domain names’ language mode: Considering 
that malicious domains are not memorable and read-
able, we extract five commonly used statistics (Schüp-
pen et al. 2018; Almashhadani et al. 2020)to analyze the 

randomness of domain name characters: the number of 
special characters (F3), the number of numeric characters 
(F4), the conversion frequency of numeric and alphabetic 
characters (F5), the number of dictionary words (F6), and 
the number of unique length dicitonary words (F7).

Traffic feature
Capture abnormal characteristics from DNS traffic and 
resource record (RR), see Table 2.

For 91 days of DNS traffic data, we perform feature 
extraction according to two schemes: byday[*] and all-
day[† ], that is, each day and the entire time span are 
seperately used as the observation period. Take F8 as 
example, we count the number of unique IPs resolved 
per day for each domain sample, and extract a total of 91 
days as the byday feature. At the same time, we count the 
number of unique IPs resolved for each domain sample 
within 91 days as the allday feature. For 91-day byday fea-
tures, further calculate statistics(sum, min, max, std, var, 
mean, 25%, 50%, 75%) to characterize the traffic distribu-
tion of domain sample and effectively compress the size 
of feature set.

Domain resolution response features analyze 
the RRs changes of the domain, focusing on typical 

Table 1  Character feature summarize

Feature set ID Feature name Mali DN profile

Structural feature 1 Domain name length Longer

2 Number of subdomains Greater

Linguistic feature 3 Number of special characters Greater

4 Number of numeric characters Greater

5 Conversion frequency of numeric and alphabetic characters Higher

6 Number of dictionary words Lesser

7 Number of unique length dicitonary words Lesser

Table 2  Traffic feature summarize

*byday (count sum, min, max, std, var, mean, 25%, 50%, 75%) , †allday

Feature set ID Type Feature name Mali DN profile

Domain resolution response feature 8 */† Number of unique IP addresses Greater

9 */† Number of unique RR types Greater

10 */† Range of unique RR parsing times Lesser

11 † Number of unique domains hosted on IP pool Greater

12 † Number of unique countries that IP pool belongs to Greater

13 † Number of unique subvisions that IP pool belongs to Greater

Client resolution request Feature 14 */† Number of unique client Lesser

15 */† Number of request count Lesser

16 † Number of domains requested by client pool Greater

17 * Ratio of the most frequent request hour to all-day requests Greater

18 * Number of request count in different request period Greater
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characteristics of malicious domains such as highly 
dynamic changes in RRs (Antonakakis et  al. 2010), 
resource reuse (Sun et  al. 2019), and loose geographic 
spatial distribution (Huang et al. 2010), the number of 
IPs (F8), the number of RRs (F9), the extreme differ-
ence in the parsing times of RRs (F10), the number of 
domains hosted on proxy IP pool (F11) and the distri-
bution of IP pools in countries (F12) and regions (F13) 
are extracted respectively. Client resolution request 
features analyze the changes in the number of domain 
resolution requests, focusing on the discontinuity, long-
term repetitive patterns and unusually active time of 
malicious domain resolution requests (Choi et al. 2009; 
Zhou et  al. 2013). We extract the number of request-
ing clients (F14) and the number of parsing requests 
(F15) as statistical features. Besides, we count the total 
number of domains requested by the client pool (F16), 
where the client pool refers to all clients requesting the 
domain. Finally, we calculate the ratio of the most fre-
quent request hour to all-day requests (F17), and count 
the client request volume in each period (F18) by divid-
ing whole day into 6 periods: 0–3, 4–7, 8–11, 12–15, 
16–19, 20–23.

Whois feature
Whois records provide detailed information about regis-
tered domains, which can assist in identifying malicious 
domains (Felegyhazi et  al. 2010; Ma et  al. 2009; Curtin 
et  al. 2019; Hao et  al. 2016). Normally, the valid period 
of malicious domain registration is short (F19), and 
the whois record usually lacks date information (F20). 
Besides, considering malicious domains have the char-
acteristics of resource reuse, we calculate the similarity 
score of the name server(NS) domain names based on 
edit distance (F21), see Table 3.

Evidence feature
Considering above feature extraction schemes are all 
belongs to local detection features, malicious domains 

may be severely separated from each other in feature 
space due to inconsistent abnormal characteristics, we 
use the prior label knowledge of malicious domain fam-
ily to construct effective evidence feature based on the 
overlapping associations of DNS communication and 
whois information resources, which could increase inter-
class distance as well as reduce intra-class distance, see 
Table  4. The domain association construction scheme 
can refer to the Jaccard coefficient scheme proposed 
by He et  al. (2019), and our work makes the following 
improvements: 

1.	 Incorporate priori information of malicious domain 
family: a single domain is respectively associated with 
the resource set mapped by each known malicious 
domain family, and no represents associating with 
no-th family.

2.	 Construct new association rules: extend the asso-
ciation scheme based only on IP records to multiple 
resource associations, use relatedResource (abbrevi-
ated as reRe) to indicate the specific resource type 
associated.

The proposed evidence feature can be formalized as:

Jaccard_no_reRe represents the association between 
sample di and known malicious domain family Dno on 
reRe type resource, and reRe() represents the collec-
tion of reRe type resource collection. This paper mainly 
considers the overlap of DNS communication traffic 
(F22~F29) and whois information resources (F30~F36). 
The multiple types of resources mapped by domain di are 
respectively associated with each family category (dimen-
sion  =  9), and the resulting feature set is very large 
( num(reRe) ∗ dimension = 135 ), which indeed needs a 
large amount of calculation. However, due to the differ-
ent association characteristics of each malicious family, 
for example, some malicious families tend to map the 
same malicious IP address, while other malicious fami-
lies tend to use the same registrar. We need to ensure the 
comprehensiveness of the association scheme in advance, 
then eliminate interference and invalid associations in 
“Feature selection” section, and achieve feature dimen-
sionality reduction.

Jaccard_no_reRe(di) = J (di,Dno)

=

∣∣reRe(di) ∩ reRe(Dno)
∣∣

∣∣reRe(di) ∪ reRe(Dno)
∣∣

Table 3  Whois feature summarize

Feature set ID Feature name Mali DN profile

Whois feature 19 Validity period of domain Shorter

20 Missing any of three whois dates 
(registration, update, expiration)

True

21 Similarity Score of NS domain 
names

Higher
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Feature selection
The current feature set is huge (33 groups, 299 fea-
tures). The direct use of full features to predict malicious 
domains will undoubtedly lead to additional calculation 
and storage costs, increase the complexity of the algo-
rithm, besides, the noise features will reduce the detec-
tion performance of the algorithm. Therefore, this paper 
proposes an automated feature selection strategy based 
on permutation importance and binning to select the 
most distinguishable detection feature set.

Common feature selection methods can be roughly 
divided into three categories: filter, wrapper, and embed-
ding method. Filter method selects features based on 
divergence or correlation, independent of model training, 
fast calculation speed, but low degree of fit to the target 
problem, and poor feature selection effect. Embedding 
method automatically calculates the weight coefficients 
of features during the model training process, and selects 
features from large to small according to the weight, 
which fits the target problem well, but may face the risk 
of overfitting. Besides, the training model must support 
the calculation of feature weights, such as feature_impor-
tances of tree-based models. The feature selection in this 
paper adopts the wrapper method, in which features are 
continuously added or deleted to find the optimal feature 
subset according to the model prediction effect score. 
The wrapper method has a better fit to the target prob-
lem because of the participation of the model evaluat-
ing, and the non-integrated feature extraction scheme 
can reduce the risk of overfitting, and at the same time, 
it does not restrict the model trainer. However, the model 
must be retrained every time when a feature is picked, so 
the computational cost is high. This paper uses the bin-
ning strategy to effectively reduce the computational 
cost of feature selection in the packaged scheme. Specifi-
cally, this paper proposes an automated feature selection 
strategy based on Permutation Importance and binning, 
including the following two key steps:

Subset evaluation step based on permutation importance
The subset evaluation aims to determine the next candi-
date feature subset through some evaluation indicators. 
In this paper, the features with higher Pearson corre-
lation coefficient(Corr) value and lower Permutation 
Importance(PI) value are selected to form the candidate 
set. Corr formula is as follows, where fi represents the 
i-th feature vector, fik represents the k−th dimension of 
fi , a total of n dimensions, f̄i , σi respectively represent 
mean and variance of fi.

And the pseudo code of PI scheme is shown in 
Algorithm 1:

Algorithm 1 calc pi score
Input: feature set
Output: PIscore
1: baseline ←eval(feature set)
2: for each feature fi in feature set do
3: perm fs ←permute fi across feature set
4: PIscore[fi] ← baseline−eval(perm fs)
5: end for

Sequential backward search step based on binning
Considering the sequential backward search (SBS) has 
a high computational complexity, we propose a SBS 
strategy based on binning: for a given candidate feature 
set, it is divided into multiple feature bins of fixed size, 
and eliminate a feature bin for each backward search to 
reduce the computational overhead, as shown in Algo-
rithm 2, we set different bin size in experiments.

Algorithm 2 bin sbs
Input: bin size, candidate set, feature set
Output: best score, best fl
1: del list ←equal-freq bin(candidate set)
2: for each del fs in del list do
3: push(score list, eval(feature set− del fs))
4: end for
5: best score ←max(score list)
6: del fl ← del list[argmax(score list)]
7: best fl ← feature set− del fl

The candidate sets are seperately sorted according to 
two rules:

•	 Natural sorting, try to remove the features of similar 
detection idea batch by batch.

•	 PI value sorting, try to remove the features with low 
model dependency batch by batch.

The proposed feature selection scheme based on permu-
tation importance and binning is iterative as shown in 
Algorithm 3.

Corr
(
fi, fj

)
=

∑(
fik − f̄i

)(
fjk − f̄j

)

(n− 1)σiσj
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Algorithm 3 feature selection based on PI and binning
Input: feature set, PIthr, Corrthr, bin size list
Output: feature selection
1: function pi fs eval(feature set, PIthr, Corrthr)
2: PIscore ← calc pi score(feature set)
3: Corrcoef ← calc corr coef(feature set)
4: for each feature fi in feature set do
5: if PIscore[fi] < PIthr or Corrcoef [fi] >

Corrthr then
6: push(candidate set, fi)
7: end if
8: end for
9: return candidate set

10: end function

11: function bin fs(feature set, candidate set,
bin size list)

12: flnat ← natSort(candidate set)
13: flpi ← piSort(candidate set)
14: for each bin size in bin size list do
15: Nat score,Nat fl ←bin sbs (bin size,

flnat, feature set)
16: PI score, PI fl ←bin sbs (bin size, flpi,

feature set)
17: push(score list, Nat score, PI score)
18: push(fl list, Nat fl, PI fl)
19: end for
20: best score ←max(score list)
21: best fl ← fl list[argmax(score list)]
22: return best score, best fl
23: end function

24: best score ← eval(feature set)
25: best fl← feature set
26: repeat
27: baseline ← best score
28: feature set ← best fl
29: pi fs eval(feature set,PIthr,Corrthr)
30: bin fs(feature set,candidate set,

bin size list)
31: until candidate set ← ø or best score < baseline
32: feature selection ← feature set

Algorithm  3 describes an automated feature selec-
tion strategy based on permutation importance and 
binning. This algorithm takes the original feature set 
feature_set , permutation importance threshold PIthr , 
Pearson correlation coefficient threshold Corrthr , list 
of bin sizes bin_size_list as inputs, and outputs the 
selected feature set feature_selection . It firstly initial-
izes the highest prediction score best_score and the 
best feature set best_fl respectively (line24~line 25). 

Then, it iteratively executes the function of feature 
subset evaluation based on permutation importance 
and the function of sequential backward search based 
on binning (line 26~line30). And the termination con-
dition is that the candidate feature set is empty or 
the prediction score is no longer improved (line31). 
Finally, the currently saved feature set is output as the 
feature selection result (line32). The details of the two 
functions are described below.

•	 The function of feature subset evaluation based on 
permutation importance (line 1~line 10): It calculates 
the permutation importance score and Pearson cor-
relation coefficient of all features on the feature set 
(line 2~line 3). It further selects the features accord-
ing to PIthr and Corrthr to form a candidate feature set 
candidate_set (line 4~line 8) and takes candidate_set 
as the return value of the function(line 9).

•	 The function of sequential backward search based 
on binning (lines 11~line 23): It separately sorts the 
candidate_set according to natural order and per-
mutation importance order (line 12~line 13). Then it 
traverses different bin sizes and executes the sequen-
tial backward search function based on binning 
(line14~line19). Finally, the highest prediction score 
and the corresponding feature set are assigned to 
best_score and best_fl and serve as the output value 
of the function (lines 20–23).

Two‑step PU learning for malicious domain detection
We innovatively introduce PU learning method to solve 
the problem of malicious domain detection and make 
corresponding improvements to the two-step model 
based on the field knowledge. Malicious domain detec-
tion model is trained with a small number of labeled 
malicious domains and all unlabeled domains as input, 
which alleviate the problem of insufficient label informa-
tion and uncredible benign domains labeling from the 
perspective of trainset construction. Besides, to improve 
the impact of the imbalanced trainset on the classifier, we 
construct a cost-sensitive objective function in PUMD by 
setting customized sample weights.

The two-step PU learning process adopted in PUMD 
was illustrated in Fig.  2. The method input is labeled 
malicious domains(P) and unlabeled domains (U), the 
method output is a binary prediction(malicious or 
benign), and the two-step process can be summarized as:

•	 Step One: Process the iForest algorithm over entire 
sample set D to calculate isolation score IS(dD) , and 
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filter unlabeled samples according to the isolation 
score threshold to obtain reliable benign domain set, 
called as reliable negative(RN).

•	 Step Two: Customize RN weight w(dRN ) according to 
the isolation score IS(dRN ) , and further combine the 
labeled malicious domains to jointly train a super-
vised binary classification model based on cost-sensi-
tive objective function.

Problem statement and notations
Formal description: In ordinary binary classification, we 
always adopt “true label”(y) to indicate whether domain d 
is malicious(y(d) = 1 ) or benign(y(d) = 0 ). In PU learn-
ing, the positive sample set P corresponds to the labeled 
malicious domains, and the unlabeled sample set U con-
tains benign domains and potential malicious domains. 
Further define the “observation state”(s) to identify 
whether a sample is labeled(s(d) = 1 ) or not(s(d) = 0).

Table 4  Evidence feature summarize

Feature set ID Feature name Dim Mali DN profile

DNS communication related 22 Jaccard_no_IP 9 Higher

23 Jaccard_no_CNAME

24 Jaccard_no_MX

25 Jaccard_no_NS

26 Jaccard_no_RR

27 Jaccard_no_country

28 Jaccard_no_subvision

29 Jaccard_no_client

Whois information related 30 Jaccard_no_ns

31 Jaccard_no_admin_email

32 Jaccard_no_registrant

33 Jaccard_no_tech_email

34 Jaccard_no_r_whoisserver

35 Jaccard_no_whoisserver

36 Jaccard_no_sponsoring

Isolation Score CalculateInput

mali label sample set(D)

P

iForest algorithm

RN

Selection of RN samplesConstruct PU data set

Customize Sample Weight

IS(dD)
IS(dRN) w(dRN)f(·)

Train Model

weighted
sample benign

mali

U

P
1

0.9

0.8

0.4

0.1
0.2

P
1

1

0.6

0.9
0.8

RN

Step One Step TwoMethod Input

labeled malicious domain unlabeled benign domain unlabeled malicious domain

U 0.7

Fig. 2  An overview of two-step PU learning process



Page 10 of 22Fan et al. Cybersecurity            (2022) 5:19 

Construct PU data set: Let χ = R
n represent the feature 

space of all samples, γ = {0, 1} represents the true label 
of the sample, and ς = {0, 1} represents the observa-
tion state of the sample, so the sample can be described 
as a tuple 

(
x(di) ∈ χ , y(di) ∈ γ , s(di) ∈ ς

)
 , The splitting 

scheme of sample set D can be expressed as:

Step one: obtain reliable normal samples
As shown in Fig. 2, in Step one, we divide U into U and 
RN according to the isolation score, and only use RN 
containing fewer malicious domains as reliable negative 
samples for the next stage. The removal of U with more 
malicious domains will reduce false positives.

Isolation Score Caculate: iForest (Liu et al. 2008) is an 
unsupervised anomaly detection method, which uses a 
forest algorithm to model the isolation degree of samples. 
Specifically, the isolation score can be caculated by the 
path length from leaf sample to root node on each tree, 
as follows.

In which, E(h(d)) represents the average path length of 
sample d on the iForest. For the malicious domain detec-
tion data set D, we have Size(D) = m , thus the aver-
age path length of all samples on a binary search tree is 
c(m) = 2H(m)− 2(m− 1)/m , which is used to stand-
ardize E(h(d)) , and H(m) is the harmonic number, can 
be estimated by ln(n)+ 0.5772156649 (Euler’s constant). 
The value range of Isolation Score IS(d) is (0,  1) . The 
larger the IS(d) value, the more abnormal the domain 
sample.

Selection of RN samples: RN samples are extracted from 
Unlabled set(U), which should be quite different from 
the labeled malicious domains in the Positive set(P). This 
paper calculates isolation score for all samples in mali-
cious domain detection data set D, and selects RN sam-
ples by calculating the potential malicious and benign 
domains isolation score threshold. The steps are as 
follows:

•	 Caculate the average isolation score of samples in 
set P as the threshold score of potential malicious 
domains: 

D =P ∪ U

=
{(

x(di), y(di) = 1, s(di) = 1
)
|di ∈ P

}

∪
{(

x(di), y(di), s(di) = 0
)
|di ∈ U

}

IS(d) = 2
−

E(h(d))
c(m)

•	 Calculate the average isolation score of samples in set 
D as the threshold score of potential benign domains: 

•	 The original value of threshold β is set as follows: 

 The RN sample set can be expressed as 

•	 Threshold β directly affects the number of RN sam-
ples for model training. Considering the imbal-
ance problem in set D, There is a relationship 
Size(Benign) >> Size(Mali) , set adjustable hyperpa-
rameters: 

 Let β = βorg · ad_β to control the number of nega-
tive samples participating in step two weighted clas-
sifier training.

Step two: train weighted binary classifier for malicious 
domains detection
As shown in Fig. 2, in Step two, we customize the sample 
weights for the samples in P and RN, and train the detec-
tion model based on the weighted training sample set.

Customize sample weight: Firstly, set the weights for 
all selected training samples: for the labeled malicious 
domains in set P, the weights are uniformly set to 1. And 
for the RN samples obtained in step one, the weights 
are customized according to their isolation scores. The 
design idea is that for domain samples with lower isola-
tion scores, the possibility of abnormality is less, and the 
credibility of benignity is higher, so their weights as RN 
samples should be higher. Conversely, for domain sam-
ples with higher isolation scores, their weights should be 
quite low. The original formula for the weight w(d) of the 
RN sample is as follows:

(1)α =
1

l

l∑

i=1

IS(di), Size(P) = l

(2)is =
1

m

m∑

i=1

IS(di), Size(D) = m

(3)βorg =

{
is is < α

α is > α

(4)RN =
{
di|IS(di) < β , di ∈ D

}

(5)ad_β ∈



0,

max
di∈D

(IS(di))

βorg




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In order to solve the severe class imbalance in the mali-
cious domain data set D, we set the weight adjustment 
parameter ad_weight = l∑

dj∈RN
worg(dj)

· ratioP/RN to bal-

ance the weight ratio of positive samples and negative 
samples for training a weighted binary classifier. Let 
w(d) = worg (d) · ad_weight , where l is the total weight of 
the positive sample, and ratioP/RN represents the best 
ratio coefficient of the positive sample weight and the 
negative sample weight, which is the second adjustable 
hyperparameter.

Train model:  According to the above training samples 
and their weights, a weighted binary classification model 
can be trained to distinguish between malicious domains 
and benign domains, the following objective function is 
minimized:

In which, L
(
y(di), fθ (x(di))

)
 is the misclassifica-

tion loss of sample di , w(di) represents the sample 
weight of di . The first item of the objective function ∑

di∈D
w(di) · L

(
y(di), fθ (x(di))

)
 means calculating cost-

sensitive misclassification loss of all training samples, the 
second term represents the construction of a regular loss 
for the model parameter θ , which is used to reduce the 
complexity of the model.

So far, we have completely established a malicious 
domain detection framework based on two-step PU 
learning. In our specific experiments, we mainly com-
pared the performance of multiple commonly used 
machine learning classifier algorithms applied to the 
PUMD model, including: Random Forest (RF), Xgboost, 
Support Vector Machine (SVM), Logistic Regression 
(LR).

Experiments
Experiments design
The experiments are designed to test whether PUMD can 
effectively solve the three problems faced by malicious 
domain detection field:

•	 Insufficient credible label information: Use label 
frequency as an experimental hyperparameter to 
control label information ratio, and compare meth-
ods using only malicious domain label information, 
which include PUMD and other PU learning solu-

worg

(
dj
)
=

max
di∈D

(IS(di))− IS
(
dj
)

max
di∈D

(IS(di))−min
di∈D

(IS(di))
, dj ∈ RN

∑

di∈D

w(di) · L
(
y(di), fθ (x(di))

)
+ �R(θ)

tions, with the ordinary machine learning solutions 
using both benign and malicious domain labels, to 
test whether PUMD can achieve superior and robust 
detection performance under a small amount of 
credible malicious domain label information, see 
“Evaluating the PUMD” section.

•	 Class imbalance: Use label frequency to adjust the 
class imbalance ratio of train and test set, and test 
whether PUMD can achieve excellent and robust 
detection performance on imbalanced real traffic, see 
“Evaluating the PUMD” section.

•	 Incompact distribution of malicious domain samples: 
Compare the detection performance of PUMD on 
the three groups of feature sets, and test whether the 
evidence feature and feature selection scheme can 
enhance the characterization capabilities of feature 
set and effectively increase inter-class distance and 
reduce intra-class distance, see “Evaluating the fea-
ture extraction and selection” section.

Finally, we compare our PUMD with other existing mali-
cious domain detection methods, and comprehensive 
experiments verify the effectiveness and superiority of 
our proposed method, see “Quantitative comparison 
with related works” section. And we published all source 
code on GitHub (https://​github.​com/​fzs-​git/​PUMD) for 
other researchers to reproduce experiments and verify 
the performance of PUMD.

Dataset summarize
Data set
The data set used in this paper comes from the open 
source 91-day anonymized DNS communication traf-
fic from 2020-3-01 to 2020-05-31 on the large-scale 
real-world network provided by QI-ANXIN Technol-
ogy Group, involving 20512 domains and 431130 IP 
addresses, both have undergone encoding anonymization 
treatment. In addition, we also get the whois informa-
tion of the domains and the geographic information of 
the ip addresses. Table 5 provides an overall overview of 
the open source malicious domain data set, which is cur-
rently published by QI-ANXIN Technology Group (QI-
ANXIN 2007), and this paper has been licensed for use.

Ground truth and train‑test split
The ground truth is manually annotated by QIANX-
IN’s researchers and contains 952 malicious C&C 
domains. And the malicious domains can be divided 
into 9 malicious domain families according to differ-
ent advanced persistent threat activities. Considering 
the sensitivity of the information, the details of the 
specific apt are anonymized, which are referred to as 
class_1 to class_9 in this article. In order to carry out 

https://github.com/fzs-git/PUMD
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the experiments, we divide the labeled data set into 
two parts: train set and test set. In PU learning, the 
train set corresponds to the labeled malicious domain 
set (P) and the test set corresponds to the unlabeled 
domain set (U). The detailed information is shown in 
Table 6.

In which, “label frequency” indicates the propor-
tion of the number of labeled malicious domains to 
all malicious domains in the data set, and the label 
frequncy value is denoted as c, thus we have the equa-
tion: c = Size(P)/Size(Mali).

Feature spatial distribution
In order to be intuitive, we use T-SNE (Van der Maaten 
and Hinton 2008) to visualize the feature spatial dis-
tribution of the sample set at 50% label frequency. As 
is shown in Fig.  3, benign domains are represented 
by black markers, while malicious domains belonging 
to different families are drawn in different colors and 
densely clustered in the lower left corner, which can 
effectively distinguish malicious samples from benign 
samples. And the feature space of 9 malicious domain 
clusters is further visualized in Fig. 4.

Table 5  Data set summarize

Domains Resolution times RR records

20512 1987609 66048

Clients Request times Ipv4 Ipv6

370101 4163432 419155 11975

Table 6  Data set details

NO Type Size Label frequency Train Test

1 Mali Class_1 672 c 672 · c 672 · (1− c)

2 Class_2 12 12 · c 12 · (1− c)

3 Class_3 36 36 · c 36 · (1− c)

4 Class_4 34 34 · c 34 · (1− c)

5 Class_5 47 47 · c 47 · (1− c)

6 Class_6 16 16 · c 16 · (1− c)

7 Class_7 115 115 · c 115 · (1− c)

8 Class_8 11 11 · c 11 · (1− c)

9 Class_9 9 9 · c 9 · (1− c)

– (Total) 952 952 · c 952 · (1− c)

10 Benign (Total) 19560 – 0 19560

– DataSet (All) 20512 – 952 · c 20512− 952 · c

Fig. 3  feature distribution display via t-sne

Fig. 4  feature distribution of malicious domain families display via 
t-sne
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Evaluating the classifiers and evaluation metrics
Classifiers and evaluation metrics selection
We adopt various commonly used evaluation metrics(see 
Table  7) to test the performance of PUMD on several 
machine learning algorithms including: RF, Xgboost, 
SVM and LR. We use label frequency as the control 
variable to adjust the label information ratio and sample 
category imbalance rate, experimental results see Fig. 5. 
Experiments have proven that ACC, ROC, AUC, Pre-
cision and Recall are not suitable for imbalanced data 

set(for further details, see “Appendix” section): ACC is 
biased to consider the performance of the majority cat-
egory. Precision or Recall is one-sided, separately con-
sider the ability of detect correctly or completely. In 
ROC, since the number of negative samples is huge, FPR 
grows slowly, and the AUC actually contains a large area 
of no interest. We finally retain the F1 (Fig. 5d) and MCC 
(Fig. 5f ) metrics. Among them, F1 comprehensively con-
siders the Recall and Precision of the classifier, while 
MCC describes the correlation coefficient between the 
predicted results and the actual results ,often used in the 
case of imbalanced data set. It can be seen that the per-
formance of the RF on both metrics maintains the best 
results.

Analysis detection performance trends
Observing the change trend of the two metrics (F1 and 
MCC) on the label frequency, as the amount of labeled 
samples increases, the detection performance decreases, 
which is inconsistent with common sense. This is because 
the increase in labeling frequency leads to more severe 
class imbalance in the Test set (expressed as Ratio) as 
the numbers of benign samples remain stable at 19560 
while the malicious samples keep decreasing from 852 
to 91, which has become the main factor affecting the 
performance of the classifier, see Table  8 for details. 
More specifically, focusing on the evaluation results on 
the test set, severe class imbalance causes the TP sam-
ples to decrease proportionally while the FP samples 

Table 7  Metric summarize

Metric Description

TP Malicious domains labeled as malicious

FP Benign domains labeled as malicious

TN Benign domains labeled as benign

FN Malicious domains labeled as benign

ACC​ (TP + TN)/(TP + FP + TN + FN)

Precision TP/(TP + FP)

Recall TP/(TP + FN)

F1 2× (precision · recall)/(precision+ recall)

TPR TP/(TP + FN)

FPR FP/(FP + TN)

ROC A curve plotting TPR against FPR with 
various thresholds

AUC​ Area under the ROC curve

MCC (TP·TN−FP·FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(a) ACC (b) Precision (c) Recall

(d) F1 (e) AUC (f) MCC
Fig. 5  Metrics evaluate score with different label frequencies. (a) Prediction ACC changes. (b) Prediction Precision changes. (c) Prediction Recall 
changes. (d) Prediction F1 changes. (e) Prediction AUC changes. (f) Prediction MCC changes
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remains stable, thus the fault tolerance of FP decreases 
multiplicatively(regarded as Precision), resulting in a 
downward trend in overall performance. However, the 
overall decline of FN and the increasing ratio of TP/
Mali (regarded as Recall) show that the classifier’s ability 
to characterize malicious domains is actually enhanced 
with more malicious domain label information, which is 
reasonable.

Evaluating the feature extraction and selection
This section further discusses the effectiveness of the 
novel evidence feature and the feature selection strategy 
proposed. Three control groups are set for experiments, 
as shown in Table 9:

•	 Original group represents general features extracted 
from single domain, including character, traffic and 
whois features.

•	 Feature_Append group appends evidence features 
on the basis of Original group. Specifically, multiple 
resource types mapped by domain(num(reRe) = 15 ) 
are respectively associated with each known fam-
ily(dim = 9 ), and the resulting evidence feature set is 
large ( num(reRe) ∗ dim = 135).

•	 Feature_Selection group performs the feature selec-
tion process described in “Feature selection” sec-
tion over Feature_Append group. Practically, 
we initialize PIthr = 7E−6 , Corrthr = 0.95 and 
bin_size_list = [5, 10, 15, 25, 50] , iterate the whole 
feature selection process under different label fre-
quencies and different evaluation metrics(F1 or 
MCC), and finally we get the 92 features. Take the 
feature selection process under label frequency = 0.5 
and F1 mtrics for an example, see Fig. 6.

We can see that the overall number of iterations in 
Fig. 6 is 8 times, and the effective iteration is the first 7 

times. The 8th feature screening failed to improve the 
detection performance, and the feature selection process 
is terminated. As we can see, the nat sorting in the early 
stage of the iteration is better than the PI sorting. At the 
first iteration, the feature is removed from the perspec-
tive of feature extraction. Thereafter, the removal of fea-
tures with low model dependency depends on PI score. 
In addition, the bin_size chosed in the early stage of the 
iteration is generally larger, and the size of the subse-
quent bin is gradually reduced, which realizes an effective 
feature selection scheme of first large-scale screening and 
then refined screening.

According to the optimal base classifier RF determined 
in the previous section and two evaluation metrics F1 and 
MCC, the performance histograms are drawn (Fig. 7).

Comparing the Original and Feature_Append groups 
can analyze the effectiveness of the evidence features. 
It can be seen that the evidence feature can definately 
improve the detection performance of the model. Com-
paring the Feature_Append and Feature_Selection 
groups can analyze the effectiveness of the feature selec-
tion scheme. It can be seen that the feature selection 
operation helps to keep the performance of the model 
stable. The experimental results prove that the proposed 
novel evidence feature and the feature selection strategy 
are applicable to the field of malicious domain detec-
tion, which can improve the incompact distribution of 
malicious domains and enhance the characterization 
capabilities of feature set. 92 features of Feature_Selec-
tion group are ultimately used in PUMD framework.

Evaluating the PUMD
As the base classifier, evaluation metrics, and feature set 
have been determined above, this section mainly com-
pares the PUMD with other PU learning schemes and 
ordinary machine learning schemes (see Table  10 for 

Table 8  Test data summerize

Label 
frequency

Train (Mali) Test Result

Mali Benign Ratio TP–FP–TN–FN

0.1 100 852 19560 1:22.9 796–59–19501–56

0.2 195 757 1:25.8 725–64–19496–32

0.3 290 662 1:29.5 629–64–19496–33

0.4 384 568 1:34.4 541–65–19495–27

0.5 478 474 1:41.2 459–64–19496–15

0.6 576 376 1:52.0 359–65–19495–17

0.7 671 281 1:69.6 269–61–19499–12

0.8 765 187 1:104.5 182–60–19500–5

0.9 861 91 1:214.9 89–56–19504–2 Fig. 6  Visualization of feature selection process based on PI and 
binning
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details) and illustrates the superiority of PUMD. Specifi-
cally, we adopt label frequency as an experimental hyper-
parameter to control label information ratio and adjust 

the class imbalance ratio of data set, and test whether 
PUMD can solve the problem of insufficient cred-
ible label information and class imbalance. Experimental 
results are shown in Fig. 8 and Table 11.

As we can see, PUMD achieves the superior and robust 
detection performance under different label frequencies, 
and the formal description of the data set used by each 
scheme is shown in Table  12. PUMD compresses half 
of the label information required by ordinary machine 
learning schemes via discarding the unreliable benign 
domain label information, while achiving a excellent 
performance at 0.1 label frequency, which has proven 
that PUMD can alleviate the problem of insufficient 
credible label information. In addition, as shown in 
Table  8, there is a severe class imbalance at 0.9 label 

Table 9  Feature set summarize

Feature set Character feature Traffic feature Whois feature Evidence feature Feature select Size

Original � � � – – 164

Feature_Append � � � � – 299

Feature_Selection � � � � � 92

(a) F1 (b) MCC

Fig. 7  Feature set evaluation performance histogram.  (a) Prediction 
F1 changes. (b) Prediction MCC changes

Table 10  PUMD and multiple comparison algorithms analysis

*baseline

Method Strategy Base classifier Labeled sample Full SampleSet 
training

Sample 
weight

Customized 
sample 
weightMali DN Benign DN

PUMD Two-step RF � – � � �

PU_biased Biased Learning � – � � –

PU_empirical Incorporation with 
Class Priori

� – � � –

mix_supervised* Supervised � �(mix) – – –

pure_supervised � �(pure) – – –

unsupervised Unsupervised iForest – – � – –

Table 11  PUMD and multiple comparison algorithms performance evaluation

Underlined value: overall best method, *count as Score (PUMD) − Score (mix_supervised(baseline))

Label 
frequency

PUMD PU_biased PU_empirical mix_supervised Pure_
supervised

Unsupervised Improve*

F1 MCC F1 MCC F1 MCC F1 MCC F1 MCC F1 MCC F1 MCC

0.1 0.9326 0.9297 0.8932 0.8895 0.9105 0.9066 0.9163 0.9137 0.9115 0.9091 0.5330 0.5131 0.0163 0.0160

0.2 0.9379 0.9357 0.9092 0.9058 0.9036 0.9001 0.9001 0.8984 0.8841 0.8831 0.5578 0.5479 0.0378 0.0373

0.3 0.9284 0.9262 0.9143 0.9114 0.9101 0.9078 0.8974 0.8965 0.8952 0.8945 0.4695 0.4566 0.0310 0.0297

0.4 0.9216 0.9198 0.9141 0.9118 0.8998 0.8980 0.8951 0.8941 0.8989 0.8983 0.4959 0.4816 0.0266 0.0257

0.5 0.9208 0.9199 0.9028 0.9012 0.8906 0.8899 0.8555 0.8578 0.8603 0.8628 0.4204 0.4223 0.0652 0.0621

0.6 0.8975 0.8971 0.8817 0.8811 0.8704 0.8707 0.8377 0.8422 0.8320 0.8370 0.3953 0.4009 0.0598 0.0549

0.7 0.8805 0.8816 0.8608 0.8631 0.8491 0.8526 0.7675 0.7820 0.7786 0.7925 0.4122 0.4096 0.1130 0.0996

0.8 0.8485 0.8541 0.8108 0.8192 0.7965 0.8066 0.7592 0.7790 0.7724 0.7894 0.3882 0.3849 0.0893 0.0750

0.9 0.7542 0.7736 0.6926 0.7226 0.6820 0.7140 0.5863 0.6398 0.5928 0.6470 0.3390 0.3444 0.1679 0.1338
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frequency(Ratio ≈ 200:1), and PUMD remain acceptable 
detection performance, which has proven that PUMD 
can improve the impact of class imbalance. And the 
following is a detailed analysis of the above experimental 
results.

PU learning schemes
Can be divided into three typical categories: two-step 
techniques, biased learning and the class prior incorpo-
ration (Bekker and Davis 2020). PU_biased belongs to 
the biased learning scheme, which takes all unlabeled 
samples as negative for training and adjusts the weight 
of the positive and negative samples as 
W (P) : W (N ) = Size(Benign) : Size(Mali) to deal with 
the noise in negative sample sets, which also can be 
regarded as a certain strategy for balancing the sample 
categories. PU_empirical belongs to the class prior 
incorporation scheme, which aims to derive the PU 
data based empirical risk minimization formula 
R̂′(g |x, s) = 1

|s|

(∑
x|s=1

1
c L

+
(
g(x)

)
+

(
1− 1

c

)
L−

(
g(x)

)

+
∑

x|s=0 L
−
(
g(x)

))
 via the prior knowledge of the cate-

gory (see Bekker et  al. (2019) for the derivation pro-
cess), so as to construct a new data set for training the 
model: unlabeled samples are used as negative samples 
with weight 1, whereas each labeled sample is treated as 
a combination of positive sample with weigh 1/c and 
negative sample with weight (1− 1/c) . Considering that 
there is no class balancing process in PU_empirical 
scheme, we use class_weight when training the classifier 
to further adjust the sample weight for better 
performance.

The common point of three PU learning schemes is 
that they do not need labeled benign domains and use 
the full sample set for classifier training. The advantage 
of PUMD over PU_biased and PU_empirical is that 
the sample weight is customized, and the confidence 
of each sample can be properly adjusted to train the 
classifier, while PU_biased and PU_empirical unify the 
sample weight.

Ordinary machine learning schemes
Considering that the proportion of mixed malicious 
domain samples in benign label is as high as 15% 
(Stevanovic et  al. 2015). Mix_supervised(baseline) 
randomly samples Size(P) samples from the set U as 
negative samples (the mixed ratio is less than 4%), 
and trains the classification together with the set P. 
It is used as the baseline to reflect the performance 
improvement of the PUMD compared with the con-
ventional detection scheme. Pure_supervised is the 
upper limit performance of the conventional malicious 
domain detection scheme, Size(P) negative samples are 
randomly sampled from the benign domains and the 
classifier is trained together with the set P.

Compared with mix_supervised and pure_supervised 
schemes, PUMD has the advantage that PU learning 
can use the full sample set for training, while the super-
vised scheme requires fully labeled samples and has 
the best performance with balanced data, which limit 
the number of samples participating in model training. 
Taking label_frequency = 0.5 as an example, the train-
set size ratio of PU learning and supervised learning is 
20512 : 478 ∗ 2 ≈ 21:1 . More sample information sig-
nificantly improves the classifier’s ability to describe 
benign domains. By looking at the performance line 
graph, it can be seen that the PU learning schemes are 
overall higher than the supervised learning schemes.

In addition, because the PUMD adopts the unsuper-
vised algorithm iForest, we use iForest as an unsuper-
vised scheme to conduct a comparative experiment. 
Specifically, the entire data set is arranged in order 
according to the isolation score to find the best segmen-
tation threshold and calculate the evaluation metrics. It 
can be seen from the performance curve that the perfor-
mance of the unsupervised scheme is always lower than 
others. This is because unsupervised algorithm lacks 
the guidance of label information and cannot describe 
benign domains and malicious domains well.

In summary, the advantage of PUMD compared with 
ordinary solution is that it uses more sample information 
and label guidance information. Compared with other 
PU learning solutions, PUMD adopts customized sample 
weight, and the confidence of each unlabeled sample is 
considered separately. therefore, the classifier in PUMD 
can learn more accurate discrimination information and 
enhance the ability to characterize the benign and mali-
cious domains.

Quantitative comparison with related works
To further confirm the effectiveness of the PUMD 
scheme proposed in this paper, we select four related 
works listed in the “Background and motivation” section 

(a) F1 (b) MCC

Fig. 8  PUMD and multiple comparison algorithms performance 
evaluation. (a) Prediction F1 changes. (b) Prediction MCC changes
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for experiments, including AULD (Yan et al. 2019), ELM 
(Shi et al. 2018), KSDom (Wang et al. 2020), and HAC_
EasyEnsemble (Liu et  al. 2018). Since these works do 
not disclose their experimental datasets, we reproduce 
the detection schemes of these four works and conduct 
experiments based on the datasets of this paper.

•	 AULD. It proposes an unsupervised algorithm based 
suspicious APT domains detection framework, 
which combines the canopy and k-means algorithms. 
Besides, it extracts t ten important features from the 
host, domain name, and time from a large number 
of DNS log data. The evaluation metrics of AULD 
include accuracy, TP-Rate(Recall), and FP-Rate.

•	 ELM. As the first work to introduce Extreme Learn-
ing Machine (ELM) algorithm to detect C&C com-
munication domains in APT attacks, it extracts 9 
detection features from multiple data sources. The 
features are summarized as four categories, includ-
ing construction-based, IP-based, TTL-based and 
WHOIS-based features. The evaluation metric 
adopted by ELM is the accuracy.

•	 KSDom. It proposes an imbalanced data process-
ing scheme based on K-means and Smote algo-
rithms, and applies it to the malicious domain detec-
tion framework. It extracts a total of 16 composite 
detection features, which can be summarized into 
three categories: domain name-based features, DNS 

answers-based features, and contextual features. 
In addition, it adopts the Catboost algorithm to 
train the malicious domain name detection model. 
KSDom’s evaluation metrics include Accuracy, Preci-
sion and F1-Score.

•	 HAC_EasyEnsemble. It handles the sample imbal-
ance problem in the field of malicious domain detec-
tion field by combining Hierarchical Agglomerative 
Clustering (HAC) and EasyEnsemble algorithms. It 
extracts 16 detection features from the characters 
of the domain name and dynamic DNS resolution 
data, and adopts Macro-precision, Macro-recall, and 
Macro-F1 as the evaluation metrics.

Quantitative experiment 1
In the case of label frequency = 0.5 , the detection effects 
of the proposed PUMD scheme and four related works 
are compared, as shown in Table 13. In addition to the F1 
and MCC adopted in this paper, the evaluation metrics 
used in Table also include the evaluation metrics of four 
related works. In addition, considering the processing 
capability of KSDom and HAC_EasyEnsemble for imbal-
anced data, according to the maximum imbalance ratio 
supported by their paper, imbalanced training sample 
sets for benign and malicious domains are respectively 
constructed (the imbalance ratio in KSDom is set to 10:1, 

Table 12  Formal description of the data set

*baseline

Method Labeled sample Unlabeled sample TrainSet TestSet

Mali DN Benign DN P N

PUMD P = c ∗Mali – U = D − P W(P) ∪w(U) U

PU_biased W(U)

PU_empirical W(P) ∪W(U)

mix_supervised* Nmix = Samplesize(P)(D − P) D − P − Nmix P Nmix

pure_supervised Npure = Samplesize(P)(Benign) D − P − Npure Npure

unsupervised – – D D

Table 13  Performance of different malicious domain detection methods

Underlined value: overall best performance

Method Macro-Recall Macro-Precision Macro-F1 Recall Precsion F1 ACC​ FP-Rate MCC

AULD 0.5806 0.9471 0.6277 0.1618  0.9333 0.2757 0.9606  0.0006 0.3796

ELM 0.6827 0.7197 0.6993 0.3797 0.4592 0.4157 0.9668 0.0143 0.4007

KSDom 0.8911 0.7686 0.8172 0.8038 0.5435 0.6485 0.9729 0.0217 0.6482

HAC_EasyEnsemble 0.8241 0.5594 0.5559 0.8354 0.1252 0.2177 0.8134 0.1873 0.2774

PUMD  0.9825 0.9384  0.9594  0.9684 0.8776  0.9208  0.9961 0.0033  0.9199
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and the imbalance ratio in HAC_EasyEnsemble is set to 
2.1:1).

It can be seen from Table 13 that the detection scheme 
PUMD proposed in this paper can achieve the best 
detection effect in most detection metrics. However, in 
the three metrics of Macro-Precision, Precision and FP 
rate, the performance of AULD is better than PUMD. 
Further analysis of other metrics of AULD, it is not dif-
ficult to find that its high Precision and low FP-Rate are 
mainly achieved at the expense of recall rate. In some 
comprehensive evaluation metrics, such as F1 and MCC, 
the performance of AULD scheme is poor. Therefore, 
we can conclude that AULD scheme lacks the ability to 
detect malicious domain names. Although we try our 
best to reproduce the relevant works according to the 
description of the original papers, we still find that there 
is a big gap in the detection effect between related works 
and the method proposed in this paper. We speculate 
that this may be due to the advantages of Feature Engi-
neering, which makes the method proposed in this paper 
have better detection effect. The detection feature sets 
of relevant works are directly integrated according to 
the existing works, lacking innovation and pertinence. 
In addition, the scale of these feature sets is small, and 
the number ranges from 9 to 16, which can be regarded 
as a subset of the feature scheme adopted in this paper. 
Therefore, it is difficult to effectively distinguish mali-
cious domains from benign domains by training classifi-
cation models on these small-scale and lack of pertinence 
feature sets. In order to confirm this view, we design 
quantitative experiment 2.

Quantitative experiment 2
The common feature of these four related works is that 
the main contribution focuses on the construction of 
detection model, rather than the extraction of detection 
features. In order to confirm that the huge gap between 
PUMD and related works in detection performance is 
caused by feature engineering, we further designed quan-
titative experiment 2. Specifically, all the comparison 
schemes adopt the feature scheme proposed in this paper, 

and only the model training methods are compared. The 
experimental results are shown in Table 14.

It can be seen from the Table  14 that the detection 
effect of all related works have been greatly improved 
after adopting the feature scheme in this paper, which 
verifies the effectiveness of the feature scheme in this 
paper. At the same time, through further horizontal com-
parison of the detection effect of each evaluation metric, 
it can be seen that the PUMD scheme proposed in this 
paper maintains the optimal performace on most evalu-
ation metrics, which confirms the effectiveness of the 
two-stage Pu learning scheme adopted by PUMD. AULD 
still leads the way in Macro-Precision, Precision and FP-
Rate, but ranks fourth in the comprehensive evaluation 
metrics (F1 and MCC). Therefore, we can conclude that 
the malicious domain name detection ability of AULD is 
relatively poor.

In summary, through the above two quantitative exper-
iments, it is fully confirmed that the PUMD scheme is 
superior to related works in both feature scheme and 
learning scheme, which further verifies the effectiveness 
of the proposed scheme in this paper.

Discussion and future work
The purpose of this section is to make a qualitative com-
parison between the related works listed in “Background 
and motivation” section and PUMD, as shown in the 
Table 15, to further discuss the advantages of PUMD and 
the future direction of work.

Qualitative comparison
From the perspective of dataset, PUMD uses compre-
hensive anonymization data, while most solutions do 
not consider the privacy of DNS traffic, such as Phoneix 
(Schiavoni et  al. 2014), ELM (Shi et  al. 2018), LSTM.
MI(Tran et al. 2018), KSDom (Wang et al. 2020) , HAC_
EasyEnsemble (Liu et al. 2018), which are not suitable for 
sensitive scene. Besides, PUMD only uses a small num-
ber of malicious domain labels manually annotated by 
security researchers, while existing works use the Alexa 
TOP sites as ground truth of benign domains, which are 
impure and will affect performance.

Table 14  Performance of different malicious domain detection models

Underlined value: overall best performance

Model Macro-Recall Macro-Precision Macro-F1 Recall Precsion F1 ACC​ FP-Rate MCC

AULDmodel 0.8581 0.963 0.9032 0.7185 0.9396 0.8143 0.9848 0.0022 0.8144

ELMmodel 0.9612 0.9414 0.951 0.9262 0.8851 0.9052 0.994 0.0039 0.9023

KSDommodel 0.982 0.869 0.9175 0.9726 0.7388 0.8397 0.991 0.0085 0.8435

HAC_EasyEnsemblemodel 0.9725 0.7846 0.8527 0.9684 0.5702 0.7177 0.9763 0.0234 0.7334

PUMD 0.9825 0.9384 0.9594 0.9684 0.8776 0.9208 0.9961 0.0033 0.9199
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From the perspective of feature construction, PUMD 
comprehensively extracts multiple features. Among 
them, the character, traffic, and whois features are 
extracted from single domain, and the evidence features 
extracted based on resource overlapping association 
from domain association, which can also be considered 
as an implicit association feature, while existing works 
extract features from only one perspective, which is easy 
to be evaded.

From the perspective of model training and testing, 
compared with the existing supervised schemes, such as 
HinDom, ELM, PUMD reduce the labeling cost by half. 
Besides, other researches require at least one thousand 
domains to train the model, while the labeled samples in 
PUMD are kept between 100 and 861. In addition, this 
paper maintains a large imbalance ratio in both trainset 
and testset, and discusses the PUMD’s ability to capture 
malicious domains in the real network environment. 
And from the perspective of model output process-
ing, PUMD is an end-to-end framework that can auto-
matically predict malicious domains without the need 
for manual analysis assistance or pre-set classification 
thresholds.

Future direction
The future direction can be mainly divided into three 
aspects, including the design of whois data usage 
schemes, the optimization of the model, and the expan-
sion of the experimental dataset.

The design of whois data usage schemes: We use 
whois information to extract three detection features in 
the feature engineering part, and associate the domains 
to be detected and the known malicious domains based 
on the whois information resource when extracting evi-
dence features. Considering that whois information may 
not be released to the public in the future, this work can-
not temporarily provide an effective solution to the prob-
lem that all relevant features of whois information will 
be invalid. However, our original feature set is huge, and 
there are some features in the original feature set that 
can make up for the impact of removing the whois infor-
mation-related features and provide a robust malicious 
domain name detection capability. In addition, how to 
obtain more effective detection features to characterize 
malicious domain names is also one of our future work 
directions.

The optimization of the model: Considering PUMD 
is an basic framework for malicious domain detection, 
which supports the replacement of base classifiers with 
specific detection algorithms, we will try to integrate 
the existing solutions into the PUMD framework to fur-
ther evaluate the generalization capability of PUMD. At 

the same time, for the problem that the existing detec-
tion features mostly use a statistical overview of traffic, 
but cannot fully characterize the activities of malicious 
domains, consider introducing time series features to 
model domain name cross-cycle activity changes. In 
addition, consider using a more complex graph net-
work to model the association between the domain to be 
detected and the existing malicious domain family, and 
extract global evidence characteristics, so as to compre-
hensively capture the multiple resource reuse exceptions 
of the malicious domains.

The expansion of the experimental dataset:  At 
present, due to the sensitivity of DNS data, there is no 
generally accepted large-scale malicious domain name 
detection dataset available in the field of malicious 
domain name detection. This paper chooses to conduct 
experiments on a small-scale open source DNS traf-
fic dataset provided by Qi-ANXIN, in order to facilitate 
comparison with other schemes in the follow-up works. 
We will try to deploy the PUMD detection scheme in the 
real network in the future to test the model detection 
ability on real large-scale traffic.

Conclusion
In this paper, we propose a malicious domain detec-
tion framework called PUMD. By adopting the two-step 
PU learning scheme, PUMD can use a small number of 
labeled malicious domains and a large number of unla-
beled domains to construct a binary classifier. At the same 
time, PUMD employs novel feature engineering tech-
niques, including evidence features based on resource 
overlapping and a feature selection strategy based on 
permutation importance and binning to improve mali-
cious domain detection performance. This paper further 
conducts experiments to detect potential malicious C&C 
domains in open source real DNS data set provided by QI-
ANXIN Technology Group. Experiments have separately 
proved that when the label information is extremely lim-
ited (100 labeled malicious domains), or the class category 
is severe imbalanced (Benign:Mali ≈ 200:1), and in the 
case of multiclass malicious domain activities(9 families), 
PUMD can maintain the optimal detection performance, 
which can solve the problems of insufficient credible label 
information, severe class imbalance, and incompact dis-
tribution of different malicious activities’ domain samples 
in the malicious domain detection field.

Appendix
Evaluate ACC​ (Fig. 5a). ACC is also not suitable for imbal-
anced data set. It only focuses on the number of samples 
that are correctly classified, and does not distinguish the 
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categories of the samples, thus it will be biased to con-
sider the performance of the majority category, that is the 
benign domains, which is inconsistent with the detection 
target of this paper.

Evaluate precision and recall (Fig.  5b–c). These two 
evaluation indicators are not suitable for analyzing 
imbalanced data set separately. Take the performance on 
label frequency c=0.5 as an example (see Fig. 9). LR has 
the worst performance on the Precision, while the best 
performance on Recall. This is because Precision only 
focuses on the ability to detect correctly, while Recall 
only pays attention to the ability to detect completely.

Evaluate ROC and AUC​ (Fig. 5e). ROC and AUC are not 
suitable for imbalanced data set, especially when the neg-
ative sample set is large, FPR grows slowly, and the ROC 
curve is generally close to the upper left corner. Taking 
the ROC curve on c = 0.5 as an example (see Fig. 10a), 
AUC actually contains a large area of no interest, such 
as the FPR > 0.1 area, where the number of FPs exceeds 
four times that of malicious domains. Only observe the 

FPR ∈ [0, 0.1] interval (see Fig. 10b), the effective area is 
ranked as RF > Xgboost > SVM > LR , which is incon-
sistent with the AUC value ranking.
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