
Yang et al. Cybersecurity (2022) 5:29
https://doi.org/10.1186/s42400-022-00131-y

RESEARCH

Subspace clustering via graph auto‑encoder
network for unknown encrypted traffic
recognition
Ruipeng Yang1,2*   , Aimin Yu1, Lijun Cai1 and Dan Meng1 

Abstract 

The traffic encryption brings new challenges to the identification of unknown encrypted traffic. Currently, machine
learning is the most commonly used encrypted traffic recognization technology, but this method relies on expensive
prior label information. Therefore, we propose a subspace clustering via graph auto-encoder network (SCGAE) to rec-
ognize unknown applications without prior label information. The SCGAE adopts a graph encoder-decoder structure,
which can comprehensively utilize the feature and structure information to extract discriminative embedding repre-
sentation. Additionally, the self-supervised module is introduced, which use the clustering labels acts as a supervisor
to guide the learning of the graph encoder-decoder module. Finally, we obtain the self-expression coefficient matrix
through the self-expression module and map it to the subspace for clustering. The results show that SCGAE has better
performance than all benchmark models in unknown encrypted traffic recognization.

Keywords:  Encrypted traffic recognition, Deep learning, Graph auto-encoder

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
The development of Internet technology not only gives
rise to an endless stream of network protocols, but also
makes a variety of Internet applications show explo-
sive growth. While various network applications on the
Internet provide users with convenient services, they
also bring security risks to the network. For example,
user information transmitted on the network is at risk
of being illegally monitored, hijacked, stolen, and modi-
fied. Encryption technology emerged in the context of
ensuring network security, providing Internet users with
anonymity and protecting themselves from network sur-
veillance systems, and is widely used in important net-
work services (Dainotti et al. 2012). However, encryption
technology also brings hidden dangers while protecting
network security. For example, malware, such as Trojans

and apt attacks, use encryption technology to bypass fire-
walls and intrusion detection systems. In addition, many
companies prohibit their employees from playing games,
watching videos and browsing the news in the company.
However, this restriction can be broken through the use
of encrypted tunnels. Therefore, to improve the level of
network management, it is necessary to effectively iden-
tify kinds of encryption applications on the network.

Unknown traffic encrypted recognition is defined as
identifying the type of application to which encrypted
traffic belongs, such as streaming media including You-
Tube, Youku, etc., P2P including uTorrent, BitTorrent,
etc. Since the encryption mechanism that makes the
traffic features has changed, some traffic recognition
methods are not applicable, such as methods based on
port (Sen et al. 2004) and payload (Finsterbusch et al.
2013). As we all know, the machine learning meth-
ods only deal with the content below the transmission
layer while the encryption technology generally only
encrypts the load information rather than the flow fea-
tures. Thus, this method is less affected by encryption

Open Access

Cybersecurity

*Correspondence: yangruipeng@iie.ac.cn

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0649-0341
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00131-y&domain=pdf

Page 2 of 15Yang et al. Cybersecurity (2022) 5:29

and has attracted widespread attention in the industry
and academia. Most machine learning methods used for
encrypted traffic recognition are supervised or semi-
supervised (Taylor et al. 2017; Anderson and McGrew
2017; Liu et al. 2019). The general process is to first
train a classifier using traffic features and labeled data
and then use the classifier to recognize unknown traffic.
The emergence of numerous massive unknown applica-
tions, however, makes it costly to obtain well-labeled
samples in a limited time. In contrast, unsupervised
machine learning based method can identify unknown
encrypted traffic without a priori label information. At
present, some feature-based clustering methods, such
as K-means, DBSCAN, and auto-encoder (AE), as well
as graph-based methods, such as spectral clustering,
have been successfully applied to the identification of
unknown applications (Erman et al. 2006; Zhao et al.
2019; Xie et al. 2012; Wu et al. 2017). However, in the
absence of prior information, it is a difficult task to
map many applications to limited application types. We
observe that these feature-based clustering methods
usually only focus on extracting useful representations
from flow features, and rarely consider the structure of
the data. In addition, current graph-based clustering
methods generally focus on the representation of the
relationship between nodes, but do not effectively com-
bine the characteristic information of the nodes them-
selves. This inspired us to develop an unsupervised
learning method that can comprehensively use both
feature and structure information to identify the type of
an application.

Our current manuscript introduces a subspace clus-
tering via graph auto-encoder network (SCGAE) for
unknown traffic recognition. The proposed method
can comprehensively utilize the feature and structure
information, and perform the recognition of unknown
applications without prior label information. It mainly
includes four modules: graph auto-encoder (GAE),
self-expression, clustering, and self-supervised mod-
ule. Firstly, we construct the initial application flow
graph based on feature similarity and IP communication
address. Then, in order to comprehensively utilize the
application flow features and structural information, we
propose a graph auto-encoder (GAE) module to extract
more discriminative representations, and use a self-
expression module to transform these representations
into a coefficient matrix. Then, the coefficient matrix is
transformed into affinity matrix by clustering module,
and the clustering label is generated by spectral cluster-
ing algorithm. Next, the self-supervised module super-
vises the representative node learning by replacing the
previous labels with the labels of the clustering module.
Finally, we derive a unified framework by combining the

latent representation as well as the clustering methods
together. Here, we highlight our overall contributions in
the following three aspects:

•	 We propose a GAE module to mine more discrimi-
native information in the traffic data by reconstruct-
ing application flow features and structural features.

•	 We introduce a self-supervised module to restrict
the distribution consistency of clustering outcomes,
which helps to further enhance the accuracy of the
unknown encrypted traffic recognition.

•	 We verify the SCGAE method with the actual
encrypted network traffic data, which is better than
state-of-the-art traffic recognition method.

The rest of this article is organized as follows. In “Related
work” section, we review the study of traffic identification
and unknown application identification. “Preliminaries”
section introduces preliminary work, “Design overview”
section introduces SCGAE in detail, and “Evaluation”
section conducts experimental research. After a brief dis-
cussion in “Discussion” section , we conclude this paper
in “Conclusion” section .

Related work
Classical traffic classification methodologies are roughly
categorized into two types: port-based and payload-
based. Particularly, the main idea of the port-based
method is to sort traffic according to the port number
which is contained in the package header information
(Sen et al. 2004). This method can realize traffic catego-
rization while the limited number of application serviced
is used. However, with the emergence of port dynamic
allocation (Constantinou and Mavrommatis 2006) as well
as the general communication protocol port (Erman et al.
2007), the port-based traffic classification system has
gradually lost its effect. In order to achieve a more accu-
rate recognition effect, the payload-based method came
into being, which uses the specific signature string in the
payload to match, so as to realize the traffic classification
(Ma et al. 2006; Finsterbusch et al. 2013). However, when
encrypted traffic appeared, the payload of the traffic was
no longer plaintext, and the payload-based method grad-
ually became invalid because it could not obtain a signa-
ture from the payload.

Since encryption technology usually encrypts pay-
load information, and machine learning methods pro-
cess traffic data under the transport layer, this method is
less affected by encryption, and thus has earned exten-
sive notice from both the industrial and the academic
fields. The key of machine learning methods is to extract
network flow features, such as message interval, mes-
sage size, and flow duration, and use them to construct

Page 3 of 15Yang et al. Cybersecurity (2022) 5:29 	

classifiers. For example, Conti et al. (2015) used the ran-
dom forest method to identify the user’s actions on the
mobile phone through the features of the IP, packet size,
port, and direction of the encrypted traffic generated by
the marked user when using the application mobile cli-
ent. Wang et al. (2017) used data packet headers and pay-
loads to train both the convolutional neural and the long
(and short) -term memory networks so as to gain intru-
sion detection. Aceto et al. (2018, 2019) designed a data
flow source identification model based on multi-layer
perceptron, considering the load bytes, TCP sliding win-
dow size, sequential packet arrival interval, direction and
other features.

With the increasing demand for network supervision,
many scholars have conducted research on the identifi-
cation of specific applications or protocols. Erman et al.
(2006) combined the K-means as well as the DBSCAN
algorithms, which are unsupervised clustering meth-
ods, and proposed a semi-supervised method to clas-
sify both labeled and unlabeled applications. Xie et al.
(2012) applied subspace clustering, using only relevant
feature subsets instead of a unified feature subset to iden-
tify each application individually. Korczyński and Duda
(2012) proposed a identification method for Skype traf-
fic to determine the type of communication, namely,
video meeting, on-line chat, voice call, document down-
load and upload. In the computation experiments, some
relevant results display that this method possesses a
high accuracy of recognition, although the recognition
between video and voice traffic is still a complex issue.
Korczyński and Duda (2014) proposed a random finger-
print method based on Markov chain to identify appli-
cations. He et al. (2015) proposed a recognition method
for Tor applications. This method first selected some
representative flow features of application behavior, and
used machine learning model to identify different appli-
cations. Some experimental outcomes indicated that this
methodology had higher recognition accuracy. Shbair
et al. (2014) proposed a method to identify the services
running in the HTTPS connection, and defined specific
features as the input of a multi-level HTTPS traffic identi-
fication structure on the basis of machine learning. Shen
et al. (2016) proposed an application classification meth-
odology according to the second-order Markov chain.
These empirical results showed that the recognition
accuracy of this method was improved compared with
baseline methods, but in some cases, because the length
of certificate packets of different applications was easy to
cluster into the same class, this method sometimes still
failed. Zhao et al. (2019) extracted and also aggregated
the novel features from the data, and then combined the
n-gram embedding policy with K-means clustering algo-
rithm in order to divide the unknown traffic. Jin et al.

(2021) proposed the mobile network traffic classification
scheme, which extracts new patterns from the labeled
traffic data to find unknown applications. The empirical
results indicate that this strategy can successfully identify
both the known and the unknown applications.

To sum up, existing traffic identification work mostly
rely on a few or all known labels in the original data, but
ail in an encrypted network environment where it is dif-
ficult to obtain known labels. In addition, few studies
investigate the structural data information in the actual
modeling, but the structural information between appli-
cation flows can more effectively reveal the potential
similarity of data. Therefore, our current paper aims to
develop a novel unsupervised learning algorithm that
does not depend on known labels, and comprehensively
utilize the feature and structure information of the sam-
ple to perform effective unknown traffic recognition.

Preliminaries
Definition of application flow
Generally, an unknown traffic does not refer to a single
package, but is composed of a series of packages gener-
ated by the two communicating parties during the trans-
mission process. Such a group of packages is defined
as application flow, which are uniquely identified by a
5-tuple, i.e., source IP address, source port number, des-
tination IP address, destination port number as well as
transport layer protocol (Lizhi et al. 2014). The type of
application flow refers to the type of application layer
protocol used by network traffic, such as mail traffic, web
page traffic, and the type of f-smart file server. Note that
in the process of network communication, there will be at
least one application flow between two peers. Each appli-
cation flow corresponds to a unique network applica-
tion. The same application flow can contain two-way data
from both sides of the communication.

Problem definition
Suppose F = [fi], i = 1, . . . ,N is a set of application
flows with different types, where N is the number of
application flows. Each application flow fi(1 ≤ i ≤ N)
is a vector with d-dimensional features, expressed as
fi = [fi1, fi2, . . . , fid].

Let T = {t1, t2, . . . , tK } be a set of K application types,
and each tj (1 ≤ j ≤ K) represents a type of network
application. According to the definition of application
flow, an application often has multiple application flows.
For example, if application A includes 10 application
flows, and application B includes 20 application flows,
the sample size of the dataset is 30 (N=10+20), and the
number of application types is 2 ( K = {A,B} ). It can
be seen that the number of application flows N is usu-
ally larger than the number of application types K. The

Page 4 of 15Yang et al. Cybersecurity (2022) 5:29

purpose of traffic identification is to establish a mapping
f : F → T between the application flow fi and the appli-
cation type tj.In other words, for any application flow fi ,
which consists of a series of packages, we need to find a
unique application type tj that matches it.

In an ideal situation, there are already a small number
of labels that can mark the types of certain application
flows, then the unknown application identification prob-
lem can be regarded as a semi-supervised learning task,
and unmarked flows can be assigned to corresponding
types through the training of some marked flows. How-
ever, there is a more extreme situation, that is, there is
no label information in some complex encrypted net-
work environment. This means that identifying unlabeled
application flows in these network environments is more
challenging. Here, we are interested in developing meth-
ods for identifying unknown applications that do not rely
on known information, which accepts unlabeled traffic
data.

Design overview
In order to more effectively identify unknown applica-
tion, we propose a subspace clustering via graph auto-
encoder network (SCGAE), which can simultaneously
use the statistical features of application flows and the
structural information between application flows to

more comprehensively analyze and identify the types of
unknown application.

We introduce the framework of SCGAE in this section,
as illustrated in Fig. 1. The SCGAE is composed of four
main modules: (a) a graph auto-encoder (GAE) module
for mining the statistical characteristics and structural
information of application flow at the same time; (b) a
self-expression module for integrating potential flow
features to construct coefficient matrix; (c) a clustering
module for identifying different applications; and (d) a
self-supervised module for constraining the distribution
consistency of clustering and pseudo labels.

Constructing the graph
Before introducing SCGAE, it is necessary to construct
a suitable application flow graph, so that the model can
cluster more effectively. For general clustering tasks, the
top nk nearest samples to each sample can be filtered out
based on similarity. However, in actual network traffic,
traffic masquerading and application protocols of dif-
ferent versions will change the statistical characteristics
of the application flow, so that different encrypted traf-
fic types have similar characteristics. Direct similarity
measurement can easily misjudge these encrypted traffic
types, thus limiting the recognition ability of the model.
Considering that the communication between host
applications tends to be close over a period of time, this

Fig. 1  The framework of the proposed model

Page 5 of 15Yang et al. Cybersecurity (2022) 5:29 	

behavior reflects the spatial distribution characteristics
of traffic, so we prioritize the IP address of each applica-
tion flow when composing the map. In addition, in order
to efficiently aggregate neighbor features during message
passing, we further consider applying a flow similarity
measure to narrow the distance between samples with
similar features. It is worth mentioning that the complex-
ity of the flow graph construction method will increase
if the attribute characteristics of the application flow are
considered first rather than the IP address to which the
flow belongs. Because similarity calculation needs to
consider all application flows, and for complex network
environments, the number of application flows often
far exceeds the number of IP pairs, which will greatly
increase the computational overhead. The method that
prioritizes structural attributes can not only have high
computational efficiency, but also make the model have
a certain anti-interference during the training process.
Figure 2 depicts the proposed flow graph construc-
tion method based on flow similarity and IP address
association.

Firstly, according to the source and destination IP
address, a graph G(V ,E), v ∈ V , e ∈ E is established,
where the vertex V denotes the set of IP addresses,
and the edge E is the set of application flow. As shown
in Fig. 2a, we use nodes H, I, J and K, to denote the IP
addresses, respectively. And the application flows are
represented by edges fi, i = 1, . . . , 6 . The different colors
indicate different applications. It can be seen that f2 , f4 ,
and f6 belong to the same application, while f1 , f2 , and
f5 belong to the same application. This situation is very
common in a real network environment. For example,
in the same chat software, different users can send audio
messages or transfer files. Next, we transform graph G to
G⋆ = (V ⋆,E⋆) are as follows.

1	 Convert the edge e in the graph G to the vertex v⋆ in
the graph G⋆ , and convert the vertex v in the graph
G to the vertex e⋆ in the graph G⋆ . Thus, the ver-
tex v⋆ represents the application flow, and the edge

e⋆ represents the application flow with the same IP
address. For example, the two edges between H and
I in Fig. 2a, i.e., f1 and f2 , converts to two vertices in
Fig. 2b. In addition, application flows with the same
IP address have more similar location information,
and their corresponding edges will be recorded in
the edge set e⋆ . For example, the two edges in Fig. 2a,
namely f1 and f3 , come from or go to the same vertex
I, so the vertices f1 and f3 in Fig. 2b have an edge to
connect.

2	 Measure the similarity between a vertex in the graph
G⋆ and its connected vertices. This similarity is the
feature similarity between vertices. Calculate the
similarity between each vertex in the graph and other
vertices, and get the corresponding value of each
vertex v⋆ Similarity vector sim. The similarity meas-
ure is based on the fact that application flows have
the same IP address. In the current study, we choose
Euclidean distance as the similarity measure, as
shown in Eq. (1), where the feature of each applica-
tion flow fi(i = 1, . . . ,N) is a d-dimensional vector,
defined by fi = [fi1, fi2, . . . , fid] .

3	 Filter the edge group e⋆ so as to to get the trans-
formed graph, which is denoted by G⋆ . Specifically,
the nearest distance is used to filter e⋆ , which is an
edge set consisting of application flows with the same
IP address. For each vertex xi , filter the top nk near-
est vertices in its edge set, that is, the flows with the
highest similarity and the same IP address.

Finally, the transformed flow graph is shown in Fig. 2c.
Taking vertex f1 as an example, it and other three ver-
tices, namely, f2 , f3 and f6 , form three edges because
of similar features and the same IP address. Construct-
ing the flow graph in this way can make the relationship

(1)disij =

d

k=1

(xik − xjk).

Fig. 2  The method of constructing the flow graph

Page 6 of 15Yang et al. Cybersecurity (2022) 5:29

between application flows in Fig. 2a more intuitively
reflected in Fig. 2c.

GAE module
As mentioned above, the relationship between flow can
effectively improve the clustering performance. There-
fore, base on Kipf and Welling (2016a), Hammond et al.
(2011), we proposes a GAE module to use the statistical
characteristics of application flows and the structural
information between application flows at the same time.

Specifically, graph convolution is performed for each
GAE layer, and the high-order discriminant information
is learned based on the feature matrix F and the adja-
cency matrix A:

where W (l) and O(L) represent the weight matrix and out-
put matrix of the lth GAE layer, respectively. In addition,
D̂− 1

2 (A+ I)D̂− 1
2 is the convolution kernel or filter , D̂ is

the degree matrix of A, where D̂ii =
∑

j(A+ I)ij . Fur-
thermore, the sum of the adjacency matrix and the iden-
tity matrix, i.e. A+ I , is to ensure the self-loop of each
node.

It should be noted that the first layer in GAE module
only uses the feature matrix F as the input matrix:

Then, the output O(l−1) of the (l − 1) layer will be used
as a new input matrix, that is, the input matrix of the lth
GAE layer, to generate a new output matrix O(l):

In this study, we choose a simple inner product operation
as same as Kipf and Welling (2016b) to reconstruct the
relationship between samples using the output matrix
O(L) of the last GAE layer,

where Â is the reconstructed adjacency matrix. In addi-
tion, the embedding representation in the middle layer of
the GAE module, namely O(L2) , is used for self-expression
and self-supervised module.

Self‑expressive module
After creating a well-matched latent space through
the GAE module, the goal of the self-expression mod-
ule is to linearly represent each vertex by integrat-
ing the flow features of other vertices. Suppose the

(2)O(l) = σ

(

D̂− 1
2 (A+ I)D̂− 1

2O(l−1)W (l)
)

,

(3)O(1) = GAE(F ,A) = σ

(

D̂− 1
2 (A+ I)D̂− 1

2 FW (1)
)

(4)
O(l) = GAE(O(l−1),A) = σ(D̂− 1

2 (A+ I)D̂− 1
2O(l−1)W (l))

(5)Â = Sigmoid
(

O(L)T ,O(L)
)

potential representation O(L2) comes from K subspaces,
i.e., Xi, i = 1, . . . ,K  . Then, each potential feature vector,

namely O(L2)

i , i = 1, . . . ,N  , can be expressed as a linear
combination of other samples in the same subspace:

This is the definition of self-expressive property, and its
matrix form is expressed as

where S ∈ RN×N is the self-expression coefficient matrix
with a block diagonal structure.

When the subspace is independent, the self-expression
matrix S can be obtained by minimizing some norms of
S, so it is mathematically transformed into an optimiza-
tion problem.

where � · �p represents any regularized norm, and the
constraint diag(C = 0) is introduced to avoid singular
matrices. In order to solve the above optimization prob-
lem, we relax the problem Eq (8) and transform it into:

As shown in Ji et al. (2017), the weight of the self-expres-
sion module corresponds to S, and it is further used
for clustering module. It is worth noting that since the
objects belonging to each category have inherent features
that are different from other groups, generating a self-
expression matrix through the latent space represented
by GAE can make the spectral clustering in the clustering
module more effective.

Clustering module
As described in the self-expression module, after obtain-
ing the self-expression matrix S, we use the clustering
module to label different application flows. Before using
the clustering algorithm, we first set a threshold to fil-
ter the noise in the matrix, that is, retain other samples
with high self-expression coefficients in each eigenvec-
tor. Next, we convert matrix S into affinity matrix � , as
follows:

(6)
O
(L
2
)

i
= −

(

α1O
(L
2
)

1
+ · · · + αi−1O

(L
2
)

i−1
+ αi+1O

(L
2
)

i+1
+ · · · + αnO

(L
2
)

n

)

/αi .

(7)O(L2) = O(L2)S,

(8)
min
C

� S �p

s.t.O
(L2)

i = O
(L2)

i S, (diag(S = 0)),

(9)
min
S

� S �p +
�

2
� O(L2) − O(L2)S �2F

s.t.(diag(S = 0)).

(10)� =
1

2

(

|S| + |S|T
)

Page 7 of 15Yang et al. Cybersecurity (2022) 5:29 	

Then, the affinity matrix � is used in the spectral cluster-
ing method (Ng et al. 2002), so as to realize the identifica-
tion of unknown application flows, that is, the clustering
result T of the SCGAE model is given.

Self‑supervised module
In an unsupervised task, we cannot tell whether the
clustering result T is consistent with the actual labels.
Moreover, the embedding representation learned in the
GAE module is only to obtain more discriminative infor-
mation, and has no direct connection with the clustering
module. To address this issue, we design an auxiliary task
that uses a cross-entropy loss function in a self-super-
vised module to constrain and integrate the embedding
representations learned by GAE module, making it more
suitable for clustering tasks. Specifically, a GAE layer is
used to cluster the latent representation O(L2) , and the
pseudo-label P can be obtained, where P ∈ RN×K  . Then
the result T ∈ RN×K obtained in the clustering module
can be expressed as a temporary label Q ∈ RN×K  . The
training objectives of the self-supervised module are:

Note that if the cluster label T changes with each itera-
tion, it may limit the convergence of the model. There-
fore, we use a training technique by setting the number of
clustering iterations Tc . This means that the trigger of the
T update Q is after every Tc iteration, so the loss function
is stable within the Tc iteration.

Overall loss function
We use graph and content reconstruction error as the
loss function of GAE module, as shown in formula (12).
Here, by minimizing the loss between A and Â , the GAE
module can preserve more about the structural relation-
ship between application flows in the embedding repre-
sentation. This means that application flows formed by
the same IP pair have a higher probability of belonging to
the same application class than application flows formed
by different IP pairs. In addition, we constrains the GAE
module to retain enough flow feature by minimizing the
F and F̂ losses.

Next, in self-expression module, the loss function con-
sists of self-expression loss and regularization loss, as
shown in Eq. (13). The self-expression loss function is to
make the embedding representation learned by the GAE

(11)min−

N
∑

i=1

C
∑

c=1

piclog
pic

qic
.

(12)
Lgaeg =

1

2N
� A− Â �2F ,

Lgaec =
1

2N
� F − O(L) �2F .

middle layer as close to the transformed self-expression
matrix as possible, and the regularization loss is to pre-
vent the matrix C from becoming too sparse.

Then, in self-supervised module, the loss function is:

Finally, we can summarize the overall loss function in
SCGAE as bellow,

where �i(i = 1, . . . , 5) represent the tradeoff coefficient.

Evaluation
Dataset
In this paper, we use WireShark to capture applica-
tion traffic to build a local dataset. Since the experiment
needs to verify the accuracy of traffic identification, the
dataset needs to be differentiated and labeled according
to application types. Therefore, the acquisition environ-
ment needs to be carried out in a clean and interference-
free network environment. Then, we divide the collected
data packets to obtain the application flow. This paper
defines the start and end of the flow as follows: when a
data packet occurs or the previous flow ends, it is the
beginning of the flow; when the flow duration exceeds
the specified time, or the data packet containing the RST
or FIN flag is detected, it can be Consider the end of a
flow. Next, the extracted flows is filtered to keep only the
flow of the SSL/TLS protocol. Finally, referring to the
methods of Shen et al. (2016), the Whois network service
is used to parse out the domain name through the server
IP address, and string matching is used to mark the label
of the traffic.

Table 1 describes the dataset used in this study, includ-
ing the traffic types (labels) to be identified and the cor-
responding specifics and sample sizes. Specifically,
two datasets are considered in order to simulate a real
network environment while obtaining relatively clean
labeled data. The first dataset, ISCXVPN2016, is used to
provide pure encrypted traffic (Lashkari et al. 2017). The
dataset contains eight types of traffic, including brows-
ing, chat, audio streaming, video streaming, email, VOIP,
P2P, and file transfer, from 18 typical applications such
as Skype and Spotify. Since the ISCXVPN2016 dataset
is a pure dataset, it is difficult to obtain a pure dataset
in a real network environment, even after purification.

(13)
Lser =� S �p,

Lse =
�

2
� O(L2) − O(L2)S �2F .

(14)Lss = −

N
∑

i=1

C
∑

c=1

piclog
pic

qic
.

(15)
Loverall = �1Lgaeg + �2Lgaec + �3Lser + �4Lse + �5Lss,

Page 8 of 15Yang et al. Cybersecurity (2022) 5:29

Therefore, the second dataset comes from a real network
environment. This dataset extends the first dataset with
some applications, including applications not included
in the first dataset, such as Netflix, QQ, etc. The second
dataset collects traffic traces generated from October
17th to October 23th, 2021 and June 11th to June 13th,
2022. In addition, in order to better construct the traffic
graph, we collect the traffic of different hosts rather than
one host in different time periods.

Note that identifying unknown traffic is a clustering
task with no prior knowledge and no training required. It
does not require supervised learning and uses algorithms
to group analysis between data. Therefore, all the pro-
cessed flows were taken as experimental samples.

The selection of features is very important for
machine learning method. As suggested by Lashkari
et al. (2017), two different methods are used to select
flow features. In the first method, we calculate the
length of time during packet transmission, such as
duration of the flow. In the second method, we meas-
ure the number of units of different features, such as
bytes per second or packets per second. After these two
method, the flow features used in this experiments are
a total of 28. Moreover, the description of the flow fea-
tures is shown in Table 2.

Experimental setting
Comparison methods
To verify whether SCGAE can effectively identify
unknown application traffic, we consider three types of
unsupervised methods for comparison.

(1) Clustering method using flow features:
K-means LeCun et al. (2015) is a method that divides

samples into K categories by measuring the similarity
of samples.

BIRCH Lorbeer et al. (2018) is a hierarchical cluster-
ing method that needs to build a clustering feature tree
that meets the limit of branching factor and clustering
diameter.

GMM Reynolds (2009) uses the expected maximum
algorithm to obtain a probability distribution model
composed of K Gaussian distributions for clustering.

AE Hinton and Salakhutdinov (2006) is an embedding
clustering method that utilizes K-means on low-dimen-
sional representations learned from deep auto-encoder
networks.

Table 1  Description of the dataset

Dataset Type(label) Applications Sample size

Ours Audio streaming Apple music and QQ music 12764

Browsing Chrome, Baidu and Sogou 18547

Chat Skype, QQ and Wechat 10556

Email Gmail, Foxmail and Outlook 5442

E-commerce Taobao and JD 9547

File transfer FTP over SSH and SSL 19854

Video streaming Youtube and Youku 15472

P2P uTorrent and Transmission (Bittorrent) 29870

ISCXVPN2016 Audio streaming Spotify 721

Browsing Firefox and Chrome 1604

Chat Facebook and Hangouts 323

Email Gmail 282

File transfer FTP over SSH and SSL 864

Video streaming Youtube and Vimeo 874

VoIP Facebook, Hangouts and Skype 2291

P2P Kali 1085

Table 2  Description of the flow features

Abbreviation Interpretation of features

pl Packet length (min,max,mean,std)

nppf Number of packets per flow

fiat Flow inter-arrival time (min,max,mean,std)

activ Active time before flow becomes idle
(min,max,mean,std)

idle Idle time before flow becomes active (min,max,mean,std)

fbps Flow bytes per second

fpps Flow packets per second

iatf Inter-arrival time of forward flow (min,max,mean,std)

iatb Inter-arrival time of backward flow (min,max,mean,std)

duration Duration of the flow

Page 9 of 15Yang et al. Cybersecurity (2022) 5:29 	

(2) Clustering method using flow graph:
Spectral Liu and Han (2018) is a method evolved from

graph theory, which cuts the graph composed of all data
points.

DeepWalk Perozzi et al. (2014) is a clustering method
that learns embedding representations by truncating ran-
dom walks.

DNGR Cao et al. (2016) is a low dimensional vector
representation method that uses random walk model to
obtain graphic structure information.

(3) Clustering method using both node features and
graph structure:

VGAE Kipf and Welling (2016b) combines GCN struc-
ture and node reconstruction loss function to construct
GAE network.

DAEGC Wang et al. (2019) is an AE based on graph
attention, which jointly learns and optimizes the embed-
ding representation and clustering.

SDCN Bo et al. (2020) combine AE and GCN to obtain
low dimensional representation, and integrate structural
information into deep clustering.

Setting of SCGAE
Since the graph structure composed of application flow
contains certain prior information, which is beneficial to
the convergence of the model, the initial learning rate is
set to 0.001. The Xavier method is used to initialize the
model parameters (Glorot and Bengio 2010). In the self-
supervised module, we sets Tc = 5 , which means that
the model will update Q with T after every 5 iterations.
In addition, we also pre-train the GAE module, i.e. the
model is trained without the self-expression and self-
supervision modules to obtain a set of initial training
weight parameters on the GAE module. In subsequent
experiments, we add self-expression and self-supervision
modules to optimize the network.

To make the methods more comparable, the dimensions
of all benchmark clustering models and the proposed
SCGAE model are set to input − nz − cluster − output ,
where input, nz and output are dimensions of the input,
output and middle layers, cluster represents the kinds of
application flow types. For all experiments, the experi-
ments are carried out in version 1.9.0 of the Pytorch deep
learning framework. All methods were run 10 times and
the results were averaged.

Metrics
Four clustering evaluation metrics are used to compare
the clustering performance of the proposed method
with benchmark methods: accuracy (ACC), normalized
mutual information (NMI), average Rand index (ARI)

and macro F1 score (F1). Larger values of these metrics
mean better clustering results.

(1)	 accuracy (ACC):

 where t is the real application flow category, c is
the label of the clustering result, N is the number
of samples, and map() is a permutation mapping
function used to realize the difference between t
and c Reassignment to ensure correct statistics. In
this paper, we use the Kuhn-Munkres algorithm to
obtain optimal redistribution.

(2)	 normalized mutual information (NMI)

 where I(t, c) represents the mutual information
between t and c, and H represents their respective
entropy.

(3)	 adjusted Rand index (ARI)

 where RI = TP+TN
TP+FP+TN+FN represents the ratio of

correct decisions.
(4)	 Macro F1-score (F1):

 where P = TP
(TP+FP) represents the precision rate,

and R = TP
(TP+FN)

 represents the recall rate.

Experiments
Comparison experiment
Table 3 summarizes the experimental results for all clus-
tering methods. The following conclusions can be drawn
from Table 3:

(1)	 The method of directly using the flow features or
the flow graph to the identification of unknown
application has its own advantages. Specifically,
among the methods that use flow features for clus-
tering, the GMM method performs best. This is
because the sample point after GMM projection is
not a definite label, but the probability distribution
of each data stream belonging to each category. This
soft allocation label can provide additional impor-

(16)ACC = max
m

n
∑

i=1

ti = map(ci)/N ,

(17)NMI =
2I(t, c)

H(t)+H(c)
,

(18)ARI =
RI − E[RI]

max(RI)− E[RI]
,

(19)F1 =
2 · P · R

P + R
,

Page 10 of 15Yang et al. Cybersecurity (2022) 5:29

tant information for traffic identification. Among
the methods using flow structure for clustering,
the DNGR method performs best, because it uses
random walk model instead of traditional random
sampling to obtain flow structure information.

(2)	 Compared with using flow features or flow graph
directly, reconstructing node content and graph
structure to obtain potential representation at the
same time is conducive to better clustering. We
also notice that although the performance of VGAE
is not ideal in the third type of method, it has
achieved good clustering results compared to the
method of using feature or graph information for
traffic identification. Since this method only con-
siders the graph structure as a loss function when
reconstructing the node representation, there is a
certain amount of information loss. Therefore, it is
reasonable to reconstruct attribute information and
graph structure in GAE module.

(3)	 The performance of DAEGC and SDCN is better
than other comparison methods, because they com-
plete the training and optimization of all modules
in one step, and introduce a self-supervised mecha-
nism to make pseudo labels and clustering labels as
close in distribution as possible. The SCGAE pro-

posed in this paper adopts the same training strat-
egy and can effectively obtain the embedding repre-
sentation of clustering information.

(4)	 Since SDCN uses flow structure information, it
achieves better results than most methods in traffic
identification. However, all methods except SCGAE
do not consider the self-expression information of
the latent representation. But learning a more dis-
criminative matrix of self-expression coefficients
helps to achieve more accurate subspace cluster-
ing. Therefore, the SCGAE proposed in this paper
shows its superiority on real datasets.

(5)	 Among all methods, the proposed SCGAE per-
forms best on all metrics. In particular, compared
with the suboptimal method SDCN, SCGAE
improves by 11%, 9%, 13% and 3% on the four eval-
uation metrics of ACC, NMI, ARI and F1, respec-
tively. Among them, a higher ARI means that the
traffic distribution identified by SCGAE is closer to
the real traffic distribution.

Identification results for each application
To analyze the classification results of SCGAE in each
application type, we summarize the results of unknown

Table 3  Clustering results of various methods

Bold text indicates the best experimental results

Dataset Methods Input ACC​ NMI ARI F1

Ours K-means Flow features 0.5122 0.3056 0.3017 0.2898

BIRCH Flow features 0.4078 0.2678 0.2189 0.2267

GMM Flow features 0.5478 0.5757 0.3417 0.3516

AE Flow features 0.5167 0.4165 0.4538 0.3659

Spectral Flow graph 0.6167 0.5261 0.4770 0.3785

DeepWalk Flow graph 0.5147 0.3427 0.3618 0.3478

DNGR Flow graph 0.6787 0.5876 0.5879 0.3897

VGAE Flow features and Flow graph 0.6784 0.6870 0.6179 0.4157

DAEGC Flow features and Flow graph 0.7585 0.7658 0.7868 0.5765

SDCN Flow features and Flow graph 0.8197 0.7998 0.8178 0.6679

SCGAE Flow features and Flow graph 0.9067 0.8679 0.9235 0.6922
ISCXVPN2016 K-means Flow features 0.4972 0.3356 0.3416 0.3678

BIRCH Flow features 0.4256 0.2346 0.3246 0.2290

GMM Flow features 0.5367 0.5462 0.4471 0.3078

AE Flow features 0.5435 0.5454 0.4541 0.3512

Spectral Flow graph 0.5212 0.5263 0.3217 0.3465

DeepWalk Flow graph 0.5812 0.5168 0.4311 0.3766

DNGR Flow graph 0.5926 0.5442 0.4443 0.3789

VGAE Flow features and Flow graph 0.6279 0.6543 0.5214 0.4312

DAEGC Flow features and Flow graph 0.6927 0.5234 0.5482 0.5891

SDCN Flow features and Flow graph 0.7403 0.6829 0.6173 0.6612

SCGAE Flow features and Flow graph 0.8122 0.8124 0.7761 0.7042

Page 11 of 15Yang et al. Cybersecurity (2022) 5:29 	

traffic recognition in Table 4 with F1 as the main met-
ric. It can be seen from the table that F1 can achieve
better results for the application type with large sam-
ple size. This means that the imbalance of data has a
relatively large impact on the clustering performance of
SCGAE, which is biased towards the classification with

a large number of samples when clustering. In addition,
we can observe that the recognition of audio streaming
and video streaming is also relatively effective. This is
because these two application types are easier to distin-
guish from other applications in terms of flow features.

Visualization
In order to more intuitively visualize the potential spatial
changes in different stages, t-SNE (Van der Maaten and
Hinton 2008) is applied to reduce the feature dimension
of each stage in the proposed method to 2 dimensions,
and it can be observed that different colors correspond to
different clusters as shown in Fig. 3. It can be intuitively
observed that from the initial stage to the final stage, the
application flow samples are gradually clustered together
to obtain a more differentiated representation. In addi-
tion, from Fig. 3, we found the introduction of self-rep-
resentation and self-supervision module allows each
data point to be grouped near the cluster centroid, and
expands the distance between clusters.

Parameters analysis
To explore the impact of the nk in the initial graph con-
struction on the performance of SCGAE, we tune nk in
the range 5, 10, 15, 20, 25, 30, 35, 40, and the results are
shown in the Fig. 4. Obviously, as nk increases, all indica-
tors show a trend of first increasing and then decreasing.

Table 4  The results of SCGAE for each application

Dataset Taffic(Type) Precision Recall F1

Ours Audio streaming 0.8525 0.7682 0.8082

Browsing 0.8245 0.7183 0.7677

Chat 0.5656 0.5234 0.5437

Email 0.5245 0.5223 0.5234

E-commerce 0.8412 0.9269 0.8820

Fille transfer 0.6252 0.6078 0.6164

Video streaming 0.7829 0.6529 0.7120

P2P 0.8989 0.5523 0.6842

ISCXVPN2016 Audio streaming 0.7112 0.5829 0.6407

Browsing 0.8911 0.7045 0.7869

Chat 0.6721 0.6712 0.6716

Email 0.5845 0.6823 0.6296

Fille transfer 0.4623 0.5523 0.5033

VoIP 0.7734 0.8422 0.8063

Video streaming 0.9372 0.7912 0.8580

P2P 0.6812 0.8023 0.7368

Dataset (Ours)

(a) Initial stage (b) Pre-training stage (c) Final stage

Dataset (ISCXVPN2016)

Fig. 3  Clustering results at different stages of the SCGAE

Page 12 of 15Yang et al. Cybersecurity (2022) 5:29

Note that, when the number of edges exceeds 20 or 25,
the clustering performance of SCGAE drops rapidly.
This is because the information redundancy in the graph
structure is relatively large at this time, and GAE mod-
ule contains more noise when reconstructing the graph.
Therefore, in view of the balance between performance
and training time, this paper chooses 25 as the number of
edges when constructing the initial graph.

In addition, the dimension of the middle layer of the
GAE module will directly affect the performance of
SCGAE. A smaller value will result in the loss of potential
information, while a larger value will cause the model to
overfit. Therefore, we use different hidden state dimen-
sions, namely nz = 4, 5, 6, 7, 8, 9, 10 , to train SCGAE. We
can see that with the increase of nz , three metrics, namely
ACC, ARI, and F1, first increase and then decrease.
Moreover, in the training process, the computing time
is almost linear with nz . In other words, the model with
small dimension of the middle layer can be trained
quickly, and when the dimension is very large, the model
will also face the high risk of over matching. Therefore,
according to the actual demand, we set nz to 5 or 7.

Ablation study
In order to verify whether each module is conducive to
the final clustering results, We delete one module from
the SCGAE method in turn to build four incomplete
clustering models.

SCGAE without graph The SCGAE method without
Lgaeg loss in the GAE module,

(20)Loverall = �2Lgaec + �3Lser + �4Lse + �5Lss,

SCGAE without content The SCGAE method without
Lgaec loss in the GAE module,

SCGAE without self-expression The SCGAE method
without Lse and Lser loss in the self-expression module,

SCGAE without self-supervised The SCGAE method
without Lss loss in the self-supervised module,

The results of SCGAE and four incomplete clustering
models are summarized in Table 5. The specific observa-
tions are as follows:

•	 In the GAE module, the reconstruction of both
flow features and flow graph provide more potential
information for clustering tasks. Specifically, in the
absence of Lgaeg loss, the clustering performance of
SCGAE without graph significantly decreases. This
shows that the graph reconstruction can preserve
the rich structural information of the embedded
representation, so as to improve the clustering per-
formance. As for SCGAE without content, the experi-
mental results are not obvious, but it is still condu-
cive to the final clustering. This indicates the impact
of lgaec loss is relatively small, but it is also necessary
to ensure that the middle layer representative con-
tains more content information in the original appli-
cation flows.

(21)Loverall = �1Lgaeg + �3Lser + �4Lse + �5Lss.

(22)Loverall = �1Lgaec + �2Lgaeg + �5Lss.

(23)Loverall = �1Lgaec + �2Lgaeg + �3Lser + �4Lse.

Fig. 4  ACC of SCGAE with different nk and nz

Page 13 of 15Yang et al. Cybersecurity (2022) 5:29 	

•	 The self-supervised module provides an important
contribution to the clustering results of SCGAE. The
self-supervised module is introduced to utilize the
pseudo-labels generated by the clustering module to
help the GAE module learn the information suitable
for the clustering module. When SCGAE method
does not contain the Lss loss, the self-supervised
module cannot restrict the GAE module. In this case,
the GAE module cannot obtain feedback to deter-
mine whether the learned embedding is well opti-
mized. The overall performance of the SCGAE model
will decrease.

•	 Compared with other modules, the self-expression
module has the most obvious influence. Without
Lss and Lser loss in the self-expression module, the
four indicators of ACC, NMI, ARI and F1 on both
datasets are reduced. This is because the subspace
clustering performance is closely related to the self-
expression matrix. In other words, in method involv-
ing subspace clustering, a well-learned nonlinear
mapping contributes significantly to clustering per-
formance.

To further analyze the importance of the input graph
to model clustering, we compared the methods of con-
structing the graph. Specifically, we adopted a control
variable method. The modules and parameters of SCGAE

remain unchanged, the graphs constructed with and
without considering IP addresses are input into SCGAE,
as summarized in Table 6. It can be observed that the
method considering IP addresses is more than 10%
higher than the method using Euclidean distance in four
metrics, which can verify that adding IP addresses in the
initial graph can effectively use the relevant information
between different flows.

Discussion
The widespread application of encryption technology in
the Internet brings new challenges to the classification
of unknown encrypted traffic. Unsupervised machine
learning methods can identify unknown encrypted traffic
without prior label information; however, many applica-
tions in networks have complex features that cannot be
accurately classified with flow features or graph structure
alone. Therefore, in an encrypted network environment
without label information for reference, how to improve
the recognition accuracy of unknown encrypted traffic by
mining the inherent characteristics of traffic data is the
core problem of this research.

First, this paper constructs an application flow graph
based on feature similarity and IP communication
addresses. Ablation experiments demonstrate the neces-
sity and effectiveness of introducing IP addresses. In addi-
tion, we analyze the impact of parameter nk on the model.

Table 5  The results of SCGAE and four incomplete clustering models

Dataset Methods ACC​ NMI ARI F1

Ours SCGAE without graph 0.8345 0.7811 0.8190 0.6526

SCGAE without content 0.8523 0.8012 0.8812 0.6725

SCGAE without self-expression 0.7812 0.6254 0.7812 0.6712

SCGAE without self-supervised 0.8123 0.7892 0.7738 0.6891

SCGAE 0.9067 0.8679 0.9235 0.6922

ISCXVPN2016 SCGAE without graph 0.7341 0.7254 0.7254 0.5623

SCGAE without content 0.7212 0.7217 0.7116 0.5123

SCGAE without self-expression 0.7125 0.7623 0.7123 0.5451

SCGAE without self-supervised 0.7274 0.7431 0.7368 0.6535

SCGAE 0.8122 0.8124 0.7761 0.7042

Table 6  Ablation study on the methods of constructing the graph

Dataset Methods ACC​ NMI ARI F1

Ours Using distance 0.8123 0.8243 0.8030 0.5712

Using distance with IP addresses 0.9067 0.8679 0.9235 0.6922

ISCXVPN2016 Using distance 0.7623 0.7623 0.6234 0.5623

Using distance with IP addresses 0.8122 0.8124 0.7761 0.7042

Page 14 of 15Yang et al. Cybersecurity (2022) 5:29

Next, in order to comprehensively utilize application flow
features and structural information, this paper proposes
a GAE module to extract more discriminative semantic
representations, and introduces a self-supervised module
to supervise nodes by replacing the previous labels with
the labels of the clustering module representational learn-
ing. Ablation experiments demonstrate the effectiveness
of each module, and each sub-module helps to improve
the recognition performance of unknown traffic. In addi-
tion, comparative experiments show that the proposed
method clearly outperforms existing unsupervised clas-
sification methods on the four indicators of ACC, NMI,
ARI and F1. This is because the proposed model can
simultaneously extract feature and structural information
from application flow data, learning more robust embed-
ding representations assisted by self-supervised modules.
Meanwhile, SCGAE is able to obtain a more discrimina-
tive self-expression coefficient matrix through the self-
expression module and map it into a subspace for efficient
unknown application identification.

The proposed model performs well in identify-
ing unknown encrypted application traffic, but has
three limitations. The first limitation is that tempo-
rary switching of IP addresses may affect the model’s
real-time performance. If the application temporarily
switches some server IP addresses, there are two situa-
tions: when the user’s IP address does not change, it will
not affect the construction of the traffic relationship nor
the model training, because the application only acts as
a traffic receiver or sender; when the user’s IP address
changed, it will affect the construction of the traffic
relationship and the model training, because the result-
ing relationship between IP pairs will disappear at the
same time. For real-time problems, multiple tasks can
be trained in parallel, and a multi-task learning model
based on graph structure can be explored. The second
limitation is that, as a recognition method of unknown
application, the performance of SCGAE may be limited
in imbalanced data. Due to the lack of prior informa-
tion, when mapping massive application streams to lim-
ited imbalanced application categories, it is more likely
to identify categories with larger sample sizes. Possi-
ble future work is to consider a better data balancing
strategy for preprocessing, thereby further improving
the unknown application recognition performance of
SCGAE. The last limitation is the overall accuracy of the
SCGAE. Even though the accuracy of the unsupervised
method is lower than that of the supervised method, the
accuracy of SCGAE still needs to be improved. There-
fore, in the future work, we will try to introduce the idea
of comparative learning so as to improve the accuracy
of traffic identification.

Conclusion
In this study, a subspace clustering via graph auto-
encoder network (SCGAE) for unknown encrypted traffic
is proposed. It learns features and structural information
from the initial application flow, and performs subspace
clustering based on latent representation, saving the
time, expense and manpower of manually labeling data.
The SCGAE learns discriminative node representation
from traffic data by reconstructing node attributes and
graph structure, which is expressed as a coefficient matrix
required for subspace clustering in the self-expression
module. In addition, the SCGAE can use self-supervised
strategies to improve the learning of node represen-
tation, thereby enhance clustering performance. The
effectiveness of the SCGAE method is verified on a real
network traffic dataset. Experimental results show that
SCGAE method can effectively realize the identification
of unknown traffic without label information, and outper-
forms the current state-of-the-art unsupervised methods.

Acknowledgements
The authors would like to thank the editor and annoymous referees for their
constructive comments.

Author Contributions
RY completed the writing and experiments of the paper, AY checked and sug-
gested revisions to the paper, and LC and DM read the paper and gave some
guidance. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declaration

Competing interests
The authors declare no competing interests.

Author details
1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China. 2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China.

Received: 27 April 2022 Accepted: 8 August 2022

References
Aceto G, Ciuonzo D, Montieri A, Pescapé A (2018) Mobile encrypted traffic

classification using deep learning. In: 2018 Network traffic measurement
and analysis conference (TMA). IEEE, pp 1–8

Aceto G, Ciuonzo D, Montieri A, Pescapé A (2019) Mobile encrypted traffic
classification using deep learning: experimental evaluation, lessons
learned, and challenges. IEEE Trans Netw Serv Manag 16(2):445–458

Anderson B, McGrew D (2017) Machine learning for encrypted malware
traffic classification: accounting for noisy labels and non-stationarity.
In: Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pp 1723–1732

Page 15 of 15Yang et al. Cybersecurity (2022) 5:29 	

Bo D, Wang X, Shi C, Zhu M, Lu E, Cui P (2020) Structural deep clustering net-
work. In: Proceedings of the web conference 2020, pp 1400–1410

Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representa-
tions. In: Proceedings of the AAAI conference on artificial intelligence,
vol 30

Constantinou F, Mavrommatis P (2006) Identifying known and unknown
peer-to-peer traffic. In: Fifth IEEE international symposium on network
computing and applications (NCA’06). IEEE, pp 93–102

Conti M, Mancini LV, Spolaor R, Verde NV (2015) Can’t you hear me knock-
ing: identification of user actions on android apps via traffic analysis. In:
Proceedings of the 5th ACM conference on data and application security
and privacy, pp 297–304

Dainotti A, Pescape A, Claffy KC (2012) Issues and future directions in traffic
classification. IEEE Netw 26(1):35–40

Erman J, Arlitt M, Mahanti A (2006) Traffic classification using clustering
algorithms. In: Proceedings of the 2006 SIGCOMM workshop on mining
network data, pp 281–286

Erman J, Mahanti A, Arlitt M, Williamson C (2007) Identifying and discrimi-
nating between web and peer-to-peer traffic in the network core. In:
Proceedings of the 16th international conference on world wide web, pp
883–892

Finsterbusch M, Richter C, Rocha E, Muller J-A, Hanssgen K (2013) A survey of
payload-based traffic classification approaches. IEEE Commun Surv Tutor
16(2):1135–1156

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feed-
forward neural networks. In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics. JMLR workshop and
conference proceedings, pp 249–256

Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via
spectral graph theory. Appl Comput Harmon Anal 30(2):129–150

He G, Yang M, Luo J, Gu X (2015) A novel application classification attack
against tor. Concurr Comput Pract Exp 27(18):5640–5661

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with
neural networks. Science 313(5786):504–507

Ji P, Zhang T, Li H, Salzmann M, Reid I (2017) Deep subspace clustering net-
works. arXiv:1709.02508

Jin Z, Liang Z, Wang Y, Meng W (2021) Mobile network traffic pattern clas-
sification with incomplete a priori information. Comput Commun
166:262–270

Kipf TN, Welling M (2016a) Semi-supervised classification with graph convolu-
tional networks. arXiv:​1609.​02907

Kipf TN, Welling M (2016b) Variational graph auto-encoders. arXiv:​1611.​07308
Korczyński M, Duda A (2012) Classifying service flows in the encrypted skype

traffic. In: 2012 IEEE international conference on communications (ICC).
IEEE, pp 1064–1068

Korczyński M, Duda A (2014) Markov chain fingerprinting to classify encrypted
traffic. In: IEEE INFOCOM 2014—IEEE conference on computer communi-
cations. IEEE, pp 781–789

Lashkari AH, Draper-Gil G, Mamun MSI, Ghorbani AA (2017) Characterization of
tor traffic using time based features. In: ICISSp, pp 253–262

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Liu J, Han J (2018) Spectral clustering. In: Data clustering. Chapman and Hall,

London, pp 177–200
Liu C, He L, Xiong G, Cao Z, Li Z (2019) Fs-net: a flow sequence network for

encrypted traffic classification. In: IEEE INFOCOM 2019—IEEE conference
on computer communications. IEEE, pp 1171–1179

Lizhi P, Hongli Z, Bo Y, Yuehui C, Tong W (2014) Traffic labeller: collecting
internet traffic samples with accurate application information. China
Commun 11(1):69–78

Lorbeer B, Kosareva A, Deva B, Softić D, Ruppel P, Küpper A (2018) Variations on
the clustering algorithm birch. Big Data Res 11:44–53

Ma J, Levchenko K, Kreibich C, Savage S, Voelker GM (2006) Unexpected
means of protocol inference. In: Proceedings of the 6th ACM SIGCOMM
conference on internet measurement, pp 313–326

Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an
algorithm. In: Advances in neural information processing systems, pp
849–856

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social
representations. In: Proceedings of the 20th ACM SIGKDD international
conference on knowledge discovery and data mining, pp 701–710

Reynolds DA (2009) Gaussian mixture models. Encycl Biom 741:659–663

Sen S, Spatscheck O, Wang D (2004) Accurate, scalable in-network identifica-
tion of p2p traffic using application signatures. In: Proceedings of the
13th international conference on world wide web, pp 512–521

Shbair WM, Cholez T, Francois J, Chrisment I (2014) A multi-level framework to
identify https services. In: NOMS 2016-2016 IEEE/IFIP network operations
and management symposium. IEEE, pp 240–248

Shen M, Wei M, Zhu L, Wang M, Li F (2016) Certificate-aware encrypted traffic
classification using second-order markov chain. In: 2016 IEEE/ACM 24th
international symposium on quality of service (IWQoS). IEEE, pp 240–248

Taylor VF, Spolaor R, Conti M, Martinovic I (2017) Robust smartphone app iden-
tification via encrypted network traffic analysis. IEEE Trans Inf Forensics
Secur 13(1):63–78

Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn
Res 9(11):2579–2605

Wang W, Sheng Y, Wang J, Zeng X, Ye X, Huang Y, Zhu M (2017) Hast-ids: learn-
ing hierarchical spatial-temporal features using deep neural networks to
improve intrusion detection. IEEE Access 6:1792–1806

Wang C, Pan S, Hu R, Long G, Jiang J, Zhang C (2019) Attributed graph cluster-
ing: a deep attentional embedding approach. arXiv:1906.06532

Wu Z, Wang M, Yan C, Yue M (2017) Low-rate dos attack flows filtering based
on frequency spectral analysis. China Commun 14(6):98–112

Xie G, Iliofotou M, Keralapura R, Faloutsos M, Nucci A (2012) Subflow: towards
practical flow-level traffic classification. In: 2012 Proceedings IEEE INFO-
COM. IEEE, pp 2541–2545

Zhao S, Zhang Y, Sang Y (2019) Towards unknown traffic identification via
embeddings and deep autoencoders. In: 2019 26th international confer-
ence on telecommunications (ICT). IEEE, pp 85–89

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1611.07308

	Subspace clustering via graph auto-encoder network for unknown encrypted traffic recognition
	Abstract
	Introduction
	Related work
	Preliminaries
	Definition of application flow
	Problem definition

	Design overview
	Constructing the graph
	GAE module
	Self-expressive module
	Clustering module
	Self-supervised module
	Overall loss function

	Evaluation
	Dataset
	Experimental setting
	Comparison methods
	Setting of SCGAE
	Metrics

	Experiments
	Comparison experiment
	Identification results for each application
	Visualization
	Parameters analysis
	Ablation study

	Discussion
	Conclusion
	Acknowledgements
	References

