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Abstract 

In recent years, deep learning gained proliferating popularity in the cybersecurity application domain, since when 
being compared to traditional machine learning methods, it usually involves less human efforts, produces better 
results, and provides better generalizability. However, the imbalanced data issue is very common in cybersecurity, 
which can substantially deteriorate the performance of the deep learning models. This paper introduces a transfer 
learning based method to tackle the imbalanced data issue in cybersecurity using return-oriented programming 
payload detection as a case study. We achieved 0.0290 average false positive rate, 0.9705 average F1 score and 0.9521 
average detection rate on 3 different target domain programs using 2 different source domain programs, with 0 
benign training data sample in the target domain. The performance improvement compared to the baseline is a 
trade-off between false positive rate and detection rate. Using our approach, the total number of false positives is 
reduced by 23.16%, and as a trade-off, the number of detected malicious samples decreases by 0.68%.
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Introduction
Deep learning has become popular in the fields of cyber-
security in recent years (Choi 2020; Berman et al. 2019), 
because it performs at least as good as the traditional 
methods do when enough high-quality data are available, 
and is more general and cost-effective. However, one of 
the challenges when applying deep learning to the cyber-
security application domain is the imbalanced data issue, 
which can deteriorate the performance of the deep learn-
ing models. Imbalanced data situations are quite com-
mon in cybersecurity. For example, in network intrusion 
detection, the amount of benign traffic is orders of mag-
nitudes greater than malicious ones. Another example 

is in tackling insider threats, where the amount of nor-
mal behavior data is orders of magnitudes greater than 
malicious behavior. In this paper, we present a transfer 
learning based method to tackle the imbalanced data 
issue in cybersecurity using Return-Oriented Program-
ming (ROP) payload detection as a case study. ROP is 
an exploit technique that can be used to perform code 
reuse attacks (CRA) through the Internet, which are still 
prominent exploit techniques today used to defeat Data 
Execution Prevention (DEP), especially on the legacy 
platforms without Address Space Layout Randomization 
(ASLR), because ROP payloads contain no code but only 
addresses. Even if ASLR is deployed, ROP attacks could 
still be fairly effective (Seibert et al. 2014). ROP is there-
fore well-studied and many methods and tools are pro-
posed to detect ROP attacks.

In recent years, deep learning based ROP detection 
methods start to emerge, because they could mitigate 
several limitations of traditional methods. The advan-
tages of using deep learning to detect ROP attacks 
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include: (1) deep learning models can run independently 
with minimal overhead on the protected programs; (2) 
less human heuristics are involved to extract features 
or patterns; (3) a well trained deep learning model can 
achieve comparable detection rate (DR) and false posi-
tive rate (FPR). To the best of our knowledge, no tradi-
tional method has all the advantages mentioned above. 
For example, defending methods implemented at com-
piler (Onarlioglu et al. 2010) will change the program sig-
nificantly and may cause runtime overhead; control flow 
integrity (CFI) based methods (Payer et al. 2015; Mashti-
zadeh et  al.  2015) require carefully crafted fine-grained 
control flow graphs, which could be very costly; heuristic 
based methods (Chen et al. 2009; Cheng et al. 2014) may 
suffer from low detection rate.

Despite the potential in ROP detection, deep learning also 
suffers from the imbalanced data issue just as in other cyber-
security subfields. An ROP payload detection task is essen-
tially a binary classification task: whether a piece of data is 
ROP payload. We observe that sometimes data with one of 
the two labels could be hard to prepare (Zhang et al. 2019; Li 
et al. 2020), and the process of generating the data with such 
a label becomes the bottleneck of the data preparation. Con-
sequently, the resulting dataset could become imbalanced 
(or insufficient otherwise), which can substantially affect the 
performance of the deep learning model.

This paper introduces a model-independent transfer 
learning based solution to mitigate the imbalanced data 
issue caused by the scenario described above, using deep 
learning based ROP detection as a case study. The base 
model in this paper is DeepReturn (Li et al. 2020), which is 
a Convolutional Neural Network (CNN) based ROP detec-
tion model. In the case study, we have following assump-
tions: (1) One deep learning model is trained to protect 
exactly one program against ROP; (2) Enough high-quality 
data for at least one program is available; (3) Extremely 
imbalanced data for another program is available.

In our case study, we achieved 0.0290 average FPR, 
0.9705 average F1 score, and 0.9521 average detection 
rate on 3 different target domain programs using 2 dif-
ferent source domain programs, with 0 benign training 
sample in the target domain. Compared to the baseline, 
the number of false positives is reduced by 23.16%, and 
as a trade-off, the number of detected malicious sam-
ples is reduced by 0.68%. In addition, we showed that our 
method is model-independent, which means that our 
model can be adopted regardless what kind of neural net-
work architecture is being used. Our contributions can 
be summarized as follow:

• Propose a new domain adaptation based method 
to train a cyber-attack detection model using an 
extremely imbalanced dataset.

• Discuss the performance trade-offs of the proposed 
approach.

• Present the insights about how transfer learning 
helps to achieve the improved results.

Essentially, we show that our proposed method can 
greatly improve the practicality of a model for ROP 
detection.

Background
Return‑oriented programming
Return oriented programming (ROP) (Shacham 2007) and 
its variants (Snow et al. 2013; Bletsch et al. 2011; Check-
oway et al. 2010) are still popular exploit methods today, 
which provide attackers turing-complete functionalities 
without inject any code. The attackers use the instruction 
sequences that end with an ret instruction to construct 
the code for their malicious purposes, which are called 
gadgets. In a typical ROP attack, by overwriting the return 
address of the executing function and loading all the 
addresses of gadgets needed onto the stack, the attacker 
will be able to execute a sequence of gadgets, which is 
called gadget-chain. Figure 1 shows a synthetic example of 
the ROP exploit process on X86 instruction set architec-
ture (ISA). In this example, the payload arrives at the host 
and is loaded into a buffer on the stack. This malicious 
payload segment contains two addresses, 0xffdd17c3 
and 0xfe2893f5, which are addresses in the code seg-
ment (i.e. .text segment) of the beginning of gadgets. 
If the address 0xffdd17c3 overwrites the original return 
address in the stack frame, it will cause the whole gadget-
chain to be executed and the program will be exploited 
by the attacker. Since there are abundant instruction 
sequences (and thus gadgets) available in the memory 
when the program is loaded in modern operating systems, 
virtually ROP is turing-complete programming technique.

Fig. 1 Workflow of ROP attacks
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In practice, one important aspect of an ROP payload is 
the layout of the gadgets’ addresses. In the simplest sce-
nario, the attacker needs to ensure the value stored in the 
%esp register is the address of the beginning of the next 
gadget when ret is executed. For example, pop instruc-
tions are important for the gadget layout. In X86, if the 
distance of the addresses of two adjacent gadgets in the 
memory is 4 bytes, then a pop instruction is needed to 
fix the offset. Since it is not common to have many pop 
instructions in a roll, the addresses of adjacent gadgets 
are usually not far away in the payload.

Traditional ROP detection methods
The majority of the traditional ROP detection methods 
can be categorized into 2 kinds: heuristic-based, and 
CFI-based. Heuristic-based methods use heuristics and 
hard coded rules to find ROP gadgets. DROP (Chen 
et  al.  2009) checks the frequency of executed return or 
jump instructions. kBouncer (Pappas et  al.  2013) and 
ROPecker (Cheng et  al.  2014) check indirect branches, 
and issue an alarm if certain abnormal patterns are 
found. As mentioned in “Introduction” section, these 
heuristics could be bypassed if the attackers know them, 
which results in lower detection rate.

CFI-based methods (Abadi et  al.  2005; Wang and 
Jiang  2010; Davi et  al.  2012; Zhang and Sekar  2013; 
Bletsch et  al.  2011) use CFI to assist ROP detection. 
There are two disadvantages when using CFI: difficul-
ties in building accurate fine-grained control flow graph 
(CFG) and causing high overhead on the program. On 
one hand, it is shown that building complete and accurate 
fine-grained CFG is very challenging (Burow et al. 2017), 
and in fact many works shows that attackers can circum-
vent CFIs using imperfect CFGs (Davi et al. 2012, 2014; 
Nicholas et  al.  2015; Carlini and Wagner  2014). On the 
other hand, CFI may introduce significant overhead to 
the program (Mashtizadeh et al. 2015; Payer et al. 2015), 
which is not acceptable for performance critical services.

There are other methods that are neither heuristic-
based nor CFI-based. Tanaka and Goto (2014) intro-
duced n-ROPDetector, which checks whether a set of 
function addresses are presented in the payload. Since 
the method focuses on the payload, attackers can insert 
obfuscation to avoid being detected. Polychronakis and 
Keromytis (2011) proposed an ROP detection method 
based on speculative code execution, which will issue 
the alarm if four identified gadgets are executed. How-
ever, this could cause a high FPR, since normal instruc-
tion sequences can contain more than four gadgets, as 
shown by Stancill et  al. (2013). There are also statisti-
cal-learning-based methods (Elsabagh et  al.  2017; Pfaff 
et  al.  2015), which usually cannot handle large datasets 
and need handcrafted features.

Deep learning based ROP detection methods
Deep learning is widely used to solve many security prob-
lems, such as log anomaly detection, memory forensics, 
etc., where data are either widely available or easy to 
prepare. However, ROP attack detection, or more gener-
ally, CRA detection are relatively less popular, and one 
potential reason may be the difficulty when preparing 
the training data. From existing works, it is observed that 
preparing the data is the most challenging part for apply-
ing deep learning to detect ROP attacks. Li et al. (2020), 
Zhang et al. (2019), Chen et al. (2018). For example, Chen 
et  al. (2018) proposed a unique data representation for 
traces acquired from Intel PT, which is a 2-dimensional 
grid data structure that can be used to training neural 
networks; Zhang et al. (2019) proposed a specialized fine-
grained CFG and a unique way to generate malicious data.

Deep learning based ROP detection methods are show-
ing promising results and have two major advantages: 
(1) usually minimal or no overhead and (2) less human 
efforts needed to identify heuristics and patterns. Deep 
learning based ROP detection methods usually have 
minimal overhead because deep learning models can 
be deployed separately. Besides, since the deep learning 
model can capture and extract features automatically, 
as long as proper representation is provided, no human 
effort is needed to find specific patterns. However, deep 
learning’s challenge is also obvious: the availability and 
the preparation of high quality datasets.

Transfer learning in cybersecurity
In transfer learning, by convention, the domain where 
knowledge is transferred from is called source domain, 
and where knowledge is transferred to is called target 
domain. According to the survey by Pan (2009), two 
major categories of transfer learning are inductive learn-
ing and transductive learning. Inductive learning focuses 
on task knowledge transfer, whereas transductive learn-
ing focuses on data domain (representation) transfer. 
Notice that inductive learning assumes labels in the tar-
get domain, whereas transductive learning assumes no 
label in the target domain. In this paper, we focus on data 
domain transfer and data representation.

Recently, there are transfer learning applications in 
intrusion detection (Sameera  2020; Gangopadhyay 
et  al.  2019; Singla et  al.  2020), vulnerability detection 
(Nguyen et al. 2019; Liu et al. 2020, and IoT attack detec-
tion (Vu et al. 2020). However, none of the existing works 
focus using transfer learning and domain adaptation to 
tackle the imbalanced data issue.

Domain adaptation
Domain adaptation is a subfield of transfer learning, 
which is used to solve transductive transfer learning 
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problems. One common strategy to do domain adapta-
tion is constructing common representation (i.e. with 
the same underlying distribution) for source and tar-
get domain data. This can be achieved by using a very 
popular metric called Mean Maximum Discrepancy 
(MMD) proposed by Gretton et al. (2012), which can be 
used to determine if sets of samples are from the same 
distribution. In other words, a small MMD indicates the 
samples are from the same distribution. Many research-
ers Rozantsev and Salzmann (2018), Tzeng et al. (2014), 
Long et  al. (2015) found that a neural network can be 
trained using MMD as a part of the loss function to learn 
representation from data of both domains, so that the 
representation learned follows the same distribution.

Motivation and problem statement
Base model and data preparation process
To elaborate our motivation, we first briefly explain the 
workflow of the base model, DeepReturn (Li et al. 2020), 
and the data preparation process. DeepReturn has a 
CNN model designed to detect ROP attacks from the 
network for a single program. The overall workflow of 
the model in production is shown in Fig. 2 To launch an 
ROP attack, the payloads arrive through the network, 
and are then sent to the victim programs. An important 
fact is that a malicious payload always contains addresses 
of gadgets in executable segments (i.e .text) of the tar-
get program, and by chaining up the gadgets found in the 
address space of the loaded program, the gadget-chains 
can be formed and executed. Other than the malicious 
payloads, regular data arrives through the network in a 
similar way, and it may or may not contain addresses of 
executable codes. If it does (which is a “lucky” accident), 
then one can also chain up a “gadget-like” instruction 
sequence that may or may not be executable. Therefore, 
the first step is trying to extract instruction sequences 
from the incoming network data.

If an instruction sequence can be extracted, a neu-
ral network is used to determine whether it is an actual 
gadget-chain (malicious) or just a “gadget-like” instruc-
tion sequence (benign), and then to determine whether 

the input data arrived is an ROP payload or just a piece 
of regular data. Therefore, the training data for the neural 
network are instruction sequences, where the malicious 
data are the gadget-chains and the benign data are the 
”gadget-like” instruction sequences.

The flow diagram of the data preparation process is 
shown in Fig. 3. Address Space Layout (ASL) guided dis-
assembly is the process of chaining up the instruction 
sequences, which will be explained in detail in “ASL-
guided disassembly” section. As shown in Fig.  3, mali-
cious data is prepared by extracting the gadget-chains 
directly from the binary, and the benign data is gener-
ated by chaining up the instruction sequences using ASL 
guided disassembly. During the benign data generation, 
a piece of regular input data may or may not contain 
addresses of executable codes, and therefore, not all input 
regular data can be used to form ”gadget-like” instruction 
sequences. The input data which contains addresses of 
executable code so that it can form ”gadget-like” instruc-
tion sequences is very rare, causing the cost of generat-
ing benign data samples extremely expensive. In contrast, 
malicious data does not have to be generated through an 
actual payload. Instead, malicious samples can be easily 
generated by using gadget-chain generating tools, such as 
ROPGadget Salwan (2015).

Issue of imbalanced data
As shown in “Base model and data preparation process” 
section, it is quick and cheap to generate malicious data 
samples; however, it is very expensive to generate benign 
data samples. For example, in DeepReturn, it takes 7 h 
to generate benign data on a cluster node with 96 CPUs 
for web server programs and FTP server programs. In 
other words, whenever the model needs to be trained or 
retrained, a cluster node is needed and kept running for 
7 h before the training phase. In large-scale scenarios, 
the deep learning based method becomes less practical, 
because there are many programs that can suffer from 
ROP attacks so that many models need to be trained. 
Besides, it is widely agreed that programs should be kept 
updated for security patches, so the number of training 
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sessions will further increase. In commercial worlds, 
we observe that this can be viewed as too costly to be 
practical.

We believe the imbalanced data is a real-world issue 
that may cause many deep learning based solutions to 
be impractical. The essence of the imbalanced data issue 
is the trade-off between cost and security. For example, 
the model maintainer can choose to train the model with 
the imbalanced dataset, which can cause the model to be 
biased. Table 1 illustrates the performance deterioration 
in Deep Return when 100 times more positive samples 
are presented in the training dataset.

The scenario described is essentially a trade-off 
between cost and security: choosing imbalanced data will 
leave the system to be inadequately protected, whereas 
choosing to use balanced data can increase the cost 
significantly.

Therefore, mitigating the imbalanced data issue can 
avoid such difficult cost vs. security trade-offs. In case of 
the DeepReturn, if the time to generate benign data is not 
7 h on a cluster node but 1 h on a personal computer, the 
approach will become much more practical and scalable. 
We observe that in this case, not all data is hard to gener-
ate, so we want to propose a method that can fully lever-
age the data only with the labels that are easy to generate, 
and requires a minimal number of hard-to-generate data.

Model independence
Although in the base model, DeepReturn, the authors 
used CNN as the model backbone, we want to make our 
method to be model-independent. In ROP payload detec-
tion, the data samples are usually sequence data (e.g. 
instruction sequence, opcode sequence, etc.), so that ana-
lysts may use CNN, Recurrent Neural Networks (RNN) 
and their varient as the model backbone. In this paper, in 
addition to the base CNN model, we have also tested our 
method to work with RNN and hierarchical RNN pro-
posed in DeepVSA (Guo et al. 2019).

Problem statement
In order to address the scalability issue of the deep learn-
ing based approaches and make them more practical in 
the real world, we aim to solve the following problem:

Many programs may suffer from ROP attacks if a vul-
nerability can be used to overwrite the return address 

of a function to an arbitrary value. Deep learning shows 
its potential to detect ROP attacks effectively, but deep 
learning based methods often suffer from the imbal-
anced data issue when used to detect ROP attacks. To 
mitigate the effect of the imbalanced data, transfer learn-
ing may be leveraged to improve the performance of a 
deep learning model. The problem is whether transfer 
learning could be used to make the deep learning based 
approaches effective, scalable, and significantly more 
practical in the presence of an imbalanced dataset.

Method
ASL‑guided disassembly
This section summarizes the process of the ASL-guided 
disassembly to generate benign data for the training 
phase.

First, the reassembled network data is scanned so 
that the starting address of potential gadget-chains can 
be identified. Each byte could be the beginning of an 
address, and 4 consecutive bytes will be considered as an 
address (for x86). If an address at n is the start of an exe-
cutable instruction sequences that end with an indirect 
branch, then the next 5–10 4-byte-long data (i.e. n+ 4 , 
n+ 8...) will be evaluated to see if they are also addresses 
for such instruction sequences. If yes, then these instruc-
tion sequences will be chained up and let the deep learn-
ing model decide whether it is a gadget-chain.

To confirm whether an address is pointing to a valid 
instruction sequence, the first step is to check whether it 
is in the executable section (e.g. .text). Then, we will 
start disassembling from the address until an invalid 
instruction or indirect jump/call is encountered. If the 
disassemble is stopped because an invalid instruction is 
encountered, then the disassembly is stopped and this 
address is considered to be invalid.

Figure  4 illustrates the ASL-guided disassembly pro-
cess for the payload/input shown in Fig. 1. The first step 
is to find a valid address that points to a potential gadget 
by searching through the data byte-by-byte, starting at 
0x6335cf19. The first valid address is found at the byte 
4, which is 0xffdd17c3. After this address is confirmed 
to be a gadget address, then we check if another gadget 
address can be found. In x86, the address takes 4 bytes, so 
we check the next 5 to 10 4-byte segments. Here another 
gadget address is found, which is 0xfe2893f5, so a data 
sample is identified.

Table 1 Effect of imbalanced dataset in DeepReturn

1:1 Balanced 1:100 Imbalanced

False positive rate 0.399% 8.806%

F1-score 0.997 0.949



Page 6 of 15Wang et al. Cybersecurity             (2023) 6:2 

To reduce the cost in this paper, for programs that 
would serve as source domain programs, both benign 
and malicious data are prepared; for programs only used 
as target domain programs, only malicious data and a 
small number of benign data samples for validation and 
testing are prepared.

Base model architecture
Despite of the sequence data (i.e instruction sequences), 
Li et  al. (2020) shows the CNN performs at least as well 
as the RNN does in DeepReturn, but CNN is much easier 
to train. In this paper, we have no motivation to change 
the base model, so the backbone of our model used is 
1-dimensional CNN. To perform domain adaptation, there 
are modifications in the fully connected layers, and the 
details of the modification are explained in “Deep domain 
adaptation using mean maximum discrepancy” section.

The input data are binary instruction sequences. After 
the gadgets and the gadget-like instruction sequences 
are identified, they will be assembled back to binary. 

Therefore, for the neural network, the inputs are essen-
tially byte sequences. The atomic unit is a byte, which is 
represented as an integer number between 0 to 255.

To eliminate the effect of the numerical relationships 
between each byte (i.e. 255 is larger than 0), one-hot 
encoding is adopted to vectorize each byte. There-
fore, the final input data to be fed into the model is 
a sequence of one-hot vectors. Figure  5 illustrates 

Fig. 4 ASL-guided disassembly

Fig. 5 Input data representation
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Fig. 6 Architecture of the deep domain adaptation model
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how binary instruction sequences are processed 
after being identified. For example, add esp, 0xc 
will be assembled to 0x83 0xc4 0x0c. Then, it 
will be transformed to decimal numbers, which is 
[131,  196,  12]. Finally, the decimal numbers will be 
encoded to onehot.

the hidden layers follow regular CNN classifier 
design, so that we will not dive deep here. Overfitting 
issues are addressed by using dropout and early stop-
ping. The dropout rate is 0.5, and validation data are 
used to stop the training early. Batch normalization is 
also used to stabilize the training.

The model contains 3 convolutional layers with 
batch normalization, one fully-connected layer for 
domain adaptation, and one fully-connected layer for 
classification output. Figure 6 shows the details of the 
model.

Deep domain adaptation using mean maximum 
discrepancy
Existing methods to solve the data imbalance issue 
have two major categories: data-based and model-
based. Data-based methods sample data in dedicated 
ways, whereas model-based methods modify the model 
architectures and training processes. In our scenario, 
data-based methods cannot fully leverage one impor-
tant advantage in our assumption mentioned in “Intro-
duction” section: high-quality data for one program are 
available. Therefore, we choose a model-based method: 
transfer learning, to tackle the imbalanced data issue. In 
essence, we train a model using data from two domains 
(i.e. data from two different programs): source domain 
and target domain. The data in the source domain is bal-
anced; whereas the data in the target domain is imbal-
anced. The goal is to train a model to perform well on 
target domain data.

One challenge for a model trained only using data 
from a single program to detect ROP attacks for different 
programs is that the gadgets available can be different, 
resulting the data representation to be different. Based on 
this observation, a subfield of transfer learning, domain 
adaptation fits our task very well, because domain adap-
tation can solve transductive learning problems where 
the data domains are different, but the tasks are the same.

We adopted a domain adaptation method based on 
MMD, which is introduced by Gretton et  al. (2012). 
MMD can be used as a distance between two distribu-
tions, given samples retrieved from each distribution. 

Formally, MMD is defined in reproducing kernel Hilbert 
space (RKHS), denoted as H. Let the backbone of our 
neural network be fθ (x) , where θ are model parameters. 
Then, given two random variables X and Y with prob-
ability distributions p and q, respectively, the MMD is 
defined as:

Here for Ex[fθ (X)] and Ey[fθ (Y )] , we use Monte Carlo 
estimation, so that Ex[fθ (X)] =

1
m

m
i=0 k(·, fθ (xi)) . The 

kernel k used is the Gaussian kernel, which is defined as:

We first formally define our deep domain adaptation 
layer, and then illustrate the whole architecture in Fig. 6. 
Let the source domain data be X, and target domain 
data to be Y, MMD then can be obtained using Equa-
tion  1, which will be one of the loss functions. In our 
case, random variable X and Y represent the data gen-
erated from two different programs. By minimizing the 
MMD, we ensure that fθ (X) and fθ (Y ) will have similar 
underlying distributions, so that the classification per-
formance could be more accurate for the target domain 
data. The other part of the loss function will be the reg-
ular entropy loss. To calculate the entropy loss, extra 
layers after the fθ (X) and fθ (Y ) are added. Let the extra 
layers to be gθ ′ , then using all data samples Z in both 
domain, where Z = X ∪ Y  , the cross entropy loss can be 
constructed as described in “Base model architecture” 
section.

As shown in Fig. 6, both source and target domain data 
are needed during the training process. The final outputs 
from the source domain data and their labels will be used 
to construct the entropy loss; whereas the output of the 
MMD layer, intermediate output 5, will be used to calcu-
late the MMD loss using Eq. 1. To obtain the MMD loss, 
the output of the MMD layer from both source domain 
and target domain data are needed in one training step. 
Note that we do not form one single loss function by 
summing up the cross entropy loss and MMD loss. In 
each training step, although the gradients of both losses 
with respect to the model parameters are computed in 
one backpropagation iteration, but the gradients are 
applied separately. The details are shown in “Training 
using no benign data in target domain” section.

(1)MMD(fθ , p, q) = �E
x
[fθ (X)] − E

y
[fθ (Y )]�H

(2)k(x, y) = exp

(

−
�x − y�2

2σ 2

)
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Algorithm 1: Customized Training Loop for Imbalanced Data
Result: Trained model that can perform ROP detection in target domain
Initialize bottom feature extraction layers fθ, top task layers gθ′ ;
Initialize maximum epoch E, current epoch e = 0;
Initialize best models fbest

θ , gbest
θ′ and best accuracy accbest = 0;

while e < E do
Update fθ and gθ′ using balanced data from source domain;
Update fθ using Eq. 1 and malicious data samples from both domains;
Validate the model and get the validation accuracy acc;
if acc > accbest then

fbest
θ = fθ;

gbest
θ′ = gθ′ ;

accbest = acc;
end
e = e+ 1;

end

Training using no benign data in target domain
Recall in our problem, benign data is very difficult to 
generate. In other words, the target domain could be 
extremely imbalanced, and in fact, it is preferred that 
no benign training data is needed in the target domain. 
However, if one only includes benign data in a dataset, 
the underlying distribution will be also changed. Conse-
quently, if we still directly adopt a regular training method 
using MMD and entropy loss, we are inappropriately try-
ing to create a similar distribution for two datasets with 
different numbers of classes. Also, different from the reg-
ular transductive learning mentioned in “Transfer learn-
ing in cybersecurity” section, the label information is 
known in the target domain, which should be leveraged.

Therefore, we introduce our customized training loop, 
which is shown in Algorithm  1. For each epoch, the 
entropy loss will first be calculated and minimized using 
the balanced data from the source domain, and then the 
MMD will be calculated and minimized using only mali-
cious data in both domains. The benefits are: (1) the 
model will not be biased to any class for the classification 
task, and (2) the MMD loss will not force the intermedi-
ate outputs of the benign data to be similar to those of 
the malicious data.

To prevent overfitting and achieve the best test accu-
racy, we use early stopping. Note that the validation 
dataset for the early stopping purpose contains benign 
target domain data. Although the benign data should be 
avoided in the target domain, we emphasize the impor-
tance of a balanced validation dataset for an appropriate 
early stopping point to prevent overfitting, and will dis-
cuss the number of validation data samples required in 
“Evaluation” section.

In our experiments, we use Adam optimizer (Kingma 
and Ba 2014) with a learning rate of 0.001; the maximum 
epoch E is 25, and the batch size is 32.

Evaluation
In our evaluations, the baseline is defined as the perfor-
mance of a model trained using one program performing 
ROP detection tasks on a different program. To make the 
comparison fair, architectures and the training hyperpa-
rameters are as close as possible.

We first introduce the dataset. Table 2 summarizes the 
number of data samples used during training, valida-
tion and testing. Note that M is for malicious, and B is 
for benign. The maximum length of the raw instruction 
sequence is 128 bytes long, and gadget chains contain 
gadgets end with not only ret instructions but also jmp 
instructions.

To generate benign data, 2 TB PDF documents image 
data are used as inputs for source domain programs. In 
the experiment in this paper, there are 20,000 benign data 
samples and 20,000 malicious data samples for source 
domain programs; there are 20,000 malicious data sam-
ples for target domain. For validation, there are 1750 
benign and 1750 malicious target domain program data 
samples available. Then for the test, there are 1200 benign 

Table 2 Number of data samples used during training, 
validation and testing

Train Validation Test

Number of M samples (source) 20,000 – –

Number of B samples (source) 20,000 – –

Number of M samples (target) 20,000 1750 7500

Number of B samples (target) – 1750 1200
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and 7500 malicious target domain program data samples. 
Note that for programs only used as a target domain pro-
gram, only a very few number of benign data samples for 
validation and testing are prepared.

Accuracy is not selected as one of the performance 
metrics, because the test data in the target domain is 
extremely imbalanced. Instead, we use F1 score, false 
positive rate (FPR), and detection rate (DR). FPR is 
important because false positives are one of the most 
important concerns in the industry for cyber-attack 
detection systems.

We use 4 Internet service programs to evaluate our 
method. The 4 programs are proftpd 1.3.0a, vsftpd 3.03, 
nginx 1.4.0 and Apache httpd 2.2.18. Only proftpd 1.3.0a 
and vsftpd 3.03 are used as source domain programs.

In the following subsections, we will answer following 
research questions in the following subsections: 

5.1 Can our method provide improvement, compared 
to directly applying source domain model to target 
domain data?

5.2 Can our method be adopted to other model architec-
tures?

5.3 How is our method compared to the original model?

5.4 What is the minimum amount of validation data 
needed?

5.5 How is the knowledge being transferred?
5.6 What is the trade-off when comparing to traditional 

models?

Can our method provide improvement across domains?
An important questions is whether our model can per-
form better than directly applying a model trained using 
one program to another program. In this evaluation, the 
original CNN model used in DeepReturn is adopted, and 
we have conducted 6 experiments using different setups, 
as shown in Table 3.

In Table 3, the performance metrics that have improve-
ment with respect to the baseline are in bold. It is 
observed that when transfer learning is not used (i.e. 
baseline), the FPRs are usually higher. Among the six sce-
narios, there are 3 cases where the F1 score improved, 4 
cases where the FPR improved, and 3 cases where the DR 
improved.

The best result achieved is when using proftpd as the 
source domain program and vsftpd as the target domain 
program. The improvement of the FPR is from 0.0392 
to 0.0125 and the DR is from 0.9142 to 0.9475. Mean-
while, we also observe cases where the performance is 
not improved, such as when proftpd is the target domain 
program and vsftpd is the source domain program, where 
the DR dropped from 0.9713 to 0.9096. One observa-
tion is that whenever proftpd is used as a source domain 
program, the performance is already fairly good without 
using the domain adaptation (2 out of 3 cases). In con-
trast, when vsftpd is used as a source domain program, 
the domain adaptation seems effective and improves the 
performance. One potential reason for the observation 
is that proftpd data may include many useful features for 
the ROP detection.

Table  4 shows the comparison between the num-
ber of detected positives (ROP attacks) and that of false 

Table 3 Performance of the ROP detection on target domain programs using source domain model and domain adaptation model

Source Target FPR F1 DR

Baseline Ours Baseline Ours Baseline Ours

proftpd nginx 0.0217 0.0192 0.9941 0.9881 0.9957 0.9829

proftpd httpd 0.0167 0.0183 0.9923 0.9843 0.9904 0.9754

proftpd vsftpd 0.0392 0.0125 0.9484 0.9709 0.9142 0.9475
vsftpd nginx 0.0500 0.0475 0.9735 0.9732 0.9649 0.9635

vsftpd httpd 0.0283 0.0333 0.9508 0.9601 0.9151 0.9339
vsftpd proftpd 0.0708 0.0433 0.9733 0.9452 0.9713 0.9096

Average 0.0378 0.0290 0.9723 0.9705 0.9586 0.9521

Table 4 Number of true positives and false positives of domain 
adaptation modelk

Source Target TP FP

Baseline Ours Baseline Ours

vsftpd nginx 3329 3324 60 57
vsftpd httpd 3157 3222 34 40

vsftpd proftpd 3351 3138 85 52
proftpd nginx 3435 3391 26 23
proftpd httpd 3417 3365 20 22

proftpd vsftpd 3154 3269 47 15
Total 19,843 19,709 272 209
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positives, where the better results are in bold. Accord-
ing to the results, we found that the total number of 
false positives is reduced by more than 20%, but the total 
number of detected positives is only reduced by less than 
0.01%. Therefore, we argue that our method can signifi-
cantly improve the FPR with a small amount of trade-off 
on the DR.

Regarding the problem to answer, the performance of 
the model is largely depending on the programs in both 
domains. In cases where the source domain program can 
provide effective features for ROP detection for the target 
domain program, our model may be less effective; how-
ever, whenever the model trained using source domain 
program performs poorly on target domain program, our 
model performs well. In most cases, the FPRs are signifi-
cantly lower.

Lastly, our domain adaptation model sometimes make 
things worse. To explain, it is important to remem-
ber source domain models are trained using balanced 
data, so from their perspectives, our method will cause 
a sub-effect: making the data imbalanced. Therefore, in 
case when two programs contain similar gadgets, this 
sub-effect may dominate the performance, as the source 
model already can do detection on the target program.

Can our method be adopted to other model architectures?
One key feature of our method is model-independ-
ent, as introduced in “Model independence” section. 
To verify, we selected two different models: RNN 

and Hierarchical RNN proposed in DeepVSA (Guo 
et  al.  2019). Besides, we have made the instruction 
sequences shorter, since RNN model usually perform 
poorly on long sequences.

For each model, we have done 3 experiments in differ-
ent setups. The result shows that for both models, similar 
to the results shown in “Can our method provide improve-
ment across domains?” section, the FPR usually will have 
improvement, with little DR sacrifice. This trade-off pattern 
is clearly shown in the last row in Table 5, which compared 
the DR and FPR between baseline and proposed method 
in different models. The better results are in bold. In Hier-
archical RNN, where the baseline is worse, this trade-off 
pattern is even more common. For example, although our 
approach achieves lower detection rate than the baseline, 
it reduces the FPR of vsftpd from 0.2283 to 0.0967, and 
reduces the FPR of nginx from 0.1575 to 0.1033.

Since we can observe similar trade-off pattern in differ-
ent models, we argue that our method can be adopted to 
different models.

Compared to original models trained using balanced 
and imbalanced data
It is also important to see the comparison to an original 
classification model trained using a balanced or an imbal-
anced dataset. Intuitively, the original model trained 

Table 5 Performance on RNN and hierarchical RNN

Source Target DR FPR

Baseline Ours Baseline Ours

RNN proftpd nginx 0.9800 0.9899 0.1292 0.0758
proftpd httpd 0.9887 0.9646 0.0867 0.0717
proftpd vsftpd 0.9226 0.9675 0.1192 0.1833

Hierarchical proftpd nginx 0.9064 0.7948 0.1575 0.1033
RNN proftpd httpd 0.8623 0.8096 0.0800 0.0800

proftpd vsftpd 0.8446 0.7203 0.2283 0.0967
Total 0.9174 0.8744 0.1335 0.1018

Table 6 False positive rate comparison with model trained using 
balanced data

Program Orig. balanced Ours Orig. imbalanced

nginx 0.0001 0.0284 0.2201

httpd 0.0004 0.0258 0.2530

vsftpd 0.0002 0.0125 0.0857

proftpd 0.0002 0.0433 0.0904

Average 0.0003 0.0275 0.1623

Fig. 7 FPR & F1 versus number of validation data
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using balanced dataset should outperform our method, 
and the original model trained using imbalanced dataset 
should perform worse. Using FPR as the major metric, 
this section evaluates such scenarios in detail.

The comparison is shown in Table 6. The results of models 
with balanced data (first column) is adopted from DeepRe-
turn (Li et al. 2020), and since we may have multiple results 
for one target program (as shown in Table 3), the FPRs for 
our model (second column) in the tables are the average of 
all results for each program. In the experiments of the origi-
nal model using imbalanced data, the number of negative 
samples to the number of positive samples is 1:100.

Compared to the original model trained using bal-
anced data, the average FPR has increased from 0.0003 
to 0.0275. The performance deterioration in FPR is very 
significant, because the FPR when balanced data are pro-
vided is very low. For example, the FPR in this case for 
proftpd reaches 0.0904.

Compared to the original model trained using imbal-
anced data, we can see very significant deterioration in 
the FPR, which is expected. Since there are 100 times 
more positive samples than negative ones in the train-
ing data, the trained model is biased and tends to predict 
positive in most of the cases. In the worst case here, the 
httpd, the FPR is 0.2530, so that about 1/4 of the negative 
test samples are misclassified.

In conclusion, the shown result follows the intuition: 
the original model trained using balanced dataset per-
forms better, and the original model trained using imbal-
anced dataset performs worse.

What is the minimum number of validation data needed?
As explained in “Base model and data preparation process” 
section, generating benign data is expensive, and should 
be avoided as much as possible. Therefore, one important 
concern is the number of validation data needed during 
the training phase, because some benign data samples in 
the target domain are needed for validation.

Extra experiments are conducted to find an appropriate 
amount of validation data needed. The source domain pro-
gram is proftpd and target domain program is vsfptd. The 
result is shown in Fig. 7. In Fig. 7, the test FPR has a decreas-
ing trend when the number of validation data increases. 
However, F1 score does not has a clear trend. For example, 
within 100 validation data, FPR could be as high as 0.13; 
however, after increasing the number of validation data to 
over 600, the highest FPR is only about 0.03. In contrast, 
the F1 score does not show any trends as the validation data 
increases, which is still mostly between 0.92 to 0.96.

Though the FPR has a decreasing trend while the vali-
dation data size increases, the trend is far from signifi-
cant and the improvement is very limited. It is important 

to point out that requiring few validation data does not 
mean no validation data needed at all. In fact, from our 
experiment, it is extremely important to have validation 
data and early stopping during the training phase. The 
MMD loss is very vulnerable to overfitting, and can result 
in very bad test performance.

How is the knowledge being transferred?
An interesting question is whether the knowledge is actu-
ally transferred, and how the knowledge is transferred. In 
this section, we investigate the questions using proftpd 
as the source domain program and vsfptd as the target 
domain program.

Starting with a machine learning perspective, one impor-
tant factor to consider is the MMD value. Remember 
MMD can be used as a distance metric for distributions, so 
that a small value of MMD indicates the model can learn 
similar representations for data from two domains. Since 
MMD is part of the loss function, the gradient descent 
algorithm can guarantee the decrease of the MMD.

Next we dig deeper into this question. We first propose 
two hypotheses: 

H1:  Transfer learning helps the model to capture 
knowledge in target domain and discard features 
that are not shared by two domains.

H2:  Transfer learning will not make the model discard 
source domain knowledge that is useful.

To test H1, we first identify a sample from the target 
domain that is correctly classified by our model and 
incorrectly classified by the baseline model. Listing 1 
shows the disassembly of the selected sample. By evaluat-
ing the semantics of this gadget-chain snippet, it contains 
many gadgets for manipulating the stack for jumping to 
other gadgets (e.g. sequence of pops), which could be 
very program-specific because of the different address 
space layout for different programs. Since this gadget-
chain is target-domain-specific, it is not very surpris-
ing that the model completely trained using the source 
domain data incorrectly classifies it.

; Stack Manipulation Gadgets
. . .
xor eax , eax
pop ebx
pop e s i
pop ed i
r e t
. . .
add esp , 0x50
pop ebx
pop e s i
pop ed i
r e t

Listing 1: Selected Sample Snippet for H1



Page 12 of 15Wang et al. Cybersecurity             (2023) 6:2 

We also evaluate the uniqueness of the gadget-chain 
quantitatively by calculating the dissimilarity between the 
instruction sequences using Longest Common Subse-
quence (LCS) of opcodes. We first find a baseline by cal-
culating the combination pairwise average LCS between 
source domain and target domain instruction sequences, 
which is 18.35; then we find the average LCS of the sam-
ple in Listing 1 and all other data in source domain, 
which is 19.42. From this result, we conclude that the 
selected sample shown in Listing 1 is fairly target domain 
specific, and we expect the extracted feature from this 
example using our transfer learning model and baseline 
model should be more different than average. The intui-
tion is that target domain special cases should be treated 
specially, and our model will capture different features to 
make the classification correct.

The similarity between the extracted features can be 
measured by calculating the euclidean distances between 
the intermediate outputs from two models. Since the 
baseline model and our model are trained separately, it is 
not appropriate to make direct comparison between the 
intermediate outputs from two models. Instead, we first 
estimate the distance between two intermediate output 
spaces as baseline by averaging the combination pairwise 

distances of all intermediate outputs from both domains, 
which turns out to be 1.26. Then the average distance 
between the intermediate output of the selected sam-
ple and all source domain samples is calculated, which 
is 1.38. This result shows that compared to most of the 
other samples in the target domain, the intermediate out-
put of the selected target domain sample is fairly distinct 
from the intermediate outputs of the source domain.

To test H2, we want to find two similar instruction 
sequences, one from each domain, and see if their inter-
mediate outputs are similar as well. The intuition is that 
since the transferred model can inherit the useful fea-
tures, it can extract similar features from two similar 
instruction sequences from different domains. Listing 2 
and Listing 3 show two similar data samples (i.e. instruc-
tion sequences) from the two domains, respectively. We 
first show the similarity between the two gadget-chain 
snippets using semantic explanation. As shown in the 
code snippets, both gadget-chain snippets are trying to 
first manipulate the stack for the next gadget, and then 
manipulate the eax register to initialize system calls. 
However, since it is from different programs, we can see 
that the actual instructions are different, but some com-
mon gadgets can still be found.

; Manipulate the Stack
add esp , 0xc
mov eax , ed i
pop ebx
pop e s i
pop ed i
pop ebp
r e t

; I n i t i a l i z e System Cal l
push cs
sub al , 0x41
push cs
xor byte ptr . . .
adc al , 0x41
r e t
. . .
i n c e s i
push cs
xor byte ptr . . .
adc al , 0x45
r e t

Listing (2) Selected Sample Snippet
From Source Domain (proftpd) For H2.

; Manipulate the Stack
add esp , 0xc
pop ebx
pop e s i
pop ed i
pop ebp
jmp eax

; I n i t i a l i z e System Cal l
add eax , 0xc0310001
r e t

push cs
mov al , byte ptr . . .
add dword ptr . . .
push cs
adc al , 0x41
r e t

Listing (3) Selected Sample From
Target Domain (vsftpd) For H2



Page 13 of 15Wang et al. Cybersecurity             (2023) 6:2  

Then, we use a quantified distance measure to show 
the similarity. First, the baseline distance is the average 
euclidean distance of every possible pair of source and 
target domain intermediate outputs from our trained 
model (i.e. the combination of the set). Note that dif-
ferent from what has been done in H1, this time all the 
intermediate outputs are from our trained transfer learn-
ing model. The baseline distance is 0.0141, and the dis-
tance between the intermediate outputs of the two code 
snippets in Listing 2 and Listing 3 is 0.0054. The distances 
show that the two code snippets selected have similar 
intermediate outputs.

What is the trade‑off when comparing to traditional 
models?
As mentioned in “Traditional ROP detection methods” 
section, there are many existing traditional ROP detec-
tion methods. Compared to them, the deep learning 
based methods have two major advantages: (1) minimal 
or no overhead and (2) less human effort on identifying 
heuristics. However, the assumption for the two advan-
tages is that the deep learning methods have comparable 
performances.

In Table 7, we have selected three traditional methods 
to do comparisons on different aspects, where two of 
them are heuristic-based, and one of them is CFI-based.

For the two heuristic-methods, DROP and kBouncer, 
both FPRs are 0, and the DRs are not reported. The 
overheads of kBouncer and DROP are about 4% and 
500%, respectively. Heuristic-based methods usually 
have extremely low FPR, but as a trade off, their DR may 
not be satisfying and could have substantial overhead. 
Besides, heuristic-based methods may need extra human 
labor to craft heuristics and attributes.

CFI-based methods are considered as very accurate in 
detection, but the overhead cannot be avoided. In Bletsch 
et  al. (2011), the majority of reported programs have 
overhead about 0–5%. Furthermore, usually the over-
head varies significantly on different programs, because 
any compiler optimizations, obfuscations, and/or even 
program semantic (i.e. needs of frequent branching) will 

affect the overhead. As a result, the reported worst case 
overhead in Bletsch et  al. (2011) is about 20%. Regard-
ing the performance, although detection performance is 
not measured in Bletsch et al. (2011), it is mentioned in 
Bletsch et al. (2011) that ”the protection is only as good as 
the control flow graph being enforced”, and the approach 
proposed in Bletsch et al. (2011) can only handle a por-
tion of the security-relevant indirect control flow trans-
fers. For the indirect flow transfers yet to be handled, it 
is stated in Bletsch et al. (2011) that they might be han-
dled if ”the programmer or higher-level language provided 
more precise insight.”

Deep learning methods usually have less overhead 
and require less human efforts. We use the performance 
of our model on target programs to compare with tra-
ditional methods. We first put a remark on the FPR, 
because the FPR presented is the model FPR, and the 
absolute majority of the inputs to the model are likely to 
be positive in production setup due to the ASL-Guided 
Disassembly procedure. Our model FPR is 2.9%, and DR 
is 95.21%. Regarding the overhead, since the detection 
system will be deployed outside the protected program, 
there is therefore no overhead.

Limitation and conclusion
We identify three limitations of our approach. First, 
although very few, minority class data samples are still 
needed for validation purposes. This could make our 
approach impractical if the minority class samples are 
completely unavailable or extremely rare. The assump-
tion of our approach is that it is very difficult, but not 
impossible to generate benign samples. Second, our 
approach requires high-quality source domain data. Dur-
ing the experiments, we observe that the quality of the 
source domain data can affect the performance substan-
tially. Third, as illustrated in “Can our method provide 
improvement across domains?” section, the selection of 
a source domain program is important to achieve good 
results. However, currently we do not have a method to 
determine what programs are good to serve as a source 
domain program.

In conclusion, this paper presents a transfer learn-
ing method to mitigate the imbalanced data issue when 
applying deep learning in cybersecurity, using ROP pay-
load detection as a case study. We propose a new domain 
adaptation based method to train a cyber-attack detec-
tion model using extremely imbalanced dataset; discuss 
the performance trade-offs of the proposed approach; 
and discuss the insights about how domain adaptation 
helps to achieve better results. Both strength and the lim-
itation of our approach are discussed, and the FPR vs. DR 
trade-off is being identified.

Table 7 Illustration of trade-offs between different ROP 
detection methods

Method Detection performance Overhead

DROP (Chen et al. 2009) 0% FPR ∼ 500%

kBouncer (Pappas 
et al. 2013)

0% FPR ∼ 4%

CFI (Bletsch et al. 2011) N/A 0–5% majority 
∼ 20% worst 
case

Our method 2.9% Model FPR 95.21% DR 0%
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