
Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6
https://doi.org/10.1186/s42400-023-00139-y

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Cybersecurity

Android malware category detection using
a novel feature vector‑based machine learning
model
Hashida Haidros Rahima Manzil*    and S. Manohar Naik    

Abstract 

Malware attacks on the Android platform are rapidly increasing due to the high consumer adoption of Android smart-
phones. Advanced technologies have motivated cyber-criminals to actively create and disseminate a wide range of
malware on Android smartphones. The researchers have conducted numerous studies on the detection of Android
malware, but the majority of the works are based on the detection of generic Android malware. The detection based
on malware categories will provide more insights about the malicious patterns of the malware. Therefore, this paper
presents a detection solution for different Android malware categories, including adware, banking, SMS malware, and
riskware. In this paper, a novel Huffman encoding-based feature vector generation technique is proposed. The experi-
ments have proved that this novel approach significantly improves the efficiency of the detection model. This method
makes use of system call frequencies as features to extract malware’s dynamic behavior patterns. The proposed model
was evaluated using machine learning and deep learning methods. The results show that the proposed model with
the Random Forest classifier outperforms some existing methodologies with a detection accuracy of 98.70%.

Keywords  Android malware, Dynamic analysis, Malware category, Huffman coding

Introduction
The legendary Android operating system has domi-
nated the smartphone industry since 2011 (Statista
2011). The Android operating system has approxi-
mately 2.5 billion active users from 190 countries,
according to Android Statistics (Business of Apps:
Android Statistics 2022). In this digital era, Android
smartphones play an essential role in fulfilling multiple
user needs. Therefore, its impacts on various aspects
of society are immense. The Android operating system
dominated the global market share since 2014 and it
loomed over 87% of the market share in 2022 (Busi-
ness of Apps: Android Statistics 2022). Android has

become a prime target for cybercriminals because of
its widespread use and open-source nature. Cyber-
criminals and anti-malware developers are constantly
at odds in the realm of malware detection. With evolv-
ing technologies, the two protagonists have quickly
modified their strategies. Malicious actors typically
strive to profit in an unethical or even unlawful way.
Mobile malware could steal sensitive and confidential
user data, misuse the user’s device to send SMS to pre-
mium text services, or install adware that causes users
to view malicious websites or download other mal-
ware. The researchers have conducted several studies
to develop countermeasures against Android operat-
ing systems and application security issues. Gener-
ally, most of the studies are based on the detection of
generic Android malware, and studies based on the
malware categories are relatively few. The malicious
patterns can effectively be identified by the malware
category recognition. Android malware detection can

*Correspondence:
Hashida Haidros Rahima Manzil
hashidahydros@gmail.com
Department of Computer Science, Central University of Kerala,
Kasaragod 671316, Kerala, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00139-y&domain=pdf
http://orcid.org/0000-0002-2865-2794
http://orcid.org/0000-0002-1059-8945

Page 2 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6

be categorized into the signature and behavior-based
detection. The signature-based approach detects
malicious behavior only after malware attacks have
already occurred (a posteriori event), because it gen-
erates well-defined patterns (Portokalidis et al. 2006;
Wressnegger et al. 2017; Oyama et al. 2012). Also,
signature-based solutions rely on cryptographic algo-
rithms or similarity measurement techniques (Tchak-
ounté et al. 2021). This traditional method successfully
detects well-known dangerous patterns because these
malicious patterns are already stored in the database,
whereas it cannot detect zero-day attacks.

On the other hand, the behavior-based approaches
are further classified into static, dynamic, and hybrid
methods. Researchers frequently use static analysis
to extract features without running applications on a
real device or emulator. This approach is particularly
appealing since it requires less computing time and
overhead during implementation. Static analysis can-
not detect malware that hides or obfuscates its abu-
sive behavior during execution. Dynamic analysis is
required to address this issue because it monitors the
run-time behavior of the applications. System calls are
the most frequently retrieved features by dynamic anal-
ysis techniques. System call sequences will adequately
reveal the malignant behavior patterns of different
malware categories. As a result, this paper presents a
dynamic analysis-based method that uses system call
frequencies as features. This method successfully iden-
tified several categories of Android malware, including
riskware, banking trojan, SMS malware, and adware.

The highlights of the proposed methodology are
described below:

•	 The system call frequencies are utilized to build a
detection solution for Android malware categories.

•	 A dynamic analysis-based model is proposed for
the detection of Android malware categories.

•	 A novel feature vector generation method based on
Huffman Encoding is incorporated with the detec-
tion model.

•	 The proposed model was evaluated using machine
learning and deep learning techniques and com-
pared with previous studies.

Sect. "Related works" summarizes the related studies
on Android malware detection. Sect. "Proposed meth-
odology" thoroughly explains the proposed method-
ology for detecting Android malware categories. The
experimental results are discussed in Sect. "Experi-
ments and Results". Sect. "Conclusion" concludes the
paper and discusses potential directions for further
research.

Related works
The detection systems can recognize more malware by
identifying their related families, prioritizing the risky
families, and capturing their impact on users (Alswaina
and Elleithy 2020). Generally, Android malware detection
approaches are classified into two categories: signature-
based and behavior-based techniques. The behavior-
based detection approaches are further divided into
static, dynamic, and hybrid analysis-based techniques.

The signature-based techniques primarily rely on the
known signature patterns of the malware. For example,
a set of semi-supervised algorithms for the automatic
generation of different Android malware family signa-
tures were developed by Atzeni et al. (2018). However,
this approach fails to detect unknown malware attacks.
Therefore, researchers generally prefer something other
than this traditional technique like behavior-based strate-
gies, which includes static, dynamic, and hybrid methods.

The articles (Alswaina and Khaled 2018; Arindaam
Roy. et al. 2020; Zhou et al. 2020; Zhu et al. 2021; Elayan
and Mustafa 2021; Imtiaz 2021; Almahmoud and Dalia
Alzu’bi et al. 2021; Pei et al. 2020; Kim et al. 2021; Bai
et al. 2021) propose static analysis-based techniques for
detecting Android malware. The studies (Alswaina and
Khaled. 2018, Imtiaz 2021, Pei et al. 2020, Kim et al.
2021, Bai et al. 2021) discusses the family classification
of Android malware with a static analysis approach.
Alswaina et al. (Alswaina and Khaled. 2018) used
machine learning approaches to categorize malware
families and developed a reverse engineering frame-
work to extract permissions. Ibrahim et al. (2021) pro-
posed DeepAMD for android malware and its family in
static and dynamic layers. Similarly, for malware detec-
tion and family attribution, Pei et al. (2020) developed a
unique deep-learning system called AMalNet. Kim et al.
(2021) propose leveraging built-in custom permissions
and machine learning to categorize Android malware
families. Bai et al. (2021) used static features such as per-
missions, API calls, activity, services, broadcast receiv-
ers, and content providers to classify Android malware
families. This study (Bai et al. 2021) uses a lot of machine
learning and neural network techniques, based on man-
ual features from literature reviews and documentary
features from Android developers.

The dynamic analysis methodology has been applied to
detect Android malware since obfuscated malware and
malicious dynamic content loading cannot be detected
by static analysis. Several research articles, such as
those in Mahindru and Sangal (2021a, 2021b), Martín
et al. (2018), Abderrahmane et al. (2019), D’Angelo et al.
(2021), explore dynamic analysis-based Android mal-
ware detection. Martin A et al. (2018) introduce CAN-
DYMAN, a malware classification tool that leverages the

Page 3 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6 	

Markov chain to categorize Android malware families.
They rely on deep learning techniques and use Markov
chains for detection. System calls are used as features in
convolutional neural networks by Abderrahamane et al.
(2019) to detect fraudulent Android applications. This
approach depends on pair-level system call depend-
encies. With the assistance of the CuckooDroid sand-
box (2020), a mobile security framework for static and
dynamic feature extraction, D’Angelo et al. (2021) created
another dynamic analysis-based Android malware classi-
fication system.

The combined static and dynamic features are pro-
moted in hybrid-based detection systems. For example,
in their article, Ding et al. (2021) present a hybrid anal-
ysis-based technique for identifying Android malware
and categorizing malware families. This approach used
static and dynamic analysis to extract static features
(like permissions and intents) and dynamic features (like
network traffic data) to classify malware families. Simi-
larly, Taheri et al. (2019) presented a hybrid, two-layer
Android malware analyzer based on static and dynamic
analysis-based malware category classification. Dhalaria
and Gandotra (2021) depicted another hybrid approach
for both malware detection and family classification, in
which the authors have employed the information gain
feature selection algorithm. Many malware detection
studies have recently tried to use machine learning to
make advancements in detecting unidentified Android
malware (Meijin et al. 2022). El Fiky et al. (2021) devel-
oped machine learning-based approaches for identifying
Android malware categories. Zhang et al. (2019) propose
a combination of n-gram analysis and online classifiers
for Android malware detection and family attribution.
Shao et al. (2021) introduced a novel detection technique

based on sampling strategies. The authors created two
distinct sampling algorithms based on various malware
families, to address the sample imbalance in the dataset.
The original authors of CICMalDroid dataset, Samaneh
Mahdavifar et al. (2022) employed a semi-supervised
learning method combined with a pseudo-labelling tech-
nique. It is obvious that pseudo-labelling is sensitive to
the initial predictions. Although this approach reduces
label dependency, it may lead to incorrect prediction
results if there are only limited data points available. Lee
introduced pseudo-labelling technique (Lee 2013). In
this technique, clustering is done to label unknown data
points. If there are only a few labelled points and proper
clustering cannot be performed, the resulting pseudo-
labels may lead the classifier to the incorrect decision
boundary. The authors claim that their proposed method
shows an accuracy of 95.19% with only 100 labelled train-
ing samples. However, these results could be unstable
with only 100 labelled samples since pseudo-labelling is
highly influenced by the initial predictions. Moreover,
the semi-supervised technique is highly based on a self-
training approach. The main drawback of this approach is
that wrong predictions with high confidence will propa-
gate the prediction error into model learning.

Proposed methodology
This section outlines the proposed methodology to clas-
sify Android malware categories. The proposed method
follows a dynamic analysis-based approach that utilizes
system call frequencies as features. Figure 1 represents
the model of proposed detection solution. The detailed
descriptions of each phase are provided in the following
Sects. "Data acquisition", "Data pre-processing" and "Fea-
ture selection").

Fig. 1  Proposed system model

Page 4 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6

Data acquisition
This section summarizes the dataset used for the pro-
posed method. The dataset CICMalDroid (2020), Mah-
davifar et al. (2022), Canadian Institute for Cybersecurity
(2020) is used, which comprises Android samples broken
down into five categories: Adware, Banking malware,
SMS malware, Riskware, and Benign. For example, the
adware category contains families like Judy, Ewind, Copy-
cat, GhostClicker, etc. Each malware category has a vari-
ety of families. This dataset was gathered from different
sources, including the VirusTotal service (2022), Con-
tagio Mini Dump blog (2022), MalDozer (Karbab et al.
2018), etc. The proposed methodology employs the CSV
(Comma Separated Value) file containing 139 extracted
system call frequencies from 11,598 APK (Android
Application Package) files of five malware categories.
Table 1 shows the count of different APK sample catego-
ries used in the study.

Data pre‑processing
The act of transforming unprocessed data into some-
thing that a machine learning model can use is known as
data pre-processing. It is the first and most crucial stage
in developing a machine-learning model. The data pre-
processing is used to improve the model’s accuracy and
efficiency. The basic steps in data pre-processing include
importing libraries and datasets, finding missing data,

removing NULL values or unnecessary data, encoding
categorical data, data scaling, augmentation, and feature
vector generation. Since there are no missing or NULL
values in the dataset, a new Huffman encoding-based
feature vector generation technique is proposed and data
scaling is applied as pre-processing tasks.

Feature vector generation
The Huffman encoding-based feature vector generation
is used in this phase. According to the literature survey,
the methodology presented in this paper is the first truly
innovative way for detecting Android malware. The sys-
tem calls help to monitor the dynamic behavior of apps;
therefore, it will be easy to identify malicious patterns
by determining how frequently a given application uses
a system call. System call frequencies are therefore used
as features in the study. The proposed method uses the
frequencies of 139 different system calls, which were
acquired in the data acquisition phase. Then Huffman
encoding is used, which is an optimization technique that
maps system call frequencies into an optimized size value
in O(nlogn) times. The new feature vector is then created
using these Huffman-encoded values, which boosts the
performance of the detection framework even more due
to its higher encoding speed and effectiveness. The Huff-
man’s optimality or minimum-redundancy code property
makes it a more efficient technique (Moffat 2019).

Huffman encoding  David A. Huffman invented the Huff-
man Encoding compression technique (Huffman_coding
2022). This technique is based on the frequency of occur-
rence of a data item. According to this encoding scheme,
a unique code is obtained for each system call. Given ‘m’
number of application samples, A = {a1, a2, a3,..., am} and
S = {s1, s2, s3,...., sn} represents the ‘n’ number of features
(system call frequencies) used by ‘m’ APK samples (Here,
m = 11,598 and n = 139) as shown in Table 2

Table 1  Count of different application samples

APK sample categories Count

Adware 1253

Banking 2100

SMS Malware 3904

Riskware 2546

Benign 1795

Total 11,598

Table 2  Application samples and features

S1 S2 S3 S4 … Sn-1 Sn

_arm_nr_cache-
flush

_arm_nr_set_tls _llseek _newselect … ugetrlimit umask

A1 0.0 14.0 6.0 0.0 … 0.0 0.0

A2 1590.0 42.0 6.0 0.0 … 2.0 0.0

A3 0.0 23.0 6.0 0.0 … 0.0 0.0

A4 0.0 27.0 6.0 0.0 … 0.0 0.0

… …… …… … … …… ….

Am 0.0 47.0 204.0 … 1.0 0.0

Page 5 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6 	

Then the feature set, Fa,s represents all system call fre-
quencies of all APK samples (Fig. 2).

The corresponding Huffman trees for each row of sys-
tem calls are built and mapped to unique codes by assign-
ing 0 and 1 in the left and right child trees, respectively.
At the end, a sequence of 0’s and 1’s will be generated for
each leaf node. Table 3 represents the mapped Huffman
codes of some of the given system calls.

As the final step, the optimum size required for each
system call frequency value is obtained by multiplying
the length of the corresponding Huffman codes with the
value of system call frequency (Eq. 1). This will be used as
the new feature vector for the final detection model. The
pseudo-code of Huffman encoding is shown in Fig. 3.

a. Minimum‑redundancy code / Optimality prop‑
erty  Minimum-redundancy code or optimality means
the average number of coding digits per feature is mini-
mized. This property makes Huffman an efficient tech-
nique. Any application of Huffman’s algorithm will always

(1)Size = len Huffmancode Systemcall ∗ System_call_frequency

create a minimum-redundancy code (Huffman 1952).
Therefore, it will help to generate an optimal feature vec-
tor for the final detection model. Thus, this can improve
the detection accuracy of the model. A minimum-redun-
dancy code exists in which the two least-value features are
siblings and share a common parent in the correspond-
ing binary code tree. These two features are joined into a
combined node with weight given by their sum. Follow-
ing that, a minimum-redundancy code is created for this
reduced-by-one feature set. Then expanding that feature
into its two components, yields a minimum-redundancy
code for the original set of features (Moffat 2019).

Data scaling
One of the most critical phases in data pre-processing
before building a machine learning model is feature scal-
ing or data scaling. It is used to generalize data points
so there will be less space between them. A machine

Fig. 2  Feature set of proposed system

Table 3  Huffman codes of system call frequencies

System call Huffman code

Wait4 00,000,111,100

Vfork 00,000,111,101

Access 0,001,111,110

Accept 0,001,111,111

Unlink 000,001

Setsid 00,001

Setrlimit 0,001

setresuid32 00,001

Setitimer 0,001

Chdir 000,001

Page 6 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6

learning model’s strength can be changed through scal-
ing, from poor to better. In this work, standard and Min–
max scaling techniques are employed.

Feature selection
Feature selection is necessary for a model to predict the
target variable. This process aims to minimize the num-
ber of input variables to select those features that are
identified as most beneficial. The proposed model uses
the Chi-square technique to select appropriate features.

Thus, it reduces the feature space for the final machine
learning model.

Classification
In this phase, the Android malware category classifica-
tion is experimented using machine learning and deep
learning techniques. The machine learning classifiers use
the feature vector as input that was obtained from the
previous step. Then classifiers like Random Forest, Deci-
sion Tree, Logistic Regression, Support Vector Machine,
and AdaBoost are employed to detect Android malware

Fig. 3  Pseudo code of Huffman encoding

Page 7 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6 	

categories. The experiments were also carried out with
convolutional neural networks and multi-layer percep-
tron techniques.

Experiments and results
This section discusses the experiments and results. The
proposed system is built with a novel method for creat-
ing feature vectors based on Huffman coding. A total
of 139 features (system call frequencies) from 11,598
data samples provided by CICMaldroid 2020 (Mahdavi-
far 2020; Mahdavifar et al. 2022; Canadian Institute for
Cybersecurity 2020) were used in the system. The pro-
posed feature vector generation technique significantly
improves the overall effectiveness of the detection model.
Although there are several data scaling techniques, the

primary issue for machine learning is selecting the appro-
priate scaling method. The studies (Ambarwari et al.
2020; Shahriyari 2019) support the impact of data scal-
ing methods on various ML algorithms. As a result, the
proposed solution uses standard scaling because it yields
better performance with machine learning models. The
experimental results are shown in Tables 4 and 5. The
corresponding result graphs are depicted in Figs. 4 and 5.

Table 4 shows the results without the proposed fea-
ture vector generation. This demonstrates that, with a
greater detection accuracy of 0.931, the random forest
model performs better. The decision tree, support vec-
tor machine, k-nearest neighbor classifiers, multi-layer
perceptron and CNN models provide more than 80% of
detection accuracies.

The experiment results with the proposed Huffman
Encoding-based approach are presented in Table 5. It
is evident that the proposed approach yields a greater
accuracy of 98.70%. Moreover, it has increased the per-
formance of other classifiers as well. This proves how
effectively proposed feature vector generation process
works. Huffman encoding supplies an optimised size
value for each feature in O(nlogn) times, which increases
the detection model’s efficacy.

The proposed feature vector generation technique is
compared with logarithmic transformation-based fea-
ture vector generation (Table 6). As per the results, the
log transformation gives the greater accuracy is 93.06%
with Random Forest model. It is known that log trans-
formation will reduce the skewness of data by com-
pressing the range of large numbers and extending the
range of small numbers. However, it may lead to high
memory consumption and increased time complexity.
Also, this technique is computationally expensive and
it may cause lowering of models’ accuracy. Whereas,
in the Huffman encoding method, its minimum redun-
dancy code property and higher encoding speed ena-
bles it to produce an optimal feature vector, which can
improve the performance of the final detection model.
The experiments also proved that Huffman-encoding
feature vector generation gives better results than loga-
rithmic based feature vector generation. Figure 6 shows
the corresponding result graph of logarithmic transfor-
mation-based approach.

From Fig. 7, it is clear that the performance of the pro-
posed method is higher than the method without using
any feature vector generation and the baseline technique,
i.e., logarithmic transformation technique.

As shown in Table 7, the effectiveness of the proposed
system is compared to that of a few existing methodolo-
gies. The results show that the proposed system outper-
forms the alternatives.

Table 4  Results without Proposed Feature vector generation

A-Accuracy, P-Precision, R-Recall, RF-Random Forest, DT-Decision Tree,
LR-Logistic Regression, SVM-Support Vector Machine, NB-Naïve-Bayes, KNN-K
Nearest Neighbour, MLP-Multi-Layer Perceptron, CNN-Convolutional Neural
Networks

The highest performance in terms of Accuracy, Precision, Recall, and F1-score are
highlighted in bold

Model used A P R F1-Score

RF 0.931 0.931 0.931 0.931
DT 0.897 0.897 0.897 0.897

LR 0.756 0.756 0.756 0.756

SVM 0.804 0.804 0.804 0.804

NB 0.504 0.505 0.505 0.505

KNN 0.875 0.875 0.875 0.875

AdaBoost 0.786 0.786 0.786 0.786

MLP 0.890 0.890 0.890 0.890

CNN 0.7545 0.754 0.754 0.754

Table 5  Results with Huffman encoding

A-Accuracy, P-Precision, R-Recall, RF-Random Forest, DT-Decision Tree,
LR-Logistic Regression, SVM-Support Vector Machine, NB-Naïve-Bayes, KNN-K
Nearest Neighbour, MLP-Multi-Layer Perceptron. CNN-Convolutional Neural
Networks

The highest performance in terms of Accuracy, Precision, Recall, and F1-score are
highlighted in bold

Model used A P R F1-Score

RF 0.9870 0.987 0.987 0.987
DT 0.9797 0.980 0.980 0.980

LR 0.7614 0.761 0.761 0.761

SVM 0.8103 0.810 0.810 0.810

NB 0.5247 0.525 0.525 0.525

KNN 0.9038 0.904 0.904 0.904

AdaBoost 0.7717 0.772 0.772 0.772

MLP 0.8911 0.891 0.891 0.891

CNN 0.8129 0.813 0.813 0.813

Page 8 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

RF DT LR SVM NB KNN AdaBoost MLP

Accuracy Precision Recall F1-Score
Fig. 4  Results without proposed feature vector generation

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

RF DT LR SVM NB KNN AdaBoost MLP CNN

Accuracy Precision Recall F1-Score
Fig. 5  Results with Huffman encoding-based feature vector generation

Page 9 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6 	

Conclusion
This paper presents an Android malware category
detection system based on a novel Huffman encoding-
based feature vector generation scheme. The proposed
model includes phases like data acquisition, data

pre-processing, feature selection, and classification.
The system call frequencies of 11,598 Android applica-
tion samples were used as features to design this solu-
tion because this dynamic feature helps to recognize
the dynamic behavior patterns of malware category.
The Huffman encoding technique is employed in the
data pre-processing phase to provide the optimum
size of system call frequencies used by the applica-
tions. Several Machine learning-based experiments
are conducted to evaluate the effectiveness of the
proposed system. Based on the findings of the experi-
ments, the proposed method using the Random Forest
model outperforms other models with a better accu-
racy of 98.70%. The results were also compared with
the performance of logarithmic transformation-based
feature vector generation, showing that the proposed
approach exhibits better results. Additionally, the
model’s effectiveness was compared with a few earlier
methods, and it was discovered that this work yields
better outcomes. This solution relies on a dynamic
feature called system calls; thus, in future research
studies, the static features like permissions, API calls,
intents, etc., should be integrated with the detection
solution.

Table 6  Results with Logarithmic transformation

A-Accuracy, P-Precision, R-Recall, RF-Random Forest, DT-Decision Tree,
LR-Logistic Regression, SVM-Support Vector Machine, NB-Naïve-Bayes, KNN-K
Nearest Neighbour, MLP-Multi-Layer Perceptron

The highest performance in terms of Accuracy, Precision, Recall, and F1-score are
highlighted in bold

Model used A P R F1-Score

RF 0.9306 0.931 0.931 0.931
DT 0.8897 0.890 0.890 0.890

LR 0.8586 0.859 0.859 0.859

SVM 0.8797 0.880 0.880 0.880

NB 0.4715 0.472 0.472 0.472

KNN 0.8926 0.893 0.893 0.893

AdaBoost 0.7862 0.786 0.786 0.786

MLP 0.9254 0.925 0.925 0.925

CNN 0.7762 0.776 0.776 0.776

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

RF DT LR SVM NB KNN AdaBoost MLP CNN

Accuracy Precision Recall F1-score
Fig. 6  Results with logarithmic transformation

Page 10 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6

Acknowledgements
There is no any third person/ organisation to acknowledge

Author contributions
HHRM: Research, Data analysis, Documentation, Reporting, Implementations,
Problem formulation, Coding, Testing. Dr. MNS: Supervision, Management,
Validation. All authors read and approved the final manuscript.

Funding
The authors declare that the research doesn’t used any funding sources for the
work. There are no any funding sources to disclose.

Availability of data and materials
The datasets analysed during the current study are available in the site
Canadian Institute for Cybersecurity, CICMalDroid 2020 (Canadian Institute for
Cybersecurity 2020), https://​www.​unb.​ca/​cic/​datas​ets/​maldr​oid-​2020.​html.

Declarations

Competing interests
The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work
reported in this paper.

Received: 24 August 2022 Accepted: 11 January 2023

References
Abderrahmane A, Adnane G, Yacine C, Khireddine G, (2019). Android malware

detection based on system calls analysis and CNN classification. In: 2019
IEEE wireless communications and networking conference workshop
(WCNCW) (pp 1–6). IEEE

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Without proposed method With proposed method With Logarithmic

Accuracy Precision Recall
Fig. 7  Result comparison of proposed method

Table 7  Performance comparison of the proposed system with previous methods

RF-Random Forest, SVM-Support Vector Machine, CNN-Convolutional Neural Networks, DNN-Deep Neural Networks

Existing methods Accuracy Precision Recall F1-score Method used

Martin et al. (2018) 0.761 0.755 0.76 0.755 CNN + Markov chains

Martin et al. (2018) 0.818 0.807 0.818 0.802 RF + Markov chains

Arindaam Roy. et al. (2020) 0.887 0.895 0.819 0.855 SVM + Feature aggregation

Nicheporuk et al. (2020) 0.933 0.938 0.937 0.938 CNN + word2vec
technology-based Feature
vectorization

Samaneh et al. (2022) 0.982 0.982 0.982 0.982 Semi-supervised DNNs

Hashem A. El Fiky et al. (2021) 0.9689 Not available 0.6646 Not available RF

Proposed Method 0.9870 0.987 0.987 0.987 RF + Huffman encoding-
based Feature Vector
Generation

https://www.unb.ca/cic/datasets/maldroid-2020.html

Page 11 of 11Manzil and Manohar Naik ﻿Cybersecurity (2023) 6:6 	

Almahmoud M, Alzubi D, Yaseen Q (2021) ReDroidDet: android malware
detection based on recurrent neural network. Procedia Comput Sci
184:841–846. https://​doi.​org/​10.​1016/j.​procs.​2021.​03.​105

Alswaina F, Elleithy K (2018) Android malware permission-based multi-class
classification using extremely randomized trees. IEEE Access. https://​doi.​
org/​10.​1109/​ACCESS.​2018.​28839​75

Alswaina F, Elleithy K (2020) Android malware family classification and analysis:
current status and future directions. Electronics 9(6):942

Ambarwari A, Adrian QJ, Herdiyeni Y (2020) Analysis of the effect of data
scaling on the performance of the machine learning algorithm for plant
identification. J Resti Rekayasa Sist Dan Teknol Inf 4:117–122

Atzeni A, Diaz F, Marcelli A, Sánchez A, Squillero G, Tonda A (2018) Countering
android malware: a scalable semi-supervised approach for family-
signature generation. IEEE Access. https://​doi.​org/​10.​1109/​ACCESS.​2018.​
28745​02

Bai Y, Xing Z, Ma D, Li X, Feng Z (2021) Comparative analysis of feature repre-
sentations and machine learning methods in android family classifica-
tion. Comput Netw 184:107639

Business of Apps: Android Statistics (2022). Android Statistics (2022) - Business
of Apps Accessed on 20 July 2022

Canadian Institute for Cybersecurity, CICMalDroid 2020, https://​www.​unb.​ca/​
cic/​datas​ets/​maldr​oid-​2020.​html, Accessed on 30 Mar 2022

Contagio Mobile http://​conta​giomi​nidump.​blogs​pot.​com/, Accessed on 30
Mar 2022

CuckooDroid (2020). Cuckoodroid book. Retrieved 2020, from https://​cuckoo-​
droid.​readt​hedocs.​io/​en/​latest/

D’Angelo G, Palmieri F, Robustelli A, Castiglione A (2021) Effective classifica-
tion of android malware families through dynamic features and neural
networks. Connect Sci 33(3):786–801. https://​doi.​org/​10.​1080/​09540​091.​
2021.​18899​77

Dhalaria M, Gandotra E (2021) A hybrid approach for android malware detec-
tion and family classification. Int J Interact Multimed Artif Intel. https://​
doi.​org/​10.​9781/​ijimai.​2020.​09.​001

Ding C, Luktarhan N, Lu B, Zhang W (2021) A hybrid analysis based approach
to android malware family classification. Entropy 23:1009. https://​doi.​org/​
10.​3390/​e2308​1009

Elayan ON, Mustafa AM (2021) Android malware detection using deep learn-
ing. Procedia Comput Sci 184:847–852. https://​doi.​org/​10.​1016/j.​procs.​
2021.​03.​106

Fiky AHE, Shenawy AE, Madkour MA (2021) Android malware category and
family detection and identification using machine learning. arXiv preprint
https://​arxiv.​org/​abs/​2107.​01927

Huffman DA (1952) A method for the construction of minimum-redundancy
codes. Proc Inst Radio Eng 40(9):1098–1101

Huffman coding, https://​en.​wikip​edia.​org/​wiki/​Huffm​an_​coding, Accessed on
30 Mar 2022

Imtiaz SI, Rehman SU, Javed AR, Jalil Z, Liu X, Alnumay WS (2021) DeepAMD:
detection and identification of android malware using high-efficient
deep artificial neural network. Future Gener Comput Syst 115:844–856.
https://​doi.​org/​10.​1016/j.​future.​2020.​10.​008

International Conference on Smart Sustainable Intelligent Computing and
Applications under ICITETM2020 Android Malware Detection based on
Vulnerable Feature Aggregation Arindaam Roya,_, Divjeet Singh Jasa,
Gitanjali Jaggia, Kapil Sharmaa

Karbab E, Debbabi M, Derhab A, Mouheb D (2018) MalDozer: automatic
framework for android malware detection using deep learning. Digit
Investig 24:S48–S59. https://​doi.​org/​10.​1016/j.​diin.​2018.​01.​007

Kim M, Kim D, Hwang C, Cho S, Han S, Park M (2021) Machine-learning-based
android malware family classification using built-in and custom permis-
sions. Appl Sci 11:10244. https://​doi.​org/​10.​3390/​app11​21102​44

Lee DH (2013) Pseudo-label: the simple and efficient semi-supervised learning
method for deep neural networks. Workshop on challenges in represen-
tation learning, ICML. 3(2)

Mahdavifar S, Alhadidi D, Ghorbani AA (2022) Effective and efficient hybrid
android malware classification using pseudo-label stacked auto-encoder.
J Netw Syst Manage 30(1):1–34

Mahindru A, Sangal AL (2021a) MLDroid—framework for Android malware
detection using machine learning techniques. Neural Comput Appl
33:5183–5240. https://​doi.​org/​10.​1007/​s00521-​020-​05309-4

Mahindru A, Sangal AL (2021b) SemiDroid: a behavioral malware detector
based on unsupervised machine learning techniques using feature

selection approaches. Int J Mach Learn Cyber 12:1369–1411. https://​doi.​
org/​10.​1007/​s13042-​020-​01238-9

Mahdavifar S, Kadir AFA, Fatemi R, Alhadidi D, Ghorbani AA (2020) Dynamic
android malware category classification using semi-supervised deep
learning, In: The 18th IEEE international conference on dependable,
autonomic, and secure computing (DASC), 17–24

Martín A, Rodríguez-Fernández V, Camacho D (2018) CANDYMAN: classifying
android malware families by modelling dynamic traces with Markov
chains. Eng Appl Artif Intell 74:121–133. https://​doi.​org/​10.​1016/j.​engap​
pai.​2018.​06.​006

Meijin L, Zhiyang F, Junfeng W, Luyu C, Qi Z, Tao Y, Yinwei W, Jiaxuan G (2022)
A systematic overview of android malware detection. Appl Artif Intel
36(1):2007327. https://​doi.​org/​10.​1080/​08839​514.​2021.​20073​27

Moffat A (2019) Huffman coding. ACM Comput Surv (CSUR) 52(4):1–35
Nicheporuk A, Savenko O, Nicheporuk A, Nicheporuk Y (2020) An android

malware detection method based on CNN mixed-data model CEUR
Workshop Proceedings Kharkiv, Ukraine. 2732:198–213

Oyama Y, Giang TTD, Chubachi Y, Shinagawa T, Kato K (2012) Detecting mal-
ware signatures in a thin hypervisor, In: Proceedings of the 27th Annual
ACM symposium on applied computing, SAC 12, ACM, New York, NY,
USA, pp 1807–1814, https://​doi.​org/​10.​1145/​22452​76.​22320​70

Pei X, Long Y, Tian S (2020) AMalNet: a deep learning framework based on
graph convolutional networks for malware detection. Comput Secur
93:101792. https://​doi.​org/​10.​1016/j.​cose.​2020.​101792

Portokalidis G, Slowinska A, Bos Argos H (2006) An emulator for fingerprint-
ing zero-day attacks for advertised honeypots with automatic signature
generation, In: Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, EuroSys ’06, ACM, New York, NY,
USA, pp 15–27, https://​doi.​org/​10.​1145/​12179​35.​12179​38

Shahriyari L (2019) Effect of normalization methods on the performance of
supervised learning algorithms applied to HTSeq-FPKM- UQ data sets:
7SK RNA expression as a predictor of survival in patients with colon
adenocarcinoma. Briefings Bioinform 20:985–994

Shao K, Xiong Q, Cai Z (2021) FB2Droid: a novel malware family-based bagging
algorithm for android malware detection. Secur Commun Netw

Statista: Share of Android OS of global smartphone shipments from 1st quar-
ter 2011 to 2nd quarter 2018* (2022) Android global phone market share
2018 | Statista Accessed on 21 July 2022

Taheri L, Kadir AFA, Lashkari AH (2019) Extensible android malware detec-
tion and family classification using network-flows and API-calls. In: 2019
International carnahan conference on security technology (ICCST) (pp
1–8). IEEE

Tchakounté F, Ngassi RCN, Kamla VC et al (2021) LimonDroid: a system cou-
pling three signature-based schemes for profiling Android malware. Iran
J Comput Sci 4:95–114. https://​doi.​org/​10.​1007/​s42044-​020-​00068-w

Virus Total (2022) https://​www.​virus​total.​com/​gui/​home/​upload, Accessed on
30 Mar 2022

Wressnegger C, Freeman K, Yamaguchi F, Rieck K (2017) Automatically infer-
ring malware signatures for anti-virus assisted attacks. In: Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications
Security, ASIA CCS ’17, ACM, New York, NY, USA, pp 587–598, https://​doi.​
org/​10.​1145/​30529​73.​30530​02

Zhang L, Thing VL, Cheng Y (2019) A scalable and extensible framework
for android malware detection and family attribution. Comput Secur
80:120–133

Zhou H, Yang X, Pan H, Guo W (2020) An android malware detection approach
based on SIMGRU. IEEE Access 8:148404–148410. https://​doi.​org/​10.​
1109/​ACCESS.​2020.​30075​71

Zhu H, Li Y, Li R, Li J, You Z, Song H (2021) SEDMDroid: an enhanced stacking
ensemble framework for android malware detection. IEEE Trans Netw Sci
Eng 8(2):984–994. https://​doi.​org/​10.​1109/​TNSE.​2020.​29963​79

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.procs.2021.03.105
https://doi.org/10.1109/ACCESS.2018.2883975
https://doi.org/10.1109/ACCESS.2018.2883975
https://doi.org/10.1109/ACCESS.2018.2874502
https://doi.org/10.1109/ACCESS.2018.2874502
https://www.unb.ca/cic/datasets/maldroid-2020.html
https://www.unb.ca/cic/datasets/maldroid-2020.html
http://contagiominidump.blogspot.com/
https://cuckoo-droid.readthedocs.io/en/latest/
https://cuckoo-droid.readthedocs.io/en/latest/
https://doi.org/10.1080/09540091.2021.1889977
https://doi.org/10.1080/09540091.2021.1889977
https://doi.org/10.9781/ijimai.2020.09.001
https://doi.org/10.9781/ijimai.2020.09.001
https://doi.org/10.3390/e23081009
https://doi.org/10.3390/e23081009
https://doi.org/10.1016/j.procs.2021.03.106
https://doi.org/10.1016/j.procs.2021.03.106
https://arxiv.org/abs/2107.01927
https://en.wikipedia.org/wiki/Huffman_coding
https://doi.org/10.1016/j.future.2020.10.008
https://doi.org/10.1016/j.diin.2018.01.007
https://doi.org/10.3390/app112110244
https://doi.org/10.1007/s00521-020-05309-4
https://doi.org/10.1007/s13042-020-01238-9
https://doi.org/10.1007/s13042-020-01238-9
https://doi.org/10.1016/j.engappai.2018.06.006
https://doi.org/10.1016/j.engappai.2018.06.006
https://doi.org/10.1080/08839514.2021.2007327
https://doi.org/10.1145/2245276.2232070
https://doi.org/10.1016/j.cose.2020.101792
https://doi.org/10.1145/1217935.1217938
https://doi.org/10.1007/s42044-020-00068-w
https://www.virustotal.com/gui/home/upload
https://doi.org/10.1145/3052973.3053002
https://doi.org/10.1145/3052973.3053002
https://doi.org/10.1109/ACCESS.2020.3007571
https://doi.org/10.1109/ACCESS.2020.3007571
https://doi.org/10.1109/TNSE.2020.2996379

	Android malware category detection using a novel feature vector-based machine learning model
	Abstract
	Introduction
	Related works
	Proposed methodology
	Data acquisition
	Data pre-processing
	Feature vector generation
	Huffman encoding
	a. Minimum-redundancy code Optimality property

	Data scaling

	Feature selection
	Classification

	Experiments and results
	Conclusion
	Acknowledgements
	References

