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Abstract 

The continuous increase of electric vehicles is being facilitating the large-scale distributed charging-pile deployment. 
It is crucial to guarantee normal operation of charging piles, resulting in the importance of diagnosing charging-pile 
faults. The existing fault-diagnosis approaches were based on physical fault data like mechanical log data and sen-
sor data streams. However, there are other types of fault data, which cannot be used for diagnosis by these existing 
approaches. This paper aims to fill this gap and consider 8 types of fault data for diagnosing, at least including physical 
installation error fault, charging-pile mechanical fault, charging-pile program fault, user personal fault, signal fault 
(offline), pile compatibility fault, charging platform fault, and other faults. We aim to find out how to combine exist-
ing feature-extraction and machine learning techniques to make the better diagnosis by conducting experiments 
on realistic dataset. 4 word embedding models are investigated for feature extraction of fault data, including N-gram, 
GloVe, Word2vec, and BERT. Moreover, we classify the word embedding results using 10 machine learning classifiers, 
including Random Forest (RF), Support Vector Machine, K-Nearest Neighbor, Multilayer Perceptron, Recurrent Neural 
Network, AdaBoost, Gradient Boosted Decision Tree, Decision Tree, Extra Tree, and VOTE. Compared with original fault 
record dataset, we utilize paraphrasing-based data augmentation method to improve the classification accuracy up 
to 10.40%. Our extensive experiment results reveal that RF classifier combining the GloVe embedding model achieves 
the best accuracy with acceptable training time. In addition, we discuss the interpretability of RF and GloVe.

Keywords Charging-pile, Fault diagnosis, Machine learning classifier, Word embedding

Introduction
Recently, with the acceleration of global warming, human 
beings have realized that unrestricted use of fossil energy 
is harmful to the earth. Electric vehicles (EVs), with 
the advantage of environment-friendliness and energy 

efficiency, are considered to replace traditional fuel vehi-
cles (Yan et al. 2019). With the increasing number of EVs, 
many distributed charging piles are among the essential 
infrastructures (Chen et al. 2020). Generally, a large num-
ber of charging piles locate in the wild with uncontrolla-
ble environmental factors, causing frequent charging-pile 
faults. Therefore, it is crucial to maintain the effective-
ness of charging piles (Zhang et al. 2022; Wei et al. 2021).

Charging-pile service companies have been bringing a 
series of measures into force, with the aim to guarantee 
the effectiveness of charging piles. For example, when 
the customers encounter problems, they offer a service 
hotline and WeChat (Hao et  al. 1087) mini program to 
publish emergency work orders. We now explain why it is 
necessary for a service provider to predict charging-pile 
faults to improve the efficiency of repairing service. The 

*Correspondence:
Wen Wang
wangwen@evs.sgcc.com.cn
Xiaolin Chang
xlchang@bjtu.edu.cn
1 State Grid Electric Vehicle Service Company, Ltd., 1 Baiguang Road, 
Xicheng District, Beijing, China
2 State Grid Shanxi Marketing Service Center, 10 Wuluo Street, Tanghuai 
Garden, Taiyuan, Shanxi, China
3 Beijing Key Laboratory of Security and Privacy in Intelligent 
Transportation, Beijing Jiaotong University, 3 Shangyuancun, 
Beijing 100044, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00138-z&domain=pdf
http://orcid.org/0000-0002-2975-8857


Page 2 of 13Wang et al. Cybersecurity             (2023) 6:7 

occurrence of charging-pile work orders may be due to a 
mechanical fault or cyber security. We can imagine a sce-
nario of mechanical fault: (a) a customer describes a fault 
of the charging pile using the service hotline; (b) the staff 
receives the fault work order, records the fault descrip-
tion, and dispatches maintenance workers to repair piles; 
(c) maintenance workers finish the work order and sub-
mit the fault category to the service system. However, 
dispatching maintenance workers will waste human and 
material resources if the fault is in the software platform 
or online electric system. Moreover, from the aspect of 
cyber security, security analysis and protection mecha-
nisms must be conducted in order to improve the com-
munication security between EVs and charging piles (Li 
et al. 2021). These discussions emphasize the importance 
of predicting charging-pile faults.

Recently, machine learning (ML) or deep learning 
(DL)-based techniques play a crucial role in charging-
pile fault diagnosis (Shuai et al. 2022; Du et al. 2021) and 
abnormal detection (Li et  al. 2021). Especially, Li et  al. 
(2021) utilized Random Forest (RF) classifier to imple-
ment abnormal detection. However, existing studies on 
charging-pile fault diagnosis focus on the mechanical log 
data or sensor data streams (Gao et al. 2020, 2018; Wang 
et  al. 2021; Yong and Ji 1650), while we concentrate on 
work order fault description data recorded by staff (dif-
ferent from mechanical log data and sensor data streams) 
and classify 8 types of faults, including installation error 
fault, charging-pile mechanical fault, charging-pile pro-
gram fault, user personal fault, signal fault (offline), pile 
compatibility fault, charging platform fault, and other 
faults.

Figure  1 presents a simplified workflow of our paper. 
We firstly collect the raw data from the real-world elec-
tric service work orders to build a fault record data-
set. Then, we conduct data preprocess by utilizing Jieba 
(Junyi 2022) tokenizer to tokenize the Chinese fault 
description. After that, we extract fault features based 
on fault description by adopting the extensively used 
word embedding models, such as N-gram (Suen 1979), 

Word2vec (Mikolov et al. 2013), GloVe (Pennington et al. 
2014), and BERT (Devlin et al. 2018). At last, we utilize 10 
ML or DL classifiers, including RF (Breiman 2001), Sup-
port Vector Machine (SVM) (Cortes and Vapnik 1995), 
K-Nearest Neighbor (KNN) (Sebastiani 2002), Multilayer 
Perceptron (MLP) (Rumelhart et  al. 1986), Recurrent 
Neural Network (RNN) (Elman 1990), AdaBoost (AB) 
(Freund and Schapire 1997), Gradient Boosted Decision 
Tree (GBDT) (Friedman 2001), Decision Tree (DT) (Brei-
man et al. 2017), Extra Tree (ET) (Geurts et al. 2006), and 
VOTE, to classify the word embedding features for fault 
diagnosis.

We summarize the following main contributions:

We create a dataset of realistic charging-pile faults. 
Specifically, we collect original long-term real-world 
electric service work orders from June to Decem-
ber 2021. Moreover, we select fault description and 
category to build a structured fault record dataset. 
“Fault record dataset” section details the building of 
the dataset.
We carry out extensive experiments to explore the 
best-matched combination between 4 fault descrip-
tion feature extraction models and 10 classifiers for 
effective fault diagnosis. To the best of our knowl-
edge, we are the first to achieve all types of charging-
pile fault diagnoses using fault descriptions (“Experi-
mental result and discussion” section).

The left paper is organized as follows. “Preliminary” 
section overviews word embedding approaches and 
classifiers. “Fault record dataset” section gives the fault-
record dataset. Experimental results and discussion are 
provided in “Experimental result and discussion” section. 
“Conclusion” section presents the conclusion.

Preliminary
Word embedding vector is a crucial feature extraction 
approach and benefits calculating the cumulative sen-
tence embedding to conduct ML operation. This sec-
tion first introduces 4 word embedding approaches to 
be investigated in this paper, including TF-IDF N-gram, 
Word2vector, GloVe, and BERT. Then 10 ML/DL classi-
fiers are presented.

Word embedding approaches
Four word embedding approaches are discussed.

N‑gram (Suen 1979)
It is a distinguished language feature extraction method. 
Due to its outstanding performance in dealing with 
sequence information, N-gram has been used in text fea-
ture extraction and classification fields and also achieved 
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great success. N-gram utilizes a sliding window to divide 
a sequence into n-slice parts. After counting the term 
frequency-inverse document frequency (TF-IDF) and 
One-Hot embedding, we obtain a sequence embedding. 
As illustrated in Fig.  2, the red box is a sliding window 
whose sizes are 2, 3, and 4. Then the Chinese Word (CW) 
sentence of our corpus will be mapped into a vector.

Word2vec (Mikolov et al. 2013)
It is a neural network-based algorithm for training word 
vectors. It has two types of architecture. One is the Con-
tinuous Bag-Of-Words (CBOW) model, and the other 
is the continuous skip-gram model. CBOW is similar to 
Feedforward Neural Net Language Model (Bengio et al. 
2000), where the non-linear hidden layer is removed, 
and the projection layer is shared for all words. After 
the training converges, words with similar meanings are 
mapped to a similar position in the vector space (illus-
trated in Fig. 3).

GloVe (Pennington et al. 2014)
It was proposed as a global vector for the word embed-
ding model in 2014. This model combines the advantages 
of global matrix factorization and local context window 
methods and efficiently leverages the statistical informa-
tion of a large corpus. After training on the non-zero ele-
ments in the word-word co-occurrence matrix, GloVe 
will produce a vector space with meaning in a fixed 
dimension. Figure 4 discloses the flow of GloVe training. 
We put corpus as input. Then we count CW term fre-
quency and compute the co-occurrence matrix to train 
GloVe using proper hyper-parameters. At last, we obtain 
the word embedding result with a specific dimension.

BERT
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et  al. 2018) considers the 
bidirectional contexts and achieves denoising autoen-
coding-based model pre-training. It performs better 
than pre-training methods based on autoregressive 
language modeling (Yang et al. 2019). As illustrated in 
Fig.  5, if we input our corpus, each CW will obtain a 
token embedding, a sentence embedding, and a posi-
tion embedding. Then all of them have to be put in two 
layers bidirectional transformer. After that, the contex-
tual representation will be output as a specific dimen-
sion vector for the following training.

Fig. 2 The flow of TF-IDF N-gram embedding

Fig. 3 The flow of Word2vec embedding

Fig. 4 The flow of GloVe embedding
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Classifiers
RF (Breiman 2001)
This classifier is based on ensemble learning and 
involves many independent decision trees. It uses boot-
strap to extract samples as input and combines each 
decision tree classification result. Then RF gains the 
classification result via majority voting. In fact, it over-
comes the over-fitting of a single tree by taking the 
average of multi predictions.

SVM (Cortes and Vapnik 1995)
SVM maps input vectors non-linearly to high dimen-
sion feature space, which builds a hyperplane. It aims 
at maximizing the margin between the two sides of a 
separating hyperplane.

KNN (Sebastiani 2002)
KNN is a widely used text classifier due to its simplic-
ity and efficiency. It computes the nearest neighbors of 
each point by majority vote to classify.

MLP (Rumelhart et al. 1986)
MLP is a feedforward artificial neural network model. 
Given a set of features, MLP can learn a non-linear 
function approximator for classification.

RNN (Elman 1990)
RNN is a kind of neural network and is effective in pro-
cessing sequence text data classification. Unlike feed-
forward neural networks, RNN can recurrent in the 
self-network to obtain a better sequence representation.

AB (Freund and Schapire 1997)
A new weak classifier is added in each AB training 
round until the predetermined error rate is reached. 
Each training sample is assigned a weight indicating the 
probability that it is selected into the training set by a 
classifier.

GBDT (Friedman 2001)
GBDT classifier is composed of multiple decision trees, 
and the conclusion of all trees adds up to the final clas-
sification result. Notably, the previous decision tree’s 
residual is taken as the next decision tree’s input.

Fig. 5 The flow of BERT embedding



Page 5 of 13Wang et al. Cybersecurity             (2023) 6:7  

DT (Breiman et al. 2017)
DT is a non-parametric supervised learning method used 
by the classifier. It utilizes a set of if-else decision rules 
to learn from data. Therefore, DT is simple and easy to 
understand and interpret.

ET (Geurts et al. 2006)
This classifier implements many randomized deci-
sion trees on various sub-samples and uses averaging to 
improve the predictive accuracy and control over-fitting.

VOTE
The VOTE classifier is an ML model that trains on an 
ensemble of numerous models and predicts an output 
based on the highest probability of chosen class as the 
output. It will simply aggregate the result of each classi-
fier and predict the output based on the highest majority 
of voting. Instead of creating separate dedicated models 
and finding the accuracy for each classifier, VOTE will 
create a single model which trains by these models and 
predicts output based on their combined majority of vot-
ing for each output.

Fault record dataset
In this section, we first introduce one example of raw 
data. Then, we conduct raw data analysis, including work 
order source, top 10 cities or provinces of fault record-
ings, and the relationship between month and fault 
record amount. At last, we build a fault record dataset for 
subsequent studies.

Raw data sample
We collect the 8,481 raw data from an actual Internet of 
Vehicles platform service center from June to Decem-
ber 2021. Intuitively, we give one example of raw data in 
Table 1, which includes pile number, work order source, 

work date, work city, work order number, client type, 
fault description, work order state, fault category, and 
fault reason. Notably, we use ‘xxx’ to represent the actual 
number considering data privacy.

Raw data analysis
We analyze the raw data. We observe that 53.8% of work 
orders are sourced from the national service hotline, 
21.9% from the EV fixed line, and 8.1% from WeChat 
mini program. The detailed plot is given in Fig.  6, indi-
cating that more charging-pile users feedback faults via 
traditional trouble calls.

Moreover, we analyze the source of the work order. The 
top 10 provinces of fault records are denoted as P1, P2,…, 
and P10, respectively. As shown in Fig. 7, we can obtain 
the relationship between the region and fault records. 
For instance, more fault records demonstrate that more 
charging piles of EVs are deployed in a specific region. 
P1–P5 are all developed areas of China and possess more 
EVs than other growing provinces.

We collect fault records from June to December 2021 
(demonstrated in Fig.  8), and we observe that with the 
increase of the month, more fault records have been 
reported.

Table 1 One example of raw data

*Due to privacy reasons, we use ‘xxx’ to take the place of the actual number

Data item Data sample

Pile number 00xxxxxxxxxxxxxxxxxxx16

Work order source WeChat Mini Program

Date 6/22/2021

City/province P1 (P = Province)

Work order number 2xxxxx1*

Client type Private person

Fault description The customer complained that there was something wrong with the dis-
play time of charging orders of individual piles. Now the time of charging 
orders is displayed on January 1, 2020

Work order state Done

Fault category Charging-pile program fault

Fault reason Program time disorder

16.2%

8.1%

21.9%

53.8%

 National Service Hotline
 EV Fixed Line
 Wechat Mini Program
 Other

Fig. 6 Work order source
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Fault record dataset
After raw data analysis, we explore the concrete usage 
using fault records. Hence, we establish a fault record 
dataset containing the label, fault category, and fault 
description. As stated in Table  2, labels 0 to label 7 

respectively correspond to the different fault categories, 
including installation error fault, charging-pile mechani-
cal fault, charging-pile program fault, user personal fault, 
signal fault (offline), pile compatibility fault, charging 
platform fault, and other faults. Moreover, we give one 
fault description sample for each label and category in 
Table 2.

Notably, as shown in Table 3, in this paper, we focus on 
Chinese text classification and prediction to preserve the 
original data characteristics.

Experimental result and discussion
In this section, we concentrate on experimental settings 
and results. Firstly, data preprocessing and data splitting 
are given. Then, we introduce the ML or DL classifiers 
and experimental dependency used in this paper. In addi-
tion, the metrics of the experiment are represented. At 
last, we give the experimental result and interpretability 
discussion.

Data preprocessing
For extracting features of the Chinese text, we utilize 
the Jieba (Junyi 2022) as the tokenizer to cut the whole 
sentence of Chinese text into several segmentations. As 
stated in Table 4, we count the ten most frequent words 
in our dataset.

After that, we use N-gram, GloVe, Word2vec (CBOW 
model), and BERT as embedding approaches to convert 
Chinese Word segmentation (CW) to a multi-dimension 
vector. In Table 5, we give a sample of word2vec. In addi-
tion, we split our dataset into the training and testing 
sets for classifier training. The training set occupies 80% 
of all data, and the testing set possesses a 20% dataset, as 
described in Table 6. At last, we convert the CW of our 
corpus into 300 dimensions in GloVe, 20 in Word2Vec, 
and 768 in BERT. We set different dimensions to discuss 

5.7%

5.1%
3.8%

5.6%

8.6%

9.5%

11.1% 12.1%

13.9%

24.7%
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Fig. 7 Top 10 provinces of fault records
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Fig. 8 The fault record number of each month

Table 2 Fault record dataset

*The fault description we preprocessed is recorded in Chinese, not English

Label Fault category Fault description* 

0 Installation error fault The customer said that he had asked the power supply staff to check the problem, and the staff said that the 
charging-pile installation personnel connected the ground wire wrong and please deal with it

1 Charging-pile mechanical fault The customer found that when charging yesterday, the charging gun was hot, the car’s charging port was hot, 
and the switch was hot. Power supply to charging pile about 5 m

2 Charging-pile program fault The customer complained that there was something wrong with the display time of charging orders of indi-
vidual piles. Now the time of charging orders is displayed on January 1, 2020

3 User personal fault The indicator light of the charging pile is not on. This pile is transferred to the customer by others

4 Signal fault (offline) The customer reported that the personal order pile failed to charge, and the yellow light was steady

5 Pile compatibility fault The customer reported that the charging could not be started, the charging timeout occurred, the charging 
stopped, the background check was offline, and the field signal was excellent

6 Charging platform fault After logging in to the mobile APP, the customer could not find the orderly pile and his orderly charging pile

7 Other faults The circuit breaker leak protection trip of the upper section of the charging pile has been installed for three or 
four months
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the relationship between the model performance and the 
word embedding dimension.

Data augmentation
As aforementioned in “Raw data sample” section, we col-
lect 8,481 raw samples. However, a limited data scale will 
cause a higher error rate for ML models. The paraphras-
ing-based method is one of the effective data augmenta-
tion approaches in NLP (Geurts et al. 2006). In this paper, 
we utilize python library synonyms (Bengio et al. 2000) to 
find and replace the synonym of tokenizing fault descrip-
tion. Totally, we utilize 16,962 samples for ML training.

To be specific, we obtain all replaceable words for 
each sample, and randomly select a few words to 
replace. The more similar to the original word, the 
more likely it is to be selected. Plenty of synonym 
examples will be revealed in Table 7. Notably, our fault 

description is recorded in Chinese, so we give the Chi-
nese version of the synonym to demonstrate the high 
similarity between the token and the synonym.

Experimental goal
In this paper, we utilize 4 embedding models, includ-
ing N-gram, GloVe, Word2vec, and BERT, and use 10 
ML or DL classifiers, including Random Forest (RF), 
Support Vector Machine (SVM), K-Nearest Neighbor 
(KNN), Multilayer Perceptron (MLP), Recurrent Neu-
ral Network (RNN), AdaBoost (AB), Gradient Boosted 
Decision Tree (GBDT), Decision Tree (DT), Extra Tree 
(ET), and VOTE, to classify our corpus.

We implement extensive experiments to explore the 
best-matched combination between word embedding 
models (N-gram, GloVe, Word2vec, and BERT) and 
classifiers. In general, we need to base the following 
goals.

Goal 1: The training time (including embedding 
training time and classifier training time) must be 
controlled in several seconds.
Goal 2: The combination of the embedding model 
and the classifier can achieve high accuracy in a 
real-world dataset.
Goal 3: The embedding model and classifier should 
be interpretable.

Experimental configuration
In this subsection, the experimental configuration of our 
experiments is given. Our experiments run in AMD R7 
5800X platform with 32 GB of RAM, which is eight cores 
CPU, and we run RNN using NVIDIA GeForce RTX 
3080 for accelerating neural network.

As described in Table 8, we use python 3.7.13 with a lot 
of python libraries to help model training. In addition, we 
utilize standard GloVe (Yang et al. 2019) in Ubuntu 18.04 
LTS to train the word vectors using our corpus. Similarly, 
we give the hyper-parameters of each classifier in Table 9. 
Note that, since hyper-parameters have a large impact on 
each model, we try to choose the default parameters in 
Scikit-learn.

Table 3 Data amount of fault record dataset

Label Fault category Number of 
data sample

0 Installation error fault 706

1 Charging-pile mechanical fault 1712

2 Charging-pile program fault 1022

3 User personal fault 2690

4 Signal fault (offline) 1707

5 Pile compatibility fault 48

6 Charging platform fault 351

7 Other faults 245

Table 4 The most 10 frequent words in dataset

Chinese word segmentation Term frequency

Charging 8246

Customer 6628

Pile 6546

Reflect 3410

With order 3091

Offline 2565

Personal 2291

Unable 2160

Fault 1856

User 1142

Table 5 The sample of Word2vec

Word Word2vec (20 dimensions)

Customer [− 0.02485732 0.14806207 − 0.35677359 − 0.57840854 − 0.35948697 − 0.9146083 − 0.50397265 2.2205336 0.29582977 1.1330733 
1.2003825 − 0.5351351 − 1.7470182 0.63969433 0.6082744 − 1.0082941 3.0654325 − 0.41733867 − 0.3103616 − 1.3387867]
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Metric
4 standard ML metrics, precision, recall, accuracy, and 
F1-score, to evaluate the performance of each model 
combination. For each sample in the dataset, there are 
four possible partitioning outcomes:

TP (True Positive): Number of samples belonging to 
and classified as a positive class;

FP (False Positive): Number of samples belonging to 
a negative category and classified as a positive cat-
egory;
FN (False Negative): Number of samples belong-
ing to a positive category and classified as a nega-
tive category;
TN (True Negative): Number of samples in the 
negative category and classified as negative.

Then the precision (Eq. (1)), recall (Eq. (2)), accuracy 
(Eq.  (3)), and F1-score (Eq.  (4)) of each class can be 
calculated respectively as follows:

(1)precision =
TP

TP + FP

(2)recall =
TP

TP + FN

(3)accuracy =
TP + TN

TP + TN + FP + FN

Table 6 Splitting result of dataset

Label Training set Testing set Sum

0 565 141 706

1 1370 342 1712

2 818 204 1022

3 2152 538 2690

4 1366 341 1707

5 38 10 48

6 281 70 351

7 196 49 245

Sum 6786 1695 8481

Table 7 The synonym examples

Token Synonym

English Chinese English Chinese

Call up 打电话 Call 来电

Customer 客户 User 用户

Fault 故障 Breakdown 损坏

Start 启动 Restart 重启

Blackout 断电 Powercut 停电

Insert 插入 Load 装入
Facilities 设施 Equipment 设备

Verify 核实 Confirm 确认

Repair 维修 After sales 售后

Table 8 The environment and corresponding libraries

Environment Libraries

Python 3.7.13 Pandas 1.3.5

Numpy 1.21.5
Jieba 0.42.1
Gensim 4.1.2
Imbalance-learn 0.9.0

Scikit-learn 1.0.2
Pydotplus 2.0.2
Pytorch 1.12.0
Cudatoolkit 11.3.1
Transformers 4.20.1

GloVe 1.2 –

BERT (pre-trained) Chinese_wwm_ext_pytorch

Word2vector Gensim.models.word2vec 
(in gensim 4.1.2)

Table 9 The hyper-parameters of classifiers

Classifier Hyper-parameters

RF n_estimators = 500, n_jobs = -1

SVM kernel = rbf, decision_function_shape = ovr, max_iter = 1000

KNN n_neighbors = 8

MLP activation = relu, solver = adam, momentum = 0.9, learning_rate_init = 0.001, random_state = 1

RNN loss = CrossEntropy, hidden_dim = 128, layer = 2, optimizer = adam

AB n_estimators = 500

GBDT n_estimators = 500, learning_rate = 0.1, max_depth = 1, random_state = 1

DT criterion = gini

ET criterion = gini

VOTE voting = hard, including six classifiers; same hyper-parameters as RF, SVM, KNN, MLP, AB, and GBDT
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Experimental results
In this section, we will follow the experimental goals 
(in “Data augmentation” section) to explore the best 
match of embedding models and classifiers. Firstly, we 
give the training time for different embedding models 
and classifiers. Then, we discuss the effectiveness of 
imbalance learning. In addition, we provide the accu-
racy, precision, recall, F1-score, and average train time 
of different combinations to evaluate the model com-
bination performance. At last, we conduct the inter-
pretability discussion to give the final analysis.

Training time comparison
Table  10 gives training time for 4 embedding models. 
We observe that the N-gram (n = 2) training time is 
1544.36  s, while GloVe and Word2vec are 7.50  s and 
0.22 s, respectively. We use the pre-trained model- ‘chi-
nese_wwm_ext_pytorch’ in BERT.

We then compare the training time and accuracy of 
16 combinations of 4 embedding models and 4 classi-
fiers. The results are given in Tables 11, 12, respectively. 
The N-gram approach not only consumes more training 
time but also has lower accuracy in RF, KNN, and DT 
classifiers. The MLP + N-gram achieves an accuracy of 
76%. However, the training time is unacceptable under 
Goal 1, and the accuracy rate cannot reach Goal 2. 
Therefore, we only select GloVe, Word2vec, and BERT 
in the following experiments in “Experimental results” 
section.

Imbalance learning comparison
Observing our fault record dataset (in Table  3), we find 
a big difference in the number of data samples for seven 
classes, which means the dataset is imbalanced. With 
this in mind, we try to utilize python library-imbalance 
learn to reduce the effect of the imbalance dataset. As 
described in Table  13, we record the accuracy under 
imbalance and non-imbalance learning in 10 classifiers.

After comparing the experimental results with and 
without imbalance learning in different classifiers and 
embedding models, we observe that the improvement 
of imbalance learning is little. Moreover, as recorded in 

(4)F1− score =
2 · precision · recall

precision+ recall

Table  14, adopting imbalance learning consumes more 
training time. Hence, we only adopt non-imbalance 
learning processing in the following experiments to sat-
isfy Goal 1.

Performance comparisons
This subsection will give the overall performance com-
parisons from the perspective of accuracy rate, precision 
rate, recall rate, F1-score, and average training time.

Firstly, we provide the accuracy of different classifiers 
under GloVe, Word2vec, and BERT embedding mod-
els. As shown in Fig.  9, the four classifiers have bet-
ter accuracy under three embedding models, including 
RF, RNN, DT, and ET. Especially, RF and RNN classifi-
ers achieve the top 2 accuracy, for instance, RF + GloVe 
79.67%, RF + Word2vec 81.26%, RF + BERT 80.32%, 
RNN + GloVe 82.91%, RNN + Word2vec 78.26%, and 
RNN + BERT 81.85%. However, to satisfy Goal 1, from 
the perspective of average training time, RNN reaches 
the highest time consuming, which more than 172 s. The 
detailed precision, recall, and F1-score results are shown 
in Table  15.  Note that we bold  metrics  which are more 
than 79% to emphasize the performance of classifiers.

Hence, to satisfy Goal 1 and Goal 2, we select RF as the 
most appropriate classifier for the fault diagnosis task. 
Figure 10 shows the confusion matrix of RF + Glove.

Performance with data augmentation
As mentioned in “Data augmentation” section, we imple-
ment data augmentation to expand our data scale for bet-
ter ML performance. With more training samples, we 
improve our model performance. We illustrate the accu-
racy and average train time in Fig.  11. Compared with 
performance without data augmentation, we calculate 

Table 10 The time in training embedding models (s)

N-gram (n = 2) GloVe Word2vec BERT

Train time 1544.36 7.50 0.22 Pretrained Model

Table 11 Training time of 16 combination of 4 embedding 
models and 4 classifiers (s)

Embedding models RF KNN MLP DT

N-gram (n = 2) 27.35 2.25 196.71 8.28

GloVe 0.91 0.23 4.01 0.10

Word2Vec 1.00 0.19 3.51 0.05

BERT 1.11 0.23 3.87 0.09

Table 12 Accuracy (%) of 16 combination of 4 embedding 
models and 4 classifiers

Embedding models RF KNN MLP DT

N-gram (n = 2) 71.48 31.47 75.84 58.40

GloVe 79.67 42.02 45.43 78.90

Word2Vec 81.26 43.25 33.88 77.90

BERT 80.32 42.72 41.31 78.43
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Table 13 The accuracy result with and without imbalance 
learning (%)

*1 = imbalance learning, 0 = non-imbalance learning

Classifiers* GloVe Word2vec BERT

RF 0 79.67 81.26 80.32

1 78.96 80.44 80.26

SVM 0 27.58 31.23 30.47

1 37.65 29.64 31.05

KNN 0 42.02 43.25 42.72

1 42.02 42.07 41.78

MLP 0 45.43 33.88 41.31

1 42.96 36.12 39.54

RNN 0 82.91 78.26 81.85

1 81.91 80.02 81.38

AB 0 23.75 24.04 22.27

1 24.75 26.69 27.28

GBDT 0 42.31 41.37 43.84

1 41.37 40.42 43.08

DT 0 78.90 77.90 78.43

1 76.72 77.67 76.90

ET 0 76.72 76.72 77.14

1 77.14 76.78 76.84

VOTE 0 52.80 51.74 56.28

1 54.10 51.97 57.22

Table 14 The training time with and without imbalance 
learning (s)

*1 = imbalance learning, 0 = non-imbalance learning

Classifier* GloVe Word2vec BERT

RF 0 0.88 1.00 1.12

1 1.00 0.88 1.25

SVM 0 4.72 2.27 9.53

1 5.86 2.89 11.75

KNN 0 0.23 0.18 0.24

1 0.24 0.19 0.30

MLP 0 4.18 3.62 3.82

1 3.36 2.82 5.40

RNN 0 133.86 42.28 340.02

1 133.49 42.42 354.34

AB 0 7.88 2.78 18.25

1 9.13 3.19 25.75

GBDT 0 35.85 17.30 83.37

1 42.43 20.84 140.38

DT 0 0.08 0.04 0.11

1 0.10 0.06 0.15

ET 0 0.02 0.01 0.04

1 0.03 0.01 0.07

VOTE 0 53.92 27.40 122.15

1 61.54 30.76 176.98
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Fig. 9 The accuracy and average training time result from different 
combinations

Table 15 Precision, recall, and F1-score result (%)

*There are three metrics including precision, recall and F1-score. We use P to 
denote precision, R to denote recall, and F to denote F1-score

Classifiers Metric* GloVe Word2vec BERT

RF P 80.34 82.21 81.41
R 79.67 81.26 80.32
F 80.00 81.73 80.86

SVM P 42.00 44.75 45.47

R 27.58 31.23 30.47

F 33.29 36.79 36.49

KNN P 41.05 42.34 41.19

R 42.02 43.25 42.72

F 41.52 42.79 41.94

MLP P 47.28 33.14 41.96

R 45.43 33.88 41.31

F 46.34 33.51 41.63

RNN P 82.98 78.44 82.06
R 82.91 78.26 81.85
F 82.94 78.35 81.96

AB P 32.94 31.66 28.89

R 23.75 24.04 22.27

F 27.60 27.33 25.15

GBDT P 43.32 44.83 43.91

R 42.31 41.37 43.84

F 42.81 43.03 43.88

DT P 78.96 78.01 78.77

R 78.90 77.90 78.43

F 78.93 77.96 78.60

ET P 76.94 76.86 77.40

R 76.72 76.72 77.14

F 76.83 76.79 77.27

VOTE P 61.23 58.60 60.94

R 52.80 51.74 56.28

F 56.70 54.95 58.51
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the statistical results in Table  16, where the positive 
improve average are in bold. Notably, all classifiers have 
been improved except SVM. The possible reason is that 
we maintain the same hyper-parameters as in Table 9 of 
each classifier, and SVM is more sensitive with proper 
hyper-parameters.

Interpretability discussion
To achieve Goal 3, we need to analyze the model’s inter-
pretability. Compared with black box DL models, such 
as RNN, most traditional ML models have better inter-
pretability. In addition, Word2vec and BERT are neural 
network-based word embedding models, while GloVe 
utilizes the co-occurrence matrix and term frequency of 
corpus to train the embedding vector. In other words, 
GloVe does not involve a neural network and has better 
interpretability.

We utilize python library pydotplus to visualize the RF 
classification. We provide one of 500 RF trees, in which 
the number of the training sample is 200, and the embed-
ding model is GloVe in Fig. 12, to illustrate the interpret-
ability of RF + GloVe.

In brief, to satisfy Goal 1, Goal 2, and Goal 3, we select 
the RF classifier and GloVe word embedding model to 
finish the fault diagnosis task.

Result discussion
Why the accuracy of the raw data with data preprocessing 
is low? We believe that they are two main reasons: little 
raw data scale and irregular manual fault description. As 
is known to all, a larger data scale will help the model learn 
more features. Besides, the real-world dataset is recorded 
by customer service staff which is irregular and casual, 
which will immensely affect the performance of classifica-
tion. In fact, when we replace some tokens and make data 
augmentation using synonyms which are regular descrip-
tions, we achieve greatly improving in accuracy metric.

What can we learn from the interpretability result? The 
interpretability of the model can reflect the logic of model 
classification and Fig. 12 shows the logic of one RF tree. 
Worse interpretability, such as RNN, is a black box for 
the whole training process and is unacceptable for critical 
infrastructures.

What can we conclude from  the  different performances 
of models? From the extensive experimental results, the 
RNN, RF, DT, and ET have superior model performance. 
Except for RNN which has worse interpretability, RF, DT, 
and ET are the tree-based methods, which indicates the 
tree structure has good performance for fault classifica-
tion and fault diagnosis. Besides, compared with other 
classification models, the tree structure is easier to adjust 
the hyper-parameters and achieve the best result.
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Fig. 10 The confusion matrix of RF + GloVe
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Fig. 11 The accuracy and average training time result with data 
augmentation

Table 16 Accuracy result (%)

Classifiers Improve average GloVe Word2vec BERT

RF 8.36 87.21 91.81 87.33

SVM − 7.96 22.72 21.10 21.57

KNN 5.66 47.33 47.42 50.22

MLP 3.17 45.12 42.35 42.65

RNN 10.40 90.95 92.10 91.16

AB 3.50 26.88 25.76 27.94

GBDT 0.74 43.30 42.59 43.86

DT 9.58 85.97 91.87 86.15

ET 10.37 84.85 91.63 85.21

VOTE 4.98 56.62 58.68 60.45
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Conclusion
With the development of electric vehicles (EVs), many 
charging piles as the supporting facility have been 
deployed. This paper mainly focuses on fault diagnosis 
to maintain the effectiveness of charging piles. Specially, 
we vectorize fault description of the real-world fault 
record dataset using N-gram, GloVe, Word2vec, and 
BERT embedding models. Then we utilize ten machine 
learning or deep learning classifiers, including Random 
Forest (RF), Support Vector Machine (SVM), K-Nearest 
Neighbor (KNN), Multilayer Perceptron (MLP), Recur-
rent Neural Network (RNN), AdaBoost (AB), Gradient 
Boosted Decision Tree (GBDT), Decision Tree (DT), 
Extra Tree (ET), and VOTE, to explore the best-matched 
embedding model and classifier for helping charging-pile 
fault diagnosis.

Our extensive experiments reveal that RF classifier 
working with the GloVe embedding model in the real-
world dataset can achieve the best accuracy with low 
training time. At last, we discuss the interpretability of 
RF and GloVe.
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