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Abstract 

This research critically reviews the definition of confidential computing (CC) and the security comparison of CC with 
other related technologies by the Confidential Computing Consortium (CCC). We demonstrate that the definitions by 
CCC are ambiguous, incomplete and even conflicting. We also demonstrate that the security comparison of CC with 
other technologies is neither scientific nor fair. We highlight the issues in the definitions and comparisons and provide 
initial recommendations for fixing the issues. These recommendations are the first step towards more precise defini-
tions and reliable comparisons in the future.
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Introduction
Regulations, such as the General Data Protection Regu-
lation (GDPR)  (European Commission: Regulation (EU) 
2016/679 2016), necessitate protecting personal data. A 
wide variety of technologies, from purely algorithmic to 
hardware-based, exists as possible solutions. Purely algo-
rithmic solutions include cryptographic methods, such 
as Homomorphic Encryption (HE) (Acar et al. 2018) and 
Secure Multi-Party Computation (MPC) (Evans et  al. 
2018). On the other end of the spectrum, hardware-based 
solutions include a secure cryptographic processor, such 
as Hardware Security Module (HSM) (Anderson 2020) 
and Trusted Platform Module (TPM) (Arthur and Chal-
lener 2015; Proudler et  al. 2014). Recently, Confidential 
Computing (CC) using hardware-based Trusted Execu-
tion Environments (TEEs) has emerged as a promising 
solution (Confidential Computing consortium 2021). 
With such emerging technologies, it is crucial to pre-
cisely define, as well as reliably evaluate and compare 

technologies to choose the most suitable one for a given 
problem while ensuring compliance with legal standards.

As a first step towards definitions and comparison of 
technologies, some white papers (Confidential Comput-
ing consortium 2021a, b, c) have recently attempted to 
tackle this challenge. These white papers are a collabo-
rative effort of the Confidential Computing Consortium 
(CCC), comprising various notable organizations, includ-
ing Google, Microsoft, Huawei, Red Hat, Arm and Intel. 
Although CCC recommends using the definitions, we 
demonstrate in this work that the definitions by CCC are 
imprecise, incomplete and even conflicting. This is criti-
cal because of three main reasons. Firstly, it leaves room 
for competing vendors to claim CC to potentially give 
end users1 a false sense of security. Secondly, it creates 
legal uncertainty in the regulatory authorities for ensur-
ing compliance with regulations, specifically transpar-
ency obligations. Finally, for researchers and solution 
providers, this hampers a reliable comparison across ven-
dor solutions in a uniform way.
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In relation to the comparison among various technolo-
gies for the protection of data, CCC white papers (Con-
fidential Computing consortium 2021a, b, c) present 
security comparisons for TEE, HE and TPM. However, 
the threat model for such a comparison is not specified, 
and thus the comparison may lead to misleading conclu-
sions. Moreover, there is a lack of scientific evidence and 
argumentation in the comparison.

To improve the situation, we review and highlight some 
of the key issues in the definitions related to CC ("Defi-
nitions" Section) as well as its comparison with related 
technologies ("Comparison of CC with relatedtechnolo-
gies" Section) in this work. We pointed out these issues 
to CCC Technical Advisory Council (TAC) in April 2021. 
However, the rare response from CCC TAC has gener-
ally raised more questions and concerns  (Confidential 
Computing consortium 2020). We, therefore, pose it as 
an open challenge to the community. We emphasize the 
dire need for formal definitions for CC and believe that 
resolving the issues highlighted in this work would be 
the first step towards that. In this regard, we also provide 
some recommendations to achieve clarity and precision 
in the definitions as well as fair and scientific comparison 
among existing technologies. To the best of our knowl-
edge, no other works have attempted to provide a secu-
rity comparison of the technologies, so we focus on the 
CCC white papers and related literature. An attempt has 
been made to keep this paper self-contained by repro-
ducing the original definitions, figure and table, when-
ever required, and to keep the paper simple and readable 
for broad readers from systems engineering, security and 
privacy, and legal communities, while still maintaining 
mathematical rigour.

Definitions
This section presents a review of definitions related to 
CC by CCC TAC. All definitions by CCC TAC are infor-
mal. Formal definitions of security are essential for a 
systematic design of cryptosystems, as Katz and Lindell 
reinforce:

“If you don’t understand what you want to achieve, how 
can you possibly know when (or if ) you have achieved it?” 
[Sect. 1.4.1, p. 15 in Katz and Lindell (2020)].

Unlike the traditional heuristic approach based on 
intuition, formal definitions also allow for rigorous proof 
of security. Moreover, formal definitions provide the 
basis for a meaningful comparison of cryptosystems, 
such as trade-offs between security and efficiency (Katz 
and Lindell 2020).

In the following subsections, we list some of the key 
issues related to definitions of terms related to CC by first 
providing CCC’s actual definitions, whenever available.

Confidential Computing (CC) and related technologies
CCC claims that CC is uniquely defined, while several 
other related technologies have multiple competing 
definitions:

“Unlike the term ‘confidential computing’, several of the 
terms used in the diagram have multiple competing defi-
nitions” [Sect. 4, p. 8 in Confidential Computing consor-
tium (2021a)].

The diagram referred to here is the Venn diagram 
shown in Fig. 1.

We first analyze the claim of the unique definition of 
CC. This claim is based on the following definition by 
CCC:

“The protection of data in use by performing compu-
tation in a hardware-based Trusted Execution Envi-
ronment” [Sect.  2.1, p. 5 in Confidential Computing 
consortium (2021a)]

In contrast to the above definition based on hardware-
based Trusted Execution Environment (HW TEE), in 
CCC scope white paper, it is considered to be based on 
programmable2 HW TEE [cf. Fig. 1 in  Confidential Com-
puting consortium (2021c)]. It is evident from Fig. 1 that 
the set of programmable HW TEEs (prog_HW_TEE) is a 
proper subset of the set of HW TEEs (HW_TEE), i.e.,

(1)prog_HW_TEE ⊂ HW_TEE

Homomorphic
Encryption

Multi-Party
Computation

Privacy-Preserving
Computation

Programmable

Virtualized
software TEEs

TPM

Trusted Execution Environments

Hardware TEEs

Fig. 1  Venn diagram, illustrating technologies for secure 
computation, produced by Confidential Computing Consortium 
(CCC) as a result of a survey (2021a)

2  The definition of programmable itself in Confidential Computing con-
sortium (2021a) is ambiguous (more details in "Programmability" Section). 
However, our argument still holds whatever definition of programmable is 
considered.
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Hence, the two definitions of CC within the CCC white 
papers are competing. Moreover, even the members of 
CCC do not agree on the definition of CC. For instance, 
researchers at Arm (member of CCC) define CC to 
include everything in the Venn diagram in Fig.  1 (Mul-
ligan et al. 2021). Therefore, the unique definition claim 
of CCC is false.

We now analyze the claim about multiple competing 
definitions of other terms. In contrast to CC, other terms 
used in the figure are formally defined in the literature. 
For instance, HE is formally defined by Fontaine and 
Galand (2007) as:

Let M (resp., C ) denote the set of plaintexts (resp., 
ciphertexts). An encryption scheme is said to be homo-
morphic if for any given encryption key k the encryption 
function E satisfies

for some operators ⊙M in M and ⊙C in C , where ←− 
means “can be directly computed from,” that is, without 
any intermediate decryption.

If ( M , ⊙M ) and ( C , ⊙C ) are groups, we have a group 
homomorphism. We say a scheme is additively homo-
morphic if we consider addition operators, and multi-
plicatively homomorphic if we consider multiplication 
operators.

Similar to HE, MPC is defined by Evans et  al. (2018). 
Privacy-preserving computation, like secure computa-
tion, is a general term and is interpreted differently based 
on the privacy goals, such as input privacy or output pri-
vacy. Hence, the claim of CCC is not true.

Trusted Execution Environment (TEE)
CCC defines TEE as:

“An environment that provides a level of assurance of 
the following three properties:

•	 Data confidentiality: Unauthorized entities cannot 
view data while it is in use within the TEE.

•	 Data integrity: Unauthorized entities cannot add, 
remove, or alter data while it is in use within the TEE.

•	 Code integrity: Unauthorized entities cannot 
add, remove, or alter code executing in the TEE” 
[Sect. 3.1, p.6 in Confidential Computing consortium 
(2021a)].

We observe the following issues in this definition:

•	 This definition of TEE is quite vague. For example, 
it is unclear what is meant by “a level of assurance”, 
and it can be interpreted in various ways. Similarly, 
“data” is undefined and can be interpreted to mean 

∀m1,m2 ∈ M, E(m1 ⊙M m2) ←− E(m1)⊙C E(m2)

all data or a well-defined subset of data. Moreover, no 
description of “unauthorized entities” is provided.

•	 The definition is not precise enough to characterize 
TEEs. For example, all three properties are satisfied 
by HSMs also.

•	 Both fundamental components of a security defini-
tion, according to Katz and Lindell (2020), are miss-
ing, i.e., the definition of TEE neither clearly defines 
what constitutes a successful attack, nor does it spec-
ify the threat model, i.e., (computational) power of 
the adversary, e.g., probabilistic polynomial time.

In summary, the definition of TEE is vague and incom-
plete. With such a definition, it may not be possible to 
classify an environment as a TEE reliably or to have a 
meaningful comparison among different TEE solutions 
from different vendors.

TEE environment
Although the term “TEE” is somewhat defined in CCC 
white paper, another term, “TEE environments”, is used 
and remains undefined (Confidential Computing consor-
tium 2021a). Expanding the abbreviation TEE, it stands 
for “Trusted Execution Environment environments”. The 
two terms cannot be interpreted as synonyms because, in 
one place, they are used together:

“Attestation of TEEs and TEE environments” [Sect. 5.1, 
p. 10 in Confidential Computing consortium (2021a)]

The term “TEE environments” is also not defined in 
any of the references of the white paper (Confidential 
Computing consortium 2021a). Therefore, the difference 
between the two terms is not clear.

Hardware‑based TEE
It is important to define HW TEE and contrast it with 
virtualized software TEE because one of the CC defini-
tions is dependent on HW TEEs (Confidential Comput-
ing consortium 2021a). Given the CCC claim that these 
two sets are disjoint (Fig.  1), it should be possible to 
clearly and distinctly define the two terms. However, pre-
cise definitions of HW-based TEE and virtualized soft-
ware TEE are missing. For instance, it is unclear whether 
hardware includes firmware.

Programmability
Since one of the definitions of CC by CCC is based on pro-
grammable HW TEEs (Confidential Computing consortium 
2021c), it is also important to clearly define programmabil-
ity. However, it is not the case, and there are at least two dif-
ferent possible interpretations of programmability:
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•	 TEE can be programmed with arbitrary code.
•	 TEE supports only a limited set of operations and 

is thus limited to specialized problems that can be 
framed in terms of supported operations.

It should be clarified that the interpretation of program-
mability is Turing-complete, i.e., arbitrary code can be 
run in a programmable TEE. Moreover, for completeness 
in Fig. 1, the programmable set should also be depicted 
for virtualized software TEEs since it is shown only for 
HW TEEs.

Attestation
CCC defines attestation as:

“Attestation is the process by which one party, called 
a ‘Verifier’, assesses the trustworthiness of a potentially 
untrusted peer, i.e., the ‘Attester’” [Sect. 6, p. 14 in Confi-
dential Computing consortium (2021a)].

Here, the definition is missing a vital party namely 
‘Relying Party’, as defined in Birkholz et al. (2023). More-
over, the notion of measurement, which is a key com-
ponent of attestation (Szefer 2018), is not explicit in the 
definition. A fundamental property of attestation is that 
the attested entity must not be able to lie about the state 
(i.e., code, configuration and data) that it is in. Hence, the 
definition of attestation should explicitly include some 
form of trusted measurements of both code and con-
figuration of a TEE’s platform as well as the code that 
executes inside the TEE, its configuration and some TEE-
held data.

Attestation in CC
Compared to purely cryptographic technologies (such 
as Fully Homomorphic Encryption (FHE) and Secure 
Multi-Party Computation), CC using HW TEEs on 
commercial architectures has much more trust in hard-
ware and software components (Szefer 2018). Hence, 
in HW TEEs, it is vital to attest that the hardware is 
up to date with the latest security features. Without 
attestation, TEEs do not provide better security guar-
antees than conventional computing under the adver-
sary models considered in CC. This is a consequence of 
the fact that without attestation, a remote user cannot 
distinguish between a malicious platform and a genu-
ine one. This holds even with alternatives of attesta-
tion, such as authentication. Therefore, the definition of 
CC is incomplete without the fundamental process of 
attestation.

CCC acknowledges the importance of attestation by 
devoting a complete section (Sect. 6) in the white paper 
(Confidential Computing consortium 2021a) to attesta-
tion and by stating:

“Any attack that could compromise the attestation of 
a TEE instance could lead to a workload or data being 
compromised in turn” [Sect.  5.2.1, p. 11 in Confidential 
Computing consortium (2021a)].

However, it is not reflected in the definition of CC.
In summary, the definitions by CCC are imprecise, 

incomplete and even conflicting. Table 1 provides a sum-
mary of issues and some recommendations.

Table 1  Summary of key issues in the definitions of terms related to CC, and recommendations for CCC​

The recommendation “Formal, or at least precise, clear and consistent, definitions should be given.” applies to all rows and therefore, it is not mentioned in the table

# Terms Issues Recommendations

1 CC HW TEE (Confidential Computing consortium 2021a) versus 
programmable HW TEE (Confidential Computing consortium 
2021c)

Claim on unique definition of CC and multiple conflicting 
definitions of other technologies should be removed.

Conflicting definition by researchers at Arm Mulligan et al. 
(2021)

Other technologies, e.g., HE, are even formally defined Katz 
and Lindell (2020).

2 TEE Ambiguous terms A clear and distinguishing definition should be given.

Definition satisfied by HSM also

Unclear threat model

3 TEE
Environment

Undefined The term should be rephrased. It should be compared and 
contrasted with TEE for clarity.

4 HW TEE Undefined It should be compared and contrasted with virtualized SW TEE 
for clarity.

5 Programmability Arbitrary code versus limited set of operations It should be clarified that programmability is Turing-complete.

6 Attestation Key components, such as Relying Party and measurement, are 
missing

The definition should explicitly include Relying Party and some 
form of trusted measurement.

7 Attestation in
CC

Incomplete definition of CC The definition of CC should include attestation
as it is a key feature of CC.
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Comparison of CC with related technologies
This section presents a review of the survey conducted 
by CCC TAC regarding the comparison of CC with other 
related technologies. One of the most important crite-
ria—threat model—for the security comparison of tech-
nologies is not specified by CCC. Moreover, only a few 
references are provided by CCC on the survey. The refer-
ences provided are too broad (such as Wikipedia pages) 
and unreviewed (such as blog posts). Additionally, wher-
ever provided, argumentation and reasoning are gener-
ally poor. Hence, there is insufficient scientific evidence, 
in general, for a reader to trust the survey results, e.g., 
figures and tables.

In the following, we present some of the key issues con-
cerning the comparison of CC with related technologies: 

1.	 One of the most important criteria for any meaning-
ful comparison of security properties is the specifi-
cation of the threat model. Unlike TEEs, neither the 
hardware nor the processor manufacturer needs to 
be trusted3 in FHE (Gentry 2009). Among the soft-
ware privilege levels, at least one of the application, 
operating system or hypervisor needs to be trusted 
in the commercial TEE solutions available, whereas 
none of these needs to be trusted in FHE. Therefore, 
there is not a TCB anymore in FHE in some sense. 
On the contrary, any bug or vulnerability in the TCB 
in TEEs can be exploited to nullify the security pro-
tections, e.g., System Management Mode (SMM)-
based rootkits (Embleton et  al. 2013) and platform 
management engine-based attacks. Additionally, TEE 
users have to trust the code running as part of the 
TCB, which is often proprietary, notably for the secu-
rity engine, with no runtime monitoring or reporting 
capabilities, leading to security through obscurity. 

Typically, side channels are not a part of the threat 
model of commercial TEEs, whereas in FHE plaintext 
information is not available anywhere on the system 
that could leak out (Szefer 2018). Therefore, with an 
unspecified threat model in Sect. 4.1, a security com-
parison by CCC (2021a) shown in Table 2 has limited 
value.

2.	 CCC claims that TPM is a TEE (Confidential Com-
puting consortium 2021a). This claim is made by 
showing TPM completely within TEEs in the Venn 
diagram shown in Fig.  1, where according to CCC, 
the elements of sets are existing definitions of vari-
ous concepts (Confidential Computing Consortium 
2020). Although there is a disclaimer about multiple 
competing definitions of the terms, no supporting 
evidence, reference or argument is provided that jus-
tifies or even implies that all TPMs are TEEs. Assum-
ing this claim to be true, TPM must satisfy the CCC 
definition of TEEs, i.e., satisfy the three properties 
of data integrity, data confidentiality and code integ-
rity. However, this is contradicted by Table 2 in CCC 
white paper itself (Confidential Computing consor-
tium 2021a), where it is shown that TPM can provide 
integrity and confidentiality for keys only, as opposed 
to arbitrary data. The clear contradiction to the claim 
is further confirmed by the statement of Dave Thaler, 
the chair of CCC TAC, in one of the CCC webinars 
(2020d): “If something does not have a Y, Y, Y (each Y 
corresponding to ‘Yes’ for the properties data confi-
dentiality, data integrity, and code integrity), then we 
don’t call it a TEE, we call it something else.” More 
formally, according to the definition of TEE by CCC, 
each element of the TEE set should satisfy the three 
properties. We represent this as follows: 

(2)

TEE = {x : (x ∈ DataConf ) ∧ (x ∈ DataInt)

∧ (x ∈ CodeInt)}

Table 2  Comparison of security properties of hardware-based trusted execution environment (HW TEE), Homomorphic encryption 
(HE) and trusted platform module (TPM) by CCC (cf. Table 1 in Confidential Computing consortium (2021a)

HW TEE Homomorphic encryption Secure element
e.g., TPM

Data integrity Yes Yes (subject to code integrity) Keys only

Data confidentiality Yes Yes Keys only

Code integrity Yes No Yes

Code confidentiality Yes (may require work) No Yes

Authenticated Launch Varies No No

Programmability Yes Partial (“circuits”) No

Attestability Yes No Yes

Recoverability Yes No Yes

3  The discussion here is not relevant for availability because none of the com-
mercial TEEs currently address availability issues.
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 where DataConf, DataInt and CodeInt represent the 
sets of technologies satisfying data confidentiality, 
data integrity and code integrity, respectively. Now, 
from Fig. 1 by CCC, TPM is a proper subset of TEE, 
i.e., 

 Since TPM is a subset of TEE, each element of TPM 
should also satisfy the three properties of TEE. This 
contradicts Table  2 by CCC, where TPM provides 
confidentiality and integrity for keys only, as opposed 
to TEE which provides confidentiality and integrity 
for arbitrary data. Hence, CCC literature itself con-
tradicts the claim of TPM as a TEE.

3.	 The only place in the CCC white papers where some 
argumentation is provided is related to Table  2 in 
Sect.  4.1 in Confidential Computing Consortium 
(2021a). Here we list a couple of issues related to 
Table 2:

•	Although some reasoning is provided in Sect. 4.1 
for TPM, it does not trivially lead to the results 
concluded for all Secure Elements in Table  2. 
Whatever is reasoned about TPM cannot be 
generalized to all Secure Elements without fur-
ther reasoning. A logical way of reasoning would 
be to justify it for Secure Element, and then it 
can be applied to TPM as a special case.

•	We argue that the comparison criteria in Table 2 
are sometimes misleading. A “No” does not 
necessarily mean that technology offers lower 
security than a “Yes”. It may be the case that the 
property is not relevant. For example, attestabil-
ity may not be required for HE for semi-honest 
adversaries.

4.	 Trusted Computing is a related technology that is 
often confused with CC. For example, some authors, 
such as Costan et  al. (2016, 2017a, 2017b) use 
Trusted Computing as a synonym for CC (Ahmad-
Reza Sadeghi 2021). Similarly, the Wikipedia page 
for Trusted Computing states, “Trusted Computing, 
also often referred to as Confidential Computing 
(2021).” To avoid confusion, it is important to clearly 
distinguish CC from Trusted Computing, whereas 
CCC does not mention Trusted Computing in white 
papers.

5.	 It is not clear why related technologies, such as 
HSMs (Anderson 2020), MPC (Evans et al. 2018) and 
Zero-Knowledge Proofs are not considered for a fair 
comparison in Sect.  4 in Confidential Computing 
consortium (2021a).

(3)TPM ⊂ TEE

6.	 CCC claims that ambiguity in definitions of HE and 
MPC leads to an intersection between the two sets in 
Fig.  1 (Confidential Computing consortium 2021a). 
However, the ambiguity is not specified. Similarly, 
the reasoning for the overlap between TPM and 
HW TEEs in Fig. 1 is not presented. Such ambigui-
ties should be justified with precise definitions, refer-
ences and arguments.

Conclusion
Despite the undeniable importance of formal definitions, 
CC and its related terms still have ambiguous, incom-
plete, and conflicting definitions. We demonstrated this 
with the help of concrete examples of various terms, 
including TEEs, hardware-based TEEs and attestation. 
We also demonstrated that the security comparison 
among the various technologies presented by CCC with-
out a clear threat model is neither fair nor scientific. We 
also highlighted other issues, such as lack of scientific 
evidence and argumentation in the comparison. We pro-
vided some initial recommendations for fixing definitions 
as well as comparison. However, formal definitions of the 
terminology related to CC and a detailed scientific sur-
vey of the technologies for a fair comparison remains a 
crucial area to be explored in the future. We are actively 
engaging with the CCC TAC to address the identified 
issues.
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