
Wang et al. Cybersecurity (2023) 6:2
https://doi.org/10.1186/s42400-022-00135-8

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access

Cybersecurity

Tackling imbalanced data in cybersecurity
with transfer learning: a case with ROP payload
detection
Haizhou Wang1*, Anoop Singhal2 and Peng Liu1

Abstract

In recent years, deep learning gained proliferating popularity in the cybersecurity application domain, since when
being compared to traditional machine learning methods, it usually involves less human efforts, produces better
results, and provides better generalizability. However, the imbalanced data issue is very common in cybersecurity,
which can substantially deteriorate the performance of the deep learning models. This paper introduces a transfer
learning based method to tackle the imbalanced data issue in cybersecurity using return-oriented programming
payload detection as a case study. We achieved 0.0290 average false positive rate, 0.9705 average F1 score and 0.9521
average detection rate on 3 different target domain programs using 2 different source domain programs, with 0
benign training data sample in the target domain. The performance improvement compared to the baseline is a
trade-off between false positive rate and detection rate. Using our approach, the total number of false positives is
reduced by 23.16%, and as a trade-off, the number of detected malicious samples decreases by 0.68%.

Keywords Domain adaptation, Return-oriented programming, Imbalanced dataset

Introduction
Deep learning has become popular in the fields of cyber-
security in recent years (Choi 2020; Berman et al. 2019),
because it performs at least as good as the traditional
methods do when enough high-quality data are available,
and is more general and cost-effective. However, one of
the challenges when applying deep learning to the cyber-
security application domain is the imbalanced data issue,
which can deteriorate the performance of the deep learn-
ing models. Imbalanced data situations are quite com-
mon in cybersecurity. For example, in network intrusion
detection, the amount of benign traffic is orders of mag-
nitudes greater than malicious ones. Another example

is in tackling insider threats, where the amount of nor-
mal behavior data is orders of magnitudes greater than
malicious behavior. In this paper, we present a transfer
learning based method to tackle the imbalanced data
issue in cybersecurity using Return-Oriented Program-
ming (ROP) payload detection as a case study. ROP is
an exploit technique that can be used to perform code
reuse attacks (CRA) through the Internet, which are still
prominent exploit techniques today used to defeat Data
Execution Prevention (DEP), especially on the legacy
platforms without Address Space Layout Randomization
(ASLR), because ROP payloads contain no code but only
addresses. Even if ASLR is deployed, ROP attacks could
still be fairly effective (Seibert et al. 2014). ROP is there-
fore well-studied and many methods and tools are pro-
posed to detect ROP attacks.

In recent years, deep learning based ROP detection
methods start to emerge, because they could mitigate
several limitations of traditional methods. The advan-
tages of using deep learning to detect ROP attacks

*Correspondence:
Haizhou Wang
hjw5074@psu.edu
1 College of Information Sciences and Technology, The Pennsylvania State
University, State College, USA
2 The National Institute of Standards and Technology, Gaithersburg, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00135-8&domain=pdf

Page 2 of 15Wang et al. Cybersecurity (2023) 6:2

include: (1) deep learning models can run independently
with minimal overhead on the protected programs; (2)
less human heuristics are involved to extract features
or patterns; (3) a well trained deep learning model can
achieve comparable detection rate (DR) and false posi-
tive rate (FPR). To the best of our knowledge, no tradi-
tional method has all the advantages mentioned above.
For example, defending methods implemented at com-
piler (Onarlioglu et al. 2010) will change the program sig-
nificantly and may cause runtime overhead; control flow
integrity (CFI) based methods (Payer et al. 2015; Mashti-
zadeh et al. 2015) require carefully crafted fine-grained
control flow graphs, which could be very costly; heuristic
based methods (Chen et al. 2009; Cheng et al. 2014) may
suffer from low detection rate.

Despite the potential in ROP detection, deep learning also
suffers from the imbalanced data issue just as in other cyber-
security subfields. An ROP payload detection task is essen-
tially a binary classification task: whether a piece of data is
ROP payload. We observe that sometimes data with one of
the two labels could be hard to prepare (Zhang et al. 2019; Li
et al. 2020), and the process of generating the data with such
a label becomes the bottleneck of the data preparation. Con-
sequently, the resulting dataset could become imbalanced
(or insufficient otherwise), which can substantially affect the
performance of the deep learning model.

This paper introduces a model-independent transfer
learning based solution to mitigate the imbalanced data
issue caused by the scenario described above, using deep
learning based ROP detection as a case study. The base
model in this paper is DeepReturn (Li et al. 2020), which is
a Convolutional Neural Network (CNN) based ROP detec-
tion model. In the case study, we have following assump-
tions: (1) One deep learning model is trained to protect
exactly one program against ROP; (2) Enough high-quality
data for at least one program is available; (3) Extremely
imbalanced data for another program is available.

In our case study, we achieved 0.0290 average FPR,
0.9705 average F1 score, and 0.9521 average detection
rate on 3 different target domain programs using 2 dif-
ferent source domain programs, with 0 benign training
sample in the target domain. Compared to the baseline,
the number of false positives is reduced by 23.16%, and
as a trade-off, the number of detected malicious sam-
ples is reduced by 0.68%. In addition, we showed that our
method is model-independent, which means that our
model can be adopted regardless what kind of neural net-
work architecture is being used. Our contributions can
be summarized as follow:

• Propose a new domain adaptation based method
to train a cyber-attack detection model using an
extremely imbalanced dataset.

• Discuss the performance trade-offs of the proposed
approach.

• Present the insights about how transfer learning
helps to achieve the improved results.

Essentially, we show that our proposed method can
greatly improve the practicality of a model for ROP
detection.

Background
Return‑oriented programming
Return oriented programming (ROP) (Shacham 2007) and
its variants (Snow et al. 2013; Bletsch et al. 2011; Check-
oway et al. 2010) are still popular exploit methods today,
which provide attackers turing-complete functionalities
without inject any code. The attackers use the instruction
sequences that end with an ret instruction to construct
the code for their malicious purposes, which are called
gadgets. In a typical ROP attack, by overwriting the return
address of the executing function and loading all the
addresses of gadgets needed onto the stack, the attacker
will be able to execute a sequence of gadgets, which is
called gadget-chain. Figure 1 shows a synthetic example of
the ROP exploit process on X86 instruction set architec-
ture (ISA). In this example, the payload arrives at the host
and is loaded into a buffer on the stack. This malicious
payload segment contains two addresses, 0xffdd17c3
and 0xfe2893f5, which are addresses in the code seg-
ment (i.e. .text segment) of the beginning of gadgets.
If the address 0xffdd17c3 overwrites the original return
address in the stack frame, it will cause the whole gadget-
chain to be executed and the program will be exploited
by the attacker. Since there are abundant instruction
sequences (and thus gadgets) available in the memory
when the program is loaded in modern operating systems,
virtually ROP is turing-complete programming technique.

Fig. 1 Workflow of ROP attacks

Page 3 of 15Wang et al. Cybersecurity (2023) 6:2

In practice, one important aspect of an ROP payload is
the layout of the gadgets’ addresses. In the simplest sce-
nario, the attacker needs to ensure the value stored in the
%esp register is the address of the beginning of the next
gadget when ret is executed. For example, pop instruc-
tions are important for the gadget layout. In X86, if the
distance of the addresses of two adjacent gadgets in the
memory is 4 bytes, then a pop instruction is needed to
fix the offset. Since it is not common to have many pop
instructions in a roll, the addresses of adjacent gadgets
are usually not far away in the payload.

Traditional ROP detection methods
The majority of the traditional ROP detection methods
can be categorized into 2 kinds: heuristic-based, and
CFI-based. Heuristic-based methods use heuristics and
hard coded rules to find ROP gadgets. DROP (Chen
et al. 2009) checks the frequency of executed return or
jump instructions. kBouncer (Pappas et al. 2013) and
ROPecker (Cheng et al. 2014) check indirect branches,
and issue an alarm if certain abnormal patterns are
found. As mentioned in “Introduction” section, these
heuristics could be bypassed if the attackers know them,
which results in lower detection rate.

CFI-based methods (Abadi et al. 2005; Wang and
Jiang 2010; Davi et al. 2012; Zhang and Sekar 2013;
Bletsch et al. 2011) use CFI to assist ROP detection.
There are two disadvantages when using CFI: difficul-
ties in building accurate fine-grained control flow graph
(CFG) and causing high overhead on the program. On
one hand, it is shown that building complete and accurate
fine-grained CFG is very challenging (Burow et al. 2017),
and in fact many works shows that attackers can circum-
vent CFIs using imperfect CFGs (Davi et al. 2012, 2014;
Nicholas et al. 2015; Carlini and Wagner 2014). On the
other hand, CFI may introduce significant overhead to
the program (Mashtizadeh et al. 2015; Payer et al. 2015),
which is not acceptable for performance critical services.

There are other methods that are neither heuristic-
based nor CFI-based. Tanaka and Goto (2014) intro-
duced n-ROPDetector, which checks whether a set of
function addresses are presented in the payload. Since
the method focuses on the payload, attackers can insert
obfuscation to avoid being detected. Polychronakis and
Keromytis (2011) proposed an ROP detection method
based on speculative code execution, which will issue
the alarm if four identified gadgets are executed. How-
ever, this could cause a high FPR, since normal instruc-
tion sequences can contain more than four gadgets, as
shown by Stancill et al. (2013). There are also statisti-
cal-learning-based methods (Elsabagh et al. 2017; Pfaff
et al. 2015), which usually cannot handle large datasets
and need handcrafted features.

Deep learning based ROP detection methods
Deep learning is widely used to solve many security prob-
lems, such as log anomaly detection, memory forensics,
etc., where data are either widely available or easy to
prepare. However, ROP attack detection, or more gener-
ally, CRA detection are relatively less popular, and one
potential reason may be the difficulty when preparing
the training data. From existing works, it is observed that
preparing the data is the most challenging part for apply-
ing deep learning to detect ROP attacks. Li et al. (2020),
Zhang et al. (2019), Chen et al. (2018). For example, Chen
et al. (2018) proposed a unique data representation for
traces acquired from Intel PT, which is a 2-dimensional
grid data structure that can be used to training neural
networks; Zhang et al. (2019) proposed a specialized fine-
grained CFG and a unique way to generate malicious data.

Deep learning based ROP detection methods are show-
ing promising results and have two major advantages:
(1) usually minimal or no overhead and (2) less human
efforts needed to identify heuristics and patterns. Deep
learning based ROP detection methods usually have
minimal overhead because deep learning models can
be deployed separately. Besides, since the deep learning
model can capture and extract features automatically,
as long as proper representation is provided, no human
effort is needed to find specific patterns. However, deep
learning’s challenge is also obvious: the availability and
the preparation of high quality datasets.

Transfer learning in cybersecurity
In transfer learning, by convention, the domain where
knowledge is transferred from is called source domain,
and where knowledge is transferred to is called target
domain. According to the survey by Pan (2009), two
major categories of transfer learning are inductive learn-
ing and transductive learning. Inductive learning focuses
on task knowledge transfer, whereas transductive learn-
ing focuses on data domain (representation) transfer.
Notice that inductive learning assumes labels in the tar-
get domain, whereas transductive learning assumes no
label in the target domain. In this paper, we focus on data
domain transfer and data representation.

Recently, there are transfer learning applications in
intrusion detection (Sameera 2020; Gangopadhyay
et al. 2019; Singla et al. 2020), vulnerability detection
(Nguyen et al. 2019; Liu et al. 2020, and IoT attack detec-
tion (Vu et al. 2020). However, none of the existing works
focus using transfer learning and domain adaptation to
tackle the imbalanced data issue.

Domain adaptation
Domain adaptation is a subfield of transfer learning,
which is used to solve transductive transfer learning

Page 4 of 15Wang et al. Cybersecurity (2023) 6:2

problems. One common strategy to do domain adapta-
tion is constructing common representation (i.e. with
the same underlying distribution) for source and tar-
get domain data. This can be achieved by using a very
popular metric called Mean Maximum Discrepancy
(MMD) proposed by Gretton et al. (2012), which can be
used to determine if sets of samples are from the same
distribution. In other words, a small MMD indicates the
samples are from the same distribution. Many research-
ers Rozantsev and Salzmann (2018), Tzeng et al. (2014),
Long et al. (2015) found that a neural network can be
trained using MMD as a part of the loss function to learn
representation from data of both domains, so that the
representation learned follows the same distribution.

Motivation and problem statement
Base model and data preparation process
To elaborate our motivation, we first briefly explain the
workflow of the base model, DeepReturn (Li et al. 2020),
and the data preparation process. DeepReturn has a
CNN model designed to detect ROP attacks from the
network for a single program. The overall workflow of
the model in production is shown in Fig. 2 To launch an
ROP attack, the payloads arrive through the network,
and are then sent to the victim programs. An important
fact is that a malicious payload always contains addresses
of gadgets in executable segments (i.e .text) of the tar-
get program, and by chaining up the gadgets found in the
address space of the loaded program, the gadget-chains
can be formed and executed. Other than the malicious
payloads, regular data arrives through the network in a
similar way, and it may or may not contain addresses of
executable codes. If it does (which is a “lucky” accident),
then one can also chain up a “gadget-like” instruction
sequence that may or may not be executable. Therefore,
the first step is trying to extract instruction sequences
from the incoming network data.

If an instruction sequence can be extracted, a neu-
ral network is used to determine whether it is an actual
gadget-chain (malicious) or just a “gadget-like” instruc-
tion sequence (benign), and then to determine whether

the input data arrived is an ROP payload or just a piece
of regular data. Therefore, the training data for the neural
network are instruction sequences, where the malicious
data are the gadget-chains and the benign data are the
”gadget-like” instruction sequences.

The flow diagram of the data preparation process is
shown in Fig. 3. Address Space Layout (ASL) guided dis-
assembly is the process of chaining up the instruction
sequences, which will be explained in detail in “ASL-
guided disassembly” section. As shown in Fig. 3, mali-
cious data is prepared by extracting the gadget-chains
directly from the binary, and the benign data is gener-
ated by chaining up the instruction sequences using ASL
guided disassembly. During the benign data generation,
a piece of regular input data may or may not contain
addresses of executable codes, and therefore, not all input
regular data can be used to form ”gadget-like” instruction
sequences. The input data which contains addresses of
executable code so that it can form ”gadget-like” instruc-
tion sequences is very rare, causing the cost of generat-
ing benign data samples extremely expensive. In contrast,
malicious data does not have to be generated through an
actual payload. Instead, malicious samples can be easily
generated by using gadget-chain generating tools, such as
ROPGadget Salwan (2015).

Issue of imbalanced data
As shown in “Base model and data preparation process”
section, it is quick and cheap to generate malicious data
samples; however, it is very expensive to generate benign
data samples. For example, in DeepReturn, it takes 7 h
to generate benign data on a cluster node with 96 CPUs
for web server programs and FTP server programs. In
other words, whenever the model needs to be trained or
retrained, a cluster node is needed and kept running for
7 h before the training phase. In large-scale scenarios,
the deep learning based method becomes less practical,
because there are many programs that can suffer from
ROP attacks so that many models need to be trained.
Besides, it is widely agreed that programs should be kept
updated for security patches, so the number of training

Network Data

Protected
Program

Trained Model
ASL-Guided

Disassembly &
Preprocessing

Stop When Rop Detected

Fig. 2 The flow diagram of DeepReturn in production

Regular
Data

Gadget-Like
Instruction
Sequences

Benign Input
Data

ASL Disassembly

Program
Binary

Gadget-
Chains

Malicious
Input Data

Representation Change

Extraction Representation Change

Fig. 3 The flow diagram for the data preparation process in
DeepReturn

Page 5 of 15Wang et al. Cybersecurity (2023) 6:2

sessions will further increase. In commercial worlds,
we observe that this can be viewed as too costly to be
practical.

We believe the imbalanced data is a real-world issue
that may cause many deep learning based solutions to
be impractical. The essence of the imbalanced data issue
is the trade-off between cost and security. For example,
the model maintainer can choose to train the model with
the imbalanced dataset, which can cause the model to be
biased. Table 1 illustrates the performance deterioration
in Deep Return when 100 times more positive samples
are presented in the training dataset.

The scenario described is essentially a trade-off
between cost and security: choosing imbalanced data will
leave the system to be inadequately protected, whereas
choosing to use balanced data can increase the cost
significantly.

Therefore, mitigating the imbalanced data issue can
avoid such difficult cost vs. security trade-offs. In case of
the DeepReturn, if the time to generate benign data is not
7 h on a cluster node but 1 h on a personal computer, the
approach will become much more practical and scalable.
We observe that in this case, not all data is hard to gener-
ate, so we want to propose a method that can fully lever-
age the data only with the labels that are easy to generate,
and requires a minimal number of hard-to-generate data.

Model independence
Although in the base model, DeepReturn, the authors
used CNN as the model backbone, we want to make our
method to be model-independent. In ROP payload detec-
tion, the data samples are usually sequence data (e.g.
instruction sequence, opcode sequence, etc.), so that ana-
lysts may use CNN, Recurrent Neural Networks (RNN)
and their varient as the model backbone. In this paper, in
addition to the base CNN model, we have also tested our
method to work with RNN and hierarchical RNN pro-
posed in DeepVSA (Guo et al. 2019).

Problem statement
In order to address the scalability issue of the deep learn-
ing based approaches and make them more practical in
the real world, we aim to solve the following problem:

Many programs may suffer from ROP attacks if a vul-
nerability can be used to overwrite the return address

of a function to an arbitrary value. Deep learning shows
its potential to detect ROP attacks effectively, but deep
learning based methods often suffer from the imbal-
anced data issue when used to detect ROP attacks. To
mitigate the effect of the imbalanced data, transfer learn-
ing may be leveraged to improve the performance of a
deep learning model. The problem is whether transfer
learning could be used to make the deep learning based
approaches effective, scalable, and significantly more
practical in the presence of an imbalanced dataset.

Method
ASL‑guided disassembly
This section summarizes the process of the ASL-guided
disassembly to generate benign data for the training
phase.

First, the reassembled network data is scanned so
that the starting address of potential gadget-chains can
be identified. Each byte could be the beginning of an
address, and 4 consecutive bytes will be considered as an
address (for x86). If an address at n is the start of an exe-
cutable instruction sequences that end with an indirect
branch, then the next 5–10 4-byte-long data (i.e. n+ 4 ,
n+ 8...) will be evaluated to see if they are also addresses
for such instruction sequences. If yes, then these instruc-
tion sequences will be chained up and let the deep learn-
ing model decide whether it is a gadget-chain.

To confirm whether an address is pointing to a valid
instruction sequence, the first step is to check whether it
is in the executable section (e.g. .text). Then, we will
start disassembling from the address until an invalid
instruction or indirect jump/call is encountered. If the
disassemble is stopped because an invalid instruction is
encountered, then the disassembly is stopped and this
address is considered to be invalid.

Figure 4 illustrates the ASL-guided disassembly pro-
cess for the payload/input shown in Fig. 1. The first step
is to find a valid address that points to a potential gadget
by searching through the data byte-by-byte, starting at
0x6335cf19. The first valid address is found at the byte
4, which is 0xffdd17c3. After this address is confirmed
to be a gadget address, then we check if another gadget
address can be found. In x86, the address takes 4 bytes, so
we check the next 5 to 10 4-byte segments. Here another
gadget address is found, which is 0xfe2893f5, so a data
sample is identified.

Table 1 Effect of imbalanced dataset in DeepReturn

1:1 Balanced 1:100 Imbalanced

False positive rate 0.399% 8.806%

F1-score 0.997 0.949

Page 6 of 15Wang et al. Cybersecurity (2023) 6:2

To reduce the cost in this paper, for programs that
would serve as source domain programs, both benign
and malicious data are prepared; for programs only used
as target domain programs, only malicious data and a
small number of benign data samples for validation and
testing are prepared.

Base model architecture
Despite of the sequence data (i.e instruction sequences),
Li et al. (2020) shows the CNN performs at least as well
as the RNN does in DeepReturn, but CNN is much easier
to train. In this paper, we have no motivation to change
the base model, so the backbone of our model used is
1-dimensional CNN. To perform domain adaptation, there
are modifications in the fully connected layers, and the
details of the modification are explained in “Deep domain
adaptation using mean maximum discrepancy” section.

The input data are binary instruction sequences. After
the gadgets and the gadget-like instruction sequences
are identified, they will be assembled back to binary.

Therefore, for the neural network, the inputs are essen-
tially byte sequences. The atomic unit is a byte, which is
represented as an integer number between 0 to 255.

To eliminate the effect of the numerical relationships
between each byte (i.e. 255 is larger than 0), one-hot
encoding is adopted to vectorize each byte. There-
fore, the final input data to be fed into the model is
a sequence of one-hot vectors. Figure 5 illustrates

Fig. 4 ASL-guided disassembly

Fig. 5 Input data representation

1D Convolutional #1

Source Domain Data Target Domain Data

1D Convolutional #2

Intermediate Output 2 Intermediate Output 2

1D Convolutional #3

Intermediate Output 3 Intermediate Output 3

Fully Connected #1 (MMD Layer)

Intermediate Output 4 Intermediate Output 4

Fully Connected #2 (Output Layer)

Intermediate Output 5 Intermediate Output 5

Class Prediction Class Prediction

Entropy Loss

MMD
Loss

Fig. 6 Architecture of the deep domain adaptation model

Page 7 of 15Wang et al. Cybersecurity (2023) 6:2

how binary instruction sequences are processed
after being identified. For example, add esp, 0xc
will be assembled to 0x83 0xc4 0x0c. Then, it
will be transformed to decimal numbers, which is
[131, 196, 12]. Finally, the decimal numbers will be
encoded to onehot.

the hidden layers follow regular CNN classifier
design, so that we will not dive deep here. Overfitting
issues are addressed by using dropout and early stop-
ping. The dropout rate is 0.5, and validation data are
used to stop the training early. Batch normalization is
also used to stabilize the training.

The model contains 3 convolutional layers with
batch normalization, one fully-connected layer for
domain adaptation, and one fully-connected layer for
classification output. Figure 6 shows the details of the
model.

Deep domain adaptation using mean maximum
discrepancy
Existing methods to solve the data imbalance issue
have two major categories: data-based and model-
based. Data-based methods sample data in dedicated
ways, whereas model-based methods modify the model
architectures and training processes. In our scenario,
data-based methods cannot fully leverage one impor-
tant advantage in our assumption mentioned in “Intro-
duction” section: high-quality data for one program are
available. Therefore, we choose a model-based method:
transfer learning, to tackle the imbalanced data issue. In
essence, we train a model using data from two domains
(i.e. data from two different programs): source domain
and target domain. The data in the source domain is bal-
anced; whereas the data in the target domain is imbal-
anced. The goal is to train a model to perform well on
target domain data.

One challenge for a model trained only using data
from a single program to detect ROP attacks for different
programs is that the gadgets available can be different,
resulting the data representation to be different. Based on
this observation, a subfield of transfer learning, domain
adaptation fits our task very well, because domain adap-
tation can solve transductive learning problems where
the data domains are different, but the tasks are the same.

We adopted a domain adaptation method based on
MMD, which is introduced by Gretton et al. (2012).
MMD can be used as a distance between two distribu-
tions, given samples retrieved from each distribution.

Formally, MMD is defined in reproducing kernel Hilbert
space (RKHS), denoted as H. Let the backbone of our
neural network be fθ (x) , where θ are model parameters.
Then, given two random variables X and Y with prob-
ability distributions p and q, respectively, the MMD is
defined as:

Here for Ex[fθ (X)] and Ey[fθ (Y)] , we use Monte Carlo
estimation, so that Ex[fθ (X)] =

1
m

m
i=0 k(·, fθ (xi)) . The

kernel k used is the Gaussian kernel, which is defined as:

We first formally define our deep domain adaptation
layer, and then illustrate the whole architecture in Fig. 6.
Let the source domain data be X, and target domain
data to be Y, MMD then can be obtained using Equa-
tion 1, which will be one of the loss functions. In our
case, random variable X and Y represent the data gen-
erated from two different programs. By minimizing the
MMD, we ensure that fθ (X) and fθ (Y) will have similar
underlying distributions, so that the classification per-
formance could be more accurate for the target domain
data. The other part of the loss function will be the reg-
ular entropy loss. To calculate the entropy loss, extra
layers after the fθ (X) and fθ (Y) are added. Let the extra
layers to be gθ ′ , then using all data samples Z in both
domain, where Z = X ∪ Y , the cross entropy loss can be
constructed as described in “Base model architecture”
section.

As shown in Fig. 6, both source and target domain data
are needed during the training process. The final outputs
from the source domain data and their labels will be used
to construct the entropy loss; whereas the output of the
MMD layer, intermediate output 5, will be used to calcu-
late the MMD loss using Eq. 1. To obtain the MMD loss,
the output of the MMD layer from both source domain
and target domain data are needed in one training step.
Note that we do not form one single loss function by
summing up the cross entropy loss and MMD loss. In
each training step, although the gradients of both losses
with respect to the model parameters are computed in
one backpropagation iteration, but the gradients are
applied separately. The details are shown in “Training
using no benign data in target domain” section.

(1)MMD(fθ , p, q) = �E
x
[fθ (X)] − E

y
[fθ (Y)]�H

(2)k(x, y) = exp

(

−
�x − y�2

2σ 2

)

Page 8 of 15Wang et al. Cybersecurity (2023) 6:2

Algorithm 1: Customized Training Loop for Imbalanced Data
Result: Trained model that can perform ROP detection in target domain
Initialize bottom feature extraction layers fθ, top task layers gθ′ ;
Initialize maximum epoch E, current epoch e = 0;
Initialize best models fbest

θ , gbest
θ′ and best accuracy accbest = 0;

while e < E do
Update fθ and gθ′ using balanced data from source domain;
Update fθ using Eq. 1 and malicious data samples from both domains;
Validate the model and get the validation accuracy acc;
if acc > accbest then

fbest
θ = fθ;

gbest
θ′ = gθ′ ;

accbest = acc;
end
e = e+ 1;

end

Training using no benign data in target domain
Recall in our problem, benign data is very difficult to
generate. In other words, the target domain could be
extremely imbalanced, and in fact, it is preferred that
no benign training data is needed in the target domain.
However, if one only includes benign data in a dataset,
the underlying distribution will be also changed. Conse-
quently, if we still directly adopt a regular training method
using MMD and entropy loss, we are inappropriately try-
ing to create a similar distribution for two datasets with
different numbers of classes. Also, different from the reg-
ular transductive learning mentioned in “Transfer learn-
ing in cybersecurity” section, the label information is
known in the target domain, which should be leveraged.

Therefore, we introduce our customized training loop,
which is shown in Algorithm 1. For each epoch, the
entropy loss will first be calculated and minimized using
the balanced data from the source domain, and then the
MMD will be calculated and minimized using only mali-
cious data in both domains. The benefits are: (1) the
model will not be biased to any class for the classification
task, and (2) the MMD loss will not force the intermedi-
ate outputs of the benign data to be similar to those of
the malicious data.

To prevent overfitting and achieve the best test accu-
racy, we use early stopping. Note that the validation
dataset for the early stopping purpose contains benign
target domain data. Although the benign data should be
avoided in the target domain, we emphasize the impor-
tance of a balanced validation dataset for an appropriate
early stopping point to prevent overfitting, and will dis-
cuss the number of validation data samples required in
“Evaluation” section.

In our experiments, we use Adam optimizer (Kingma
and Ba 2014) with a learning rate of 0.001; the maximum
epoch E is 25, and the batch size is 32.

Evaluation
In our evaluations, the baseline is defined as the perfor-
mance of a model trained using one program performing
ROP detection tasks on a different program. To make the
comparison fair, architectures and the training hyperpa-
rameters are as close as possible.

We first introduce the dataset. Table 2 summarizes the
number of data samples used during training, valida-
tion and testing. Note that M is for malicious, and B is
for benign. The maximum length of the raw instruction
sequence is 128 bytes long, and gadget chains contain
gadgets end with not only ret instructions but also jmp
instructions.

To generate benign data, 2 TB PDF documents image
data are used as inputs for source domain programs. In
the experiment in this paper, there are 20,000 benign data
samples and 20,000 malicious data samples for source
domain programs; there are 20,000 malicious data sam-
ples for target domain. For validation, there are 1750
benign and 1750 malicious target domain program data
samples available. Then for the test, there are 1200 benign

Table 2 Number of data samples used during training,
validation and testing

Train Validation Test

Number of M samples (source) 20,000 – –

Number of B samples (source) 20,000 – –

Number of M samples (target) 20,000 1750 7500

Number of B samples (target) – 1750 1200

Page 9 of 15Wang et al. Cybersecurity (2023) 6:2

and 7500 malicious target domain program data samples.
Note that for programs only used as a target domain pro-
gram, only a very few number of benign data samples for
validation and testing are prepared.

Accuracy is not selected as one of the performance
metrics, because the test data in the target domain is
extremely imbalanced. Instead, we use F1 score, false
positive rate (FPR), and detection rate (DR). FPR is
important because false positives are one of the most
important concerns in the industry for cyber-attack
detection systems.

We use 4 Internet service programs to evaluate our
method. The 4 programs are proftpd 1.3.0a, vsftpd 3.03,
nginx 1.4.0 and Apache httpd 2.2.18. Only proftpd 1.3.0a
and vsftpd 3.03 are used as source domain programs.

In the following subsections, we will answer following
research questions in the following subsections:

5.1 Can our method provide improvement, compared
to directly applying source domain model to target
domain data?

5.2 Can our method be adopted to other model architec-
tures?

5.3 How is our method compared to the original model?

5.4 What is the minimum amount of validation data
needed?

5.5 How is the knowledge being transferred?
5.6 What is the trade-off when comparing to traditional

models?

Can our method provide improvement across domains?
An important questions is whether our model can per-
form better than directly applying a model trained using
one program to another program. In this evaluation, the
original CNN model used in DeepReturn is adopted, and
we have conducted 6 experiments using different setups,
as shown in Table 3.

In Table 3, the performance metrics that have improve-
ment with respect to the baseline are in bold. It is
observed that when transfer learning is not used (i.e.
baseline), the FPRs are usually higher. Among the six sce-
narios, there are 3 cases where the F1 score improved, 4
cases where the FPR improved, and 3 cases where the DR
improved.

The best result achieved is when using proftpd as the
source domain program and vsftpd as the target domain
program. The improvement of the FPR is from 0.0392
to 0.0125 and the DR is from 0.9142 to 0.9475. Mean-
while, we also observe cases where the performance is
not improved, such as when proftpd is the target domain
program and vsftpd is the source domain program, where
the DR dropped from 0.9713 to 0.9096. One observa-
tion is that whenever proftpd is used as a source domain
program, the performance is already fairly good without
using the domain adaptation (2 out of 3 cases). In con-
trast, when vsftpd is used as a source domain program,
the domain adaptation seems effective and improves the
performance. One potential reason for the observation
is that proftpd data may include many useful features for
the ROP detection.

Table 4 shows the comparison between the num-
ber of detected positives (ROP attacks) and that of false

Table 3 Performance of the ROP detection on target domain programs using source domain model and domain adaptation model

Source Target FPR F1 DR

Baseline Ours Baseline Ours Baseline Ours

proftpd nginx 0.0217 0.0192 0.9941 0.9881 0.9957 0.9829

proftpd httpd 0.0167 0.0183 0.9923 0.9843 0.9904 0.9754

proftpd vsftpd 0.0392 0.0125 0.9484 0.9709 0.9142 0.9475
vsftpd nginx 0.0500 0.0475 0.9735 0.9732 0.9649 0.9635

vsftpd httpd 0.0283 0.0333 0.9508 0.9601 0.9151 0.9339
vsftpd proftpd 0.0708 0.0433 0.9733 0.9452 0.9713 0.9096

Average 0.0378 0.0290 0.9723 0.9705 0.9586 0.9521

Table 4 Number of true positives and false positives of domain
adaptation modelk

Source Target TP FP

Baseline Ours Baseline Ours

vsftpd nginx 3329 3324 60 57
vsftpd httpd 3157 3222 34 40

vsftpd proftpd 3351 3138 85 52
proftpd nginx 3435 3391 26 23
proftpd httpd 3417 3365 20 22

proftpd vsftpd 3154 3269 47 15
Total 19,843 19,709 272 209

Page 10 of 15Wang et al. Cybersecurity (2023) 6:2

positives, where the better results are in bold. Accord-
ing to the results, we found that the total number of
false positives is reduced by more than 20%, but the total
number of detected positives is only reduced by less than
0.01%. Therefore, we argue that our method can signifi-
cantly improve the FPR with a small amount of trade-off
on the DR.

Regarding the problem to answer, the performance of
the model is largely depending on the programs in both
domains. In cases where the source domain program can
provide effective features for ROP detection for the target
domain program, our model may be less effective; how-
ever, whenever the model trained using source domain
program performs poorly on target domain program, our
model performs well. In most cases, the FPRs are signifi-
cantly lower.

Lastly, our domain adaptation model sometimes make
things worse. To explain, it is important to remem-
ber source domain models are trained using balanced
data, so from their perspectives, our method will cause
a sub-effect: making the data imbalanced. Therefore, in
case when two programs contain similar gadgets, this
sub-effect may dominate the performance, as the source
model already can do detection on the target program.

Can our method be adopted to other model architectures?
One key feature of our method is model-independ-
ent, as introduced in “Model independence” section.
To verify, we selected two different models: RNN

and Hierarchical RNN proposed in DeepVSA (Guo
et al. 2019). Besides, we have made the instruction
sequences shorter, since RNN model usually perform
poorly on long sequences.

For each model, we have done 3 experiments in differ-
ent setups. The result shows that for both models, similar
to the results shown in “Can our method provide improve-
ment across domains?” section, the FPR usually will have
improvement, with little DR sacrifice. This trade-off pattern
is clearly shown in the last row in Table 5, which compared
the DR and FPR between baseline and proposed method
in different models. The better results are in bold. In Hier-
archical RNN, where the baseline is worse, this trade-off
pattern is even more common. For example, although our
approach achieves lower detection rate than the baseline,
it reduces the FPR of vsftpd from 0.2283 to 0.0967, and
reduces the FPR of nginx from 0.1575 to 0.1033.

Since we can observe similar trade-off pattern in differ-
ent models, we argue that our method can be adopted to
different models.

Compared to original models trained using balanced
and imbalanced data
It is also important to see the comparison to an original
classification model trained using a balanced or an imbal-
anced dataset. Intuitively, the original model trained

Table 5 Performance on RNN and hierarchical RNN

Source Target DR FPR

Baseline Ours Baseline Ours

RNN proftpd nginx 0.9800 0.9899 0.1292 0.0758
proftpd httpd 0.9887 0.9646 0.0867 0.0717
proftpd vsftpd 0.9226 0.9675 0.1192 0.1833

Hierarchical proftpd nginx 0.9064 0.7948 0.1575 0.1033
RNN proftpd httpd 0.8623 0.8096 0.0800 0.0800

proftpd vsftpd 0.8446 0.7203 0.2283 0.0967
Total 0.9174 0.8744 0.1335 0.1018

Table 6 False positive rate comparison with model trained using
balanced data

Program Orig. balanced Ours Orig. imbalanced

nginx 0.0001 0.0284 0.2201

httpd 0.0004 0.0258 0.2530

vsftpd 0.0002 0.0125 0.0857

proftpd 0.0002 0.0433 0.0904

Average 0.0003 0.0275 0.1623

Fig. 7 FPR & F1 versus number of validation data

Page 11 of 15Wang et al. Cybersecurity (2023) 6:2

using balanced dataset should outperform our method,
and the original model trained using imbalanced dataset
should perform worse. Using FPR as the major metric,
this section evaluates such scenarios in detail.

The comparison is shown in Table 6. The results of models
with balanced data (first column) is adopted from DeepRe-
turn (Li et al. 2020), and since we may have multiple results
for one target program (as shown in Table 3), the FPRs for
our model (second column) in the tables are the average of
all results for each program. In the experiments of the origi-
nal model using imbalanced data, the number of negative
samples to the number of positive samples is 1:100.

Compared to the original model trained using bal-
anced data, the average FPR has increased from 0.0003
to 0.0275. The performance deterioration in FPR is very
significant, because the FPR when balanced data are pro-
vided is very low. For example, the FPR in this case for
proftpd reaches 0.0904.

Compared to the original model trained using imbal-
anced data, we can see very significant deterioration in
the FPR, which is expected. Since there are 100 times
more positive samples than negative ones in the train-
ing data, the trained model is biased and tends to predict
positive in most of the cases. In the worst case here, the
httpd, the FPR is 0.2530, so that about 1/4 of the negative
test samples are misclassified.

In conclusion, the shown result follows the intuition:
the original model trained using balanced dataset per-
forms better, and the original model trained using imbal-
anced dataset performs worse.

What is the minimum number of validation data needed?
As explained in “Base model and data preparation process”
section, generating benign data is expensive, and should
be avoided as much as possible. Therefore, one important
concern is the number of validation data needed during
the training phase, because some benign data samples in
the target domain are needed for validation.

Extra experiments are conducted to find an appropriate
amount of validation data needed. The source domain pro-
gram is proftpd and target domain program is vsfptd. The
result is shown in Fig. 7. In Fig. 7, the test FPR has a decreas-
ing trend when the number of validation data increases.
However, F1 score does not has a clear trend. For example,
within 100 validation data, FPR could be as high as 0.13;
however, after increasing the number of validation data to
over 600, the highest FPR is only about 0.03. In contrast,
the F1 score does not show any trends as the validation data
increases, which is still mostly between 0.92 to 0.96.

Though the FPR has a decreasing trend while the vali-
dation data size increases, the trend is far from signifi-
cant and the improvement is very limited. It is important

to point out that requiring few validation data does not
mean no validation data needed at all. In fact, from our
experiment, it is extremely important to have validation
data and early stopping during the training phase. The
MMD loss is very vulnerable to overfitting, and can result
in very bad test performance.

How is the knowledge being transferred?
An interesting question is whether the knowledge is actu-
ally transferred, and how the knowledge is transferred. In
this section, we investigate the questions using proftpd
as the source domain program and vsfptd as the target
domain program.

Starting with a machine learning perspective, one impor-
tant factor to consider is the MMD value. Remember
MMD can be used as a distance metric for distributions, so
that a small value of MMD indicates the model can learn
similar representations for data from two domains. Since
MMD is part of the loss function, the gradient descent
algorithm can guarantee the decrease of the MMD.

Next we dig deeper into this question. We first propose
two hypotheses:

H1: Transfer learning helps the model to capture
knowledge in target domain and discard features
that are not shared by two domains.

H2: Transfer learning will not make the model discard
source domain knowledge that is useful.

To test H1, we first identify a sample from the target
domain that is correctly classified by our model and
incorrectly classified by the baseline model. Listing 1
shows the disassembly of the selected sample. By evaluat-
ing the semantics of this gadget-chain snippet, it contains
many gadgets for manipulating the stack for jumping to
other gadgets (e.g. sequence of pops), which could be
very program-specific because of the different address
space layout for different programs. Since this gadget-
chain is target-domain-specific, it is not very surpris-
ing that the model completely trained using the source
domain data incorrectly classifies it.

; Stack Manipulation Gadgets
. . .
xor eax , eax
pop ebx
pop e s i
pop ed i
r e t
. . .
add esp , 0x50
pop ebx
pop e s i
pop ed i
r e t

Listing 1: Selected Sample Snippet for H1

Page 12 of 15Wang et al. Cybersecurity (2023) 6:2

We also evaluate the uniqueness of the gadget-chain
quantitatively by calculating the dissimilarity between the
instruction sequences using Longest Common Subse-
quence (LCS) of opcodes. We first find a baseline by cal-
culating the combination pairwise average LCS between
source domain and target domain instruction sequences,
which is 18.35; then we find the average LCS of the sam-
ple in Listing 1 and all other data in source domain,
which is 19.42. From this result, we conclude that the
selected sample shown in Listing 1 is fairly target domain
specific, and we expect the extracted feature from this
example using our transfer learning model and baseline
model should be more different than average. The intui-
tion is that target domain special cases should be treated
specially, and our model will capture different features to
make the classification correct.

The similarity between the extracted features can be
measured by calculating the euclidean distances between
the intermediate outputs from two models. Since the
baseline model and our model are trained separately, it is
not appropriate to make direct comparison between the
intermediate outputs from two models. Instead, we first
estimate the distance between two intermediate output
spaces as baseline by averaging the combination pairwise

distances of all intermediate outputs from both domains,
which turns out to be 1.26. Then the average distance
between the intermediate output of the selected sam-
ple and all source domain samples is calculated, which
is 1.38. This result shows that compared to most of the
other samples in the target domain, the intermediate out-
put of the selected target domain sample is fairly distinct
from the intermediate outputs of the source domain.

To test H2, we want to find two similar instruction
sequences, one from each domain, and see if their inter-
mediate outputs are similar as well. The intuition is that
since the transferred model can inherit the useful fea-
tures, it can extract similar features from two similar
instruction sequences from different domains. Listing 2
and Listing 3 show two similar data samples (i.e. instruc-
tion sequences) from the two domains, respectively. We
first show the similarity between the two gadget-chain
snippets using semantic explanation. As shown in the
code snippets, both gadget-chain snippets are trying to
first manipulate the stack for the next gadget, and then
manipulate the eax register to initialize system calls.
However, since it is from different programs, we can see
that the actual instructions are different, but some com-
mon gadgets can still be found.

; Manipulate the Stack
add esp , 0xc
mov eax , ed i
pop ebx
pop e s i
pop ed i
pop ebp
r e t

; I n i t i a l i z e System Cal l
push cs
sub al , 0x41
push cs
xor byte ptr . . .
adc al , 0x41
r e t
. . .
i n c e s i
push cs
xor byte ptr . . .
adc al , 0x45
r e t

Listing (2) Selected Sample Snippet
From Source Domain (proftpd) For H2.

; Manipulate the Stack
add esp , 0xc
pop ebx
pop e s i
pop ed i
pop ebp
jmp eax

; I n i t i a l i z e System Cal l
add eax , 0xc0310001
r e t

push cs
mov al , byte ptr . . .
add dword ptr . . .
push cs
adc al , 0x41
r e t

Listing (3) Selected Sample From
Target Domain (vsftpd) For H2

Page 13 of 15Wang et al. Cybersecurity (2023) 6:2

Then, we use a quantified distance measure to show
the similarity. First, the baseline distance is the average
euclidean distance of every possible pair of source and
target domain intermediate outputs from our trained
model (i.e. the combination of the set). Note that dif-
ferent from what has been done in H1, this time all the
intermediate outputs are from our trained transfer learn-
ing model. The baseline distance is 0.0141, and the dis-
tance between the intermediate outputs of the two code
snippets in Listing 2 and Listing 3 is 0.0054. The distances
show that the two code snippets selected have similar
intermediate outputs.

What is the trade‑off when comparing to traditional
models?
As mentioned in “Traditional ROP detection methods”
section, there are many existing traditional ROP detec-
tion methods. Compared to them, the deep learning
based methods have two major advantages: (1) minimal
or no overhead and (2) less human effort on identifying
heuristics. However, the assumption for the two advan-
tages is that the deep learning methods have comparable
performances.

In Table 7, we have selected three traditional methods
to do comparisons on different aspects, where two of
them are heuristic-based, and one of them is CFI-based.

For the two heuristic-methods, DROP and kBouncer,
both FPRs are 0, and the DRs are not reported. The
overheads of kBouncer and DROP are about 4% and
500%, respectively. Heuristic-based methods usually
have extremely low FPR, but as a trade off, their DR may
not be satisfying and could have substantial overhead.
Besides, heuristic-based methods may need extra human
labor to craft heuristics and attributes.

CFI-based methods are considered as very accurate in
detection, but the overhead cannot be avoided. In Bletsch
et al. (2011), the majority of reported programs have
overhead about 0–5%. Furthermore, usually the over-
head varies significantly on different programs, because
any compiler optimizations, obfuscations, and/or even
program semantic (i.e. needs of frequent branching) will

affect the overhead. As a result, the reported worst case
overhead in Bletsch et al. (2011) is about 20%. Regard-
ing the performance, although detection performance is
not measured in Bletsch et al. (2011), it is mentioned in
Bletsch et al. (2011) that ”the protection is only as good as
the control flow graph being enforced”, and the approach
proposed in Bletsch et al. (2011) can only handle a por-
tion of the security-relevant indirect control flow trans-
fers. For the indirect flow transfers yet to be handled, it
is stated in Bletsch et al. (2011) that they might be han-
dled if ”the programmer or higher-level language provided
more precise insight.”

Deep learning methods usually have less overhead
and require less human efforts. We use the performance
of our model on target programs to compare with tra-
ditional methods. We first put a remark on the FPR,
because the FPR presented is the model FPR, and the
absolute majority of the inputs to the model are likely to
be positive in production setup due to the ASL-Guided
Disassembly procedure. Our model FPR is 2.9%, and DR
is 95.21%. Regarding the overhead, since the detection
system will be deployed outside the protected program,
there is therefore no overhead.

Limitation and conclusion
We identify three limitations of our approach. First,
although very few, minority class data samples are still
needed for validation purposes. This could make our
approach impractical if the minority class samples are
completely unavailable or extremely rare. The assump-
tion of our approach is that it is very difficult, but not
impossible to generate benign samples. Second, our
approach requires high-quality source domain data. Dur-
ing the experiments, we observe that the quality of the
source domain data can affect the performance substan-
tially. Third, as illustrated in “Can our method provide
improvement across domains?” section, the selection of
a source domain program is important to achieve good
results. However, currently we do not have a method to
determine what programs are good to serve as a source
domain program.

In conclusion, this paper presents a transfer learn-
ing method to mitigate the imbalanced data issue when
applying deep learning in cybersecurity, using ROP pay-
load detection as a case study. We propose a new domain
adaptation based method to train a cyber-attack detec-
tion model using extremely imbalanced dataset; discuss
the performance trade-offs of the proposed approach;
and discuss the insights about how domain adaptation
helps to achieve better results. Both strength and the lim-
itation of our approach are discussed, and the FPR vs. DR
trade-off is being identified.

Table 7 Illustration of trade-offs between different ROP
detection methods

Method Detection performance Overhead

DROP (Chen et al. 2009) 0% FPR ∼ 500%

kBouncer (Pappas
et al. 2013)

0% FPR ∼ 4%

CFI (Bletsch et al. 2011) N/A 0–5% majority
∼ 20% worst
case

Our method 2.9% Model FPR 95.21% DR 0%

Page 14 of 15Wang et al. Cybersecurity (2023) 6:2

Abbreviations
ASL Address space layout
ASLR Address space layout randomization
CFG Control flow graph
CFI Control flow integrity
CNN Convolutional neural network
CRA Code reuse attack
DEP Data execution prevention
DR Detection rate
FPR False positive rate
ISA Instruction set architecture
LCS Longest common subsequence
MMD Mean maximum discrepancy
RKHS Reproducing kernel Hilbert space
RNN Recurrent neural networks
ROP Return-oriented programming

Acknowledgements
Not applicable.

Disclaimer
Commercial products are identified in order to adequately specify certain
procedures. In no case does such identification imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does
it imply that the identified products are necessarily the best available for the
purpose.

Author contributions
PL, HW, and AS designed this study. HW did the evaluation experiments. All
authors read and approved the final manuscript..

Funding
This work was supported by NSF CNS-2019340, NSF ECCS-2140175, and NIST
60NANB22D144.

Availability of data and materials
When certain data sharing requirements are met, the data is available upon
request. Such requests should be sent to the first author of this paper.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 28 June 2022 Accepted: 22 December 2022

References
Abadi M, Budiu M, Erlingsson U, Ligatti J (2005) Control-flow integrity. In: ACM

conference on computer and communications security (CCS ’05)
Berman DS, Buczak AL, Chavis JS, Corbett CL (2019) A survey of deep learning

methods for cyber security. Information 10(4):122
Bletsch T, Jiang X, Freeh VW, Liang Z (2011) Jump-oriented programming: A

new class of code-reuse attack. In: ASIACCS ’11. Association for Comput-
ing Machinery, New York, NY, USA, pp 30–40

Bletsch T, Jiang X, Freeh V (2011) Mitigating code-reuse attacks with control-
flow locking. In: Annual computer security applications conference
(ACSAC ’11)

Burow N, Carr SA, Nash J, Larsen P, Franz M, Brunthaler S, Payer M (2017)
Control-flow integrity: precision, security, and performance. ACM Com-
put Surv CSUR 50(1):16

Carlini N, Wagner D (2014) Rop is still dangerous: breaking modern defenses.
In: USENIX security symposium (security ’14)

Checkoway S, Davi L, Dmitrienko A, Sadeghi A-R, Shacham H, Winandy M (2010)
Return-oriented programming without returns. In: Proceedings of the 17th
ACM conference on computer and communications security, pp 559–572

Chen L, Sultana S, Sahita R (2018) HeNet: a deep learning approach on Intel®
processor trace for effective exploit detection. In: 2018 IEEE security and
privacy workshops (SPW). IEEE, pp 109–115

Chen P, Xiao H, Shen X, Yin X, Mao B, Xie L (2009) DROP: detecting return-
oriented programming malicious code. In: International conference on
information systems security. Springer, pp 163–177

Cheng Y, Zhou Z, Miao Y, Ding X, Deng RH (2014) ROPecker: a generic and
practical approach for defending against ROP attack. In: NDSS sympo-
sium 2014: proceedings of the 21st network and distributed system
security symposium, San Diego, February 23, vol 26, pp 1–14

Choi Y-H, Liu P, Shang Z, Wang H, Wang Z, Zhang L, Zhou J, Zou Q (2020) Using
deep learning to solve computer security challenges: a survey. Cyberse-
curity 3(1):1–32

Davi L, Dmitrienko A, Egele M, Fischer T, Holz T, Hund R, Nürnberger S, Sadeghi
A-R (2012) MoCFI: a framework to mitigate control-flow attacks on smart-
phones. In: Annual network and distributed system security symposium
(NDSS’12)

DaviL, Sadeghi A-R, Lehmann D, Monrose F (2014) Stitching the gadgets: on
the ineffectiveness of coarse-grained control-flow integrity protection. In:
USENIX security symposium (security ’14)

Elsabagh M, Barbará D, Fleck D, Stavrou A (2017) Detecting ROP with statistical
learning of program characteristics. In: Proceedings of the seventh ACM
on conference on data and application security and privacy. ACM, pp
219–226

Gangopadhyay A, Odebode I, Yesha Y (2019) A domain adaptation technique
for deep learning in cybersecurity. In: OTM confederated international
conferences on the move to meaningful internet systems. Springer, pp
221–228

Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A (2012) A kernel two-
sample test. J Mach Learn Res 13(1):723–773

Guo W, Mu D, Xing X, Du M, Song D (2019) DEEPVSA: facilitating value-set
analysis with deep learning for postmortem program analysis. In: 28th
USENIX security symposium (USENIX security 19). USENIX Association,
Santa Clara, pp 1787–1804. https:// www. usenix. org/ confe rence/ useni
xsecu rity19/ prese ntati on/ guo

Kingma DP, Ba J (2014) ADAM: a method for stochastic optimization. arXiv
preprint arXiv: 1412. 6980

Li X, Hu Z, Wang H, Fu Y, Chen P, Zhu M, Liu P (2020) DeepReturn: a deep
neural network can learn how to detect previously-unseen rop payloads
without using any heuristics. J Comput Secur 28:1–25

Liu S, Lin G, Qu L, Zhang J, De Vel O, Montague P, Xiang Y (2020) CD-VuLD:
cross-domain vulnerability discovery based on deep domain adaptation.
IEEE Trans Depend Secure Comput

Long M, Cao Y, Wang J, Jordan M (2015) Learning transferable features with
deep adaptation networks. In: International conference on machine
learning. PMLR, pp 97–105

Mashtizadeh AJ, Bittau A, Boneh D, Mazières D (2015) CCFI: cryptographically
enforced control flow integrity. In: Proceedings of the 22Nd ACM SIGSAC
conference on computer and communications security. CCS ’15. ACM,
New York, NY, USA, pp 941–951. https:// doi. org/ 10. 1145/ 28101 03. 28136
76

Nguyen V, Le T, Le T, Nguyen K, DeVel O, Montague P, Qu L, Phung D (2019)
Deep domain adaptation for vulnerable code function identification. In:
2019 international joint conference on neural networks (IJCNN). IEEE, pp
1–8

Nicholas C, Antonio B, Mathias P, David W, Thomas RG (2015) Control-flow
bending: on the effectiveness of control-flow integrity. In: USENIX secu-
rity symposium (security’15)

Onarlioglu K, Bilge L, Lanzi A, Balzarotti D, Kirda E (2010) G-Free: defeating
return-oriented programming through gadget-less binaries. In: Proceed-
ings of the 26th annual computer security applications conference, pp
49–58

Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng
22(10):1345–1359

Pappas V, Polychronakis M, Keromytis AD (2013) Transparent ROP exploit
mitigation using indirect branch tracing. In: 22nd USENIX security sympo-
sium (USENIX Security 13). USENIX Association, Washington, pp 447–462.
https:// www. usenix. org/ confe rence/ useni xsecu rity13/ techn ical- sessi ons/
paper/ pappas

https://www.usenix.org/conference/usenixsecurity19/presentation/guo
https://www.usenix.org/conference/usenixsecurity19/presentation/guo
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1145/2810103.2813676
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/pappas
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/pappas

Page 15 of 15Wang et al. Cybersecurity (2023) 6:2

Payer M, Barresi A, Gross TR (2015) Fine-grained control-flow integrity through
binary hardening. In: International conference on detection of intrusions
and malware, and vulnerability assessment. Springer, pp 144–164

Pfaff D, Hack S, Hammer C (2015) Learning how to prevent return-oriented
programming efficiently. In: International symposium on engineering
secure software and systems. Springer, pp 68–85

Polychronakis M, Keromytis AD (2011) Rop payload detection using specula-
tive code execution. In: 2011 6th international conference on malicious
and unwanted software (MALWARE). IEEE, pp 58–65

Rozantsev A, Salzmann M, Fua P (2018) Beyond sharing weights for deep
domain adaptation. IEEE Trans Pattern Anal Mach Intell 41(4):801–814

Salwan J (2015) ROPgadget. GitHub
Sameera N, Shashi M (2020) Deep transductive transfer learning framework for

zero-day attack detection. ICT Express 6(4):361–367
Seibert J, Okhravi H, Söderström E (2014) Information leaks without memory

disclosures: remote side channel attacks on diversified code. In: Proceed-
ings of the 2014 ACM SIGSAC conference on computer and communica-
tions security, pp 54–65

Shacham, H (2007) The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In: Proceedings of the 14th ACM
conference on computer and communications security, pp 552–561

Singla A, Bertino E, Verma D (2020) Preparing network intrusion detection
deep learning models with minimal data using adversarial domain adap-
tation. In: Proceedings of the 15th ACM Asia conference on computer
and communications security, pp 127–140

Snow KZ, Monrose F, Davi L, Dmitrienko A, Liebchen C, Sadeghi A (2013) Just-
in-time code reuse: on the effectiveness of fine-grained address space
layout randomization. In: 2013 IEEE symposium on security and privacy,
pp 574–588

Stancill B, Snow KZ, Otterness N, Monrose F, Davi L, Sadeghi A-R (2013) Check
my profile: Leveraging static analysis for fast and accurate detection of
ROP gadgets. In: International workshop on recent advances in intrusion
detection. Springer, pp 62–81

Tanaka Y, Goto A (2014) n-ROPdetector: proposal of a method to detect the
ROP attack code on the network. In: Proceedings of the 2014 workshop
on cyber security analytics, intelligence and automation. ACM, pp 33–36

Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confu-
sion: maximizing for domain invariance. arXiv preprint arXiv: 1412. 3474

Vu L, Nguyen QU, Nguyen DN, Hoang DT, Dutkiewicz E (2020) Deep transfer
learning for IoT attack detection. IEEE Access 8:107335–107344

Wang Z, Jiang X (2010) HyperSafe: a lightweight approach to provide lifetime
hypervisor control-flow integrity. In: IEEE symposium on security and
privacy (Oakland ’10)

Zhang M, Sekar R (2013) Control flow integrity for cots binaries. In: USENIX
conference on security (security ’13)

Zhang J, Chen W, Niu Y (2019) DeepCheck: a non-intrusive control-flow integ-
rity checking based on deep learning. arXiv preprint arXiv: 1905. 01858

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1412.3474
http://arxiv.org/abs/1905.01858

	Tackling imbalanced data in cybersecurity with transfer learning: a case with ROP payload detection
	Abstract
	Introduction
	Background
	Return-oriented programming
	Traditional ROP detection methods
	Deep learning based ROP detection methods
	Transfer learning in cybersecurity
	Domain adaptation

	Motivation and problem statement
	Base model and data preparation process
	Issue of imbalanced data
	Model independence
	Problem statement

	Method
	ASL-guided disassembly
	Base model architecture
	Deep domain adaptation using mean maximum discrepancy
	Training using no benign data in target domain

	Evaluation
	Can our method provide improvement across domains?
	Can our method be adopted to other model architectures?
	Compared to original models trained using balanced and imbalanced data
	What is the minimum number of validation data needed?
	How is the knowledge being transferred?
	What is the trade-off when comparing to traditional models?

	Limitation and conclusion
	Acknowledgements
	References

