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Abstract 

Nowadays, cloud computing provides easy access to a set of variable and configurable computing resources based 
on user demand through the network. Cloud computing services are available through common internet protocols 
and network standards. In addition to the unique benefits of cloud computing, insecure communication and attacks 
on cloud networks cannot be ignored. There are several techniques for dealing with network attacks. To this end, 
network anomaly detection systems are widely used as an effective countermeasure against network anomalies. The 
anomaly-based approach generally learns normal traffic patterns in various ways and identifies patterns of anomalies. 
Network anomaly detection systems have gained much attention in intelligently monitoring network traffic using 
machine learning methods. This paper presents an efficient model based on autoencoders for anomaly detection in 
cloud computing networks. The autoencoder learns a basic representation of the normal data and its reconstruction 
with minimum error. Therefore, the reconstruction error is used as an anomaly or classification metric. In addition, to 
detecting anomaly data from normal data, the classification of anomaly types has also been investigated. We have 
proposed a new approach by examining an autoencoder’s anomaly detection method based on data reconstruction 
error. Unlike the existing autoencoder-based anomaly detection techniques that consider the reconstruction error of 
all input features as a single value, we assume that the reconstruction error is a vector. This enables our model to use 
the reconstruction error of every input feature as an anomaly or classification metric. We further propose a multi-class 
classification structure to classify the anomalies. We use the CIDDS-001 dataset as a commonly accepted dataset in 
the literature. Our evaluations show that the performance of the proposed method has improved considerably com-
pared to the existing ones in terms of accuracy, recall, false-positive rate, and F1-score metrics.
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Introduction
In recent years, the concept of cloud computing has 
emerged as one of the most important computing para-
digms. Cloud computing has revolutionized informa-
tion technology and access to processing and computing 
resources [1, 2]. With cloud computing, individuals and 
organizations can access a shared network of man-
aged and scalable IT resources such as servers, stor-
age, and applications on-demand [3]. It makes platforms 

and software available to users as a service. With many 
advances in recent years, it has become a platform for var-
ious users’ technologies. These services are based on large 
networks such as the internet [4] and a model for provid-
ing and consuming resources and services that provides 
access to resources flexible and scalable manner based on 
user demand and in real-time. By using cloud comput-
ing, data and applications can be stored in the cloud and 
accessed anytime, anywhere through all internet access 
tools [5]. Cloud computing is recognized as a dynamic 
provider of computing services over the internet [6].

Considering many advantages of cloud computing, 
various challenges have arisen. One of the most impor-
tant challenges in cloud computing is the security 
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considerations [7]. Due to the increasing use of cloud 
computing, various cyber-attacks are carried out for dif-
ferent purposes in the cloud [8]. Open and distributed 
structures in cloud computing are an important target for 
cyber-attacks by attackers. As cloud services are provided 
over the internet, communication and information secu-
rity are still key issues [9].

On the other hand, security attacks, and incidents can 
significantly impact cloud customers [10]. When cloud 
services go offline or software and websites crash, it can 
cause major problems for users who rely on them for 
day-to-day operations. It means losing revenue, losing 
customers, and losing reputation for businesses. Because 
the cloud environment has shared network resources 
between consumers, the risk increases, and steps must be 
taken to improve security. Many approaches and meth-
ods for security monitoring in cloud computing networks 
have been introduced [11]. Anomaly detection using 
machine learning algorithms is widely used and helps 
detect suspicious or abnormal data that differs signifi-
cantly from the normal data [12, 13].

This research mainly focuses on anomaly detection and 
classification of anomalies in cloud network data using 
autoencoders. The anomaly detection approaches gener-
ally learn normal patterns and detect anomaly samples 
whose patterns significantly deviate from the normal 
ones. We extend this method for classifying all class data 
in the dataset. For instance, a model learns class patterns 
and detects other class samples whose patterns signifi-
cantly deviate from that class data ones. The idea of using 
autoencoders for anomaly detection is already presented 
in the literature [14]. An autoencoder is a neural network 
consisting of an encoder and a decoder trained to learn 
reconstructions close to the original input. The difference 
between the original input and the reconstruction output 
in the autoencoder is called the reconstruction error.

An autoencoder-based anomaly detection system 
trained with only normal traffic data is expected to recover 
any given input as close as possible to the learned normal 
patterns. Therefore, we can classify an input instance as 
an attack if its reconstruction error is larger than a pre-
defined threshold; otherwise, we can classify the input 
instance as normal. In this method, an autoencoder-based 
anomaly detection system can detect unknown types of 
attacks when their patterns deviate from the learned nor-
mal patterns. The existing methods have some issues, and 
there is room for further improvements. One important 
issue in existing methods is treating the reconstruction 
error as a single value. In existing methods, the recon-
struction error of all input vector elements or features is 
summed up in one value. Since the threshold selection is 
highly dependent on reconstruction error, the classifica-
tion based on this threshold is far from ideal.

In this paper, we propose a new approach for anomaly 
detection based on autoencoders. We assume vector 
instead of single value and consider reconstruction error 
and threshold for every feature. In fact, instead of using 
the summation of reconstruction error in one value, we 
create a vector of the reconstruction error. This approach 
improves the performance of anomaly detection and clas-
sification. To evaluate the proposed method, we adopt 
the CIDDS-001 dataset [15]. In addition, we investigate 
the effectiveness of a hierarchical multi-classification on 
the performance of the proposed method.

In summary, the contributions of this paper are listed 
as follows:

•	 We propose a new method to use autoencoders in 
anomaly detection of cloud networks. Unlike the 
existing methods, we create a vector reconstruction 
error for every feature. This leads to a threshold vec-
tor in anomaly detection that further improves the 
performance compared to existing methods. Our 
presented autoencoder network has only one hidden 
layer and therefore, is more efficient compared with 
existing autoencoder based anomaly detection meth-
ods in cloud.

•	 We propose a multi-class classifier with a hierarchical 
structure to classify all classes of data and improve 
the performance of one class classifier.

•	 We perform an extensive evaluation of the proposed 
methods. We adopt the commonly accepted CIDDS-
001 dataset and compare the proposed methods with 
some of the existing ones in terms of accuracy, recall, 
false-positive rate, and F1-score metrics. The results 
show considerable improvements. We have made our 
code publicly available on GitHub. https://​github.​
com/​Hasan-​Torabi/​Anoma​ly-​detec​tion-​in-​cloud-​
compu​ting-​netwo​rks-​by-​using-​autoe​ncode​rs.

The remainder of this paper is organized as follows: 
“Literature review” section reviews the literature and 
discusses related works. “System model” section pre-
sents the system model, and the proposed methods are 
presented in “Proposed model” section. The evaluation 
setup, experimental results, and comparisons are pre-
sented in “Evaluation results and discussion” section, and 
finally, “Conclusions” section concludes the paper.

Literature review
Cloud computing is a leading technology that has 
changed how traditional services are provided and has 
affected the entire IT sector. Security issues are one of 
the most important challenges of cloud networks. Many 
algorithms have been proposed over time to overcome 
security and privacy issues. Facing new cyber issues 

https://github.com/Hasan-Torabi/Anomaly-detection-in-cloud-computing-networks-by-using-autoencoders
https://github.com/Hasan-Torabi/Anomaly-detection-in-cloud-computing-networks-by-using-autoencoders
https://github.com/Hasan-Torabi/Anomaly-detection-in-cloud-computing-networks-by-using-autoencoders


Page 3 of 13Torabi et al. Cybersecurity             (2023) 6:1 	

or improving the performance of the existing systems, 
researchers continue to present new methods. One of the 
promising solutions is to use anomaly detection systems 
in cloud networks to prevent system failure, attacks, and 
intrusion [16]. In this section, we present some of the 
existing and related methods that use anomaly detection 
in cloud networks.

The authors in [17] use a deep neural network (DNN) 
to classify the types of attacks on cloud and internet of 
things (IoT) networks. They use the cross-validation and 
repeated cross-validation on the CIDDS-001 dataset 
to evaluate their proposed method. Authors also apply 
these methods to different randomly selected sets from 
the dataset. To find the optimal parameter of DNN, the 
authors use the grid search method for hyper-parameters 
optimization.

Long-Short Term Memory (LSTM) for multi-class 
intrusion detection is also used for the anomaly-based 
network intrusion detection system in [18]. The authors 
use the CIDDS-001 dataset and Accuracy metric for per-
formance evaluations. The LSTM model compared with 
other methods such as support vector machines (SVM), 
Naïve Bayes (NB), and Multi-Layer Perceptron (MLP). 
The authors show that the LSTM outcomes the men-
tioned existing methods in terms of accuracy. However, 
sequence size and some hyper-parameter values are not 
mentioned in detail, and the achieved accuracy of LSTM 
is 85.5%.

Authors in [19] propose a comparative analysis of 
benchmark datasets NSL-KDD and CIDDS-001 using 
multiple machines and deep learning classifiers. The 
authors use the hybrid feature selection and ranking 
methods. They consider six classification algorithms, 
including SVM, Naïve Bayes, k-nearest neighbors (KNN), 
Neural Networks (NN), DNN, and denoising autoen-
coder (DAE), to measure the performance and accuracy 
of algorithms in used datasets. The evaluation results 
show that kNN, SVM, NN, and DNN algorithms achieve 
higher performance on the NSLKDD dataset, and DAE 
and Naïve Bayes algorithms achieved high performance 
on the CIDDS-001 dataset.

In [20], the authors use a deep autoencoder as an intru-
sion detection system that works based on anomaly 
detection. Their proposed system trains only with normal 
data, and the pattern of normal data is learned only by 
using the characteristics of normal behavior. Every input 
data is classified according to the reconstruction error 
threshold to normal or anomaly. The grid search tech-
nique is used to tune the autoencoders’ parameters. They 
use the CIDDS-001 dataset to evaluate the performance 
of their proposed method. This method only performs 
binary classification, which classifies normal and anom-
aly data.

An anomaly detection system in a cloud network that 
uses supervised machine learning is proposed in [12]. 
The authors use two one-class classifiers instead of multi-
class classifiers. They used One-Class Support Vector 
Machine (OCSVM) and Autoencoder algorithms trained 
to detect anomalies. The proposed algorithms are tested 
on the yahoo and the UNSW-NB15 dataset. The experi-
mental results show that the autoencoder outperforms 
the OCSVM in anomaly detection scenarios.

In [21], a hybrid deep learning-based model for anom-
aly detection in cloud computing environments is pro-
posed. The model takes advantage of multi-objective 
optimization and deep learning for feature extraction 
and anomaly detection on network traffic streams. The 
authors use the grey wolf optimization (GWO) algorithm 
for multi-objective feature extraction and a convolutional 
neural network (CNN) for anomaly classification. Their 
suggested model contains two phases, feature selection, 
and classification. Feature selection is performed using 
improved GWO (ImGWO), and in the second phase, an 
improved CNN (ImCNN) is applied for classification. 
The authors evaluate the proposed model’s efficacy using 
DARPA’98 and KDD’99 and synthetic datasets. They 
show that their proposed ImGWO and ImCNN based 
model performs better results compared with standard 
GWO and CNN.

Authors in [22] use deep learning for intrusion detec-
tion in IoT networks. The authors develop feed-forward 
neural network models by proposing an intelligent intru-
sion detection approach. Transfer learning encodes high-
dimensional features applied for multi-class classification 
for building a binary classifier. A detection model is also 
trained to detect four attacks in IoT networks. The effi-
cacy of the proposed model is evaluated on a dataset 
comprising realistic network trac.

A software-defined network-based anomaly detec-
tion system (SDN-ADS) is proposed for cloud comput-
ing, and edge computing-based networks in [16]. Cloud 
computing and edge computing networks have suf-
fered from security concerns due to different malicious 
activities and security attacks. These malicious activities 
lead to link failure and wrong forwarding decisions and 
divert the paths. The proposed SDN anomaly detection 
system-based network in [16] is divided into different 
layers based on north and south application program-
ming interfaces (APIs) and malicious switches. A Trusted 
Authority for Edge computing model is used to ensure 
the trust in edge devices; when the trust is established, 
then all communication can be performed through local 
certificates.

Authors present an analysis of the CIDDS-001 dataset 
for anomaly-based network intrusion detection systems 
from the machine learning perspective [23]. They use 
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k-nearest neighbor (KNN) classication and k-means clus-
tering techniques to measure the complexity in terms of 
prominent metrics. Based on the presented evaluation 
results, the authors show that both k-nearest neighbor 
classication and k-means clustering perform well over the 
CIDDS-001 dataset in terms of used prominent metrics.

An artificial neural network (ANN) model is used for 
anomaly detection in [24]. The authors use regulariza-
tion to improve generalization by reducing model com-
plexity. They propose a new regularization technique for 
anomaly detection based on the standard deviation of the 
weight matrix. They show that their proposed regulariza-
tion algorithm is capable of identifying good patterns in 
data and classifying them efficiently.

Authors in [25] perform anomaly detection based on 
the network flow features. They evaluate the detection 
capabilities of both known and unknown attacks with 
autoencoder and variational autoencoder deep learning 
methods with a one-class support vector machine. Their 
presented models are created only by using normal ow-
based data. The proposed autoencoder and variational 
autoencoder in [25] have two encoding and two decoding 
layers, with the bottleneck layer having 64 neurons. The 
encoder involves an experiment on the CICDS2017 data-
set, extraction of the stream-based features, and a calcu-
lation of the region of convergence (ROC) curve and the 
area under the curve (AUC) value. The results show that 
the AUC value obtained by the variational autoencoder is 
better than that of the autoencoder and single-class sup-
port vector machine. Still, it is not easy to determine an 
appropriate threshold that provides high detection accu-
racy or a low false alarm rate.

Authors in [26] propose a cyber-attack detection system 
for networks. In this research, a sequential approach for 
intrusion detection by using time-based transformations 
in the algorithm’s input data is proposed. An experiment is 
conducted with random forest, multi-layer perceptron, and 
long-short term memory to understand the best perfor-
mance by comparing single-flow and multi-flow detection 
approaches in the CIDDS-001 dataset.

In [27], the authors suggest a method for assessing 
network security posture based on stacked autoencoder 
networks and backpropagation neural networks, which 
can further reduce model complexity. First, the suggested 
approach extracts and normalises network domain indi-
cator data. After that, a stacked autoencoder network is 
utilised to reduce dimension and extract features. The 
network security situation value is then computed using 
a backpropagation neural network technique, which can 
quantitatively analyse the network domain security situ-
ation. They evaluated the performance of their proposed 
technique using the CIDDS-001 dataset. Finally, they 
demonstrated that the suggested method can accurately 

assess the security condition of a network area through 
a series of comparative tests. Furthermore, this method 
can reduce the dimensionality of input data while keep-
ing valuable data properties, which can save storage 
overhead and computer resources while improving 
assessment efficiency.

In reviewed research, many approaches and methods 
are used for anomaly detection. In all autoencoder-based 
existing research, authors use a single value for recon-
struction error, causing the threshold to be a single value. 
In this paper, we create a vector of reconstruction error 
for every feature that further improves the performance 
of anomaly detection in the networks.

System model
Autoencoder (AE) [28, 29] is a specific type of feed-for-
ward neural network where the input is the same output. 
The output layer has the same dimension as the input 
layer, as shown in Fig. 1. These networks use an unsuper-
vised approach for training input vectors to reconstruct 
as output vectors [30]. AEs are made up of an encoder 
and a decoder. The architecture of a sample autoencoder 
is presented in Fig. 1.

The encoder transforms the input vector X to a hidden 
representation H as presented in Eq. 1.

where σ is an activation function such as a sigmoid func-
tion or rectified linear unit, W is a weight matrix, and b is 
a bias vector. The transformation operation is applied to 
hidden representation H to reconstruct the initial input 
space using a decoder.

(1)H = σ(WxhX + bxh)

Fig. 1  The architecture of a sample autoencoder
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The difference between the reconstructed vector X̂ and 
the original input vector X yields the reconstruction error 
(RE), r as follows:

The AE is trained to minimize the r with an unsupervised 
training approach [25]. The flow chart of AE training is 
illustrated in Fig. 2.

The RE is the criterion by which anomalies are detected. 
An AE is trained to minimize this reconstruction error. 
Therefore, the AE learns the relationships between the fea-
tures of the input set. If we feed a trained AE with the data 
(not seen during the training phase) that resembles the data 
used for the training, AE should reproduce the input with 
good accuracy in the output. If this is not the case, the AE 
will be unable to reconstruct the input correctly, result-
ing in a larger error. This large error enables us to detect 

(2)X̂ = σ(Whx̂h+ bhx̂)

(3)r = �X − X̂�

anomalies by observing the magnitude of the RE. It means 
that the RE is used as the anomaly score in AE-based anom-
aly detection. If an input enters in AE and creates high RE, 
it is assumed to be an anomaly. The training of AE is done 
through the normal data. The trained AE model will suc-
cessfully reconstruct normal input data with very low RE. 
However, it will fail to do the same with anomaly data it has 
never seen before. Figure 3 shows the flow chart of the AE-
based anomaly detection algorithm [25].

Proposed model
The existing AE-based anomaly detection methods consider 
the reconstruction error in one value as is shown in Fig. 4.

In these methods, the reconstruction errors of all 
inputs (or data) features add up together. Therefore, we 
can not detect the error value of each feature. It mean 
that the RE of different data might be equal while one 
data that has error in m features and another data that 
has error in n features.

Fig. 2  The flow chart of the autoencoder training algorithms
Fig. 3  The flow chart of autoencoder based anomaly detection 
algorithms
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In evaluating this method, the RE of normal and anom-
aly data overlaps and intersections. This is because the 
RE summarizes all the features of RE into one value and a 
threshold with one value specifies the boundary between 
normal data and anomaly data. For example, we feed 
anomaly data into trained AE for anomaly detection. If 
this anomaly data in k features cannot be reconstructed 
well at the AE output, significant errors are generated in 
the k features. However, very few errors may be calcu-
lated in the other features. Accordingly, when the RE is 
calculated (only one value), the RE value may be less than 
the threshold. This causes a false classification due to the 
inherent weakness of existing methods. To overcome this 
issue, having a single value of RE is not desirable.

In this paper, we adopt the innovation in calculating the 
RE and determining the threshold value by considering the 
RE and the threshold as a vector. In this case, the RE of each 
output data from AE is equal to the length of input data fea-
tures, in each of which the RE of that corresponding feature 

is inserted. RE of each feature is equal to the absolute value 
of the difference between input and output values of the 
feature from the AE. First, by training the AE with only 
normal data, we select the threshold that the RE in each 
feature is less than that RE value for all normal data. There-
fore, for each feature of data, we select a unique threshold. 
On the other hand, we ensure that the RE of all the features 
of all normal data is less than these threshold values. In this 
case, if the RE of one/more feature(s) exceeds the corre-
sponding threshold of that feature, we can classify that data 
as an anomaly. After training the AE to select the threshold 
of each feature, we consider the RE according to Eq. 4 as 
shown in Fig. 5.

where n is a number of features.
The threshold value for each AE is given according to 

Eqs. 5 and  6.

where m is the number of data samples, this process is 
illustrated in more detail in the pseudo-code of Algo-
rithm  1. The threshold value of each feature is equal to 
the maximum error of that feature among the REs of all 
class data participating in AE training.

(4)r = (�X1 − X̂1�, �X2 − X̂2�, . . . , �Xn − X̂n�)

(5)th = (th(X1), th(X1), . . . , th(Xn))

(6)
th(Xk) = Max(�X1

k
− X̂

1
k
�, �X2

k
− X̂

2
k
�, . . . , �Xm

k
− X̂

m

k
�)

Fig. 4  The procedure of calculation RE in existing AE-based anomaly 
detection methods

Fig. 5  The procedure of calculation RE in the proposed model
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After selecting the threshold, which is a vector of the 
size of the features, we can perform the anomaly detec-
tion. We first enter any given data in the trained AE with 
normal data. The RE vector for the data is generated by 
calculating the RE of each feature. After calculating the 
RE, we compare it with the selected threshold value for 
that AE. If only one feature of the RE vector is greater 
than the corresponding value of that feature in the 
threshold vector, we consider the input data an anomaly. 
The pseudo-code of anomaly detection algorithm based 
on AE reconstruction error is shown in Algorithm 2.

We also classify other classes in the dataset with the 
proposed method. First, AEs with different data from 
dataset classes are learned. Thresholds are selected 
according to the process mentioned in Algorithm  2 for 
each AE. AEs can then perform binary classification. 
Assuming input data, RE value is calculated, and accord-
ing to RE and threshold value, the data can be classified 
as AE training data class or anomaly.

In terms of computational complexity, given the 
characteristics of the data, our proposed method takes 
more calculations to discover anomalies than current 
practises. This is because we calculate a threshold for 
each characteristic. We classify input data by compar-
ing all features’ reconstruction errors to the associated 
threshold. Of course, when comparing both algorithms 
in the same autoencoder network, this result is correct. 
Other factors, such as the number of hidden layers in 
the autoencoder network and the number of neurons in 
each layer, have a greater impact on the number of final 
calculations and network efficiency if the autoencoder 
networks. Therefore, the performance of the anomaly 
detection method in the autoencoder network is mostly 

influenced by the architecture of the autoencoder 
network.

Multi‑class classification with hierarchical structure
Some binary classifiers may have poor performance due 
to several causes. For example, the amount of data in a 
given class may not be large enough for the training algo-
rithm. Due to poor data set labeling, there may be classes 
in which data is inherently similar to other classes. 
This poor performance in a classifier may lead to many 

false-positive detections. One of the promising solutions 
to this issue is multi-class architecture. In the proposed 
multi-class architecture, we place the classifiers with bet-
ter performance at the beginning, and the weaker ones 
are placed at the end of the architecture. The proposed 
architecture is shown in Fig. 6.

As illustrated in Fig.  6, the entire dataset is first pre-
sented to the classifier A. This classifier only classifies A 
data. Data classified as A are subtracted in the dataset 
and then presented to the classifier B. This process is 
repeated for the rest of the classifiers. The order of clas-
sifiers is determined by selecting the one with the best 
false-positive rate.

Evaluation results and discussion
Evaluation metrics
This section demonstrates the performance of the pro-
posed model on the CIDDS-001 dataset. The codes used 
for the evaluation of the proposed model is publicly availa-
ble through GitHub. The link is available in the “data avail-
ability statement” section. The following parameters are 
used to evaluate the performance of the proposed model:
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•	 Detection Rate or Recall, defined in Eq. 7
•	 False Positive Rate (FPR), defined in Eq. 8
•	 Precision, defined in Eq. 9
•	 Accuracy, defined in Eq. 10
•	 F1-score, defined in Eq. 11

In the Eqs. 7 to 11, the parameters TP, TN, FP, and FN 
refer to True Positive, True Negative, False Positive, and 
False Negative, respectively.

Availability of dataset
We use the CIDDS-001 [15] dataset to perform AE-based 
anomaly detection in cloud networks. CIDDS-001 is 

(7)Recall =
TP

TP + FN

(8)FPR =
FP

FP + TN

(9)Precision =
TP

TP + FP

(10)Accuracy =
TP + TN

TP + TN + FP + FN

(11)F1Score =2×
Precision× Recall

Precision+ Recall

accepted as the benchmark dataset and contains unidirec-
tional NetFlow data. It comprises data from two servers: 
OpenStack and an external server. The dataset is created 
by simulating a small business environment that includes 
an OpenStack with internal servers (web, file, backup, and 
mail) and an external server (file synchronization and web 
server) that is installed on the internet to capture real-
time internet traffic [31]. The dataset contains traffic data 
from two servers, with each server’s traffic consisting of 
four weeks of traffic data. Additionally, the original data 
of CIDDS-001 consists of 16 features, including Src IP, 
Src Port, Dest IP, Dest Port, Proto, Date first seen, Dura-
tion, Bytes, Packets, Flags, Tos, Flows, Class, AttackType, 
AttackID, and AttackDescription. The network attacks 
are categorized into five classes: normal, suspicious, 
unknown, attacker, and victim. In this paper, we use exter-
nal traffic. We omit three features, including AttackID, 
AttackType, and AttackDescription, since they are more 
related to the attack’s information than anomaly detec-
tion. This dataset contains many traffic instances, 153026 
of which are used for the study from the External Server.

Pre‑processing of data
We perform the following pre-processing steps on the 
dataset. AE networks only use numerical data for training 
and testing. Therefore, the first step is to convert nominal 
and categorical data into numerical data. All the nomi-
nal and categorical values are mapped into numeric val-
ues using one-hot encoding and binary encoding. After 
pre-processing of data, the dataset contains features of 
numerical values. The numerical values were normalized 
and arranged between 0 and 1 by using Eq. 12.

(12)x̄i =
xi −min(xi)

max(xi)−min(xi)
, For i = 1, . . . , n

Fig. 6  Proposed multi-class classification architecture

Fig. 7  The architectural diagram of AE model including the number 
of input, hidden and output layers
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where n represents the number of records, and x repre-
sents a specific column in the dataset.

Performance evaluation
This section provides the configuration of AE, multi-class 
classification, and an analysis of the performance results 
of the proposed model. First, we perform a hyper-param-
eter optimization for AE networks with grid search, gen-
erating the best setting for hyper-parameters. The AE 
network is composed of one hidden layer with 165 units, 
as shown in Fig.  7, with the ReLU activation function, 
and the activation function of the output layer is Sigmoid. 
We use RMSprop optimizer with a learning rate set to 
0.00014. We perform multiple comparison results with 
the methods presented in [19, 20].

We use a re-sampling mechanism to prevent over-
fitting in our validation method. We employ k-fold 
cross-validation, which is a re-sampling strategy in 
which the dataset is divided into k equal-sized sections. 
The n-subsets are drawn for testing in the n-th of the 
k-loopings, while the blend of the remaining parts repre-
sents the training set. In our evaluations we use 10-fold 
cross-validation.

After training AEs on all data classes of the dataset, we 
calculate the threshold vector for each AE. We further 
feed all dataset data to every AE for evaluation as shown 

in Fig. 8. The evaluation of each classifier AE is reported 
in Table 1 and illustrated in Fig. 9.

The results presented in this section are derived from 
the implementation of the described models and met-
rics using the Python programming language. The used 
libraries are listed as follows:

•	 Numpy [32], and Pandas [33] are used for pre-pro-
cessing and manipulation and for calculating evalua-
tion metrics.

•	 Optuna [34] is used for hyper-parameter optimiza-
tion.

•	 Pytorch [35] is used to implement AE.

Fig. 8  The evaluation process of anomaly detection and classifiers in the proposed method

Table 1  Performance of the different classifiers in the proposed 
model in terms of F1-score, FRP, Recall, Precision, and Accuracy 
on five classes

F1-score FPR Recall Precision Accuracy Class

100 0 100 100 100 Normal

99.941 0.008 100 99.882 99.993 Attacker

99.906 0.007 100 99.813 99.992 Victim

99.781 0.125 100 99.562 99.903 Unknown

80.540 85.699 100 67.42 69.1 Suspicious
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The training procedure and evaluations are performed on 
Google Colab [36].

As can be seen in Table 1 and Fig. 9, the recall value 
of all classifiers is 1 or 100%. It happens because chosen 

thresholds categorize the data in the correct class. The 
false-positive rate of all classifiers except the suspicious 
class is low. The reason for the high false-positive rate 
of the suspicious class is that there are issues in labeling 
the CIDDS-001 dataset. Network traffics received from 
the internet in dataset generation are labeled as suspi-
cious [31]. Therefore, this class of data is not in control 
of dataset generation. We use the proposed multi-class 
classification architecture with a hierarchical structure 
to increase the classifiers’ accuracy. The priority of the 
classifiers is with the classifiers with the lowest value 
of the false-positive rate. The classifier with the lowest 
false-positive rate is at the beginning of the architecture, 
and the classifier with the highest false-positive rate is at 
the end. Low false-positive rates are important because 
the classifier at the beginning of the architecture does 
not classify the data of other classes incorrectly. We now 
evaluate this architecture with all the data in the dataset 

Fig. 9  Graphical representation for evaluation results of different classifiers in the proposed model on CIDDS-001 dataset for five classes of Normal, 
Attacker, Victim, Suspicious and Unknown for F1-score, FRP, Recall, Precision and Accuracy metrics

Fig. 10  The hierarchical structure for multi-class classification

Table 2  Performance of the proposed model after using multi-
class classification architecture in terms of F1-score, FRP, Recall, 
Precision, and Accuracy metrics

F1-score FPR Recall Precision Accuracy Class

100 0 100 100 100 Normal

99.941 0.007 100 99.882 99.993 Attacker

99.906 0.007 100 99.813 99.992 Victim

99.792 0.118 100 99.585 99.907 Unknown

99.916 0 99.833 100 99.893 Suspicious
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as shown in Fig. 10. The evaluation results are reported 
in Table 2 and illustrated in Fig. 11.

As presented in Table 2, the proposed model achieves 
the good detection performance on anomaly detec-
tion or classifying normal data from other data in the 
CIDDS-001 dataset. It achieves exactly 100% accu-
racy, 100% precision, 100% recall, 0% FPR, and 100% 
F1-score.

Comparison results
Many research studies have been conducted in anomaly 
detection by using the CIDDS-001 dataset. A compari-
son between our proposed method and the methods pre-
sented [19] is illustrated in Table 3. In [19], the authors 
evaluate several state of the art algorithms. It means that 
comparing the results reported in [19] we are comparing 
the proposed method with 6 other methods. As results 
indicate, our method with simple AE consisting of one 
hidden layer has much better performance than the deep 
AE with multiple hidden layers presented in [19].

As shown in Table 3, our method is better in most eval-
uation metrics values. We also compare our proposed 
method, a simple AE, with the method presented in [20] 
and [27], which are Deep AE and stacked autoencoder 
based neural network in Tables 4 and  5. As results show, 
our proposed method performs best in anomaly detec-
tion or normal classification performed with the CIDDS-
001 dataset.

The evaluation results of our proposed model based 
on AE are better than Deep AE. This shows the advan-
tage of our approach. Based on these comparisons, the 
results obtained using the proposed model are very 
promising.

The architecture of autoencoder networks in [20] and 
[27] are all deep and have several hidden layers. Our 
presented autoencoder network in this paper has only 
one hidden layer and therefore, our proposed method is 
more efficient compared with [20] and [27].

Our proposed method uses the class data to calcu-
late the classifier’s threshold; therefore, if data from the 
trained class data is included in other classes, the data 
will be incorrectly classified. This issue could be the 
result of an error in the dataset’s labelling or a flaw in 
the dataset’s collection. As a result, when the same data 
exists in two separate classes, thresholding becomes 
difficult, and the capacity to detect anomalies or cat-
egorise through reconstruction mistakes is diminished. 
There could be researches to overcome this issue, how-
ever, we believe that one promising solution as a future 
direction to this research is to use variational autoen-
coder networks. Reconstruction probability can also be 
utilised for anomaly detection or classification in vari-
ational autoencoder networks.

0In the proposed solution, we choose a network design 
for all AEs. By supplying some data from all classes, the 
architecture is retrieved using hyper-parameter optimi-
zation. This limitation could be addressed in the future 

Fig. 11  Graphical representation for evaluation results of proposed model after using multi-class classification on CIDDS-001 dataset for five classes 
of Normal, Attacker, Victim, Suspicious and Unknown for F1-score, FRP, Recall, Precision and Accuracy metrics
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researches by determining the ideal architecture of 
autoencoder network of each class in hyper-parameter 
optimization using only that class’s data.

Conclusions
This paper investigates anomaly detection in cloud net-
work data by using autoencoders. A new approach for 
autoencoder-based anomaly detection was proposed. 
This approach is different from previous autoencoder-
based anomaly detection techniques in terms of the 
reconstruction error calculation mechanism, threshold 
determination, and the RE compared with the thresh-
old method. The parameters of our proposed model 
were tuned using the grid search technique. We also 
proposed a multi-class classification architecture with a 
hierarchical structure to enhance the performance of the 
proposed model. We made evaluations by using differ-
ent metrics, including accuracy, precision, recall, false-
positive rate, and F1-score on a commonly used dataset 
named CIDDS-001. By analyzing the evaluation results 
and comparing them with some of the recent existing 
methods, it was shown that the proposed anomaly detec-
tion had a better performance than the existing ones. The 
results confirmed that the proposed approach could be 
a promising solution, with high efficiency for construct-
ing autoencoder-based anomaly detection for cloud net-
works. The codes used for the evaluation are publicly 
available and could be used by researchers for further 
investigations. Although the proposed method performs 
well in simulations and benchmark datasets, issues still 
appear in practical cases. This research could be resumed 
by applying the proposed algorithm in practical evalua-
tions and real networks.

Table 3  Performance comparison of the proposed model with 
methods presented in [19] including SVM, KNN, Naïve Bayes, NN, 
DNN and DAE

Recall Precision F1-score Accuracy Method Class

0.509 0.186 0.272 0.515 SVM Normal

0.997 0.973 0.985 0.994 KNN

0.975 0.991 0.983 0.994 Naïve Bayes

0 0 0 0.822 NN

0 0 0 0.850 DNN

0.805 0.810 0.795 0.822 DAE

1 1 1 1 Our proposed 
model

0.150 0.022 0.039 0.888 SVM Attacker

0.997 0.979 0.988 1 KNN

0.999 0.999 0.999 1 Naïve Bayes

0 0 0 0.985 NN

0 0 0 0.989 DNN

0 0 0 0.985 DAE

1 0.998 0.999 0.999 Our proposed 
model

0.854 0.496 0.627 0.985 SVM Victim

0.996 0.981 0.988 1 KNN

0.999 0.999 0.999 0.999 Naïve Bayes

0 0 0 0.985 NN

0 0 0 0.985 DNN

0 0 0 0.985 DAE

1 0.998 0.999 0.999 Our proposed 
model

0.307 0.064 0.106 0.689 SVM Unknown

0.784 0.834 0.808 0.978 KNN

0.880 0.603 0.715 0.958 Naïve Bayes

0 0 0 0.940 NN

0 0 0 0.967 DNN

0 0 0 0.940 DAE

1 0.995 0.997 0.999 Our proposed 
model

1 0.754 0.177 0.318 SVM Suspicious

0.980 0.982 0.981 0.972 KNN

0.952 0.985 0.968 0.954 Naïve Bayes

1 0.732 0.845 0.732 NN

1 0.752 0.885 0.710 DNN

1 0.732 0.845 0.732 DAE

0.998 1 0.999 0.998 Our proposed 
model

Table 4  Performance comparison of the proposed model with the method presented in [20] in terms of F1-score, Recall, Precision, 
FPR, and Accuracy

Class F1-score Recall Precision Accuracy FPR Method

Normal 95 100 90 97 4 DAE

100 100 100 100 0 Our 
proposed 
method

Table 5  Performance comparison of the proposed model with 
the method presented in [27] in terms of Precision and F1-score

Class Method F1-score Precision

Normal Stacked autoencoder based 
neural network

98.93 99.05

Our proosed method 100 100
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