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Abstract 

Software-defined networking (SDN), a novel network paradigm, separates the control plane and data plane into dif-
ferent network equipment to realize the flexible control of network traffic. Its excellent programmability and global 
view present many new opportunities. DDoS detection under the SDN context is an important and challenging 
research field. Some previous works attempted to collect and analyze statistics related to flows, usually recorded in 
switches, to address DDoS threats. In contrast, other works applied machine learning-based solutions to identify DDoS 
and achieved promising results. Generally, most previous works need to periodically request flow rules or packets 
to obtain flow statistics or features to detect stealthy exceptions. Nevertheless, the request for flow rules is very 
time-consuming and CPU-consuming; moreover may congest the communication channel between the controller 
and the switches. Therefore, we present FORT, a lightweight DDoS detection scheme, which spreads the rule-based 
detection algorithm at edge switches and determines whether to start it by periodically retrieving the ports state. A 
time-series algorithm, ARIMA, is utilized to determine the port statistics adaptively, and an SVM algorithm is applied 
to detect whether a DDoS attack does occur. Representative experiments demonstrate that FORT can significantly 
reduce the controller load and provide a reliable detection accuracy. Referring to the false alarm rate of 1.24% in the 
comparison scheme, the false alarm rate of this scheme is only 0.039%, which significantly reduces the probability of 
false alarm. Besides, by introducing the alarm mechanism, this scheme can reduce the load of the southbound chan-
nel by more than 60% in the normal state.
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Introduction
Software-defined networking (SDN) is an innovative par-
adigm that draws lots of attention from both academia 
and industry (Yan et al. 2015). It decouples the data and 
control plane into separated devices to define traffic 
management regulation in the programmable form at the 
controller side. SDN can realize various applications such 
as route management, visualization, and traffic monitor-
ing based on its global network view. Hence it is widely 
used in IoT (Wu et al. 2018; Balasubramanian et al. 2021; 
Yin et al. 2018), cloud (Leng et al. 2019; Wang et al. 2015) 

and some other crucial networks. SDN brings consider-
able benefits in practice and presents many new oppor-
tunities for security research, such as DDoS detection 
under SDN Context. According to Ubale and Jain (2020), 
DDoS is one of the most critical security issues in the 
current SDN research field. It also concludes that SDN 
has very effective characteristics, including separation of 
the control plane from the data plane, global view of the 
network, the programmability of network, traffic analysis 
based on software, and dynamic network update policy, 
that benefit for defeating DDoS attacks. Compared with 
DDoS detection based on a traditional network that 
usually can only find exceptions at separate endpoints, 
DDoS detection based on SDN can utilize its global view 
to cooperate with all switches to detect attacks. We can 
track the attack clues from the attack source to the attack 
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target and synthesize their results, making our detection 
work more credible.

DDoS is a cyberattack where malicious users send 
flooding fake messages to a target with high frequency. 
As a result, it causes legitimate users could not access the 
service as usual. The report of NSFOCUS (2021) shows 
that the volume of DDoS attacks has greatly increased 
recently. With increasing concerns on DDoS, DDoS 
detection using SDN has attracted the attention of many 
researchers (Jianfeng et al. 2020). Various methods have 
been proposed subsequently. Some researchers focus on 
statistics -based methods that collect and analyze statis-
tics related to attack-free flows. If incoming flows do not 
comply with the behavioral profile of previous traffic, it is 
determined as malicious. These methods usually perform 
efficiently in detecting and mitigating DDoS attacks. 
However, some challenges might be faced on account 
that the specified thresholds usually cannot be adaptively 
adjusted (Eliyan and Di Pietro 2021).

As an alternative to the above statistics -based meth-
ods, some research focuses on machine learning-based 
algorithms to identify DDoS attacks. Support vec-
tor machines (SVM), neural networks (NN), and self-
organizing maps (SOM) are the most frequently used 
algorithms, and they usually perform well in accuracy 
and false-positive rate. However, these machine learn-
ing-based approaches may introduce challenges in con-
currently managing the SDN controller, and the cited 
machine learning algorithms, hence likely imposing some 
latency in handling the legitimate communications (Eli-
yan and Di Pietro 2021).

In addition to the challenges mentioned above, sta-
tistics -based methods and machine learning-based 
methods may also face the challenge of high resource 
consumption because both patterns of methods may 
require the periodical request of flow rules or packets. 
The periodical request means more precise and real-
time monitoring, while it increases the load of bandwidth 
between the controller and switches, controller memory, 
and controller CPU. In addition, most detection meth-
ods rely on fine-grained routing management (Zhao et al. 
2020), hence the number of flow rules requested will be 
huge, causing the process of transmitting and handling 
to be very inefficient. Although some work studied how 
to spread the load of measurement across the whole 
network (Sekar et  al. 2008; Chang et  al. 2011; Zhang 
2013d), they usually require switches with programmable 
capabilities.

This paper aims to address the problems of high 
resource consumption and inefficiency of existing 
DDoS detection methods in SDN. Thus, we propose 
a novel DDoS detection scheme named FORT. Unlike 

existing detection methods, FORT determines whether 
to trigger flow rule-based detection by observing the 
port statistic. Once the observed indicators exceed 
specified thresholds, FORT starts to locate the abnor-
mal port. It is worth noting that FORT implements sit-
uational awareness from both the attack source and the 
attack target, so the indicators need to be distinguished 
against different perspectives. However, according 
to the value of the indicators, it is easy to determine 
whether the abnormal port is the attack source or the 
attack target. After that, FORT only needs to awaken 
related switches and request the traffic related to the 
suspicious target or source. Generally, the main contri-
butions of this paper are summarized as follows: 

1.	 We propose a lightweight detection scheme that does 
not rely on periodical request of flow rules or packets 
as existing researches do. Specifically, FORT spreads 
the rule-based detection algorithm at edge switches 
and determines whether to start it by periodically 
retrieving the ports state. Compared with the request 
of flow rules, retrieving ports state costs much less 
resource and time. And spreading the detection algo-
rithm avoids the inefficiency of retrieving flow rules;

2.	 We give a quantitative description of the indicators 
of the port statistics through a time series algorithm, 
ARIMA. It helps the controller identify abnormal 
port and whether it belongs to the attack source or 
the attack target. Then, the controller can trigger the 
detection process of the switch to which the port 
belongs;

3.	 We propose a lightweight detection algorithm that 
detects attack events at the victim side and locates 
attack sources. Since we treat transmitted and 
received flow rules separately, it is trustworthy that 
our detection algorithms can detect attacks with 
good performance. Experiments show that the detec-
tion accuracy for multiple attack types are above 
97.26% from the victim side when idle-timeout 
equals 5, and FPR are only 0.039% if we comprehen-
sively consider the anomaly from the perspective of 
attacker side and victim side;

The rest of this paper is organized as follows. “Back-
ground and related work” section introduces DDoS 
detection’s background and related work under the 
SDN context. Then, “Motivation and system design” 
section describes our motivation and introduces the 
system design in detail. Subsequently, we validate the 
availability and performance of FORT in “Performance 
evaluation” section. Finally, we conclude this paper in 
“Conclusion” section.



Page 3 of 15Jia et al. Cybersecurity            (2022) 5:27 	

Background and related work
In this section, we first give a simple description of SDN 
and then review related work of DDoS detection under 
the SDN context.

Background
Typical SDN consists of a controller, some switches, and 
users as Fig. 1. The communication channel between the 
controller and switches is called the southbound chan-
nel. Its communication mode is specified by OpenFlow 
protocol (2021). OpenFlow allows a controller to instruct 
routing, request the port and flow statistics , and handle 
new-arrival packets. When a new packet of a flow arrives 
at a switch, this switch will trigger a packet-in packet and 
request the controller to install the matching rules. Then, 
the remaining packets of the flow will be directly handled 
by the rule. In this way, the controller owns global man-
agement of network traffic.

There are also two ways that the controller could pro-
actively monitor traffic statistics, port statistics request 
and flow statistics request, which is introduced in detail 
as the followings: 

1.	 port statistics request: is a way to get grim statistics . 
Each port of switches will measure packets and bytes 
transmitted and received. Due to the simplicity of 
stored information and the small number of ports, 
port statistics request is usually very efficient;

2.	 flow statistics request: is a way to get precise statistics 
. Each flow rule is defined with elements such as IP 
source, IP protocol, and TCP destination port. Further-
more, the flow rule counts the number of packets and 

bytes that match it. The time to request the flow rules is 
positively correlated with the number of flow rules.

In addition to traffic monitoring capability, SDN also 
supports topology monitoring capability, which main-
tains the topology of users, links, and switches. For exam-
ple, it could discover new hosts and locate their sites via 
packet-in messages embedded with an ARP payload. Fur-
thermore, the link information is maintained via LLDP 
packets. In these ways, the controller owns the global 
view of the SDN network.

Related work
Distributed denial of service (DDoS) is a severe threat 
to network security. Therefore, it is crucial to detect and 
mitigate DDoS in a timely considering that DDoS has 
destructive power on network infrastructures. Maninder 
et al. and Eliyan et al. presented a classification of DDoS 
detection under SDN context, namely statistics -based, 
machine learning-based methods (Singh and Bhandari 
2020; Eliyan and Di Pietro 2021). Moreover, they also cat-
egorize the DDoS methods by packet-based, flow-based, 
and packet-in based which are the three different ways to 
inspect the network traffic.

Statistics‑based methods
Statistics-based methods typically collect and analyze 
statistics related to attack-free flows. Some bench-
marks or indicators are converted from these statistics 
and used as traffic profiles. If incoming flows do not 

Fig. 1  Typical SDN
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comply with the benchmark profile, they will be deter-
mined malicious.

Dao et  al. (2015) proposed one such statistics -based 
method using the analysis result of a real-life dataset. They 
have implemented a table and placed it inside the control-
ler to track the source IP of incoming packets. For each 
unique IP address, the characteristics of DDoS addresses 
are to initiate less than k connections (in a constant dura-
tion) and to generate less than n packets per connection, 
where k is the average connections of “frequent” users and 
n is the minimum number of packets per connection. Like-
wise, Kalkan et al. (2018) proposed a joint entropy-based 
security scheme (JESS) to detect DDoS attacks. Specifi-
cally, the packet header information is collected to obtain 
the joint entropy benchmark. JESS decides whether DDoS 
happened by comparing the difference of joint entropy in 
the nominal period and suspicious period.

The above research mechanisms are based on packet 
inspection. This type of mechanism is necessary to 
check all packets for precise detection, even when the 
network is not attacked, which is very inefficient for 
real-time detection.

A solution to that is not inspecting packets but the 
statistical information stored in flow rules. Wang et  al. 
(2015) proposed to deploy their method at the edge 
switches and designed an entropy-based algorithm to 
perform lightweight anomaly detection. However, edge 
switches could not acquire a global view like controller, 
which means they hardly detect attack through another 
path. Furthermore, retrieving flow rule statistics periodi-
cally also cannot avoid inefficiency altogether. To improve 
it, Giotis et  al. (2014) combined flow rule request and 
sFlow together to reduce processing overhead in native 
flow rule statistics collection. Nevertheless, sampling 
using sFlow commonly imposes a high false-positive rate.

Another idea is inspecting the packet-in message. 
For example, You et  al. (2017), extract three types of 
entropy from the packet-in messages and perform 
real-time attack detection through confidence inter-
val. Nevertheless, packet-in messages only carry the 
information of new-arrival packets, which cannot suf-
ficiently reflect the overall traffic state.

Generally, the statistics -based methods have provided 
reliable solutions for DDoS detection in SDN. However, 
most of them need to request packets, flow rules, or 
packet-in messages periodically, even in a normal state, 
which costs many resources. Besides, statistics -based 
methods usually rely on fixed thresholds set empirically 
and do not meet the requirement of adaptation.

Machine learning‑based methods
Machine learning-based methods usually learn from 
a large set of data collected in advance to identify an 

attack and regular patterns. Then trained model will be 
used in practice and make decisions requiring no explicit 
instructions.

Typically, Braga et  al. (2010) proposed a lightweight 
approach, which requests flow rules statistics periodi-
cally and converts them to six prominent features, then 
the SOM algorithm is used to classify these samples. 
Likewise, Ye et al. (2018) extracted 6-tuple features from 
flow tables, and then the DDoS attack model was built by 
combining the SVM classification algorithms. Finally, Hu 
et al. (2017) acquire network traffic information through 
the SDN controller and sFlow agents. Then an entropy-
based method is used to measure network features, 
and the SVM classifier is applied to identify network 
anomalies.

As mentioned before, these methods all require peri-
odical flow rules requests, which is inefficient. Thus, 
machine learning-based methods also try to detect using 
packet-in messages. For example, Mehr and Ramamurthy 
(2019) measure the distribution of the source IP address, 
source port, destination IP address, destination port, and 
train the model with the SVM algorithm.

Differently, Xu and Liu (2016) tried to locate the vic-
tim and attacker. In their method, spatial adaptation is 
adopted to manage different flows. Precisely, coarse-
grained rules to monitor expected flows and fine-grained 
rules to monitor traffic with a high likelihood of under 
DDoS attack. Yang’s method inspires that the detection 
algorithm could only focus on the traffic going to the sus-
picious victim.

Generally, machine learning-based methods suc-
cessfully avoid empirical thresholds yet introduce new 
challenges. First, there are difficulty in concurrently man-
aging the SDN controller and the cited machine learning 
algorithms, hence likely imposing some latency in han-
dling the legitimate communications (Eliyan and Di Pie-
tro 2021). Second, flow rule-based methods still require 
frequent requests, and the alternative methods, for exam-
ple, packet-in-based methods, usually perform not well 
in detecting DDoS with real IP since it only requests the 
new-arrival packets.

Summary
In response to the harm of DDoS, effective detection 
methods are essential for protecting the network infra-
structures. Previous work of statistics -based methods 
usually is faced with the challenge of specified thresh-
olds. However, machine learning-based methods impose 
latency in handling legitimate traffic. In addition, from 
the perspective of feature source, detection methods 
under SDN context can be categorized as packet-based 
methods, flow rule-based methods, and packet-in-based 
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methods. Packet-based methods usually ask for too much 
resource; packet-in-based methods can only roughly 
reflect the current flow state, and yet flow rule-based 
methods costs medium resources and can provide a pre-
cise reflection of flow state, relatively.

Thus, FORT chooses the flow rule-based strategy to 
ensure reliable detection efficiency and accuracy. To 
further avoid its inefficiency in retrieving flow rules, we 
explore how to process flow statistics at the local switch. 
However, even if processed locally periodically, it will 
bring many unnecessary burdens to the switch. There-
fore, a trigger mechanism, which instructs which switch 
and when to start the process, needs to be established.

Motivation and system design
In this section, we describe our DDoS detection scheme 
in detail. We first discuss the motivation for this paper, 
followed by the system design and details.

Motivation
Since we do not want to request flow rules frequently, 
deploying the detection algorithm locally at the edge 
switches is necessary. However, if each switch peri-
odically retrieves flow rules for detection, it will cause 
much unnecessary waste of resources. Hence, a light-
weight trigger mechanism is necessary. For example, 
the controller could awaken the related switch and start 
the subsequent detection process when the indicators 
are abnormal. Luckily, SDN supports the fast and accu-
rate request of port statistics . Each switch port in SDN 
is equipped with a meter, which stores the received and 
transmitted packets and bytes. These records can roughly 
reflect the current flow condition. Most importantly, 
retrieving the port statistics is very efficient because the 
information saved is rough, and the number of ports is 
relatively tiny. Therefore, the port monitoring proce-
dure can quickly and precisely identify a suspicious traf-
fic anomaly and distinguish whether the abnormal port 
belongs to the attack source or the attack target.

Once indicators of port statistics exceed specified 
thresholds, subsequent DDoS detection is triggered. 
Controllers will instantly inform the switch related to the 
abnormal port, and the switch will retrieve flow rules and 
extract corresponding features. These features are then 
used as inputs to the final detection algorithms. Because 
the characteristics obtained by coarse-grained monitor-
ing are very rough, there may be unexpected alarms for 
events such as a flash event, so fine-grained monitoring 
and detection is essential (Wang et al. 2018).

It is worth noting that in the procedure of port moni-
toring, indicators for judging abnormal flow are expected 
to be adaptive. Thus, we use the time series model to 

predict the future state value. Then, by comparing the dif-
ference between the predicted value and the actual value, 
we can check the traffic anomaly. Furthermore, since the 
time series model uses the correlation between the cur-
rent state and historical states, the value of the next stage 
always maintains stationary with the values of the previ-
ous stages; hence it can dynamically adapt to the slight 
flow fluctuation.

System design
Generally, FORT is constituted with two procedures: 
port monitoring, DDoS detection as Fig. 2. Specifically, a 
port statistics collector starts to work periodically in the 
port monitoring procedure, then volume and asymmetri-
cal indicators will be extracted. An ARIMA algorithm is 
subsequently used to determine anomaly and whether 
the abnormal port belongs to the attack source or target.

Once the anomaly is confirmed, the controller will 
inform related switches and initiate its DDoS detection 
procedure. Subsequently, the switch collects suspicious 
flow rules corresponding with the abnormal port and 
extracts distinguished features. Then, based on the pre-
vious determination of attack source or target, these fea-
tures will be sent to the corresponding algorithms. We 
will describe these procedures in detail in the following.

Port monitoring
This procedure consists of a periodical port statistics 
collection, where FORT requests the necessary informa-
tion to create a traffic profile. Mainly, port statistics are 
gathered with a message Onp_Port_Stats and then deliv-
ered to get the indicators of volume and asymmetry. As 
we know, a typical DDoS commonly shares two types of 
anomaly: volume anomaly and asymmetry anomaly. The 
former refers to the abnormal increase of network traffic, 
and the latter refers to the extreme imbalance of source 
IP, destination IP, and volume in upstream and down-
stream traffic. We describe how they are obtained in the 
following parts.

Port statistics collection
Port statistics can be more quickly and efficiently 
obtained than flow table statistics for two reasons. First, 
switches usually have fewer ports than rules, especially 
in a fine-grained managed network where flow rules are 
exact-match defined. Second, the statistics recorded by 
ports are much less than the statistics recorded by flow 
rules. Thus, FORT chooses to request port statistics to 
avoid time-consuming and CPU-consuming.

Two types of rwa data are collected, including the 
number of received packets and transmitted packets. As 
mentioned earlier, FORT will extract features from the 



Page 6 of 15Jia et al. Cybersecurity            (2022) 5:27 

perspectives of volume and asymmetry. Since the nor-
mal network interaction usually fluctuates with time, it 
is impossible to specify a fixed threshold for the scale of 
network traffic. In addition, intuitively, we believe that 
the current traffic is related to the traffic in the previous 
periods. Therefore, we introduce a time series predic-
tion algorithm, ARIMA, to determine the volume and 
asymmetrical anomaly. The components in detail will be 
described in section “ARIMA” .

ARIMA
The ARIMA algorithm is a trend prediction algorithm 
based on time series analysis. It is to establish the rela-
tionship between current data and historical values and 
realize a prediction of a future state. The ARIMA model 
must meet the requirements of stationarity, and autocor-
relation (Perraudin and Vandergheynst 2017). The work 
of Box et  al. (2015) and Cortez et  al. (2006) has proven 
that time series analysis is available for traffic forecast, 
and Fouladi et al. (2020) show that it is effective in SDN 
and DDoS detection.

The ARIMA algorithm is characterized by a three-tuple 
< p, d, q > , where p is the number of auto-regressive 
(AR) terms, d is the order of differences required for sta-
tionarity, and q is the number of moving average (MA) 
or lagged forecast errors terms. Let Xt be a stationary 
data series, and a typical ARIMA model is represented as 
Eq. 1:

where ǫt denotes the forecast errors in the AR model, 
which is introduced in ARIMA to eliminate random 
fluctuations, c is a constant, φi and θi are the coefficient 
waiting to be trained. If the time-series data Xt is not sta-
tionary, a difference method should be applied to reduce 
the fluctuation of original data. Expressed in math, the 
first-order difference is Ŵt = Xt − Xt−1 . The second-
order difference is the same operation as the first-order 
difference, while the data it processes is Ŵt . ADF unit root 
test is generally used to check the stationarity of time 
series data. Generally, when the t-statistics is smaller 
than the critical value 1% of any confidence, time-series 
data is supposed to be stationary.

Since the controller could save the historical data of 
different ports, we can easily use the ARIMA algorithm 
to predict the traffic in the next stage. However, if a 
DDoS occurs, the network traffic to a victim will increase 
sharply, making the ARIMA model prediction invalid, 
i.e., the prediction error will be highly exaggerated. Based 
on this, FORT can precisely detect the volume and asym-
metry anomaly.

Indicators selection
To do a reliable alarm, we first need to select proper indi-
cators. As previously stated, FORT will capture the flow 

(1)Xt = c +

p

i=1

φiXt−i + ǫt −

q

i=1

θiǫt−i,

Fig. 2  System design
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volume and the asymmetry indicators. {Rt,i} denotes the 
time series of the number of received packets, {Tt,i} 
denotes the time series of the number of transmitted 
packets and {�t,i} denotes the time series of {Tt,i

Rt,i
} at port i, 

then the indicators can be expressed as the followings: 

1.	 The normalized error of received packets (�Rt,i) : 
describes the normalized error between the actual 
received packets and predicted received packets. 
Considering that the scale of traffic varies greatly in 
different scenarios, this value will be normalized: 

2.	 The normalized error of transimitted packets (�Tt,i) : 
describes the normalized error between the actual 
transimitted packets and predicted transimitted 
packets. Considering that the scale of traffic varies 
greatly in different scenarios, this value will be nor-
malized: 

3.	 The error of asymetrical ratio (��t,i) : describes the 
error between the actual ratio and the predicted ratio. 
Here, ratios mean the ratio of traffic transmitted and 
received by the ports. In order to better quantify the 
ratio difference when it is less than 1, a logarithmic 
function is used: 

When a DDoS attack happens, compared to the incom-
ing packets, packets originating from a victim would be 
much less (Xu and Liu 2016), thus from the perspective of 
edge switches at the victim side, received packets would 
be much less than transmitted packets, i.e., the ratio �t,i 
increases unpredictably. Further, we can draw a conclu-
sion that �Rt,i and ��t,i will suddenly become larger. 
Once they exceed defined thresholds �R0 and ��upper 
respectively, FORT determines that there is a traffic 
anomaly and concludes the abnormal port is located 
near the victim. The same analysis can be used for the 
attacker side, but �Tt,i and ��t,i need to be noticed this 
time. If �Tt,i exceeds �T0 and ��t,i is below the lower 
bound ��lower , we determine something abnormal has 
happened. The above thresholds can be selected accord-
ing to the requirement of the scenarios. If DDoS needs 
to be strictly supervised, the thresholds should be strictly 
defined; the threshold can be loosely defined if the ven-
dor aims to reduce the false alarm rate first.

(2)�Rt,i =
Rt,i − R̂t,i

R̂t,i

,

(3)�Tt,i =
Tt,i − T̂t,i

T̂t,i

,

(4)��t,i = ln �t,i − ln �̂t,i.

DDoS detection
In the procedure of DDoS detection, features will be 
extracted from flow table statistics. Since only traffic 
related to the suspicious victim or attacker is necessary 
for detection, we only need to request flow rules related 
to the abnormal port.

Features
From the perspective of a port such as p, we define 
transmitted flows and received flows. That is, transmit-
ted flows of p means flows sent from the port p, and 
received flows of p means the flows received by the port 
p. Furthermore, the flow rules associated with trans-
mitted flows are called transmitted rules T and the flow 
rules associated with received flows are called received 
rules R . Their source headers (IP_src,Port_src,Protocol) 
are denoted by Tsrc or Rsrc . Tdst or Rdst have similar defi-
nitions, yet it is worth noting that only flow rules that 
match more than two packets will be recorded in Tdst 
or Rdst . Because according to Dao et  al. (2015), most of 
the normal traffic includes at least 3 packets. Ten repre-
sentative features are extracted from these transmitted 
rules and received rules of the abnormal port captured 
at the port monitoring procedure. They are expressed as 
follows:

•	 Median Packets per Transmitted Flow (MPTF):
	 One of the main characteristics of DDoS attacks is 

IP spoofing, which prevents the task of tracing the 
attacker’s source. This method is widely used in SYN 
flood, UDP flood, and ACK flood, so for the port near 
the victim side, usually median packets per transmit-
ted flow will decrease sharply in a DDoS; In contrast, 
the median number of packets per transmitted flow 
in a normal state is larger than 5 according to Dao 
et  al. (2015); Yet for the port near attacker side, the 
conclusion is not tenable. In order to acquire this fea-
ture, we sort the flows in ascending order based on 
the number of packets per flow. Then the median is 
computed;

•	 Median Bytes per Transmitted Flow (MBTF):
	 Similar to the median of packets per flow, for the port 

near the victim side, the median of bytes per trans-
mitted flow will decrease sharply owing to IP spoof-
ing technique; Research shows over 90% of attack 
packets are under 100 bytes, while normal packets 
vary between 100 and 1,200 bytes (Doshi et al. 2018). 
Nevertheless, the conclusion is not tenable for the 
port near the attacker side. The calculation process is 
similar to that of MPTF;
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•	 Median Duration per Transmitted Flow (MDTF):
	 Flooding DDoS usually creates many rules, and since 

the attacker has no motivation to establish regular 
interactive communication with the victim, the dura-
tion of transmitted flows is usually relatively short 
for the port near the victim side. However, the con-
clusion is not tenable for the port near the attacker’s 
side. The calculation process is similar to that of 
MPTF;

•	 Median Packets per Received Flow (MPRF):
	 Similar analysis as MPTF;
•	 Median Bytes per Received Flow (MBRF):
	 Similar analysis as MBTF;
•	 Median Duration per Received Flow (MDRF):
	 Similar analysis as MDTF;
•	 Ratio of Transmitted Flow (RTF):
	 This feature reflects the proportion of transmitted 

flows to all flows. As it is abnormally high or low, 
DDoS is likely to occur. Commonly, for the port near 
the victim side, this value closes to 1, yet for the port 
near the attacker side, this value closes to 0;

•	 Ratio of Transmitted Packets (RTP):
	 This feature reflects the proportion of transmitted 

packets to all packets. As it is abnormally high or low, 
DDoS is likely to occur. Commonly, for the port near 
the victim side, this value closes to 1, yet for the port 
near the attacker side, this value closes to 0;

•	 Ratio of Successful Request (RSR):
	 The terminal communicates with the outside through 

the bound port. The ratio of successful requests 
reflects the probability that the terminal successfully 
establishes a connection with the outside, which is 
a very suitable indicator of DDoS. Due to the source 
IP forgery technology, most of the requests from the 
attacker will not get a response. Thus, this ratio will 
be minimal for the port near the attacker side. How-
ever, it may not happen for a port near the victim’s 
side or in a normal state. The value is computed as 
Eq. 5: 

•	 Ratio of Successful Access (RSA):
	 Each switch port is bound to one or more terminals; 

the ratio of successful access reflects the probability 
that these terminals are successfully accessed from 
outside. Due to the limitation of victim connection 
resources and the source IP forgery technology, the 
accessibility in typical DDoS scenarios is relatively 
poor. Thus, this ratio will be minimal for the port 
near the victim side. Nevertheless, it may not happen 
for a port near the attacker’s side or in a normal state. 
For an attack like SYN DDoS, illegal access may also 

(5)RSR =
|Rsrc

⋂
Tdst |

|Rsrc|

trigger responsive packets. However, the connection 
cannot be completely established due to the source 
IP forgery technology, so the number of packets in 
the communication flow is minimal. When we calcu-
late RSA, we do not involve these flows, which can 
correctly reflect the proportion of legitimate flows. 
The value is computed as Eq. 6: 

Other works usually include the entropy of the source IP 
and the entropy of the destination IP or their variants, 
which FORT does not use on account that we only study 
the flow related with abnormal port; these characteristics 
are no longer applicable. For example, the entropy of the 
source IP will be relatively large, whether it is in the nor-
mal state or not.

Idle‑timeout
Timeout is a crucial property defined in a flow entry. 
There are idle-timeout and hard-timeout. Idle-timeout 
refers to the idle connection state. If no packet match-
ing the rule is received after the specified time, the rule 
will be recycled. Furthermore, hard-timeout refers to 
the most extended lifetime of a flow rule, regardless of 
whether matching packets are continuously received. 
Therefore, the timeout value positively correlates with 
the number of flow rules. Conversely, the packet-in fre-
quency negatively correlates with the timeout value, 
considering that a small value means switches will fre-
quently trigger packet-in messages. Due to the existence 
of idle-timeout, hard-timeout is usually set very large, 
so we only need to consider the setting of idle-timeout. 
To configure a “good” idle-timeout, we need to find a 
trade-off between packet-in frequency and the number of 
flow rules. In addition, the median duration per flow we 
extracted is also closely related to its value. In order to 
distinguish attack traffic from legitimate traffic, we tend 
to use a larger idle-timeout since a more significant value 
usually reflects the current flow state more stably.

Classifiers
As mentioned above, our classifiers module was imple-
mented using the Support vector machine (SVM). SVM 
can find the most apparent hyperplane to classify the data 
in the high-dimensional plane. It is simple, usable, and 
robust, therefore, widely used in DDoS detection under 
SDN context (Eliyan and Di Pietro 2021). The features at 
different sides (victim and attacker) will be classified and 
tested with different classifiers in our implementation. 
Since some features have nonlinear correlation, our data 
are linearly nonseparable; thus, an “rbf” kernel function 
is finally chosen.

(6)RSA =
|Rdst

⋂
Tsrc|

|Tsrc|
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Performance evaluation
Several experiments are carried out to validate the fea-
sibility and efficiency of FORT. First, we verify the avail-
ability of ARIMA. Then, packet numbers and asymmetry 
ratio are collected to compare their prediction values. 
Then we verify the impact of idle-timeout and compare 
the SDN resource consumption when configuring differ-
ent timeout values. Finally, we replay real-life background 
traffic and generate multiple types of DDoS attacks in a 
simulated SDN scenario so as to judiciously examine the 
performance of our detection algorithm and compare our 
scheme with the existing scheme of Ye et al. (2018) which 
also adopt the SVM classifier.

Platform and dataset
Our SDN environment is based on Mininet, a commonly 
used network simulation platform, which supports net-
work topology construction with a graphical interface. 
In addition, RYU, a commercial switch developed on 
python, is integrated as a remote SDN controller. The 
experiment platform is run on an Ubuntu PC with 8GB 
RAM and Intel Core i7-8550U 2.00 GHz CPU.

Figure  3 depicts the topology used for these experi-
ments. The topology is the same version of Braga et  al. 
(2010). Precisely, it consists of three networks where bot-
net lurks in Network 2, and the attack target is Network 
1.

To simulate the regular network activity, the public 
datasets from MAWI (Working Group Traffic Archive) 
(2021) are acquired. MAWILab works on network traf-
fic measurement, analysis, evaluation, and verification 
in the long term on the global Internet. Part of the data 
collected on June 20 and June 17, 2020, is utilized to gen-
erate background traffic in our experiments. Since we 
did not modify all the IP addresses in the dataset, the 
replayed traffic can still represent the normal traffic state. 
Moreover, a large-scale topology is successfully simulated 
in practice even if we built a small topology.

To simulate some types of DDoS, the public datasets 
from CIC DDoS (Sharafaldin et  al. 2019) are acquired. 
The taxonomy of DDoS attacks is defined in terms of 
reflection-based and exploitation-based attacks. This 
dataset incorporated representative reflective-based 
attacks and exploitation-based attacks, such as PortMap, 
NetBIOS, LDAP, MSSQL, NTP, DNS, SNMP, SYN flood, 
UDP flood, and UDP-Lag. By configuring the parameters 
of TcpReplay, we can easily customize DDoS of different 
types and scales.

Availability of ARIMA
To verify the availability of ARIMA, we deploy a port sta-
tistics collector which requests port statistics every 3  s. 
Then, the ratio of packets transmitted and received and 
the number of packets by ports are calculated and used 
as the input of ARIMA. Three indicators over time are 
shown in Fig. 4, which are depicted by blue lines. It was 

Fig. 3  Testing scenario’s topology
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observed that they are not stationary; thus, the first-order 
difference is required. We choose the “historical” 50 data 
as the training dataset. Every time the “current” data is 
predicted, the actual “current” data is added in the “his-
torical” datasets until no data is left. The comparison 
of actual and predicted values are also shown in Fig.  4, 
where the red lines represent the predicted values.

As can be seen from the figure, the trend of the pre-
dicted line is very consistent with that of the actual line. 
Thus, we believe ARIMA could make a good prediction 
of the “current” condition from the historical record. Fur-
thermore, the predicted error could be used as an indica-
tor to determine anomalous traffic.

Impact of timeout
To verify the impact of the timeout, we count the number 
of packet-in messages and flow rules consumed every 5 s 
with five timeouts: 1 s, 5 s,10 s,15 s, and 30 s. Results are 
given in Fig. 5.

Figure  5a depicts the number of packet-in messages 
over time with different idle-timeout values. We can 
see that the five lines are jagged and almost inseparable, 
and even the fluctuation trend is almost synchronous. 
It means, when idle-timeout is above 1, the number 
of packet-in messages is not affected by idle-timeout. 

This is because the interval between adjacent packets 
of the same flow is less than 1 s. The same analysis pro-
cess could be made about the Fig.  5b. However, unlike 
the number of packet-in messages, the flow rules show 
an obvious hierarchy. The line with a high idle-timeout 
is obviously above the low idle-timeout. It proves that 
idle-timeout greatly impacts the number of flow rules. 
According to the above conclusion, we tend to config-
ure a small idle-timeout to save the resource. However, 
it cannot be ignored that idle timeout may also affect the 
detection effect. Intuitively, a larger value may perform 
better because it could precisely reflect the traffic state 
for a longer time. It will be verified at the next stage.

Performance of detection
Then, the performance of our detection mechanism 
was evaluated through a simulated DDoS attack. As 
with conventional DDoS attacks, a victim is selected 
in advance, and we generate DDoS traffic through a 
famous tool, hping3 (Sanfilippo 2021) or replaying 
public datasets. Table 1 presents the generated attacks 
types and their fundamental attributes, including attack 
duration, packet size, and attack rate in the train-
ing procedure, where n× in the attribute represents 
n times of regular traffic. According to the statistics 

Fig. 4  Comparison between predicted values and actual values
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of the selected victim, the benchmark packet rate is 
1000 pkts/s.

In our experiment, we refer to the work of Kalkan 
et al. (2018) and set the attack rate to 1-3 times that of 
regular traffic.

In order to obtain training and test data, we capture 
traffic both in the legitimate phase and attack phase. As 
a result, we collected 14795 samples in the attack phase 
and 12682 samples in the legitimate phase for the train-
ing dataset. In addition, we collect samples according to 
the attack types and attack rates for the testing dataset.

It is worth noting that when capturing training and 
testing samples, the time interval for the detection loop 

was set to 3  s, which is the same as the work of Braga 
et al. (2010). However, the detection loop will only work 
in typical conditions after a port reports an anomalous 
alarm. This design is to minimize access to flow rule sta-
tistics to decrease the burden of the controller.

Performance metrics
The performance of our detection algorithm could be 
evaluated through false-positive rate (FPR), accuracy 
(ACC​), recall rate(RR), F1 score and time efficiency 
based metrics, computed using Eqs.  7, 8 and 9 respec-
tively, where TP is the number of attack logs classified as 
attacks, and TN is the number of legitimate logs classified 

Fig. 5  The number of flow rules and packet-in messages with different idle-timeout values

Table 1  Attack types and attributes

Attack types Attributes

SYN Flood DDoS (generator: hping3, packets size: 200, attack rate: 1 ×)

SYN Flood DDoS (generator: hping3, packets size: 400, attack rate: 1 ×)

UDP Flood DDoS (generator: hping3, packets size: 1024, attack rate: 2 ×)

DNS Amplification DDoS (generator: tcpreplay, attack rate: 3 ×)

SSDP Amplication DDoS (generator: tcpreplay, attack rate: 3 ×)

ACK Flood DDoS (generator: hping3, packets size: 200, attack rate: 1 ×)

ICMP Flood DDoS (generator: hping3, packets size: 32, attack rate: 2 ×)
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as legitimate. Conversely, FP is the number of legitimate 
logs classified as attacks. Furthermore, FN is the number 
of attack logs classified as legitimate.

FPR is a critical indicator because it represents the pro-
portion of legitimate traffic identified as malicious traffic 
and discarded:

ACC​ is a typical metric to determine whether the classifi-
cation results are reliable:

RR aims to measure the probability that an attack is cor-
rectly identified. Since FORT proposes to monitor the 
state of ports selectively, it is essential to check if some 
attacks are missed:

F1 score, which is defined as the harmonic average of 
precision rate and recall rate, aims to measure the avail-
ability of the classification model:

Experiments results
This part describes the performance results according to 
the metrics defined above. In order to reach a convincing 
conclusion, we first elaborate a discussion on the results 
of different idle-timeout values, and the detection results 
for different attack types are taken out separately for 
comparison. Then we extend our analysis with different 
attack rates. Finally, we discussed the FPR and the neces-
sity of distinguishing transmitted and received traffic.

(7)FPR =
FP

FP + TN

(8)ACC =
(TP + TN )

TP + TN + FP + FN

(9)RR =
TP

TP + FN

(10)F1 = 2 ·
Precision · Recall

Precision+ Recall

Different idle‑time values  We configure the idle-timeout 
with different values, and a set of experiments are taken. 
First, typical DDoS types are chosen to verify the accuracy 
of our algorithm. Ye et  al. (2018) also use SVM as their 
classifier, but they select different features. We repro-
duced their work and compared the results with FORT 
as follows.

Different from Ye et  al. (2018), we detect DDoS from 
both the attacker side and victim side. Thus accuracy 
rates and F1 scores are also acquired from both sides. 
From the results in Table  2, we find that idle-timeout 
could affect detection effectiveness. Obviously, when 
idle-timeout equals 1  s, the detection accuracy and F1 
score is worst in FORT and Ye’s scheme. Through the 
analysis of MAWI data, we find that even the normal 
network flow includes many scanning packets or error 
packets. These packets will seriously affect the effective-
ness of detection. If the idle-timeout is too small, the flow 
rule cannot reflect the traffic state for a long time. If the 
influence of scanning packets and error packets is super-
imposed, it will significantly interfere with the detection 
results. Also, for this reason, FORT performs better than 
Ye et al. (2018). Because we exclude the flow containing 
only one or two packets when extracting RSA and RSR 
features, we can more accurately reflect the asymmetry 
of traffic.

Different attack rates  We generate typical DDoS with 
different attack rates, and the flow rule is defined with a 
fixed idle-timeout value. The detection results of these 
DDoS are shown in Table 3:

From the results in Table 3, we can find that the detec-
tion accuracy tends to be improved with the increase of 
attack rate, which is consistent with our intuition since 
attacks with higher rates usually lead to more apparent 
anomalies both on the attacker side and the victim side. 
It is worth noting that an SSDP amplification attack is 
not easy to detect when the attack rate is relatively low. 
After analyzing the CIC DDoS 2019 dataset, it is found 
that only one host launches the SSDP amplification 

Table 2  Performance with different idle-timeout values

Idle-timeout SYN Flood
DDoS

UDP Flood
DDoS

SSDP Amplification
DDoS

1 5 10 1 5 10 1 5 10

ACC,F1
(FORT,Victim)

95.2%,
96.1%

97.26%,
97.17%

100%,
100%

97.64%,
97.23%

100%,
100%

100%,
100%

95.2%,
94.93%

97.9%,
97.83%

98.43%,
98.27%

ACC,F1
(FORT,Attacker)

95.31%,
95.12%

97.54%,
98.11%

98.72%,
98.65%

98.5%,
98.61%

100%,
100%

100%,
100%

94.76%,
95.12%

98.46%,
98.51%

98.75%,
98.53%

ACC,F1 (Ye et al. 2018) 93.42%,
94.12%

96.32%,
96.23%

98.72%,
97.65%

98.43%,
98.46%

100%,
100%

100%,
100%

91.54%,
93.23%

99.48%,
98.71%

96.23%,
96.11%
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attack, and the strategy of source IP randomization has 
not been applied. Moreover, compared with the attack 
generated by hping3, the flow in CIC DDoS 2019 usually 
contains multiple packets. Therefore, the interactive fea-
tures such as RSA, RSR, and the pair-flow ratio in Ye et al. 
(2018) are no longer representative when the attack rate 
is low. As the attack rate increases, the detection accu-
racy and F1 score improves significantly. In most situa-
tions, FORT performs better than Ye et al. (2018) for two 
reasons. First, the feature used by FORT to reflect asym-
metry is more precise since we exclude the flow contain-
ing only one or two packets when computing RSA and 
RSR; Second, we separate the transmitted and received 
rules so that we can get indicators RTF and RTP. With 
the increase of attack traffic, RTF and RTP will increase 
abnormally. This is an obvious sign of DDoS.

False positive rate (FPR)  The false-positive rate is a cru-
cial evaluation criterion for DDoS detection since a high 
FPR may trigger a mistake mitigation process, which influ-
ences the regular interaction between servers and clients. 
To acquire the FPR, another part of the legitimate dataset 
is replayed, and we only collect the legitimate samples. To 
save the resource of SDN, the idle-timeout is set as 5  s. 
The corresponding FPR are 0.23% and 0.17% respectively 
from the victim and attacker sides’ classifiers. Moreover, 
it is surprising that if we comprehensively consider the 
results of classifiers for the victim side and attacker side, 
that is, when the attacker and victim determine the excep-
tion at the same time, we think an attack occurs, then 
the FPR is decreased to only 0.039%, which is a negligi-

ble probability. In comparison, the FPR of Ye’s method is 
1.24%. Through the analysis of features, it is found that 
all features related to proportion are usually stable, while 
indicators related to quantity sometimes vary greatly. For 
example, the speed of source IP and flow rules selected by 
Ye et al. (2018). Therefore, the occurrence of flash events 
increases its false-positive rate.

Recall rate (RR)  The recall rate is crucial since FORT 
proposes to monitor the state of ports selectively. The 
recall rate in the ARIMA procedure matters because 
FORT relies on monitoring the state of ports to decrease 
the load. A high RR means that most of the attacks are 
identified.

To acquire the RR, we launched DDoS attacks peri-
odically and monitored the port at the victim side in 
real-time. Specifically, each attack lasts for 5  s, and 
a new round of attacks will be launched 10  s after the 
end of the attack. The attack traffic is twice the regular 
traffic. Finally, we obtained 3000 samples. The normal-
ized error of the actual value and the predicted value is 
highly correlated with RR as depicted in , so we defined 
multiple thresholds. The results of RR are shown in 
Table 4.

As we think, the recall rate is highly correlated with 
the threshold. Therefore, in order to improve the recall 
rate, we should set a relatively loose value. Specifically, 
�Tt,i and ��t,i should be relatively small, but this will 
lead to a high false-positive rate. Generally, a compre-
hensive trade-off is needed to select the threshold.

Table 3  Performance with different attack rates

Idle-timeout = 5

Attack-Rate SYN Flood
DDoS

UDP Flood
DDoS

SSDP Amplification
DDoS

1× 2× 3× 1× 2× 3× 1× 2× 3×

ACC,F1
(FORT,Victim)

97.2%,
97.31%

97.26%,
97.17%

97.83%,
97.95%

98.75%,
98.23%

100%,
100%

100%,
100%

88.43%,
90.76%

97.9%,
97.83%

98.63%,
98.86%

ACC,F1
(FORT,Attacker)

97.2%,
96.89%

97.54%,
98.11%

98.41%,
98.27%

98.65%,
98.73%

100%,
100%

100%,
100%

87.16%,
90.58%

98.46%,
98.51%

98.21%,
98.11%

ACC,F1 (Ye et al. 2018) 95.26%,
95.23%

96.32%,
96.23%

96.4%,
96.78%

98.13%,
97.98%

100%,
100%

100%,
100%

76.03%,
80.18%

99.48%,
98.71%

97.53%,
97.41%

Table 4  Recall Rate with different thresholds

�Rt ,i 1 1 1 1 1 1

�Tt ,i 1 1.2 1.4 1.6 1.8 2

��t ,i 0.2 0.4 0.6 0.8 1.0 1.1

RR 1 1 1 0.93 0.83 0.76
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The time efficiency of FORT  Time efficiency is an essen-
tial concern in the existing methods based on flow rule 
statistics. Therefore, our method adopts an early warn-
ing through port monitoring and only requests flow rules 
related to the abnormal port to reduce the detection cost. 
It is found that the time cost from port statistics collection 
to ARIMA detection is only 0.7 s. While Ye et al. (2018) 
performs periodic SVM detection, it takes 1.5  s. There-
fore, in the normal state, FORT can greatly reduce the 
time-consuming.

If DDoS attacks the network, further attack detection 
is required in addition to port monitoring. It is neces-
sary to obtain the flow rules of the related switch; From 
the result in Table 5, if we launch a 2× SYN DDoS attack, 
FORT takes 4.13  s to finish the complete detection. 
Comparatively, the time cost of Ye et al. (2018) has also 
increased since the bandwidth is congested and the num-
ber of flow rules surges; thus, it averagely takes 4.04  s. 
From the results, the time-consuming difference between 
the two methods is not much. Considering that the time 
of the network in the normal state is much longer than 
that of being attacked, FORT is very efficient.

The necessity of  distinguishing transmitted and  received 
traffic  In contrast to Ye et  al. (2018) and Braga et  al. 
(2010), we distinguish transmitted and received traffic 
and rules, which enables us to obtain features such as RTF 
and RTP. To prove the necessity of this distinguishing, we 
delete them and replace RSA, and RSR with the percent-
age of pair-flows defined in Ye et al. (2018) and Braga et al. 
(2010), which denotes the ratio of successful sessions. The 
idle-timeout is set as 5 s. We noticed the ACC​ for DNS 
amplification DDoS decreased to 47.25% and 47.83, and 
the FPR for benign samples decreased to 9.4% and 9.1%. 
The detection for DNS amplification DDoS failed almost 
completely. After analyzing the data set, it is found that 
only relatively few flows are generated in it. Each flow 
includes many packets; thus, it can also successfully lead to 
bandwidth flooding. There will be no significant increase 
in pair-flows since only a few attack flows are recorded in 
the related switch. If we do not distinguish transmitted 
and received rules, it will be challenging to fully acquire 
the anomaly of asymmetry.

Conclusion
In this paper, we studied how to use the function of SDN 
to detect DDoS. Our method proposed a flow rule-based 
detection. Periodical port monitoring is introduced to 
avoid the frequent request of flow rules. It observes the 
port statistics based on the ARIMA algorithm; the sub-
sequent DDoS detection module works once indica-
tors exceed specified thresholds. Since the states of the 
attacker and victim sides are different, our method can 
perceive attacks from the perspective of both. We dem-
onstrated that the ARIMA is available in SDN scenarios 
and our detection methods are highly reliable through 
simulation tests. The detection of multiple attack types 
and untrained new attack types proves it. Further, we 
plan to distinguish attack traffic and legitimate traffic 
in the future to defend the DDoS and protect legitimate 
communication concurrently.
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Table 5  Time efficiency with different attack rates

Idle-timeout = 5

Attack-Rate SYN Flood
DDoS

UDP Flood
DDoS

SSDP Amplification
DDoS

1× 2× 3× 1× 2× 3× 1× 2× 3×

FORT 3.85 s 4.13 s 4.32 s 3.92 s 4.23 s 4.28 s 3.26 s 3.94 s 4.32 s

(Ye et al. 2018) 3.54 s 4.04 s 4.21 s 3.56 s 4.13 s 4.31 s 3.07 s 3.67 s 4.19 s
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