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Abstract 

The traffic encryption brings new challenges to the identification of unknown encrypted traffic. Currently, machine 
learning is the most commonly used encrypted traffic recognization technology, but this method relies on expensive 
prior label information. Therefore, we propose a subspace clustering via graph auto-encoder network (SCGAE) to rec-
ognize unknown applications without prior label information. The SCGAE adopts a graph encoder-decoder structure, 
which can comprehensively utilize the feature and structure information to extract discriminative embedding repre-
sentation. Additionally, the self-supervised module is introduced, which use the clustering labels acts as a supervisor 
to guide the learning of the graph encoder-decoder module. Finally, we obtain the self-expression coefficient matrix 
through the self-expression module and map it to the subspace for clustering. The results show that SCGAE has better 
performance than all benchmark models in unknown encrypted traffic recognization.
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Introduction
The development of Internet technology not only gives 
rise to an endless stream of network protocols, but also 
makes a variety of Internet applications show explo-
sive growth. While various network applications on the 
Internet provide users with convenient services, they 
also bring security risks to the network. For example, 
user information transmitted on the network is at risk 
of being illegally monitored, hijacked, stolen, and modi-
fied. Encryption technology emerged in the context of 
ensuring network security, providing Internet users with 
anonymity and protecting themselves from network sur-
veillance systems, and is widely used in important net-
work services (Dainotti et al. 2012). However, encryption 
technology also brings hidden dangers while protecting 
network security. For example, malware, such as Trojans 

and apt attacks, use encryption technology to bypass fire-
walls and intrusion detection systems. In addition, many 
companies prohibit their employees from playing games, 
watching videos and browsing the news in the company. 
However, this restriction can be broken through the use 
of encrypted tunnels. Therefore, to improve the level of 
network management, it is necessary to effectively iden-
tify kinds of encryption applications on the network.

Unknown traffic encrypted recognition is defined as 
identifying the type of application to which encrypted 
traffic belongs, such as streaming media including You-
Tube, Youku, etc., P2P including uTorrent, BitTorrent, 
etc. Since the encryption mechanism that makes the 
traffic features has changed, some traffic recognition 
methods are not applicable, such as methods based on 
port (Sen et  al. 2004) and payload (Finsterbusch et  al. 
2013). As we all know, the machine learning meth-
ods only deal with the content below the transmission 
layer while the encryption technology generally only 
encrypts the load information rather than the flow fea-
tures. Thus, this method is less affected by encryption 
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and has attracted widespread attention in the industry 
and academia. Most machine learning methods used for 
encrypted traffic recognition are supervised or semi-
supervised (Taylor et  al. 2017; Anderson and McGrew 
2017; Liu et  al. 2019). The general process is to first 
train a classifier using traffic features and labeled data 
and then use the classifier to recognize unknown traffic. 
The emergence of numerous massive unknown applica-
tions, however, makes it costly to obtain well-labeled 
samples in a limited time. In contrast, unsupervised 
machine learning based method can identify unknown 
encrypted traffic without a priori label information. At 
present, some feature-based clustering methods, such 
as K-means, DBSCAN, and auto-encoder (AE), as well 
as graph-based methods, such as spectral clustering, 
have been successfully applied to the identification of 
unknown applications (Erman et  al. 2006; Zhao et  al. 
2019; Xie et al. 2012; Wu et al. 2017). However, in the 
absence of prior information, it is a difficult task to 
map many applications to limited application types. We 
observe that these feature-based clustering methods 
usually only focus on extracting useful representations 
from flow features, and rarely consider the structure of 
the data. In addition, current graph-based clustering 
methods generally focus on the representation of the 
relationship between nodes, but do not effectively com-
bine the characteristic information of the nodes them-
selves. This inspired us to develop an unsupervised 
learning method that can comprehensively use both 
feature and structure information to identify the type of 
an application.

Our current manuscript introduces a subspace clus-
tering via graph auto-encoder network (SCGAE) for 
unknown traffic recognition. The proposed method 
can comprehensively utilize the feature and structure 
information, and perform the recognition of unknown 
applications without prior label information. It mainly 
includes four modules: graph auto-encoder (GAE), 
self-expression, clustering, and self-supervised mod-
ule. Firstly, we construct the initial application flow 
graph based on feature similarity and IP communication 
address. Then, in order to comprehensively utilize the 
application flow features and structural information, we 
propose a graph auto-encoder (GAE) module to extract 
more discriminative representations, and use a self-
expression module to transform these representations 
into a coefficient matrix. Then, the coefficient matrix is 
transformed into affinity matrix by clustering module, 
and the clustering label is generated by spectral cluster-
ing algorithm. Next, the self-supervised module super-
vises the representative node learning by replacing the 
previous labels with the labels of the clustering module. 
Finally, we derive a unified framework by combining the 

latent representation as well as the clustering methods 
together. Here, we highlight our overall contributions in 
the following three aspects:

•	 We propose a GAE module to mine more discrimi-
native information in the traffic data by reconstruct-
ing application flow features and structural features.

•	 We introduce a self-supervised module to restrict 
the distribution consistency of clustering outcomes, 
which helps to further enhance the accuracy of the 
unknown encrypted traffic recognition.

•	 We verify the SCGAE method with the actual 
encrypted network traffic data, which is better than 
state-of-the-art traffic recognition method.

The rest of this article is organized as follows. In “Related 
work” section, we review the study of traffic identification 
and unknown application identification. “Preliminaries” 
section introduces preliminary work, “Design overview” 
section introduces SCGAE in detail, and “Evaluation” 
section conducts experimental research. After a brief dis-
cussion in “Discussion” section , we conclude this paper 
in “Conclusion” section .

Related work
Classical traffic classification methodologies are roughly 
categorized into two types: port-based and payload-
based. Particularly, the main idea of the port-based 
method is to sort traffic according to the port number 
which is contained in the package header information 
(Sen et al. 2004). This method can realize traffic catego-
rization while the limited number of application serviced 
is used. However, with the emergence of port dynamic 
allocation (Constantinou and Mavrommatis 2006) as well 
as the general communication protocol port (Erman et al. 
2007), the port-based traffic classification system has 
gradually lost its effect. In order to achieve a more accu-
rate recognition effect, the payload-based method came 
into being, which uses the specific signature string in the 
payload to match, so as to realize the traffic classification 
(Ma et al. 2006; Finsterbusch et al. 2013). However, when 
encrypted traffic appeared, the payload of the traffic was 
no longer plaintext, and the payload-based method grad-
ually became invalid because it could not obtain a signa-
ture from the payload.

Since encryption technology usually encrypts pay-
load information, and machine learning methods pro-
cess traffic data under the transport layer, this method is 
less affected by encryption, and thus has earned exten-
sive notice from both the industrial and the academic 
fields. The key of machine learning methods is to extract 
network flow features, such as message interval, mes-
sage size, and flow duration, and use them to construct 
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classifiers. For example, Conti et al. (2015) used the ran-
dom forest method to identify the user’s actions on the 
mobile phone through the features of the IP, packet size, 
port, and direction of the encrypted traffic generated by 
the marked user when using the application mobile cli-
ent. Wang et al. (2017) used data packet headers and pay-
loads to train both the convolutional neural and the long 
(and short) -term memory networks so as to gain intru-
sion detection. Aceto et al. (2018, 2019) designed a data 
flow source identification model based on multi-layer 
perceptron, considering the load bytes, TCP sliding win-
dow size, sequential packet arrival interval, direction and 
other features.

With the increasing demand for network supervision, 
many scholars have conducted research on the identifi-
cation of specific applications or protocols. Erman et al. 
(2006) combined the K-means as well as the DBSCAN 
algorithms, which are unsupervised clustering meth-
ods, and proposed a semi-supervised method to clas-
sify both labeled and unlabeled applications. Xie et  al. 
(2012) applied subspace clustering, using only relevant 
feature subsets instead of a unified feature subset to iden-
tify each application individually. Korczyński and Duda 
(2012) proposed a identification method for Skype traf-
fic to determine the type of communication, namely, 
video meeting, on-line chat, voice call, document down-
load and upload. In the computation experiments, some 
relevant results display that this method possesses a 
high accuracy of recognition, although the recognition 
between video and voice traffic is still a complex issue. 
Korczyński and Duda (2014) proposed a random finger-
print method based on Markov chain to identify appli-
cations. He et al. (2015) proposed a recognition method 
for Tor applications. This method first selected some 
representative flow features of application behavior, and 
used machine learning model to identify different appli-
cations. Some experimental outcomes indicated that this 
methodology had higher recognition accuracy. Shbair 
et  al. (2014) proposed a method to identify the services 
running in the HTTPS connection, and defined specific 
features as the input of a multi-level HTTPS traffic identi-
fication structure on the basis of machine learning. Shen 
et al. (2016) proposed an application classification meth-
odology according to the second-order Markov chain. 
These empirical results showed that the recognition 
accuracy of this method was improved compared with 
baseline methods, but in some cases, because the length 
of certificate packets of different applications was easy to 
cluster into the same class, this method sometimes still 
failed. Zhao et  al. (2019) extracted and also aggregated 
the novel features from the data, and then combined the 
n-gram embedding policy with K-means clustering algo-
rithm in order to divide the unknown traffic. Jin et  al. 

(2021) proposed the mobile network traffic classification 
scheme, which extracts new patterns from the labeled 
traffic data to find unknown applications. The empirical 
results indicate that this strategy can successfully identify 
both the known and the unknown applications.

To sum up, existing traffic identification work mostly 
rely on a few or all known labels in the original data, but 
ail in an encrypted network environment where it is dif-
ficult to obtain known labels. In addition, few studies 
investigate the structural data information in the actual 
modeling, but the structural information between appli-
cation flows can more effectively reveal the potential 
similarity of data. Therefore, our current paper aims to 
develop a novel unsupervised learning algorithm that 
does not depend on known labels, and comprehensively 
utilize the feature and structure information of the sam-
ple to perform effective unknown traffic recognition.

Preliminaries
Definition of application flow
Generally, an unknown traffic does not refer to a single 
package, but is composed of a series of packages gener-
ated by the two communicating parties during the trans-
mission process. Such a group of packages is defined 
as application flow, which are uniquely identified by a 
5-tuple, i.e., source IP address, source port number, des-
tination IP address, destination port number as well as 
transport layer protocol (Lizhi et  al. 2014). The type of 
application flow refers to the type of application layer 
protocol used by network traffic, such as mail traffic, web 
page traffic, and the type of f-smart file server. Note that 
in the process of network communication, there will be at 
least one application flow between two peers. Each appli-
cation flow corresponds to a unique network applica-
tion. The same application flow can contain two-way data 
from both sides of the communication.

Problem definition
Suppose F = [fi], i = 1, . . . ,N  is a set of application 
flows with different types, where N is the number of 
application flows. Each application flow fi(1 ≤ i ≤ N ) 
is a vector with d-dimensional features, expressed as 
fi = [fi1, fi2, . . . , fid].

Let T = {t1, t2, . . . , tK } be a set of K application types, 
and each tj (1 ≤ j ≤ K ) represents a type of network 
application. According to the definition of application 
flow, an application often has multiple application flows. 
For example, if application A includes 10 application 
flows, and application B includes 20 application flows, 
the sample size of the dataset is 30 (N=10+20), and the 
number of application types is 2 ( K = {A,B} ). It can 
be seen that the number of application flows N is usu-
ally larger than the number of application types K. The 
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purpose of traffic identification is to establish a mapping 
f : F → T  between the application flow fi and the appli-
cation type tj.In other words, for any application flow fi , 
which consists of a series of packages, we need to find a 
unique application type tj that matches it.

In an ideal situation, there are already a small number 
of labels that can mark the types of certain application 
flows, then the unknown application identification prob-
lem can be regarded as a semi-supervised learning task, 
and unmarked flows can be assigned to corresponding 
types through the training of some marked flows. How-
ever, there is a more extreme situation, that is, there is 
no label information in some complex encrypted net-
work environment. This means that identifying unlabeled 
application flows in these network environments is more 
challenging. Here, we are interested in developing meth-
ods for identifying unknown applications that do not rely 
on known information, which accepts unlabeled traffic 
data.

Design overview
In order to more effectively identify unknown applica-
tion, we propose a subspace clustering via graph auto-
encoder network (SCGAE), which can simultaneously 
use the statistical features of application flows and the 
structural information between application flows to 

more comprehensively analyze and identify the types of 
unknown application.

We introduce the framework of SCGAE in this section, 
as illustrated in Fig. 1. The SCGAE is composed of four 
main modules: (a) a graph auto-encoder (GAE) module 
for mining the statistical characteristics and structural 
information of application flow at the same time; (b) a 
self-expression module for integrating potential flow 
features to construct coefficient matrix; (c) a clustering 
module for identifying different applications; and (d) a 
self-supervised module for constraining the distribution 
consistency of clustering and pseudo labels.

Constructing the graph
Before introducing SCGAE, it is necessary to construct 
a suitable application flow graph, so that the model can 
cluster more effectively. For general clustering tasks, the 
top nk nearest samples to each sample can be filtered out 
based on similarity. However, in actual network traffic, 
traffic masquerading and application protocols of dif-
ferent versions will change the statistical characteristics 
of the application flow, so that different encrypted traf-
fic types have similar characteristics. Direct similarity 
measurement can easily misjudge these encrypted traffic 
types, thus limiting the recognition ability of the model. 
Considering that the communication between host 
applications tends to be close over a period of time, this 

Fig. 1  The framework of the proposed model
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behavior reflects the spatial distribution characteristics 
of traffic, so we prioritize the IP address of each applica-
tion flow when composing the map. In addition, in order 
to efficiently aggregate neighbor features during message 
passing, we further consider applying a flow similarity 
measure to narrow the distance between samples with 
similar features. It is worth mentioning that the complex-
ity of the flow graph construction method will increase 
if the attribute characteristics of the application flow are 
considered first rather than the IP address to which the 
flow belongs. Because similarity calculation needs to 
consider all application flows, and for complex network 
environments, the number of application flows often 
far exceeds the number of IP pairs, which will greatly 
increase the computational overhead. The method that 
prioritizes structural attributes can not only have high 
computational efficiency, but also make the model have 
a certain anti-interference during the training process. 
Figure  2 depicts the proposed flow graph construc-
tion method based on flow similarity and IP address 
association.

Firstly, according to the source and destination IP 
address, a graph G(V ,E), v ∈ V , e ∈ E is established, 
where the vertex V denotes the set of IP addresses, 
and the edge E is the set of application flow. As shown 
in Fig.  2a, we use nodes H, I, J and K, to denote the IP 
addresses, respectively. And the application flows are 
represented by edges fi, i = 1, . . . , 6 . The different colors 
indicate different applications. It can be seen that f2 , f4 , 
and f6 belong to the same application, while f1 , f2 , and 
f5 belong to the same application. This situation is very 
common in a real network environment. For example, 
in the same chat software, different users can send audio 
messages or transfer files. Next, we transform graph G to 
G⋆ = (V ⋆,E⋆) are as follows. 

1	 Convert the edge e in the graph G to the vertex v⋆ in 
the graph G⋆ , and convert the vertex v in the graph 
G to the vertex e⋆ in the graph G⋆ . Thus, the ver-
tex v⋆ represents the application flow, and the edge 

e⋆ represents the application flow with the same IP 
address. For example, the two edges between H and 
I in Fig. 2a, i.e., f1 and f2 , converts to two vertices in 
Fig. 2b. In addition, application flows with the same 
IP address have more similar location information, 
and their corresponding edges will be recorded in 
the edge set e⋆ . For example, the two edges in Fig. 2a, 
namely f1 and f3 , come from or go to the same vertex 
I, so the vertices f1 and f3 in Fig. 2b have an edge to 
connect.

2	 Measure the similarity between a vertex in the graph 
G⋆ and its connected vertices. This similarity is the 
feature similarity between vertices. Calculate the 
similarity between each vertex in the graph and other 
vertices, and get the corresponding value of each 
vertex v⋆ Similarity vector sim. The similarity meas-
ure is based on the fact that application flows have 
the same IP address. In the current study, we choose 
Euclidean distance as the similarity measure, as 
shown in Eq. (1), where the feature of each applica-
tion flow fi(i = 1, . . . ,N ) is a d-dimensional vector, 
defined by fi = [fi1, fi2, . . . , fid] . 

3	 Filter the edge group e⋆ so as to to get the trans-
formed graph, which is denoted by G⋆ . Specifically, 
the nearest distance is used to filter e⋆ , which is an 
edge set consisting of application flows with the same 
IP address. For each vertex xi , filter the top nk near-
est vertices in its edge set, that is, the flows with the 
highest similarity and the same IP address.

Finally, the transformed flow graph is shown in Fig.  2c. 
Taking vertex f1 as an example, it and other three ver-
tices, namely, f2 , f3 and f6 , form three edges because 
of similar features and the same IP address. Construct-
ing the flow graph in this way can make the relationship 

(1)disij =

d

k=1

(xik − xjk).

Fig. 2  The method of constructing the flow graph
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between application flows in Fig.  2a more intuitively 
reflected in Fig. 2c.

GAE module
As mentioned above, the relationship between flow can 
effectively improve the clustering performance. There-
fore, base on Kipf and Welling  (2016a), Hammond et al. 
(2011), we proposes a GAE module to use the statistical 
characteristics of application flows and the structural 
information between application flows at the same time.

Specifically, graph convolution is performed for each 
GAE layer, and the high-order discriminant information 
is learned based on the feature matrix F and the adja-
cency matrix A:

where W (l) and O(L) represent the weight matrix and out-
put matrix of the lth GAE layer, respectively. In addition, 
D̂− 1

2 (A+ I)D̂− 1
2 is the convolution kernel or filter , D̂ is 

the degree matrix of A, where D̂ii =
∑

j(A+ I)ij . Fur-
thermore, the sum of the adjacency matrix and the iden-
tity matrix, i.e. A+ I , is to ensure the self-loop of each 
node.

It should be noted that the first layer in GAE module 
only uses the feature matrix F as the input matrix:

Then, the output O(l−1) of the (l − 1) layer will be used 
as a new input matrix, that is, the input matrix of the lth 
GAE layer, to generate a new output matrix O(l):

In this study, we choose a simple inner product operation 
as same as Kipf and Welling  (2016b) to reconstruct the 
relationship between samples using the output matrix 
O(L) of the last GAE layer,

where Â is the reconstructed adjacency matrix. In addi-
tion, the embedding representation in the middle layer of 
the GAE module, namely O( L2 ) , is used for self-expression 
and self-supervised module.

Self‑expressive module
After creating a well-matched latent space through 
the GAE module, the goal of the self-expression mod-
ule is to linearly represent each vertex by integrat-
ing the flow features of other vertices. Suppose the 

(2)O(l) = σ

(

D̂− 1
2 (A+ I)D̂− 1

2O(l−1)W (l)
)

,

(3)O(1) = GAE(F ,A) = σ

(

D̂− 1
2 (A+ I)D̂− 1

2 FW (1)
)

(4)
O(l) = GAE(O(l−1),A) = σ(D̂− 1

2 (A+ I)D̂− 1
2O(l−1)W (l))

(5)Â = Sigmoid
(

O(L)T ,O(L)
)

potential representation O( L2 ) comes from K subspaces, 
i.e., Xi, i = 1, . . . ,K  . Then, each potential feature vector, 

namely O( L2 )

i , i = 1, . . . ,N  , can be expressed as a linear 
combination of other samples in the same subspace:

This is the definition of self-expressive property, and its 
matrix form is expressed as

where S ∈ RN×N is the self-expression coefficient matrix 
with a block diagonal structure.

When the subspace is independent, the self-expression 
matrix S can be obtained by minimizing some norms of 
S, so it is mathematically transformed into an optimiza-
tion problem.

where � · �p represents any regularized norm, and the 
constraint diag(C = 0) is introduced to avoid singular 
matrices. In order to solve the above optimization prob-
lem, we relax the problem Eq (8) and transform it into:

As shown in Ji et al. (2017), the weight of the self-expres-
sion module corresponds to S, and it is further used 
for clustering module. It is worth noting that since the 
objects belonging to each category have inherent features 
that are different from other groups, generating a self-
expression matrix through the latent space represented 
by GAE can make the spectral clustering in the clustering 
module more effective.

Clustering module
As described in the self-expression module, after obtain-
ing the self-expression matrix S, we use the clustering 
module to label different application flows. Before using 
the clustering algorithm, we first set a threshold to fil-
ter the noise in the matrix, that is, retain other samples 
with high self-expression coefficients in each eigenvec-
tor. Next, we convert matrix S into affinity matrix � , as 
follows:

(6)
O
( L
2
)

i
= −

(

α1O
( L
2
)

1
+ · · · + αi−1O

( L
2
)

i−1
+ αi+1O

( L
2
)

i+1
+ · · · + αnO

( L
2
)

n

)

/αi .

(7)O( L2 ) = O( L2 )S,

(8)
min
C

� S �p

s.t.O
( L2 )

i = O
( L2 )

i S, (diag(S = 0)),

(9)
min
S

� S �p +
�

2
� O( L2 ) − O( L2 )S �2F

s.t.(diag(S = 0)).

(10)� =
1

2

(

|S| + |S|T
)
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Then, the affinity matrix � is used in the spectral cluster-
ing method (Ng et al. 2002), so as to realize the identifica-
tion of unknown application flows, that is, the clustering 
result T of the SCGAE model is given.

Self‑supervised module
In an unsupervised task, we cannot tell whether the 
clustering result T is consistent with the actual labels. 
Moreover, the embedding representation learned in the 
GAE module is only to obtain more discriminative infor-
mation, and has no direct connection with the clustering 
module. To address this issue, we design an auxiliary task 
that uses a cross-entropy loss function in a self-super-
vised module to constrain and integrate the embedding 
representations learned by GAE module, making it more 
suitable for clustering tasks. Specifically, a GAE layer is 
used to cluster the latent representation O( L2 ) , and the 
pseudo-label P can be obtained, where P ∈ RN×K  . Then 
the result T ∈ RN×K  obtained in the clustering module 
can be expressed as a temporary label Q ∈ RN×K  . The 
training objectives of the self-supervised module are:

Note that if the cluster label T changes with each itera-
tion, it may limit the convergence of the model. There-
fore, we use a training technique by setting the number of 
clustering iterations Tc . This means that the trigger of the 
T update Q is after every Tc iteration, so the loss function 
is stable within the Tc iteration.

Overall loss function
We use graph and content reconstruction error as the 
loss function of GAE module, as shown in formula (12). 
Here, by minimizing the loss between A and Â , the GAE 
module can preserve more about the structural relation-
ship between application flows in the embedding repre-
sentation. This means that application flows formed by 
the same IP pair have a higher probability of belonging to 
the same application class than application flows formed 
by different IP pairs. In addition, we constrains the GAE 
module to retain enough flow feature by minimizing the 
F and F̂  losses.

Next, in self-expression module, the loss function con-
sists of self-expression loss and regularization loss, as 
shown in Eq. (13). The self-expression loss function is to 
make the embedding representation learned by the GAE 

(11)min−

N
∑

i=1

C
∑

c=1

piclog
pic

qic
.

(12)
Lgaeg =

1

2N
� A− Â �2F ,

Lgaec =
1

2N
� F − O(L) �2F .

middle layer as close to the transformed self-expression 
matrix as possible, and the regularization loss is to pre-
vent the matrix C from becoming too sparse.

Then, in self-supervised module, the loss function is:

Finally, we can summarize the overall loss function in 
SCGAE as bellow,

where �i(i = 1, . . . , 5) represent the tradeoff coefficient.

Evaluation
Dataset
In this paper, we use WireShark to capture applica-
tion traffic to build a local dataset. Since the experiment 
needs to verify the accuracy of traffic identification, the 
dataset needs to be differentiated and labeled according 
to application types. Therefore, the acquisition environ-
ment needs to be carried out in a clean and interference-
free network environment. Then, we divide the collected 
data packets to obtain the application flow. This paper 
defines the start and end of the flow as follows: when a 
data packet occurs or the previous flow ends, it is the 
beginning of the flow; when the flow duration exceeds 
the specified time, or the data packet containing the RST 
or FIN flag is detected, it can be Consider the end of a 
flow. Next, the extracted flows is filtered to keep only the 
flow of the SSL/TLS protocol. Finally, referring to the 
methods of Shen et al. (2016), the Whois network service 
is used to parse out the domain name through the server 
IP address, and string matching is used to mark the label 
of the traffic.

Table 1 describes the dataset used in this study, includ-
ing the traffic types (labels) to be identified and the cor-
responding specifics and sample sizes. Specifically, 
two datasets are considered in order to simulate a real 
network environment while obtaining relatively clean 
labeled data. The first dataset, ISCXVPN2016, is used to 
provide pure encrypted traffic (Lashkari et al. 2017). The 
dataset contains eight types of traffic, including brows-
ing, chat, audio streaming, video streaming, email, VOIP, 
P2P, and file transfer, from 18 typical applications such 
as Skype and Spotify. Since the ISCXVPN2016 dataset 
is a pure dataset, it is difficult to obtain a pure dataset 
in a real network environment, even after purification. 

(13)
Lser =� S �p,

Lse =
�

2
� O( L2 ) − O( L2 )S �2F .

(14)Lss = −

N
∑

i=1

C
∑

c=1

piclog
pic

qic
.

(15)
Loverall = �1Lgaeg + �2Lgaec + �3Lser + �4Lse + �5Lss,
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Therefore, the second dataset comes from a real network 
environment. This dataset extends the first dataset with 
some applications, including applications not included 
in the first dataset, such as Netflix, QQ, etc. The second 
dataset collects traffic traces generated from October 
17th to October 23th, 2021 and June 11th to June 13th, 
2022. In addition, in order to better construct the traffic 
graph, we collect the traffic of different hosts rather than 
one host in different time periods.

Note that identifying unknown traffic is a clustering 
task with no prior knowledge and no training required. It 
does not require supervised learning and uses algorithms 
to group analysis between data. Therefore, all the pro-
cessed flows were taken as experimental samples.

The selection of features is very important for 
machine learning method. As suggested by Lashkari 
et  al. (2017), two different methods are used to select 
flow features. In the first method, we calculate the 
length of time during packet transmission, such as 
duration of the flow. In the second method, we meas-
ure the number of units of different features, such as 
bytes per second or packets per second. After these two 
method, the flow features used in this experiments are 
a total of 28. Moreover, the description of the flow fea-
tures is shown in Table 2.

Experimental setting
Comparison methods
To verify whether SCGAE can effectively identify 
unknown application traffic, we consider three types of 
unsupervised methods for comparison.

(1) Clustering method using flow features:
K-means LeCun et al. (2015) is a method that divides 

samples into K categories by measuring the similarity 
of samples.

BIRCH Lorbeer et al. (2018) is a hierarchical cluster-
ing method that needs to build a clustering feature tree 
that meets the limit of branching factor and clustering 
diameter.

GMM Reynolds (2009) uses the expected maximum 
algorithm to obtain a probability distribution model 
composed of K Gaussian distributions for clustering.

AE Hinton and Salakhutdinov (2006) is an embedding 
clustering method that utilizes K-means on low-dimen-
sional representations learned from deep auto-encoder 
networks.

Table 1  Description of the dataset

Dataset Type(label) Applications Sample size

Ours Audio streaming Apple music and QQ music 12764

Browsing Chrome, Baidu and Sogou 18547

Chat Skype, QQ and Wechat 10556

Email Gmail, Foxmail and Outlook 5442

E-commerce Taobao and JD 9547

File transfer FTP over SSH and SSL 19854

Video streaming Youtube and Youku 15472

P2P uTorrent and Transmission (Bittorrent) 29870

ISCXVPN2016 Audio streaming Spotify 721

Browsing Firefox and Chrome 1604

Chat Facebook and Hangouts 323

Email Gmail 282

File transfer FTP over SSH and SSL 864

Video streaming Youtube and Vimeo 874

VoIP Facebook, Hangouts and Skype 2291

P2P Kali 1085

Table 2  Description of the flow features

Abbreviation Interpretation of features

pl Packet length (min,max,mean,std)

nppf Number of packets per flow

fiat Flow inter-arrival time (min,max,mean,std)

activ Active time before flow becomes idle 
(min,max,mean,std)

idle Idle time before flow becomes active (min,max,mean,std)

fbps Flow bytes per second

fpps Flow packets per second

iatf Inter-arrival time of forward flow (min,max,mean,std)

iatb Inter-arrival time of backward flow (min,max,mean,std)

duration Duration of the flow
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(2) Clustering method using flow graph:
Spectral Liu and Han (2018) is a method evolved from 

graph theory, which cuts the graph composed of all data 
points.

DeepWalk Perozzi et  al. (2014) is a clustering method 
that learns embedding representations by truncating ran-
dom walks.

DNGR Cao et  al. (2016) is a low dimensional vector 
representation method that uses random walk model to 
obtain graphic structure information.

(3) Clustering method using both node features and 
graph structure:

VGAE Kipf and Welling  (2016b) combines GCN struc-
ture and node reconstruction loss function to construct 
GAE network.

DAEGC Wang et  al. (2019) is an AE based on graph 
attention, which jointly learns and optimizes the embed-
ding representation and clustering.

SDCN Bo et al. (2020) combine AE and GCN to obtain 
low dimensional representation, and integrate structural 
information into deep clustering.

Setting of SCGAE
Since the graph structure composed of application flow 
contains certain prior information, which is beneficial to 
the convergence of the model, the initial learning rate is 
set to 0.001. The Xavier method is used to initialize the 
model parameters (Glorot and Bengio 2010). In the self-
supervised module, we sets Tc = 5 , which means that 
the model will update Q with T after every 5 iterations. 
In addition, we also pre-train the GAE module, i.e. the 
model is trained without the self-expression and self-
supervision modules to obtain a set of initial training 
weight parameters on the GAE module. In subsequent 
experiments, we add self-expression and self-supervision 
modules to optimize the network.

To make the methods more comparable, the dimensions 
of all benchmark clustering models and the proposed 
SCGAE model are set to input − nz − cluster − output , 
where input, nz and output are dimensions of the input, 
output and middle layers, cluster represents the kinds of 
application flow types. For all experiments, the experi-
ments are carried out in version 1.9.0 of the Pytorch deep 
learning framework. All methods were run 10 times and 
the results were averaged.

Metrics
Four clustering evaluation metrics are used to compare 
the clustering performance of the proposed method 
with benchmark methods: accuracy (ACC), normalized 
mutual information (NMI), average Rand index (ARI) 

and macro F1 score (F1). Larger values of these metrics 
mean better clustering results. 

(1)	 accuracy (ACC): 

 where t is the real application flow category, c is 
the label of the clustering result, N is the number 
of samples, and map() is a permutation mapping 
function used to realize the difference between t 
and c Reassignment to ensure correct statistics. In 
this paper, we use the Kuhn-Munkres algorithm to 
obtain optimal redistribution.

(2)	 normalized mutual information (NMI) 

 where I(t,  c) represents the mutual information 
between t and c, and H represents their respective 
entropy.

(3)	 adjusted Rand index (ARI) 

 where RI = TP+TN
TP+FP+TN+FN  represents the ratio of 

correct decisions.
(4)	 Macro F1-score (F1): 

 where P = TP
(TP+FP) represents the precision rate, 

and R = TP
(TP+FN )

 represents the recall rate.

Experiments
Comparison experiment
Table 3 summarizes the experimental results for all clus-
tering methods. The following conclusions can be drawn 
from Table 3:

(1)	 The method of directly using the flow features or 
the flow graph to the identification of unknown 
application has its own advantages. Specifically, 
among the methods that use flow features for clus-
tering, the GMM method performs best. This is 
because the sample point after GMM projection is 
not a definite label, but the probability distribution 
of each data stream belonging to each category. This 
soft allocation label can provide additional impor-

(16)ACC = max
m

n
∑

i=1

ti = map(ci)/N ,

(17)NMI =
2I(t, c)

H(t)+H(c)
,

(18)ARI =
RI − E[RI]

max(RI)− E[RI]
,

(19)F1 =
2 · P · R

P + R
,
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tant information for traffic identification. Among 
the methods using flow structure for clustering, 
the DNGR method performs best, because it uses 
random walk model instead of traditional random 
sampling to obtain flow structure information.

(2)	 Compared with using flow features or flow graph 
directly, reconstructing node content and graph 
structure to obtain potential representation at the 
same time is conducive to better clustering. We 
also notice that although the performance of VGAE 
is not ideal in the third type of method, it has 
achieved good clustering results compared to the 
method of using feature or graph information for 
traffic identification. Since this method only con-
siders the graph structure as a loss function when 
reconstructing the node representation, there is a 
certain amount of information loss. Therefore, it is 
reasonable to reconstruct attribute information and 
graph structure in GAE module.

(3)	 The performance of DAEGC and SDCN is better 
than other comparison methods, because they com-
plete the training and optimization of all modules 
in one step, and introduce a self-supervised mecha-
nism to make pseudo labels and clustering labels as 
close in distribution as possible. The SCGAE pro-

posed in this paper adopts the same training strat-
egy and can effectively obtain the embedding repre-
sentation of clustering information.

(4)	 Since SDCN uses flow structure information, it 
achieves better results than most methods in traffic 
identification. However, all methods except SCGAE 
do not consider the self-expression information of 
the latent representation. But learning a more dis-
criminative matrix of self-expression coefficients 
helps to achieve more accurate subspace cluster-
ing. Therefore, the SCGAE proposed in this paper 
shows its superiority on real datasets.

(5)	 Among all methods, the proposed SCGAE per-
forms best on all metrics. In particular, compared 
with the suboptimal method SDCN, SCGAE 
improves by 11%, 9%, 13% and 3% on the four eval-
uation metrics of ACC, NMI, ARI and F1, respec-
tively. Among them, a higher ARI means that the 
traffic distribution identified by SCGAE is closer to 
the real traffic distribution.

Identification results for each application
To analyze the classification results of SCGAE in each 
application type, we summarize the results of unknown 

Table 3  Clustering results of various methods

Bold text indicates the best experimental results

Dataset Methods Input ACC​ NMI ARI F1

Ours K-means Flow features 0.5122 0.3056 0.3017 0.2898

BIRCH Flow features 0.4078 0.2678 0.2189 0.2267

GMM Flow features 0.5478 0.5757 0.3417 0.3516

AE Flow features 0.5167 0.4165 0.4538 0.3659

Spectral Flow graph 0.6167 0.5261 0.4770 0.3785

DeepWalk Flow graph 0.5147 0.3427 0.3618 0.3478

DNGR Flow graph 0.6787 0.5876 0.5879 0.3897

VGAE Flow features and Flow graph 0.6784 0.6870 0.6179 0.4157

DAEGC Flow features and Flow graph 0.7585 0.7658 0.7868 0.5765

SDCN Flow features and Flow graph 0.8197 0.7998 0.8178 0.6679

SCGAE Flow features and Flow graph 0.9067 0.8679 0.9235 0.6922
ISCXVPN2016 K-means Flow features 0.4972 0.3356 0.3416 0.3678

BIRCH Flow features 0.4256 0.2346 0.3246 0.2290

GMM Flow features 0.5367 0.5462 0.4471 0.3078

AE Flow features 0.5435 0.5454 0.4541 0.3512

Spectral Flow graph 0.5212 0.5263 0.3217 0.3465

DeepWalk Flow graph 0.5812 0.5168 0.4311 0.3766

DNGR Flow graph 0.5926 0.5442 0.4443 0.3789

VGAE Flow features and Flow graph 0.6279 0.6543 0.5214 0.4312

DAEGC Flow features and Flow graph 0.6927 0.5234 0.5482 0.5891

SDCN Flow features and Flow graph 0.7403 0.6829 0.6173 0.6612

SCGAE Flow features and Flow graph 0.8122 0.8124 0.7761 0.7042
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traffic recognition in Table 4 with F1 as the main met-
ric. It can be seen from the table that F1 can achieve 
better results for the application type with large sam-
ple size. This means that the imbalance of data has a 
relatively large impact on the clustering performance of 
SCGAE, which is biased towards the classification with 

a large number of samples when clustering. In addition, 
we can observe that the recognition of audio streaming 
and video streaming is also relatively effective. This is 
because these two application types are easier to distin-
guish from other applications in terms of flow features.

Visualization
In order to more intuitively visualize the potential spatial 
changes in different stages, t-SNE (Van der Maaten and 
Hinton 2008) is applied to reduce the feature dimension 
of each stage in the proposed method to 2 dimensions, 
and it can be observed that different colors correspond to 
different clusters as shown in Fig. 3. It can be intuitively 
observed that from the initial stage to the final stage, the 
application flow samples are gradually clustered together 
to obtain a more differentiated representation. In addi-
tion, from Fig. 3, we found the introduction of self-rep-
resentation and self-supervision module allows each 
data point to be grouped near the cluster centroid, and 
expands the distance between clusters.

Parameters analysis
To explore the impact of the nk in the initial graph con-
struction on the performance of SCGAE, we tune nk in 
the range 5, 10, 15, 20, 25, 30, 35, 40, and the results are 
shown in the Fig. 4. Obviously, as nk increases, all indica-
tors show a trend of first increasing and then decreasing. 

Table 4  The results of SCGAE for each application

Dataset Taffic(Type) Precision Recall F1

Ours Audio streaming 0.8525 0.7682 0.8082

Browsing 0.8245 0.7183 0.7677

Chat 0.5656 0.5234 0.5437

Email 0.5245 0.5223 0.5234

E-commerce 0.8412 0.9269 0.8820

Fille transfer 0.6252 0.6078 0.6164

Video streaming 0.7829 0.6529 0.7120

P2P 0.8989 0.5523 0.6842

ISCXVPN2016 Audio streaming 0.7112 0.5829 0.6407

Browsing 0.8911 0.7045 0.7869

Chat 0.6721 0.6712 0.6716

Email 0.5845 0.6823 0.6296

Fille transfer 0.4623 0.5523 0.5033

VoIP 0.7734 0.8422 0.8063

Video streaming 0.9372 0.7912 0.8580

P2P 0.6812 0.8023 0.7368

Dataset (Ours)

(a) Initial stage (b) Pre-training stage (c) Final stage

Dataset (ISCXVPN2016)

Fig. 3  Clustering results at different stages of the SCGAE
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Note that, when the number of edges exceeds 20 or 25, 
the clustering performance of SCGAE drops rapidly. 
This is because the information redundancy in the graph 
structure is relatively large at this time, and GAE mod-
ule contains more noise when reconstructing the graph. 
Therefore, in view of the balance between performance 
and training time, this paper chooses 25 as the number of 
edges when constructing the initial graph.

In addition, the dimension of the middle layer of the 
GAE module will directly affect the performance of 
SCGAE. A smaller value will result in the loss of potential 
information, while a larger value will cause the model to 
overfit. Therefore, we use different hidden state dimen-
sions, namely nz = 4, 5, 6, 7, 8, 9, 10 , to train SCGAE. We 
can see that with the increase of nz , three metrics, namely 
ACC, ARI, and F1, first increase and then decrease. 
Moreover, in the training process, the computing time 
is almost linear with nz . In other words, the model with 
small dimension of the middle layer can be trained 
quickly, and when the dimension is very large, the model 
will also face the high risk of over matching. Therefore, 
according to the actual demand, we set nz to 5 or 7.

Ablation study
In order to verify whether each module is conducive to 
the final clustering results, We delete one module from 
the SCGAE method in turn to build four incomplete 
clustering models.

SCGAE without graph The SCGAE method without 
Lgaeg loss in the GAE module,

(20)Loverall = �2Lgaec + �3Lser + �4Lse + �5Lss,

SCGAE without content The SCGAE method without 
Lgaec loss in the GAE module,

SCGAE without self-expression The SCGAE method 
without Lse and Lser loss in the self-expression module,

SCGAE without self-supervised The SCGAE method 
without Lss loss in the self-supervised module,

The results of SCGAE and four incomplete clustering 
models are summarized in Table 5. The specific observa-
tions are as follows:

•	 In the GAE module, the reconstruction of both 
flow features and flow graph provide more potential 
information for clustering tasks. Specifically, in the 
absence of Lgaeg loss, the clustering performance of 
SCGAE without graph significantly decreases. This 
shows that the graph reconstruction can preserve 
the rich structural information of the embedded 
representation, so as to improve the clustering per-
formance. As for SCGAE without content, the experi-
mental results are not obvious, but it is still condu-
cive to the final clustering. This indicates the impact 
of lgaec loss is relatively small, but it is also necessary 
to ensure that the middle layer representative con-
tains more content information in the original appli-
cation flows.

(21)Loverall = �1Lgaeg + �3Lser + �4Lse + �5Lss.

(22)Loverall = �1Lgaec + �2Lgaeg + �5Lss.

(23)Loverall = �1Lgaec + �2Lgaeg + �3Lser + �4Lse.

Fig. 4  ACC of SCGAE with different nk and nz
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•	 The self-supervised module provides an important 
contribution to the clustering results of SCGAE. The 
self-supervised module is introduced to utilize the 
pseudo-labels generated by the clustering module to 
help the GAE module learn the information suitable 
for the clustering module. When SCGAE method 
does not contain the Lss loss, the self-supervised 
module cannot restrict the GAE module. In this case, 
the GAE module cannot obtain feedback to deter-
mine whether the learned embedding is well opti-
mized. The overall performance of the SCGAE model 
will decrease.

•	 Compared with other modules, the self-expression 
module has the most obvious influence. Without 
Lss and Lser loss in the self-expression module, the 
four indicators of ACC, NMI, ARI and F1 on both 
datasets are reduced. This is because the subspace 
clustering performance is closely related to the self-
expression matrix. In other words, in method involv-
ing subspace clustering, a well-learned nonlinear 
mapping contributes significantly to clustering per-
formance.

To further analyze the importance of the input graph 
to model clustering, we compared the methods of con-
structing the graph. Specifically, we adopted a control 
variable method. The modules and parameters of SCGAE 

remain unchanged, the graphs constructed with and 
without considering IP addresses are input into SCGAE, 
as summarized in Table  6. It can be observed that the 
method considering IP addresses is more than 10% 
higher than the method using Euclidean distance in four 
metrics, which can verify that adding IP addresses in the 
initial graph can effectively use the relevant information 
between different flows.

Discussion
The widespread application of encryption technology in 
the Internet brings new challenges to the classification 
of unknown encrypted traffic. Unsupervised machine 
learning methods can identify unknown encrypted traffic 
without prior label information; however, many applica-
tions in networks have complex features that cannot be 
accurately classified with flow features or graph structure 
alone. Therefore, in an encrypted network environment 
without label information for reference, how to improve 
the recognition accuracy of unknown encrypted traffic by 
mining the inherent characteristics of traffic data is the 
core problem of this research.

First, this paper constructs an application flow graph 
based on feature similarity and IP communication 
addresses. Ablation experiments demonstrate the neces-
sity and effectiveness of introducing IP addresses. In addi-
tion, we analyze the impact of parameter nk on the model. 

Table 5  The results of SCGAE and four incomplete clustering models

Dataset Methods ACC​ NMI ARI F1

Ours SCGAE without graph 0.8345 0.7811 0.8190 0.6526

SCGAE without content 0.8523 0.8012 0.8812 0.6725

SCGAE without self-expression 0.7812 0.6254 0.7812 0.6712

SCGAE without self-supervised 0.8123 0.7892 0.7738 0.6891

SCGAE 0.9067 0.8679 0.9235 0.6922

ISCXVPN2016 SCGAE without graph 0.7341 0.7254 0.7254 0.5623

SCGAE without content 0.7212 0.7217 0.7116 0.5123

SCGAE without self-expression 0.7125 0.7623 0.7123 0.5451

SCGAE without self-supervised 0.7274 0.7431 0.7368 0.6535

SCGAE 0.8122 0.8124 0.7761 0.7042

Table 6  Ablation study on the methods of constructing the graph

Dataset Methods ACC​ NMI ARI F1

Ours Using distance 0.8123 0.8243 0.8030 0.5712

Using distance with IP addresses 0.9067 0.8679 0.9235 0.6922

ISCXVPN2016 Using distance 0.7623 0.7623 0.6234 0.5623

Using distance with IP addresses 0.8122 0.8124 0.7761 0.7042
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Next, in order to comprehensively utilize application flow 
features and structural information, this paper proposes 
a GAE module to extract more discriminative semantic 
representations, and introduces a self-supervised module 
to supervise nodes by replacing the previous labels with 
the labels of the clustering module representational learn-
ing. Ablation experiments demonstrate the effectiveness 
of each module, and each sub-module helps to improve 
the recognition performance of unknown traffic. In addi-
tion, comparative experiments show that the proposed 
method clearly outperforms existing unsupervised clas-
sification methods on the four indicators of ACC, NMI, 
ARI and F1. This is because the proposed model can 
simultaneously extract feature and structural information 
from application flow data, learning more robust embed-
ding representations assisted by self-supervised modules. 
Meanwhile, SCGAE is able to obtain a more discrimina-
tive self-expression coefficient matrix through the self-
expression module and map it into a subspace for efficient 
unknown application identification.

The proposed model performs well in identify-
ing unknown encrypted application traffic, but has 
three limitations. The first limitation is that tempo-
rary switching of IP addresses may affect the model’s 
real-time performance. If the application temporarily 
switches some server IP addresses, there are two situa-
tions: when the user’s IP address does not change, it will 
not affect the construction of the traffic relationship nor 
the model training, because the application only acts as 
a traffic receiver or sender; when the user’s IP address 
changed, it will affect the construction of the traffic 
relationship and the model training, because the result-
ing relationship between IP pairs will disappear at the 
same time. For real-time problems, multiple tasks can 
be trained in parallel, and a multi-task learning model 
based on graph structure can be explored. The second 
limitation is that, as a recognition method of unknown 
application, the performance of SCGAE may be limited 
in imbalanced data. Due to the lack of prior informa-
tion, when mapping massive application streams to lim-
ited imbalanced application categories, it is more likely 
to identify categories with larger sample sizes. Possi-
ble future work is to consider a better data balancing 
strategy for preprocessing, thereby further improving 
the unknown application recognition performance of 
SCGAE. The last limitation is the overall accuracy of the 
SCGAE. Even though the accuracy of the unsupervised 
method is lower than that of the supervised method, the 
accuracy of SCGAE still needs to be improved. There-
fore, in the future work, we will try to introduce the idea 
of comparative learning so as to improve the accuracy 
of traffic identification.

Conclusion
In this study, a subspace clustering via graph auto-
encoder network (SCGAE) for unknown encrypted traffic 
is proposed. It learns features and structural information 
from the initial application flow, and performs subspace 
clustering based on latent representation, saving the 
time, expense and manpower of manually labeling data. 
The SCGAE learns discriminative node representation 
from traffic data by reconstructing node attributes and 
graph structure, which is expressed as a coefficient matrix 
required for subspace clustering in the self-expression 
module. In addition, the SCGAE can use self-supervised 
strategies to improve the learning of node represen-
tation, thereby enhance clustering performance. The 
effectiveness of the SCGAE method is verified on a real 
network traffic dataset. Experimental results show that 
SCGAE method can effectively realize the identification 
of unknown traffic without label information, and outper-
forms the current state-of-the-art unsupervised methods.
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