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Abstract 

Robust 3D mesh watermarking is a traditional research topic in computer graphics, which provides an efficient solu-
tion to the copyright protection for 3D meshes. Traditionally, researchers need manually design watermarking algo-
rithms to achieve sufficient robustness for the actual application scenarios. In this paper, we propose the first deep 
learning-based 3D mesh watermarking network, which can provide a more general framework for this problem. In 
detail, we propose an end-to-end network, consisting of a watermark embedding sub-network, a watermark extract-
ing sub-network and attack layers. We employ the topology-agnostic graph convolutional network (GCN) as the basic 
convolution operation, therefore our network is not limited by registered meshes (which share a fixed topology). For 
the specific application scenario, we can integrate the corresponding attack layers to guarantee adaptive robustness 
against possible attacks. To ensure the visual quality of watermarked 3D meshes, we design the curvature consistency 
loss function to constrain the local geometry smoothness of watermarked meshes. Experimental results show that 
the proposed method can achieve more universal robustness while guaranteeing comparable visual quality.
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Introduction
With the advent of the new industrial revolution, the 
3D industry has become an important industry in soci-
ety. Therefore, 3D graphics model has became a popular 
data format in many fields such as arts, games and sci-
entific research. As the dominant 3D shape representa-
tion of graphics models, 3D meshes have attracted many 
researchers in the past few years (Garland and Heckbert 
1997; Chen et  al. 2009). Since designing and produc-
ing 3D meshes is a time-consuming and labor-intensive 
process, protecting the copyright of 3D meshes has also 
become a popular task in the 3D mesh industry. Robust 
3D mesh watermarking (Wang et al. 2008) is an efficient 
solution to this problem.

Figure  1 shows the general 3D mesh watermarking 
model. The watermark represents the message to be 
embedded. First, the embedding module can embed the 

watermark into a 3D mesh and generate a watermarked 
mesh. In actual scenarios, there are many complex geo-
metric and topological operations for 3D data (Vasic 
and Vasic 2013), which can cause serious damage to the 
watermarked mesh. These operations can be regarded as 
the attack process. For the extracting process, we employ 
an extracting module to extract the watermark from the 
attacked mesh. Note that in this paper, we mainly discuss 
blind watermarking techniques, which means that we can 
extract the watermark without the reference of the origi-
nal mesh.

There are the four requirements for 3D mesh water-
marking task. Robustness: The watermark should be resil-
ient and not easily removable by possible attacks during 
the transmission channel. Imperceptibility: The visual 
quality of the watermarked mesh should be guaran-
teed. Efficiency: The time for embedding and extracting 
the watermark should be as short as possible. Capac-
ity: larger capacity indicate that we can embed more 
message into the mesh. Among all, the most important 
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requirement is robustness, which directly influences the 
protection ability and transmission accuracy.

To achieve the above properties, we have to make suf-
ficient efforts to cope with 3D meshes. A 3D mesh can 
be defined by its vertices and faces, where vertices define 
the 3D coordinates in the Euclidean space, and faces indi-
cate the topological structure of the mesh. For the data 
in a 3D mesh file, various attacks may modify it in differ-
ent ways. These attacks can be divided into three types 
(Wang et  al. 2010): vertices reordering attack, geometry 
attack and connection attack. Vertices reordering attack 
can reorder the vertices in the 3D file but does not change 
the 3D coordinates or the topology. Thus it would not 
change the mesh shape. For the geometry attack, it modi-
fies the vertex coordinates without changing the topo-
logical connection. Geometry attacks include similarity 
transformation, noise addition and smoothing, etc. Simi-
larity transformation operations consist of three types of 
transformation: translation, rotation and uniform scal-
ing. Noise addition simulates the artifacts generated dur-
ing the mesh transmission (e.g. Gaussian noise addition). 
And smoothing is a common processing operation for 3D 
meshes, to remove the unevenness of the mesh surface. 
Contrary to the geometry attack, the connection attack, 
such as cropping, modifies the topological connection 
between vertices, causing intense damage to the geomet-
ric properties of the mesh.

Designing a watermarking algorithm robust against all 
attacks is impossible. Traditionally, in a specific scenario, 
to achieve better robustness, we must manually design 
the specific watermarking algorithm to resist the pos-
sible attacks. For example, real-time 3D model render-
ing needs intense mesh simplification and optimization, 
which may remove the watermark data (Vasic and Vasic 
2013). As most algorithms are not robust enough against 
both attacks, we need to develop a specific watermarking 
algorithm to cope with such scenario. However, design-
ing a watermarking algorithm for every specific scenario 
is labor-intensive. What’s more, it’s difficult to manually 

design algorithms robust against some attacks, such as 
the cropping attack.

To overcome these shortcomings and design a more 
general watermarking framework (Zhang et  al. 2020, 
2021a, b) for robust 3D mesh watermarking, we propose 
the first deep learning-based method, which can achieve 
more universal robustness than traditional methods. In 
detail, we propose an end-to-end network, consisting 
of an embedding sub-network, an extracting sub-net-
work and attack layers. Both sub-networks are trained 
to achieve the watermark embedding and extracting. 
And attack layers simulate the actual attacks in the spe-
cific scenario. With the differential attack layers, we can 
jointly train the whole network to find the theoretically 
optimal solution in the current scenario. For different 
scenarios, we can adaptively adjust the attack layers to 
meet the various requirements.

There have existed some researches on deep learning-
based methods for 2D watermarking (Zhu et  al. 2018; 
Wengrowski and Dana 2019; Jia et al. 2021; Zhang et al. 
2021c; Luo et  al. 2020; Tancik et  al. 2020; Wang et  al. 
2020), which design a convolutional neural network for 
image watermarking. However, compared with 2D data, 
the convolution on 3D mesh has more difficulties because 
of the irregularity and complexity. And 3D mesh water-
marking suffers from more threats with the increased 
dimensional space. As graph convolutional network 
(GCN) (Kipf and Welling 2017) can be applied in deep 
learning on 3D mesh, it is difficult to converge the net-
work to the optimal solution with the varied topologies of 
different 3D meshes. Therefore, we propose the topology-
agnostic GCN to adapt the network to different topolo-
gies. And consequently, our network can be applied to 
non-template-based meshes (meshes do not have to 
share a fixed topology). The pre-trained model also has 
enough transferability on another remeshed dataset. To 
better measure the distance between the original mesh 
and the watermarked mesh, we propose the curvature 
consistency loss as a constraint for watermarked meshes.

Fig. 1  3D mesh watermarking model. Actual watermarking procedure includes three processes: watermark embedding, attack and watermark 
extracting. Attack process represents the possible operations on the watermarked mesh
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In summary, our main contributions are three-fold:

•	 We are the first to introduce a deep learning-based 
method for robust 3D mesh watermarking task. We 
hope we can open up new research direction and 
inspire more works in this field.

•	 We propose a novel deep 3D mesh watermarking 
network to achieve the adaptive robustness to spe-
cific attacks. The curvature consistency loss is pro-
posed to guarantee the visual quality of watermarked 
meshes.

•	 We quantitatively and qualitatively evaluate the 
proposed method with two datasets. Experimen-
tal results demonstrate that the proposed method 
can achieve more universal robustness and higher 
efficiency than baseline methods while guarantee-
ing comparable visual quality and the same capacity. 
Besides, our method can be applied to non-template-
based meshes, which is very practical in the actual 
application scenarios.

Related work
Traditional robust 3D mesh watermarking
Robust 3D mesh watermarking methods can be divided 
into two categories: spatial domain-based methods (Cho 
et  al. 2007; Bors and Luo 2012; Rolland-Neviere et  al. 
2014; Lee et al. 2021; Jang et al. 2018; Zhou et al. 2018) 
and transform domain-based methods (Cayre et al. 2003; 
Uccheddu et  al. 2004; Wang et  al. 2008; Hamidi et  al. 
2017; Liu et al. 2017).

Spatial domain-based methods usually embed the 
watermark by modifying the spatial parts of a 3D mesh, 
thus relatively weak to connectivity attack and noise 
addition attack. And the original structures of 3D meshes 
can be destroyed by the watermark embedding process, 
which affects the subsequent mesh synchronization 
(causality problem). Cho et  al. (2007) proposed a clas-
sic watermarking algorithm based on the distribution of 
distances between vertices and the mesh gravity center. 
Before embedding, the vertices are grouped into bins 
and each bin is assigned with one watermark bit. Based 
on Cho et  al. (2007), some optimization algorithms are 
proposed in Bors and Luo (2012) and Rolland-Neviere 
et al. (2014). The visual quality can be improved but more 
time is costed during the optimization. Zhou et al. (2018) 
proposed to design a distortion function based on ver-
tex normals and embeds bit information into bit planes 
of vertex coordinates. Jang et al. (2018) proposed to use 
the shape diameter function (SDF) to divide a 3D mesh 
into several segments. Then the watermark is embed-
ded into all the segmented regions. Recently, Lee et  al. 
(2021) proposed a novel watermarking technique based 

on spherical coordinate and skewness measurement. The 
vertices are also grouped into bins, but the watermark bit 
is embedded according to the skewness value. Therefore, 
the robustness can be highly enhanced.

For transform domain-based methods, the common 
operation is applying the spectral analysis to the original 
mesh. Then the watermark is embedded by modifying 
the spectral coefficients of medium frequency parts so 
that the modification spreads to the spatial components 
of a mesh. Unfortunately, existing spectral analysis tools 
have their limitations on the robustness performance 
against some attacks (Wang et  al. 2008). In Cayre et  al. 
(2003), first proposed to employ Laplacian matrix as the 
spectral analysis tool in 3D mesh watermarking task. 
Uccheddu et al. (2004) proposed a wavelet-based water-
marking algorithm but the capacity is limited in one bit. 
Wang et al. (2008) proposed the hierarchical watermark-
ing algorithm based on wavelet transform. This method 
can allow for higher capacity, but with weaker robust-
ness. Based on this algorithm, Hamidi et al. (2017) pro-
posed quantize the wavelet coefficient vectors and embed 
the watermark bit into the ratio relationship between the 
quantized wavelet coefficient vectors. Liu et  al. (2017) 
proposed a multi-resolution adaptive parameterisation-
based 3D mesh watermarking method. The vertices at the 
coarse level are used to establish an invariant space and 
the vertices at the fine level are selected as feature verti-
ces for watermark embedding.

Deep learning‑based methods for 3D mesh 
representations
Different from convolution operation on images, convo-
lution operation on 3D meshes is difficult due to their 
irregularity and complexity. To lift this limitation, some 
researches (Feng et al. 2019; Hanocka et al. 2019; Hu et al. 
2021; Milano et  al. 2020; Verma et  al. 2021) have been 
proposed to effectively learn 3D mesh representation. Yet 
they can only be applied in discriminative tasks such as 
classification and semantic segmentation. For generative 
tasks such as 3D reconstruction, most mesh-based meth-
ods use graph convolutional network (GCN) (Kipf and 
Welling 2017) as the basic convolution operation, where 
vertices and edges are regarded as nodes and connections 
in a graph.

where N (i) defines the neighboring vertices of the vertex 
i, f li  is the l-layer feature of the vertex i, and φ is the acti-
vation function. Usually, they predict the 3D mesh shape 
as a deformation from a template (Wang et  al. 2018; 
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Hanocka et  al. 2020). Besides, a series of efforts (Gao 
et al. 2021; Gong et al. 2019; Zhou et al. 2020) have been 
proposed to train deep neural auto-encoders to learn 
latent representations for 3D meshes. These methods 
usually employ anisotropic filters (each weight wj variable 
for every neighboring vertex) to represent the 3D mesh. 
However, these filters are usually defined based on the 
fixed vertex order or fixed edge order.

Deep learning‑based methods for digital images 
watermarking
There have been some deep learning-based researched 
on 2D watermarking (Zhu et  al. 2018; Wengrowski and 
Dana 2019; Luo et al. 2020; Tancik et al. 2020; Wang et al. 
2020; Jia et al. 2021). Zhu et al. (2018) proposed HiDDeN, 
an end-to-end deep image watermarking framework. 
This framework includes an Encoder module, an Decoder 
module and noise layers. The Encoder and Decoder 
are responsible for watermark embedding and extract-
ing respectively. And noise layers simulate the possible 
attacks during the image transmission process, such as 
dropping, Gaussian noise and cropping, etc. Based on 
HiDDeN, subsequent researchers mainly concentrated 
on designing new noise layers and extend the applica-
tion scenarios. Luo et  al. (2020) proposed to replace 
fixed image attacks with the adversarial network. Wang 
et  al. (2020) proposed a two-stage training strategy to 
train the network on non-differentiable noise layers such 
as JPEG comppression (Liu et  al. 2021). Jia et  al. (2021) 
proposed an novel training strategy with the mini-batch 
of simulated JPEG compression, real JPEG compression, 
and noiseless training to enhance the robustness against 
JPEG compression. Zhang et  al. (2021c) proposed to 
decouple the forward process of noise layers and achieve 
the joint training of Encoder and Decoder with any non-
differentiable noise layers. Tancik et al. (2020) proposed 
StegaStamp, which models the print-photography pro-
cess and demonstrated the robustness against real world 
attacks. Wengrowski and Dana (2019) proposed Light 
Field Messaging (LFM), which constructed over one 
million original image-screenshot pairs and trained a 
network that simulates the distorting effects of camera-
display transfer.

Proposed approach
Topology‑agnostic GCN
Due to the possible attacks, watermarked meshes cannot 
simply be treated as template-based meshes. Even origi-
nal meshes can also be non-template-based in the actual 
scenario. To represent these meshes, we employ isotropic 

filters to compose our convolution operation, with a fixed 
wj in Eq. 1 for each neighboring vertex:

During training, we find our network converges slowly. 
We analyze this phenomenon for two reasons: ran-
domly generated watermark bits in each iteration step 
and different connectivity for each vertex. To speed 
up training and ensure the convergence, we apply 
the degree normalization in GCN and design the 
GraphConv+BatchNorm+ReLU block as the main com-
ponent of our network. We first define our GraphConv 
operation:

where | · | denotes the cardinal number, indicating the 
vertex degree. Different from previous GCNs in genera-
tive tasks, the topology for each 3D mesh is agnostic. For 
each mesh with its own topology, topology-agnostic GCN 
needs to search the neighboring vertices for every vertex. 
For every mini-batch data, we employ the batch normali-
zation operation to normalize the feature from the out-
put of GraphConv. Then we define the graph residual 
block consisting of two GraphConv+BatchNorm+ReLU 
blocks with a short connection (He et al. 2016), as shown 
in Fig. 2. For the initial block of the embedding sub-net-
work and extracting sub-network, the input feature is the 
3D coordinates of vertices and outputs 64-dim feature. 
For other blocks, the output feature has the same shape 
as the input feature with 64 dimensions.

As shown in Fig.  3, our network includes a water-
mark embedding sub-network, attack layers and a 
watermark extracting sub-network. In the network, we 
define a 3D mesh as M = (V ,F) , where V denotes ver-
tices and F  denotes faces. And we use Nin to denote the 
number of input vertices. For each vertex i ∈ V , we use 
vi = [xi, yi, zi]

T ∈ R
3 to denote the 3D coordinates in the 

Euclidean space. And we define watermark length as C 
bits.

Watermark embedding sub‑network
In this sub-network, we take original mesh 
Min = (Vin,Fin) and watermark win as the input. We 
employ five cascaded graph residual blocks to form the 
feature learning module F . We first employ this mod-
ule to learn the feature map Fin from input vertices Vin . 
The watermark encoder E is responsible for encoding 
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the input watermark into a latent code zw by a fully 
connected layer. Then the latent code zw is expanded 
along the number of vertices to align the vertices. After 
expanding, the latent code is concatenated with input 
vertices Vin and the mesh feature Fin , and then fed into 
the aggregation module A . In the last block of A , there 

is a branch that applies an extra GraphConv layer and 
outputs the 3D coordinates of watermarked vertices Vwm . 
The aggregation module A includes two graph residual 
blocks and outputs the 3D coordinates of mesh vertices. 
According to the original mesh Min and watermarked 
vertices Vwm , the watermarked 3D mesh Mwm can be 

Fig. 2  Graph residual block. The dashed line represents that the mesh is utilized for querying the adjacent vertices in GraphConv operation

Fig. 3  Proposed watermark network architecture. The dashed line represents the reference information that guides the convolution operation and 
mesh reconstruction
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constructed. Note that the symmetric function Expand-
ing is used to align the vertices and the watermark fea-
ture, making the embedding process invariant to the 
reordering of input vertices, which may be very practical 
in the actual scenario.

Attack layers
To guarantee the adaptive robustness to specific attacks, 
we train our network with attacked meshes. In this paper, 
we mainly consider representative attacks (including 
cropping, Gaussian noise, rotation and smoothing) and 
integrate them into attack layers. Note that we can inte-
grate different attacks as the attack layers, according to 
the actual requirements.

Rotation
We rotate the 3D mesh in three dimensions with the 
rotation angle randomly sampled in every dimension. 
We use θ to denote the rotation scope and the rota-
tion angle in each dimension is randomly sampled: 
θx, θy, θz ∼ U[−θ , θ ] . Then we rotate Vwm with the cor-
responding angle for every dimension in the Euclidean 
space.

Gaussian noise
We employ a zero-mean Gaussian noise model, sampling 
the standard deviation σg ∼ U[0, σ ] to generate random 
noise to 3D meshes. We generate noise ∼ N (0, σg

2) and 
attach it on the 3D coordinates of watermarked vertices.

Smoothing
Laplacian smoothing model (Taubin 2000) is employed 
to simulate the possible smoothing operation. For the 
watermarked mesh Mwm = (Vwm,Fwm) , we first cal-
culate the Laplacian matrix L ∈ R

Nin×Nin , and use 
αs ∼ U[0,α] to control the level of Laplacian smoothing. 
For the coordinate matrix Vwm ∈ R

N×3 of watermarked 
vertices Vwm , we calculate the the coordinate matrix Vatt 
of attacked vertices Vatt as :

(4)Vatt = Vwm − αsLVwm.

Cropping
We simulate this attack by cutting off a part of the mesh. 
We first normalize the vertices in a unit square and search 
for the two farthest points in the negative quadrant and 
the positive quadrant respectively. Then We connect two 
points and simulate using a knife cutting perpendicu-
lar to the line. So that we can cut off the part of the mesh, 
with β to control the minimum ratio of the reservation. 
βc ∼ U[β , 1] is used to denote the actual ratio of the reser-
vation at each cropping operation.

During training, we set the hyperparameters as follows: 
θ = 15◦, σ = 0.03,α = 0.2,β = 0.8 . Besides four attacks, 
we also integrate one identity layer which does not have any 
attack, to ensure the performance when no attack is suf-
fered. During training, we randomly select one attack as the 
attack layer in each mini-batch. Then we can generate the 
attacked mesh Matt = (Vatt ,Fatt) after the watermarked 
mesh Mwm = (Vwm,Fwm) passes through the attack layer. 
Figure 4 shows the original and attacked meshes under dif-
ferent attacks. With the differentiable attack layers, we can 
jointly train our embedding sub-network and extracting 
sub-network, and update the parameters simultaneously.

Watermark extracting sub‑network
We design a straightforward structure to extract the water-
mark. For the attacked vertices Vatt , we first employ the 
same feature learning module F to acquire the feature map 
Fno . Followed by the global average pooling layer and a two-
layer fully connected layer (MLP), the extracted watermark 
wext is obtained. The symmetric function Global pool-
ing aggregates information from all vertices, which can 
also guarantee the variance under the vertices reordering 
attack.

Loss function
To train the network, we define some loss functions. Mean 
square error (MSE) loss is first employed for constraining 
the watermark and mesh vertices:

(5)lw(win,wext) =
1

C
||win − wext ||

2
2,

Fig. 4  Stanford Bunny model and its attacked meshes
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where i′ denotes the paired vertex of vertex i in the water-
marked mesh Mwm.
lm can constrain the spatial modification on mesh verti-

ces as a whole. Yet the local geometry smoothness is also 
supposed to be guaranteed, as it greatly affects the visual 
perception of human eyes (Mariani et al. 2020). The local 
curvature can reflect the surface smoothness property 

(Torkhani et al. 2012). For 3D meshes, the local curvature 
should be defined based on the connection relations. As 
shown in Fig.  5, we use θij ∈ [0◦, 180◦] to represent the 
angle between the normalized normal vector ni for vertex 
i and the direction of neighboring vertex j. We can find 
that the vertex’s neighboring angles represent the local 
geometry. For each vertex i in the mesh M , we define the 
vertex curvature as:

(6)lm(Min,Mwm) =
1

Nin

∑

i∈Vin

||vi − vi′ ||
2
2,

where

To guarantee the local curvature consistency between 
original 3D mesh Min and watermarked 3D mesh Mwm , 
we define the curvature consistency loss function:

The combined objective is employed in the network: 
L = �1lw + �2lcur + �3lm . By default, �1 = �2 = 1 , and 
�3 = 5.

Experiments
Implementation details
Our network is implemented by PyTorch and trained 
on two NVIDIA GeForce RTX 2080Ti GPUs. Kingma 
and Ba (2015) is applied as the gradient descent 

(7)cur(i,M) =
∑

j∈Ni

cos(θij),

(8)cos(θij) =
(vj − vi)

T
ni

||vj − vi||2
.

(9)lcur(Min,Mwm) =
1

Nin

∑

i∈Vin

||(cur(i,Min)− cur(i′,Mwm))||
2
2.

Fig. 5  This is a 3D model of a desk. In the bottom right figure, the desktop is flat and the normal vector ni is perpendicular to the local area. For 
each j ∈ Ni , θij = 90◦ . The bottom left figure and the top right figure are the convexity and concavity of the the desk respectively, with θij > 90◦ 
and θij < 90◦



Page 8 of 14Wang et al. Cybersecurity            (2022) 5:24 

algorithm with the learning rate of 0.0001. We use two 
scanned datasets: 2D-manifold Hand dataset (triangle 
meshes with 778 vertices and 1538 faces) (Romero et al. 
2017) and 3D-manifold Asiadragon dataset (tet meshes 
with 959 vertices and 10364 faces) (Stanford 2021). For 
Hand dataset, they are divided into 1554 models for 
train and 50 models for test, and the batch size is 600. 
For Asiadragon dataset, we use models provided by 
Zhou et al. (2020), with 7503 models for train and 500 
models for test, and the batch size is 400. The network 
is trained with about one week on both datasets respec-
tively. Before feeding meshes into the network, we nor-
malize vertices to a unit cube. In the experiment, we set 
the watermark length of all methods as C = 64.

Evaluation metrics
We employ Hausdorff distance (HD), maximum root 
mean square (MRMS) and the curvature consistency 
loss lcur to measure the distances between watermarked 
meshes and original meshes. To evaluate the robust-
ness, we compare the input watermark bits and extracted 
watermark bits, and calculate the bit accuracy. Besides, 
we test algorithms on Intel Xeon Gold 5218 CPU 
(2.30  GHz) and record the mean time consumption for 
one 3D mesh to compare the efficiency.

Comparisons with baseline methods
We select five methods as our baseline methods: two 
classic watermarking methods: Cho et  al. (2007) and 
Cayre et al. (2003), one optimization-based method L-M 
(Bors and Luo 2012), and two latest methods: MAPS (Liu 
et al. 2017) and SCKM (Lee et al. 2021). As there are few 

open source codes for these methods, we have tried our 
best to reproduce them.

Table 1 shows the quantitative comparisons with base-
line methods. The proposed method outperforms all 
other methods in terms of accuracy. On Hand and Asi-
adragon dataset, we can get the accuracy of 92.06% and 
95.22% respectively. There is maximum difference of 
nearly 20% between ours and baseline methods. That 
demonstrate the clear advantage in terms of robustness 
for our method. In terms of visual assessment indica-
tors, the proposed method perform worse than Bin, L-M, 
MAPS and SCKM. That’s because they only make minor 
modifications to the grouped vertices, yet the proposed 
method need to learn the neural representation for 3D 
meshes, which is currently difficult to achieve the com-
petitive quality as the former. However, as shown in 
Fig.  6, the proposed method can still keep comparable 
visual quality and make the watermarked perturbations 
imperceptible. Compared with HD and MRMS, the ver-
tex curvature cur can better reflect the local geometry 
smoothness. With the curvature consistency loss lcur 
employed during training, the proposed method causes 
little surface curvature distortion on the watermarked 
mesh. For Asiadragon dataset, the proposed method 
get 0.001 of lcur , but Laplacian gets 30× of lcur . Besides, 
we can find that the proposed method can acquire bet-
ter visual quality than Laplacian. In Fig.  6, Laplacian 
causes more distortions on the surface smoothness, mak-
ing artifacts of watermarked meshes clearly visible. For 
the efficiency comparison, the proposed method also 
has comparable performance. And Bin, L-M and Lapla-
cian cost at least 10× of our time for the watermark 
embedding.

Table 1  Quantitative comparisons with baseline methods on Hand and Asiadragon dataset

Distance between original meshes and watermarked meshes (second to fourth column), bit accuracy under attacks from the attack layers (%, fifth column) and 
running time (sixth to seventh column). Running time consists of the watermark embedding time and watermark extracting time for one 3D mesh. For all indicators 
the lower the better except accuracy

The bold represents the ones with best preformance

Method HD MRMS lcur Accuracy (%) Emb time (s) Ext time (s)

Asiadragon Bin (Cho et al. 2007) 0.0027 0 0 74.47 0.406 0.015

L-M (Bors and Luo 2012) 0.0027 0 0 76.62 2547 0.015

Laplacian (Cayre et al. 2003) 0.0319 0.012 0.030 94.34 0.725 0.566

MAPS (Liu et al. 2017) 0.0002 0 0 75.41 0.004 0.003
SCKM (Lee et al. 2021) 0 0 0 85.39 0.012 0.012

Proposed 0.0498 0.014 0.001 95.22 0.032 0.016

Hand Bin (Cho et al. 2007) 0.0032 0 0 71.84 0.327 0.013

L-M (Bors and Luo 2012) 0.0063 0 0 70.09 1040 0.013

Laplacian (Cayre et al. 2003) 0.0208 0.006 0.028 91.22 0.523 0.347

MAPS (Liu et al. 2017) 0.0001 0 0 74.25 0.010 0.007
SCKM (Lee et al. 2021) 0 0 0 86.34 0.011 0.011

Proposed 0.1131 0.018 0.003 92.06 0.022 0.012
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As shown in Fig. 7, we test the bit accuracy under each 
attack with different intensities. L-M, Bin and MAPS are 
robust against the rotation attack, but perform badly 
under other attacks, even with near 50% of accuracy 
rate under Gaussian noise attack. Laplacian can keep 
relatively high accuracy under low-intensity attacks, but 
its accuracy decreases rapidly with the attack intensity 
increasing. And SCKM also performs badly with high-
intensity attack. Compared with baseline methods, the 
proposed method can achieve more universal robustness 
under all attacks. Although the proposed method can-
not guarantee to outperform baseline methods under all 
conditions, we can still keep the sufficient accuracy under 
intense attacks, which guarantees the practicality in the 
actual scenario. For example, we can still obtain the accu-
racy rate of about 90% on Hand dataset under smooth-
ing attack with α = 0.8 . And under cropping attack with 
β = 0.3 , we have more than 80% accuracy rate on Asi-
adragon dataset.

The importance of the attack layers
As described above, to enhance the robustness against 
specific attacks, we employ the attack layers during 
training. To demonstrate the necessity, we also train our 
network without the attack layers (labelled with † ). As 
shown in Fig. 7, we can find that the accuracy decreases 
a lot under all attacks when training without the attack 
layers. Under the rotation attack with θ = 30◦ , the 

model training without the attack layers is about 30% of 
accuracy rate lower than the default model. Under the 
smoothing attack with α = 0.8 , the accuracy rate is only 
about 70% in Asiadragon dataset. When training with the 
attack layers, the accuracy rate can surpass 90%.

The importance of the curvature consistency loss
Besides MSE loss constraining the spatial range of ver-
tices, curvature consistency loss can guarantee the 

Fig. 6  Qualitative comparison on visual quality with baseline methods on Asiadragon (top two rows) and Hand (bottom two rows) dataset

Table 2  Quantitative results on remeshed Hand and remeshed 
Asiadragon dataset

Distance between original meshes and watermarked meshes (second to fourth 
column), bit accuracy under attacks from the attack layers ( % , last column). † 
denotes training without the attack layers, Model represents the model trained 
on the remeshed dataset, and Pre-Model represents the model trained on the 
original dataset

The bold represents the ones with best preformance

Method HD MRMS lcur Accuracy (%)

Asiadragon Model 0.059 0.014 0.002 93.25
Model† 0.042 0.010 0.002 84.63

Pre-Model 0.069 0.016 0.006 83.63

Pre-Model† 0.058 0.012 0.004 76.51

Hand Model 0.112 0.018 0.005 91.78
Model† 0.101 0.012 0.003 85.09

Pre-Model 0.113 0.019 0.004 83.00

Pre-Model† 0.099 0.012 0.003 77.34
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surface smoothness of watermarked meshes. To validate 
its importance for the visual quality of watermarked 
meshes, we retrain our models without the curvature 
consistency loss. As shown in Fig.  8, we can find that 
there are many visual artifacts on the watermarked 
meshed when training without the curvature consistency 
loss.

Performances on non‑template‑based datasets 
and the transferability discussion
In the above sections, we mainly discuss the perfor-
mance of the proposed method on template-based 3D 
meshes. In the actual scenario, we may need to embed 

the watermark into non-template-based meshes. To 
evaluate the proposed method on non-template-based 
datasets, we independently remesh each shape of Hand 
and Asiadragon dataset to 1024 vertices by Trimesh 
library (https://​trimsh.​org/). So that each dataset is made 
up of non-template-based meshes (They do not share a 
fixed topology). Then we retrain our network using each 
remeshed dataset. Meanwhile, using new dataset, we also 
retrain the network without the attack layers (labelled 
with † ). Besides, to test the transferability of our method, 
we also test our pre-trained model on the remeshed 
dataset, which is trained with original Hand dataset and 
Asiadragon dataset. For the sake of distinction, we use 

Fig. 7  Bit accuracy rate (%) under different attacks and intensities on Asiadragon (top) and Hand (bottom) dataset. Proposed (red), Proposed† (cyan, 
† denotes training without the attack layers), Bin Cho et al. (2007) (blue), L-M Bors and Luo (2012) (black), Laplacian Cayre et al. (2003) (green), MAPS 
(Liu et al. 2017) (orange) and SCKM (Lee et al. 2021) (purple) are showed

Fig. 8  The importance discussion of curvature consistency loss on Asiadragon (top) and Hand (bottom) dataset. a Original; b Proposed (w/ lcur ); c 
Proposed (w/o lcur ); d Proposed† (w/ lcur ); e Proposed† (w/o lcur)

https://trimsh.org/
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Model to denote the model trained on the remeshed 
dataset, and use Pre-Model to denote the model trained 
on the original dataset.

Table 2 shows the quantitative results. As our GCN is 
topology-agnostic, when trained with the remeshed data-
set, we can still get the similar performance on impercep-
tibility and robustness. We can get 93.25% of accuracy 
rate on remeshed Asiadragon dataset and 91.78% of 
accuracy rate on remeshed Hand dataset. And the visual 
quality can also be guaranteed as shown in Fig.  9. For 
Pre-Model, we can still guarantee comparable perfor-
mance when tested on remeshed datasets. There is still 
83.63% of accuracy rate on remeshed Asiadragon dataset 
and 83.00% of accuracy rate on remeshed Hand dataset. 
And in terms of MRMS, HD and lcur , the performance of 
Pre-Model is as similar as Model. In addition, we can find 
that the attack layers can help improve the accuracy both 
in Pre-Model and Model.

As shown in Fig.  10, we test the bit accuracy under 
each attack with different intensities on remeshed data-
sets. Under each attack, Pre-Model exhibits the similar 
curve property to Model, with about 10% of accuracy 
rate reduction. Pre-Model can keep more than 78% 
accuracy rate under rotation attack, and more than 75% 
accuracy rate under smoothing attack. That means the 
proposed method can also guarantee the transferabil-
ity of the pre-trained model on the another remeshed 
dataset.

Discussion: How does our network embed the watermark 
into the 3D mesh?
Different from traditional methods, we do not know how 
the network modifies the vertices and embeds the water-
mark into 3D meshes. Therefore, we explore to analyze 
the modification based on spatial domain and transform 
domain. For watermarked vertices and original vertices, 
we calculate the distances between them in the Euclid-
ean space. Then we color the original 3D mesh based on 
the l2 distance. As shown in Fig. 11, we can find that our 
network prefers to modify vertices on flatting areas, such 
as the wrist, yet the fingers have fewer modifications. We 
speculate that there are undulating curvatures in the fin-
ger areas, resulting in larger loss from modifications. So 
the network is trained to prefer to embed the watermark 
bit in relatively flatting areas.

Meanwhile, we perform Laplace-Beltrami operator on 
Hand dataset and calculate the mean power spectrum of 
3D meshes (Cayre et al. 2003). The residual power spec-
trum between watermarked meshes and original meshes 
is also calculated. In Fig.  12, low coefficients represent 
the principal components of the mesh, with higher power 
spectrum intensity. In the right figure, we find that low 
coefficients also have more residual power spectrum. 
That means the network prefers to modify the vertices on 
the principal components.

Fig. 9  Visual quality on remeshed Asiadragon (top two rows) and remeshed Hand (bottom two rows) dataset. a Original; b Model; c Model† ; d 
Pre-Model; e Pre-Model† . † denotes training without the attack layers, Model represents the model trained on the remeshed dataset, and Pre-Model 
represents the model trained on the original dataset



Page 12 of 14Wang et al. Cybersecurity            (2022) 5:24 

Limitations
Our experiments are limited in the digital domain and 
are conducted with several common attacks. To bet-
ter evaluate the proposed method, we need conduct the 
experiments in real-world scenarios, such as 3D printing-
scanning process (Hou et  al. 2017) and 3D-to-2D pro-
cess (Yoo et  al. 2021). In the future, we will extend our 
research to these scenarios.

Conclusion
In this paper, we propose the first deep learning-based 
method for the robust 3D mesh watermarking task. 
We propose a novel end-to-end 3D mesh watermark-
ing network, which can solve this task without manu-
ally designing algorithms. Attack layers can improve 
the robustness against corresponding attacks. In real 
applications, we can adaptively adjust our attack layers 

Fig. 10  Bit accuracy rate (%) under different attacks and intensities on remeshed Asiadragon (top) and remeshed Hand (bottom) dataset. Model 
(red), Model† (cyan), Pre-Model (blue) and Pre-Model† (black) are showed. † denotes training without the attack layers, Model represents the model 
trained on the remeshed dataset, and Pre-Model represents the model trained on the original dataset

Fig. 11  Colormaps of per vertex Euclidean modication produced on Hand dataset
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to meet the actual robustness requirement. For vis-
ual quality, we design the curvature consistency loss 
function to guarantee the surface smoothness. Exten-
sive experiments demonstrate the effectiveness of our 
framework and the superior performance of the pro-
posed method.
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