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Abstract 

The handy biometric data is a double-edged sword, paving the way of the prosperity of biometric authentication 
systems but bringing the personal privacy concern. To alleviate the concern, various biometric template protection 
schemes are proposed to protect the biometric template from information leakage. The preponderance of existing 
proposals is based on Hamming metric, which ignores the fact that predominantly deployed biometric recogni-
tion systems (e.g. face, voice, gait) generate real-valued templates, more applicable to Euclidean metric and Cosine 
metric. Moreover, since the emergence of similarity-based attacks, those schemes are not secure under a stolen-token 
setting. In this paper, we propose a succinct biometric template protection scheme to address such a challenge. 
The proposed scheme is designed for Euclidean metric and Cosine metric instead of Hamming distance. Mainly, the 
succinct biometric template protection scheme consists of distance-preserving, one-way, and obfuscation modules. 
To be specific, we adopt location sensitive hash function to realize the distance-preserving and one-way properties 
simultaneously and use the modulo operation to implement many-to-one mapping. We also thoroughly analyze the 
proposed scheme in three aspects: irreversibility, unlinkability and revocability. Moreover, comprehensive experiments 
are conducted on publicly known face databases. All the results show the effectiveness of the proposed scheme.
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Introduction
Biometrics (such as fingerprint, iris, and face) has been a 
popular choice for authentication systems in areas such as 
military, finance, surveillance, and public security, enjoy-
ing a bright application prospect. Generally, a biometric 
authentication scheme includes two phases: enrollment 
and verification. In enrollment, a biometric sample (e.g. 
an image of the face, iris, or finger) of the user is captured 
by a sensor, then a feature extractor is used to generate 
a biometric feature vector (i.e., plain biometric template) 

from the biometric. In verification, the sensor captures a 
new biometric sample of the user and uses the same fea-
ture extractor to extract a fresh biometric template from 
this new image. Then the fresh biometric template is 
compared to the enrolled biometric template. If they are 
similar or close in some metric space, the verification is 
successful. In the past few decades, innumerable research 
has been conducted to improve the recognition accuracy 
of biometric authentication algorithms. In recent years, 
deep learning-based biometric authentication schemes 
have achieved a remarkable progress in recognition accu-
racy [e.g. face (Deng et al. 2020; Institute of Computing 
Technology 2020; Ranjan et al. 2019), voice (Baevski et al. 
2021; Conneau et al. 2020; Xu et al. 2020), and gait (Fan 
et al. 2020; Chao et al. 2022)]. The state-of-the-art deep 
learning-based methods output a real-valued biometric 
feature vector, and the similarity between different bio-
metric templates is usually measured by Euclidean dis-
tance or Cosine distance. Technically, the design goal of 
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biometric feature extraction is to make the intra-class 
distance (i.e., the distance between different feature vec-
tors of the same user) as small as possible, while making 
inter-class distance (i.e., distance between feature vectors 
of different users) as big as possible, in order to optimize 
false acceptance rate (FAR) and false rejection rate (FRR).

However, with large deployments of biometric authen-
tication systems, privacy concern for sensitive biometric 
data is arising. Recent studies Mai et al. (2018), Gomez-
Barrero and Galbally (2020) and Wang et  al. (2021b) 
show that original biometric images can be easily recon-
structed from plain biometric templates, which poses a 
serious threat to personal privacy. In recent years, many 
privacy-preserving biometric authentication schemes 
have been proposed to protect the plain biometric tem-
plates. Biometric Template Protection (BTP) scheme 
is a well-known method that generates a transformed 
(encrypted, projected) template from plain biometric fea-
ture vectors. BTP scheme can be seen as a distance-pre-
serving and irreversible transformation of plain biometric 
feature vectors, so it can enhance the privacy protection 
of current biometric authentication systems while not 
downgrade the recognition accuracy. Note that the trans-
form function needs a secret key (i.e., a token provided 
by the user) to generate the BTP from the biometric fea-
ture vector. Besides, a BTP scheme needs to be unlink-
able and revocable. Revocable means once an attacker 
steals the BTP, the legitimate user can use a new token to 
release a new BTP that is independent of the original one. 
Unlinkability requires that two BTPs generated by differ-
ent biometric features of the same user are independent.

Most of the current BTP schemes (Chin et  al. 2006; 
Rathgeb et al. 2014; Pillai et al. 2011; Lai et al. 2017; Sad-
hya et al. 2019; Sadhya and Raman 2019) are designed for 
binary biometric templates in Hamming metric. Consid-
ering that most biometric recognition methods, in reality, 
generate real-valued templates with Euclidean or Cosine 
distance measures (e.g. face, voice, gait), it’s urgent to 
promote the BTP research for Euclidean or Cosine met-
ric. Up to now, only a few BTP schemes are proposed for 
Euclidean or Cosine metrics. For example, Biohashing 
(Jin et al. 2004) is the first BTP scheme for face images. 
It first applies random projection on plain biometric 
templates to realize dimension reduction and distance-
preserving in Euclidean metric. Here, random projection 
is motivated by the Johnson-Lindenstrauss lemma (Goel 
et  al. 2005) and the group of orthogonal basis vectors 
used for random projection are generated by user’s ran-
dom seed. Then thresholding is used to binarize the pro-
jected values. Further, the result of binary string can be 
hashed for user verification.

Pathak and Raj (2012) first introduced locality-sensi-
tive hashing (LSH) to generate the cancelable biometric 

template for real-valued voice signals. The voice feature 
vector is first processed by Euclidean LSH, then the 
cryptographic hash value of the result vector is stored 
as the BTP. It’s worth noting that, different from ran-
dom projection which only realizes dimension reduction 
in Euclidean metric, LSH functions will discretize the 
Euclidean vectors and result vector is directly compared 
in hamming distance. LSH function guarantees a larger 
collision possibility for vectors with small Euclidean dis-
tance or Cosine distance. In this way, the distance is pre-
served to a certain extent. In recent years, Jin et al. (2018) 
and Sadhya et  al. (2019) proposed “Indexing-of-Max” 
(IOM) Hashing, which is a special form of LSH, to con-
struct cancelable biometric templates. Lai et  al. (2021) 
also proposed a BTP generation scheme based on Cosine 
LSH (Charikar 2002).

Besides, some deep learning based BTP schemes (Mai 
et al. 2021; Hahn and Marcel 2021; Kumar Pandey et al. 
2016) are proposed. These schemes usually train a multi-
layer neural network to realize the mapping from the 
Euclidean vector to a randomly distributed codeword. 
However, compared to the LSH-based (or random pro-
jection based) BTP schemes which is conceptually sim-
pler and data-independent, these deep learning based 
schemes may need to re-train the entire network when 
re-issuing a new template.

Currently, a major problem of distance-preserving 
hashing-based schemes (Jin et al. 2004; Pillai et al. 2011; 
Gomez-Barrero et al. 2014; Lai et al. 2017; Jin et al. 2018; 
Sadhya et  al. 2019; Lai et  al. 2021) is that they are vul-
nerable in stolen-token settings where the adversary can 
get the key of the user. Patrick et al. and Ghammam et al. 
(2020) successfully used linear equations and quadratic 
programming for cryptanalysis of Biohashing, URP-IoM, 
and GRP-IoM schemes. Without surprise, most BTP 
schemes usually leak the similarity scores between trans-
formed templates and attackers can launch similarity-
based attacks (Wang et al. 2021a; Chen et al. 2019; Dong 
et al. 2019; Lai et al. 2021) where one can build the target 
template based on the similarity score in an iterative way.

The problem of protecting biometric data from 
similarity-based attacks has become the most urgent 
research issue. Chen et  al. (2019) proposed a secure 
quantization method for biometric templates based on 
the deep learning method, which obtains a small infor-
mation leakage by minimizing the variance of inter-
class distance in hash space. They proved their method 
has an excellent recognition performance through 
experiments on iris. However, in order to minimize the 
variance of the inter-class distance of hash value, they 
require the hash distances of different classes to be 
equidistant. This condition leads to the consequence 
that the coding space and coding length should be 
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large and long enough to construct datasets with more 
classes. Dang et  al. (2020) proposed another learning-
based approach for biometric template protection. 
Their proposed model is trained with one-shot and 
multi-shot enrollment, to encode the biometric data 
to a predefined output with high probability. However, 
both methods (Chen et  al. 2019; Dang et  al. 2020) are 
strongly data-dependent and need to be pre-defined 
and pre-trained. Re-training may be required if the sce-
nario or database is changed. As pointed out by Chen 
et  al. (2019), similarity-based attacks come into play 
when the distribution of similarity scores of different 
transformed templates exhibits the property of linear-
ity. As a result, these attacks are invalid in the case of 
non-linearity. Lai et  al. (2021) provide a solution for 
resisting the similarity-based attack, which achieves 
non-linearity by calculating the similarity inside 
the subset and then calculating the overall similar-
ity through a threshold. However, if the adversary can 
know the algorithm details of template generation, the 
decimal template can be easily transformed back to the 
binary template. Therefore the relationship becomes 
linear and the adversary can conduct similarity-based 
attacks. In general, it’s still unclear how to construct 
a secure BTP scheme against similarity-based attacks 
under a stolen-token scenario.

In this paper, we first propose a secure BTP scheme 
for real-valued biometric templates under the Euclid-
ean metric and Cosine metric in stolen-token setting. 
In particular, a distance-preserving hashing function is 
first applied to a real-valued biometric feature vector to 
generate a hashcode vector. Then a many-to-one map-
ping function is designed and applied to each value in 
the hashcode vector to generate a protected template. 
In addition, a threshold-based matcher is designed to 
compare the input with the stored templates. Due to 
the design, irreversibility is achieved by introducing the 
many-to-one mapping mechanism and a novel combina-
tion of hash function and many-to-one mapping func-
tion. Consequently, the proposed BTP scheme is able 
to resist linear inequalities attacks in which an attacker 
can derive a set of linear inequalities from the protected 
template and then guess the original features by quad-
ratic programming (Ghammam et  al. 2020; Lacharme 
et  al. 2013) and similarity-based attacks under the sto-
len-token scenario. To evaluate the performance, we 
conduct comprehensive experiments to investigate the 
effect of Euclidean LSH selection and modulo function 
selection and compare it with the state of the art in accu-
racy. Finally, we thoroughly conduct security and privacy 
analysis, especially in irreversibility, unlikability, and 
revocability.

In brief, we summarize our contributions below. 

1.	 We propose a secure biometric template protec-
tion scheme against similarity-based attacks under 
the stolen-token scenario. Especially, our scheme 
instantiates the distance-preserving hashing by uti-
lizing LSH functions and using a modulo function 
to implement a many-to-one mapping mechanism. 
Our scheme achieves the same security level as deep 
learning-based schemes while our scheme is data-
independent and conceptually simpler.

2.	 We thoroughly evaluate the proposed BTP scheme in 
both theory and experiments. In theory, we analyze 
the irreversibility, unlinkability and revocability prop-
erties of the proposed scheme. In experiments, we 
conduct a large number of experiments on publicly 
known face databases, and the result shows that the 
proposed scheme is effective as claimed.

The rest of the paper is organized as follows. The rel-
evant background knowledge is given in “Preliminaries” 
section. The scheme of the proposed BTP is described in 
“The proposed BTP scheme” section. The performance 
and security analysis are given in “Performance analysis” 
and “Security and privacy analysis” sections respectively. 
Finally, conclusion is given in “Conclusion” section.

Preliminaries
Locality sensitive hashing
Locality sensitive hashing (LSH) (Gionis et  al. 1999) is 
primarily designed to solve Nearest Neighbor Search 
problems. Points that are closer in the original metric 
space have a higher probability of collision and vice versa. 
For a domain S of the points set, distance measure D, 
possibility p1, p2 , vectors p, q and the hashed space U, the 
LSH family is defined as:

Definition 1  (Gionis et  al. 1999). A family 
H = {h : S → U} is called (R; cR; p1; p2)-sensitive for D, 
if for any p, q ∈ S , a random hash function h ∈ H:

According to the distance metric D, the construction of 
LSH can be divided into LSH under Hamming distance 
(Gionis et al. 1999), LSH under Euclidean distance (Datar 
et  al. 2004) and LSH under Cosine distance (Charikar 
2002). In this paper, we only use Euclidean LSH and 
Cosine LSH.

(1)
PrH[h(p) = h(q)] ≥ p1, if D(p, q) ≤ R

PrH[h(p) = h(q)] ≤ p2, if D(p, q) ≥ cR.
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Euclidean LSH
Datar et  al. (2004) defined a LSH under Euclidean met-
ric. The hash function can transform a n-dimension vec-
tor w of real numbers into an integer. The definition is as 
follows:

where x is the n-dimensional vector, and each component 
is identically independent, following the standard normal 
distribution N (0, 1) . The parameter c is defined as the 
width of hashing, and y is a real number that is randomly 
selected from the range of [0, c].

Cosine LSH
Charikar (2002) defined an LSH under the Cosine met-
ric. Its hash function can transform the n-dimension vec-
tor w of real numbers into a binary value. Let x and w be 
the two n-dimension vectors. The hash function h(·) in 
Cosine LSH is defined as follows:

The proposed BTP scheme
In this section, we introduce the secure biometric tem-
plate protection (BTP) scheme for the Euclidean metric 
and Cosine metric. The proposed scheme consists of 
two phases: enrollment and verification. (1) In enroll-
ment, a biometric feature vector is first extracted from 
the enrolled biometric image, and then this plain biom-
etric feature vector is transformed into a protected tem-
plate with the help of a secret token. Finally, the output 
template is stored as the enrolled template. (2) In verifi-
cation, a fresh biometric feature vector is extracted from 
the biometric image of the user, and then this fresh biom-
etric feature vector is transformed into a fresh protected 
template with the help of the secret token. Afterward, 

(2)hx,y(w) =
x · w + y

c

(3)hx(w) =

{

1 if x · w > 0

0 otherwise.

this new template is compared to the enrolled template of 
by a threshold matcher. Finally, the matcher outputs the 
authentication result based on the similarity of templates.

In more detail of the scheme shown in Fig.  1, the 
scheme includes four modules: feature extraction, dis-
tance-preserving hashing, many-to-one mapping, and 
matcher. All the frequent notations used in our work is 
shown in Table 1.

Feature extraction
State-of-art feature extractors usually output biometric 
feature vectors (such as the face, iris, voice, and gait) 
in Euclidean space and Cosine space. The effectiveness 

Enrollment 
Stage

Verification
Stage

Feature 
Extraction

Distance-preserving 
Hashing

Distance-preserving 
Hashing

Many-to-One 
Mapping

Many-to-One 
Mapping

Feature 
Extraction Matcher

Template Storage

Not match

Match

Token

Fig. 1  An overview of our BTP scheme

Table 1  Notations and their descriptions

Notations Descriptions

w Feature vector

u Hashcode vector

U The set of sub-vectors of hashcode vector

d The sub-vector length in Cosine LSH-based scheme

v Protected template

n The length of feature

N N-to-one mapping

l The length of template

k The number of LSH times

I The vector consisted of k LSH outputs

M Prime number

A, B Tokens (secret key) of the user

h(·) Locality sensitive hashing (LSH)

c Parameter of Euclidean LSH

x, y Parameters of LSH

τ Threshold

hdnor The normalized hamming distance between pro-
tected templates

S The similarity score between protected templates
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of the feature extractor is measured by the deviation 
of intra-class distance distribution and inter-class dis-
tance distribution. Note that biometric images can be 
restored from feature vectors (Mai et al. 2018; Gomez-
Barrero and Galbally 2020; Wang et  al. 2021b), so the 
feature extractor almost provides no privacy protection.

LSH‑based distance‑preserving hashing
The distance-preserving hashing module transforms the 
biometric feature vectors in Euclidean or Cosine space 
into a smaller space (in Hamming metric) in a distance-
preserving manner. The adjacent points in the original 
space will remain close after transformation. It’s also a 
dimension-reduction process to guarantee irreversiblity. 
Currently, random projection (Jin et  al. 2004) and LSH 
(Gionis et al. 1999; Datar et al. 2004) are commonly used 
to achieve distance-preserving hashing.

In detail, we use two LSH families to transform the 
real-valued biometric feature vectors into hashcode vec-
tors. One method is based on Euclidean LSH (Gionis 
et al. 1999) and another is based on Cosine LSH (Datar 
et al. 2004). Although all LSH families achieve distance-
preserving, they are designed for different metric. So the 
choice of LSH family depends on the metric space where 
plain biometric features reside. In the original biomet-
ric feature space, if the Euclidean metric is adopted for 
measuring the similarity between biometric features, we 
will use Euclidean LSH for distance-preserving hash-
ing, otherwise the Cosine LSH is adopted. As shown in 
Fig.  2, we take the Cosine LSH-based distance-preserv-
ing hashing as an example. The detailed steps are as fol-
lows. First, k hash functions are randomly selected from 
the LSH family. Then, the k hash functions are applied to 
process the input of the biometric feature vector, output-
ting k hashcode (either 0 or 1) to constitute the hashcode 
vector.

Note that if only LSH is used in a BTP scheme, the 
adversary can easily reconstruct a preimage template 
by using a linear inequalities attack or similarity-based 

attack under a stolen-token scenario. As a result, we 
introduce the many-to-one module.

Modulo‑based many‑to‑one mapping
The introduction of many-to-one mapping will further 
strenghen the irreversibility of transformed templates, 
preventing BTP scheme from linear inequalities attack 
(Lacharme et  al. 2013; Ghammam et  al. 2020) and sim-
ilarity-based attacks (Lai et al. 2021). In this section, we 
use the modulo function to instantiate Many-to-one 
mapping.

Considering that Cosine LSH outputs binary bits while 
Euclidean LSH outputs integers, the design of many-to-
one mapping for Euclidean metric and Cosine metric are 
slightly different. For the hashcode vector generated from 
Euclidean LSH, the modulo function is directly applied to 
each integer in the hashcode vector. However, for Cosine 
LSH, the generated hashcode vector is first divided 
into l units (sub-vectors), each unit contains d bits, and 
k = l × d . We denote the set of these units as U, which is 
shown as Eq. 4.

where Ui is an individual unit and | · | denotes its size. 
Then we convert every hashcode unit Ui into an integer 
ui in range of {0, . . . , 2d − 1} . The transformed set of inte-
gers is represented as u, which is named as the hashcode. 
The process is shown in Eq. 5, where C(·) stands for the 
transformation of binary to decimal. Finally, the modulo 
function is applied to every hashcode unit, shown as 
Eq. 6, where the value range of ui is N times as large as 
M. Therefore, the range of ui is N times as large as the 
range of vi and Eq. 6 realizes a N-to-one mapping. M is 
selected as the prime number to resist the irreversibil-
ity attack, which will be analyzed in detail in the later 
section. For Cosine LSH based scheme, M is the num-
ber closest to ⌊1/ N×2d⌋ and for Euclidean-LSH based 
scheme, M is the number closest to ⌊1/ N×umax⌋ , where 

(4)U = {Ui|i = {1, . . . , l}, |Ui| = d}

Feature 
vector:

U 0 0 1 11 1 0 1

0.7 0.3 0.2 0.9 0.8 0.2 0.3 0.7 0.2 0.4 0.2 0.1

1 1 0 0

Fig. 2  An example of distance-preserving hashing with k = 4, i.e., four Cosine LSH functions are applied to each feature vector. w denotes the 
biometric feature vector, and h(·) denotes the Cosine LSH. The “green-colored” feature vector is closer to the “blue” one than the “orange” one. After 
the distance-preserving hashing, the left result is still closer to the middle result than the right result in Hamming space
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umax is the maximal value of ui . A = {a1, a2, . . . , al} and 
B = {b1, b2, . . . , bl} are two l-length random integer vec-
tors stored as the the token of the user, where l is the 
length of the BTP template. The range of each integer 
of A or B is the same as ui . v = {v1, v2, . . . , vl} is the final 
protected template.

Algorithms 1 and 2 present the detailed procedures 
of using Cosine LSH and Euclidean LSH to generate the 
protected template respectively. In Algorithm 1, we first 
execute hi(w) for i from 1 to k, where hi is the Cosine 
LSH and k is the total number of hash functions. Then we 

(5)u = {ui|i = {1, . . . , l},ui = C(Ui)}

(6)vi = (ai × ui + bi) mod M

separate I into l components {U1, . . . ,Ul} , where I is the 
set consisting of Ii(1 ≤ i ≤ k) and l is the template length. 
For each Uj(1 ≤ j ≤ l) , it is first converted to a hashcode 
uj , then uj is multiplied with aj and plus bj before the 
result is stored into vj . Finally, vj is modular to M and the 
result is stored back to vj . All the above vj is collected into 
a set v. In Algorithm 2, we first execute hi(w) for i from 1 
to l, where hi is the Euclidean LSH and l is the total num-
ber of hash functions. For each Ii (1 ≤ i ≤ l) , Ii is multi-
plied with ai and plus bi before the result is stored into vi . 
Finally, vi is modular to M and the result is stored back to 
vi . All the above vi is collected into a set v.

For further explaining the algorithms, Fig.  3 presents 
an example of using Cosine LSH (Algorithm 1) to gener-
ate the protected template.
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Matcher
The matcher module computes the similarity score (i.e. 
length l divided by hamming distance) between the veri-
fied template and enrolled template, and then compares 
the similarity score with a preset threshold in order to 
verify the identity of users. Technically, a large score 
implies a small hamming distance between templates, 
which further implies more collisions between hashcode 
vectors, this means plain templates are similar. If the sim-
ilarity score S between templates exceeds the threshold 
τ , the two templates will be recognized as the same per-
son, otherwise as different persons. The determination of 
threshold value will be explained in detail in the experi-
ment section.

The normalized hamming distance between protected 
templates v = {v1, . . . , vl} and v′ = {v′1, . . . , v

′
l} is calcu-

lated by Eq.  7. In Eq.  7, the exclusive xor is defined as 
follows: vi, v′i ∈ Z , if vi = vi ’, vi ⊕ v′i = 0 ; else, vi ⊕ v′i = 1 . 
Therefore, the similarity score S is calculated by ham-
ming distance hdnor according to Eq. 8.

Performance analysis
In this section, to verify the effectiveness of our BTP 
scheme on real-value biometric templates, we demon-
strate the accuracy performance of our BTP scheme on 
public face databases under various parameter settings. 
Firstly, the determination of threshold is introduced. 

(7)hdnor =

∑l
i=1 vi ⊕ v′i

l

(8)S =1− hdnor

Specifically, three parameters are discussed: Euclidean 
LSH width c (not required in Cosine LSH), parameter N 
in N-to-1 mapping and BTP template length l. Besides, 
we show the difference between cosine LSH-based 
scheme and Euclidean LSH-based scheme.

For the metric of accuracy, we use the typical EER 
(equal error rate: when FAR is equal to FRR) to evaluate 
the accuracy of the algorithm (Jin et  al. 2004, 2018; Lai 
et al. 2017; Chen et al. 2019).

Experiment setup
Our experiments are conducted on four databases: AR 
Face (Martinez and Benavente 1998), CASIA-FaveV5 
(http://​biome​trics.​ideal​test.​org), ORL (https://​cam-​orl.​
co.​uk/​faced​ataba​se.​html), and LFW (Huang et al. 2008). 
Table 2 shows the detail information of the four face data-
bases and the number of template comparisons of inter-
class and intra-class in the experiment. In this section, 
we apply SeetaFace2 (Institute of Computing Technology 
2020) in feature extraction to evaluate the performance 
of our proposed biometric protection template scheme. 
The cardinality of the face feature vector is 1024.

Fig. 3  An example of many-to-one mapping for two different Cosine LSH-based hashcode vectors. In the example, the left hashcode vector is 
{0, 1, 0, 1, 1, 0, 1, 0, 1} and U = {{0, 1, 0}, {1, 1, 0}, {1, 0, 1}} . Then the integer set u = {2, 6, 5} is computed through U. The modulo function is set in the 
format of (a× ui + b) mod M , where a ∈ A = {2, 5, 7} , b ∈ B = {3, 1, 6} , |Ui | = 3 , n = 2 , and M = 3 is the prime number closest to ⌊2|Ui |/n⌋ . The 
result of the modulo operation is vi ∈ v = {1, 1, 2} . Similarly, in the right side, we get the v′ = {0, 0, 2} . From the result, we can observe that 2 appears 
in both v and v′ and with 1/2 probability to infer the ui or u′

i
 correctly due to the modulo-based many-to-one mapping

Table 2  Information of the face databases and the comparison 
number of intra-class and inter-class in the experiment

Database Persons Face images Intra-class 
comparison

Inter-class 
comparison

AR Face 100 2357 26,791 2,747,375

CASIA 500 2491 4961 3,096,330

ORL 40 400 1791 78,000

LFW 5749 13,233 242,257 83,707,271

http://biometrics.idealtest.org
https://cam-orl.co.uk/facedatabase.html
https://cam-orl.co.uk/facedatabase.html
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Fig. 4  Threshold of schemes with Euclidean LSH under k = 5000 , n = 2 , c = 1.0 and Cosine LSH under k = 10,000 , N = 2 , d = 2 . a–d show the 
result of Euclidean LSH-based scheme, while e–h show the result of Cosine LSH-based scheme
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Note that our analysis is conducted under a stolen-
token setting where the adversary is assumed to can learn 
tokens of all users. In other words, all users apply the 
same token in the following experiments. For the genu-
ine-token scenario where the adversary can not know 
the token, the token will increase the recognition power 
of cancelable face templates, thus EER of current LSH-
based schemes is nearly 0%.

Threshold for similarity scores
In the template matching phase, threshold value plays an 
important role in deciding whether two templates come 
from the same person. If the similarity score between 
two templates exceeds the threshold, the templates are 

recognized as coming from the same person. Mean-
while, if the similarity score is below the threshold, the 
templates are recognized from different persons. In this 
paper, we adopt the common practice (Jin et al. 2018; Lai 
et al. 2021) that set the threshold value at the point when 
FAR is equal to FRR. Figure 4 shows the similarity score 
distributions of templates between different persons (i.e. 
inter-class comparisons) and between same person(i.e. 
intra-class comparisons). The area of red-colored region 
represents FAR and the area of blue-colored region rep-
resents FRR. The crossing point of green vertical line and 
X-asis is set as the threshold. If threshold value increases, 
the green vertical line moves from left to right on the 
X-axis, we can see that FRR increases and FAR decreases. 

Fig. 5  EER change with Euclidean LSH parameter c under k = 10,000 and N = 2

Fig. 6  FAR, FRR, and EER change with various N 



Page 10 of 20Jiang et al. Cybersecurity             (2023) 6:4 

When FAR is equal to FRR, the corresponding similarity 
score is set as the threshold.

Effect of Euclidean LSH width c
The width of Euclidean LSH affects the equal error 
rate (EER) of distance-preserving hashing. The rela-
tion between EER and width c is shown in Fig.  5. It 
can be observed that EER decreases when c increases 
and c < 0.2 . When c exceeds 0.2, there is no signifi-
cant change in EER. The reason is as follows: Based on 
Eq. 2, one can get: When c increases, the output range 
of single Euclidean LSH function decreases i.e., umax 
decreases. When c increases and c < 0.2 , for intra-class 
comparisons, the output value of LSH has a larger col-
lison possibility. However for inter-class comparisons, 
because the output value of LSH is still large, the coll-
sion possibility is not improved too much. Therefore, 
FRR decreases and FAR rarely increases. As a result, 
EER will decrease. When c increases and c > 0.2 , for 
inter-class comparisons, because the output value of 
LSH is relatively small, the collsion possibility will also 
improve, just like the intra-class case. Therefore, FRR 
decreases and FAR increases. As a result, EER will not 
change much.

Effect of parameter N in N‑to‑1 mapping
In this section, we analyze the effects of the many-to-one 
mapping parameter N, where N denotes the number of 
inputs being mapped to the same output. Technically, 

when N increases, more mapping collisions will appear, 
leading to a decrease in FRR and an increase in FAR.

We performed our experiments by varying 
N ∈ {2, 3, 5, 10, 15} while simultaneously setting 
k = 10,000 , d = 5 for Cosine LSH-based scheme and set-
ting k = 5000 , c = 0.3 for Euclidean LSH-based scheme. 
The EERs of AR face for all settings are presented in 
Fig. 6. τ indicates the threshold for authentication. From 
Fig. 6, the result shows that for the same threshold τ , FAR 
increases, and FRR decreases with the increasing N.

Effect of template length l
In our scheme, template length l is related to k (the num-
ber of hash functions used in distance-preserving hash-
ing). In the Euclidean LSH-based BTP scheme, template 
length is equal to the number of hash functions (i.e., 
l = k ). In Cosine LSH-based BTP scheme, the num-
ber of hash functions is d times as large as the template 
length (i.e., l = k/d ). In our experiments, d is set to 2. 
Intuitively, if the template length is longer, then more 
LSH functions are required to generate a hashcode vector 
which results in better distance-preserving. Due to that, 
the template length affects the performance accuracy of 
the BTP scheme significantly.

Figure  7 shows the EERs with different LSH output 
lengths k on different databases. It presents that when 
k increases, EER first decreases sharply, then maintains 
stable both for schemes based on Euclidean LSH and 
Cosine LSH. The longer the template, the longer the 

Fig. 7  EER changes with LSH length k under c = 1.0 , d = 2 and N = 2
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computation time required for template generation. Con-
sidering that the time complexity of generating BTP is 
proportional to LSH length k, according to Fig. 7, we rec-
ommend setting k = 10,000.

Accuracy comparison
To comprehensively demonstrate the accuracy of the 
proposed scheme, we present a comparison of our BTP 
scheme with state-of-art ones (Jin et  al. 2018; Lai et  al. 
2021). As shown in Table  3, the EER of our proposed 
scheme is better than all the schemes except the GRP-
IoM scheme, which sacrifices template generation time 
for better accuracy. Roughly speaking, the template 
generation time of GRP-IoM is at least four times more 
than ours and we will show it in the next section. From 
Table  3, we can find that there is almost no increase in 
the EER of our scheme after biometric template protec-
tion. Besides, Fig.  8 shows the FAR and FRR curves of 
our scheme when the threshold value changes. When 
the threshold increases, FAR will decrease and FRR will 
increase gradually. The value at the intersection point of 
the two curves represents EER.

Besides, we present the ROC (receiver operating char-
acteristic) curve of our scheme in Fig. 9. From the above 
result, we can conclude that our scheme achieves better 
privacy protection in the stolen-token scenario while not 
degrading the accuracy.

Time cost evaluation
We measure the computational complexity of BTP 
scheme by template generation time. In our proposed 
BTP instantiation, the computational cost is mainly from 
locality-sensitive hashing function and many-to-one 
mapping function. Table  5 compares the average time 
cost of generating a BTP template from a 1024-dimen-
sion face feature vector on a desktop running 64-bit win-
dows with Intel (R) Core (TM) i5-9500 CPU @ 3.00 GHz 
and 16GB RAM. The protected template generation 
of biohashing and our proposed scheme is about 5  ms, 

while GRP-IoM based scheme is 23.38 ms and URP-IoM 
based scheme is 10.50 ms. The result shows that the pro-
posed scheme has the same complexity as Biohashing, 
and is more efficient than other schemes.

Comparison of token length
Our proposed schemes regard the parameters of 
many-to-one mapping in Eq.  6 as the token (secret key 
of the user). The token is the vector a and b and the 
token length is two times of the template length (i.e., 
Ltoken = 2× ltemplate ). In most schemes (Jin et  al. 2004, 
2018; Lai et  al. 2021), token is set as the projection 
parameter, and the token length is the result of tem-
plate length multiplied by feature vector length (i.e., 
Ltoken = n× ltemplate ). n denotes feature length. Tak-
ing the feature extraction algorithm of seetaface2 as an 
example, when the feature-length is 1024, our scheme 
requires approximately 512 times less in token storage 
with the same length of the template.

Experiments on different choices of LSH
In this section, we conduct an experiment to dem-
onstrate the difference of Cosine LSH-based scheme 
and Euclidean LSH-based scheme. In this experiment, 
SeetaFace (Institute of Computing Technology 2020) 
and InsightFace (Deng et  al. 2019) are both used for 
face feature extraction. Table  4 shows the equal error 
rate (EER) of plain template and protected template. 
From Table  4, we find that SeetaFace is more suit-
able for feature extraction in Euclidean metric, as the 
EER of plain template in Euclidean metric is less than 
that of Cosine metric. On the contrary, InsightFace is 
more suitable for feature extraction in Cosine metric. 
Then we apply Euclidean LSH-based BTP scheme and 
Cosine LSH-based BTP scheme on these plain tem-
paltes. As the result shows, for templates generated 
by SeetaFace, EER of protected templates of Euclidean 
LSH-based scheme is less than that in Cosine LSH-
based scheme. For templates generated by Insight-
Face, EER of protected templates in Cosine LSH-based 
scheme is less than Euclidean LSH-based scheme. 
These results prove our intuition that one should 
choose the same LSH family as corresponding metric 
space where plain template reside, in order to achieve a 
better recognition performance. Besides, from Table 5, 
we can find that the Cosine LSH-based scheme has a 
faster speed of template generation. Therefore, Cosine 
LSH-based scheme should be considered with priority 
when faster calculation speed is demanded.

Table 3  Equal error rate (EER %) comparison with related works

The lowest value of EERs of different schemes are marked in bold

Method AR CASIA ORL LFW

Before BTP in Euclidean metric 8.298 0.125 0.328 3.599

JHL+18 (Jin et al. 2018) GRP-IoM 8.691 0.230 0.449 3.426
JHL+18 (Jin et al. 2018) URP-IoM 8.589 0.176 0.434 3.759

LJW21 (Lai et al. 2021) 9.716 0.239 0.456 3.739

Our Euclidean LSH-based 8.559 0.154 0.339 3.660

Our Cosine LSH-based 8.616 0.179 0.450 3.663



Page 12 of 20Jiang et al. Cybersecurity             (2023) 6:4 

Fig. 8  FAR and FRR change with threshold τ for Euclidean LSH under k = 5000 , N = 2 , c = 1.0 and Cosine LSH under k = 10,000 , N = 2 , d = 2 . a–d 
show the result of Euclidean LSH-based scheme, while e–h show the result of Cosine LSH-based scheme
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Security and privacy analysis
In this section, we systematically analyze the security 
of BTP by evaluating the properties of irreversibility, 
unlinkability, and revocability, following the typical anal-
ysis in this area (Jin et al. 2004, 2018; Sadhya and Raman 
2019).

Irreversibility
Irreversibility requires that the original face feature 
vector can not be recovered from the cancelable face 
template even if the key (token) to generate protected 
template is leaked.

Ghammam et  al. (2020) and Lacharme et  al. (2013) 
pointed out that BTP generated only by LSH is vulner-
able to pre-image attacks. The attacker who has got 
templates of the user and LSH parameters can easily 
use linear and geometric programming methods to find 
a fake feature vector that is near to the original feature 
vector of the legitimate user. To overcome the weakness, 

our BTP generation scheme not only introduces many-
to-one mapping but also novelly combines LSH hashing 
with many-to-one mapping to achieve irreversibility.

We adopt the analysis method from Jin et  al. (2018) 
and Sadhya and Raman (2019). In our scheme, vectors to 
construct linear inequalities are the precondition for an 
adversary to analyze the irreversibility. The adversary can 
construct a series of inequalities if knowing the hashcode 
vector when the token is leaked. However, we use N-to-
one mapping to hide the hashcode vector. The adversary 
will need to find the input of N-to-one mapping in every 
group correctly with the possibility of 1/N, so the pos-
sibility of finding all hashcode input of all templates is 
(1/N )l . When l is large enough, our scheme can satisfy 
the demand of irreversibility.

We discuss the irreversibility against five distinct 
attacks which have been suggested in previous works (Jin 
et al. 2018; Sadhya and Raman 2019)—Attack via Single 
Template, Attack via Record Multiplicity (ARM), Brute 
Force Attack, False Accept Attack, and Similarity-based 
Attack. Our model is evaluated under two standard set-
tings - genuine-token and stolen-token.

(1) Attack via single template This refers to the adver-
sarial ability in restoring the original face feature from a 
single BTP.

Attack in case of stolen-token In a stolen-token scenario, 
the adversary can know the templates and tokens of the 
user. Because the hashcode vector generated by LSH is 
vulnerable to linear and geometric programming, the 
best attack strategy for the adversary is to guess the value 
of the decimal hashcode vector (u). The possibility of suc-
cessfully guessing the hashcode vector with one guess 
attempt is 1/ Nl . Here l denotes the length of BTP and 
N denotes the N-to-one mapping. For Cosine LSH-based 
BTP, we set k = 10,000 , l = 5000 , N = 2 . For Euclidean 
LSH-based BTP, we set k = l = 5000 . So the probability 
of successfully guessing the feature vector from BTP is 
1/25000.

Attack in case of genuine-token In this case, the adver-
sary can only know templates, so the possibility of 
guessing hashcode vector (u) with one attempt is 1/2d∗l 

Fig. 9  ROC curves of our scheme over various databases under 
stolen-token scenario

Table 4  Equal error rate (EER) of plain template and protected 
template

The lower value between EER in Euclidean metric and EER in cosine metric is 
marked in bold

Plain template Protected template

Euclidean 
distance

Cosine distance Euclidean 
LSH-based

Cosine 
LSH-
based

SeetaFace (Institute of Computing Technology 2020)

 AR Face 8.298 8.882 8.559 8.616

 CASIA 0.125 0.159 0.154 0.179

 ORL 0.328 0.377 0.339 0.450

 LFW 3.599 3.751 3.660 3.663

InsightFace (Deng et al. 2019)

 AR Face 2.710 2.696 6.332 3.129
 CASIA 0.161 0.041 0.051 0.018
 ORL 0.034 0.028 0.069 0.042
 LFW 4.993 4.541 4.781 4.601

Table 5  Generation time comparison of different template 
generation techniques (milliseconds)

Scheme Biohashing GRP-IoM URP-IoM Cosine 
LSH-
based

Euclidean 
LSH-based

Genera-
tion time

4.74 23.38 10.50 4.68 5.88
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(Cosine LSH-based BTP) or 1/(umax + 1)l (Euclidean 
LSH-based BTP). Here, d denotes the sub-vector length 
in the Cosine LSH-based scheme, and umax indicates the 
maximum value in the range of u. In our setting, d = 2 , 
l = 5000 , umax = 6 . So the probability of successfully 
guessing the feature vector from BTP is 1/210,000 (Cosine 
LSH-based BTP) or 1/75000 (Euclidean LSH-based BTP), 
which is totally not feasible in real-world execution.

(2) Attack via record multiplicity (ARM) ARM is a 
more dreadful attack, which refers to the adversarial 
ability in restoring the original face feature from multi-
ple BTPs of the target user. We first analyze the attack 
in the case the adversary can know two templates and 
tokens of one user and then generalize it to multiple. Fig-
ure 10 explains the ARM attack on our proposed scheme. 
In Fig.  10, the adversary tries to obtain the hashcode 
{u∗1, . . . ,u

∗
l } , in the case of knowing templates {v∗1 , . . . , v

∗
l } 

and {u′∗1 , . . . ,u
′∗
l } . In our scheme, the generation of each 

entry of the template ( v∗1 , . . . , v
∗
l  ) is independent, so the 

analysis of reversing one entry of template can be gener-
alized to the whole template. Next, we analyze that the 
adversary reverses the first entry of the hashcode vec-
tor through the first entry of templates which is the part 
framed by the blue dotted box in Fig. 10.

If an adversary can gain one compromised protected 
template v∗1 , corresponding token {a1, b1} , and public 
scheme parameter M, according to Eq.  6, the adversary 
can be capable to infer the hashcode u through Eq. 9.

In more detail, to infer u, there are two cases:
(1) a and M are not coprime. Since M is a prime num-

ber, when a and M are not mutually prime, a can only be 
a multiple of M (i.e., a = m×M , m ∈ Z ). Equation 9 can 
be rewritten to Eq.  10, which can be further simplified 
into Eq. 11.

(9)a1 × u+ b1 ≡ v∗1 mod M

In this case, u can be any value of its domain, and the 
value of one entry of template v∗1 is determined by the 
value of token b. If a1 and M are not coprime, one entry 
of the template is determined by b1 . However, it should be 
noticed that the possibility that a and M are not coprime 
in every entry is low. In our experiment, M = 3 and the 
l = 5000 , the value range of a is {1, . . . , 10} , therefore 
the possibility is ( 3

10
)5000 . Therefore, the adversary is not 

able to gain an advantage in constructing the congruence 
equations.

(2) a and M are coprime. According to the relationship 
of hashcode and template, let u∗1 denote the real hashcode 
calculated from the feature vector by LSH and it can be 
expressed as Eq. 12, thus u∗1 must be one of the solutions 
of Eq. 9. Because a and M are coprime, all the solutions 
of Eq. 9 are u = {ui|ui = u∗1 + iM, i ∈ Z,ui ∈ S} . S is the 
range of LSH output.

In ARM attack, the adversary can know multiple tem-
plates and their corresponding tokens and then the 
adversary can construct Eq. 13:

Templates v∗1 , v
′∗
1  are generated by hashcode u∗1 , u

′∗
1  , so 

u∗1 must be a solution of the first equation of Eq. 13 and 
u′∗1  must be a solution of the second equation of Eq. 13.
u∗1 and u′∗1  are outputs of same LSH of the near bio-

metric features collected by the same user in dif-
ferent times. If u∗1 = u′∗1  , the solution of Eq.  13 is 

(10)m×M × u+ b1 ≡ v∗1 mod M

(11)b1 ≡ v∗1 mod M

(12)v∗1 = (a1 × u∗1 + b1) mod M

(13)
{

v∗1 = (a1 × u1 + b1) mod M
v′∗1 = (a′1 × u1 + b′1) mod M

Fig. 10  An explanation of ARM attack to our proposed scheme. The two sides of the black dotted line represent the template generations by same 
distance-preserving hashing of feature vectors of the same user with different tokens
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u = {ui|ui = u∗1 + iM, i ∈ Z,ui ∈ S} . If u∗1 �= u′∗1  , the 
adversary will have no additional information to obtain 
the hashcode u. The attack result of the adversary with 
one template is the same as the attack result of the 
adversary with multiple templates. For the ARM attack 
on one entry of hashcode, the adversary cannot deter-
mine which solution is the real hashcode, so the adver-
sary can only randomly guess the above solutions. For 
many-to-one mapping, there is no additional benefit 
to attacking with multiple face templates. Hence, the 
attack complexity is the same as an attack via a single 
template.

(3) Brute force attack Brute force attack on the fea-
ture: First, count the features extracted from four face 
databases, and the minimum value and the maximum 
value are 0.00 and 0.34 respectively. Since the feature 
is a real-value vector, we set the precision to 0.01. Then 
the possible value number of each entry of the feature is 
(0.34 − 0.00)/0.01 = 34 . The length of the feature is 512, 
so the difficulty of a brute force attack on the feature is 
34512 = 22605.

Brute force attack on template: For the Euclidean-
LSH-based scheme, under the best accuracy parameter 
setting M = 3 , the maximum value and the minimum 
value of protected templates is 2 and 0. The length of the 
template is 5000 (for Cosine LSH-based) and 10,000 (for 

Euclidean LSH-based), so the difficulty of brute force 
attack on the template is 35000 = 27925 (for Cosine LSH-
based) and 310,000 = 215,850 (for Euclidean LSH-based).

(4) False accept attack False accept attack (dictionary 
attack) requires farless number of attempts to gain ille-
gitimate access (Tams et  al. 2015). In this attack, access 
would be granted as long as the comparison score suc-
ceeds the pre-defined threshold τ . In our template pro-
tection scheme, the template length is l, so the adversary 
can pass the verification by guessing the template with 
length l × τ . τ and l are 0.836, 5000 respectively in the 
scheme based on Euclidean distance, so the success pos-
sibility is 1/2(l×τ) = 1/24180 for one attempt of guess. 
Moreover, τ and l are 0.592, 10,000 respectively in the 
Cosine LSH-based scheme, so the success possibility is 
1/2(l×τ) = 1/25920 for one attempt of guess.

(5) Similarity-based attack Next, we analyze the irre-
versibility of our scheme against similarity-based attack 
which uses the information leakage on the distance of 
projected template to approximate plain template in an 
iterative manner. In this section, we prove the proposed 
scheme can resist the similarity-based attack based on 
the following two facts: (1) we conduct an experiment 
to show that the intra-class and inter-class distance dis-
tributions before and after transformation under the 

Fig. 11  The relationship between plain feature distance and template distance of different BTP schemes. Here, “red” point denotes intra-class. The 
“green” point denotes inter-class
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stolen-token scenario is non-linear. (2) We propose a 
simplified similarity-based attack and shows that our 
scheme can resist this attack while state-of-art ones can 
not.

To resist similarity-based attacks, the distance of plain 
templates comparisons and distance of protected tem-
plate comparisons should exhibit a certain extent of non-
linearity, as suggested by Chen et al. (2019) and Lai et al. 
(2021). Figure  11 shows the relationship between plain 
feature distance and template distance of our schemes 
and two deep-learning-based BTP schemes (Kumar 
Pandey et al. 2016; Chen et al. 2019). Our experiment is 
conducted on CASIA database where each subject has 
multiple facial images, 60% of which are used for training 
and 40% for testing (Note that training is only essential 
for deep learning based schemes). The X-axis shows the 
distance of plain template comparisons and Y-axis shows 
the distance of protected template comparisons. Gener-
ally speaking, our BTP scheme achieves the same level of 
irreversibility against similarity-based attacks as learn-
ing-based BTP schemes (Kumar Pandey et al. 2016; Chen 
et al. 2019). Besides, our LSH-based BTP scheme is sim-
pler and more efficient than learning-based BTP schemes 
in template re-generation.

Besides, we give a similarity-based attack, its proce-
dures are shown in Algorithm 3.

In this attack, the attacker knows all information 
about BTP parameters and tokens. The attacker’s goal 

is to use this information to reconstruct a fake face 
template that is similar enough to the authentic one. 
In detail, the attack works as follows: First, the adver-
sary chooses a guessing initial feature vector (all zeros), 
and the initial vector will generate the initial template. 
Then Z number of disturbing noises are generated and 
each noise is added to s number of positions respec-
tively, where the magnitude of the noise is t. Next, the 
adversary uses the same parameter and key to gener-
ate Z number of guessing templates from guessing fea-
ture vectors with noise. Then, the adversary compares 
the distance between the guessing template and the real 
template (intercepted by an adversary), and the guess-
ing feature vector corresponding to the template with 
minimized distance is updated as the initial vector in 
the next guessing round.

In our experiment, we choose seetaface2 (Institute 
of Computing Technology 2020) as the feature extrac-
tion algorithm and extract the normalized feature vec-
tor, so the initial guessing vector is the origin point. The 
parameter setting is as follows: Z = 50 , s = 20 , t = 0.01 
and the iteration number T = 500.

Figure  12 shows the attack results of our attack 
scheme on the CASIA-FaceV5 database. The results 
show that we have good attack effects on the schemes 
of Lai et  al. (2021) and Jin et  al. (2018), and our pro-
posed scheme has the best attack resistance effect.
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Unlinkability
A user can enroll one of his biometric traits for multi-
ple applications. Unlinkability states that the template 
generated from a biometric feature must not allow 
crossing matching among other templates generated 
from the same feature.

We follow the method (Jin et al. 2018) to conduct the 
unlinkability analysis. Pseudo-imposter score distribu-
tion and pseudo-genuine score distribution are com-
pared to verify the unlinkability of our proposed scheme. 
If both distributions are overlapped, then the adversary 
can not distinguish whether the two templates generated 
by BTP come from the same user. Therefore, cancelable 
templates are unlinkable.

Pseudo-imposter score The comparison score between 
templates generated from the same original feature of 
same user and different tokens. In our experiment, 50 
random number tokens are used to generate 50 tem-
plates. Comparing the first template with the rest 49 

templates, 49 pseudo-imposter Scores are computed for 
each feature.

Pseudo-genuine score The comparison score between 
templates generated from different features and different 
tokens.

Table 6 shows the mean value and standard deviation 
variance of pseudo-imposter and pseudo-genuine of our 
BTP schemes. Taking the CASIA-FaceV5 database as 
an example, the distributions of pseudo-imposter and 
pseudo-genuine are presented in Fig.  13. As expected, 
distributions of pseudo-imposter scores and pseudo-
genuine scores are highly overlapped. Hence, the unlink-
ability of our proposed template protection scheme is 
verified.

Gomez-Barrero et al. (2017) proposed a general scheme 
for the quantitative evaluation of biometric templates’ 
unlinkability. The unlinkability of the protected templates 
can be more thoroughly analyzed by the mated Hm (i.e., 
different templates from the same user) and non-mated 
Hnm (i.e., different templates from different users) score 
distributions. The authors proposed the notion of Dsys

↔  to 
measure the system’s global unlinkability, which ranges 
from 0 (completely unlinkable) to 1.0 (completely link-
able). In this section, we adopt this measure to evaluate 
the scheme’s unlikability. Table  7 compares the Dsys

↔  of 
the state-of-art cancelable biometric schemes with our 
scheme on CASIA-FaceV5 database. As Table  7 shows, 
our BTP schemes have better unlinkability. From Table 7, 
we can find that the unlinkability of Eculidean LSH-based 
scheme is better than that of Cosine LSH-based scheme. 
Therefore, Euclidean LSH-based scheme is prefered 
when unlinkability is considered in priority.

Fig. 12  Our proposed similarity-based attack results towards 
advanced cancelable biometrics schemes on CASIA-faceV5 database

Table 6  The mean values and standard deviation variances of genuine, imposter, pseudo-imposter and pseudo-genuine of proposed 
scheme based on Euclidean LSH and Cosine LSH

Genuine Imposter Pseudo-imposter Pseudo-genuine

Mean var(×10
−3) mean var(×10

−5) Mean var(×10
−5) Mean var(×10

−5)

AR Face

 Euclidean LSH 0.655 3.401 0.333 4.463 0.331 3.619 0.333 4.486

 Cosine LSH 0.919 0.452 0.526 5.024 0.533 3.597 0.528 5.103

ORL

 Euclidean LSH 0.765 4.080 0.334 4.696 0.331 0.386 0.333 4.407

 Cosine LSH 0.949 0.254 0.526 5.327 0.529 5.420 0.529 5.332

CASIA

 Euclidean LSH 0.700 2.357 0.334 4.436 0.333 3.507 0.333 4.315

 Cosine LSH 0.935 0.195 0.526 5.003 0.527 2.895 0.528 5.106

LFW

 Euclidean LSH 0.696 2.052 0.334 4.432 0.334 3.497 0.333 4.463

 Cosine LSH 0.930 0.318 0.526 4.946 0.536 2.962 0.528 5.030
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Revocability
Revocability requires that if the protected template is 
leaked, the stored template can be revoked and reissued, 
and the new template is totally independent from the 
leaked template.

We follow the common measurement of revocabil-
ity in Jin et al. (2018, 2012). In detail, we evaluate three 
score distributions: genuine score (comparison scores 
of BTPs generated from different features of same user), 
imposter score (comparison scores of BTPs generated 
from different users with different tokens), and pseudo-
imposter score (comparison scores of same feature with 
different tokens). According to Jin et al. (2018, 2012) and 
Cho and Teoh (2017), revocability needs to match two 
properties. First, the distribution of imposter score and 
pseudo-imposter score is overlapped. Second, the dis-
tribution of genuine score and pseudo-imposter score is 
distinguishable.

Table  6 shows the experimental result of mean value 
and standard deviation, running on AR Face, ORL, 
CASIA-FaceV5, and LFW databases. From Table  6, the 
mean value and standard deviation of the imposter distri-
bution are almost the same as the pseudo-imposter dis-
tribution, while the mean value and standard deviation 
of the genuine distribution are quite different from the 
pseudo-imposter distribution. To vividly show the above 
result, Fig. 14 is given. From the above analysis, we can 
draw a conclusion that our scheme meets the require-
ment of revocability.

Conclusion
In this paper, we propose a succinct scheme of secure bio-
metric template protection which is secure against power-
ful similarity-based attacks under stolen-token scenario. In 
the scheme, we introduce not only a many-to-one mapping 
mechanism but also a novel combination of distance-pre-
serving hashing and many-to-one mapping to overcome 
the weakness of the existing BTP scheme. Moreover, we 
instantiate the scheme by adopting the LSH function to 
realize distance-preserving hashing and designing a mod-
ulo function to implement many-to-one mapping. Finally, 
we conduct a comprehensive theory and experiment analy-
sis of the instantiation.

Fig. 13  The pseudo-genuine and pseudo-imposter score distributions of CASIA database with k = 10,000 , d = 2 , n = 2 , N = 2

Table 7  Quantitative evaluation of cancelable biometrics of 
CASIA-FaceV5 database

Scheme URP-IoM GRP-IoM Euclidean LSH-
based

Cosine LSH-based

D
sys
↔ 0.118 0.144 0.038 0.079

Fig. 14  The pseudo-imposter, imposter and genuine score distributions of CASIA-FaceV5 database with k = 10,000 , d = 2 , N = 2
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