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IPatch: a remote adversarial patch
Yisroel Mirsky*    

Abstract 

Applications such as autonomous vehicles and medical screening use deep learning models to localize and iden-
tify hundreds of objects in a single frame. In the past, it has been shown how an attacker can fool these models by 
placing an adversarial patch within a scene. However, these patches must be placed in the target location and do 
not explicitly alter the semantics elsewhere in the image. In this paper, we introduce a new type of adversarial patch 
which alters a model’s perception of an image’s semantics. These patches can be placed anywhere within an image 
to change the classification or semantics of locations far from the patch. We call this new class of adversarial exam-
ples ‘remote adversarial patches’ (RAP). We implement our own RAP called IPatch and perform an in-depth analysis 
on without pixel clipping on image segmentation RAP attacks using five state-of-the-art architectures with eight 
different encoders on the CamVid street view dataset. Moreover, we demonstrate that the attack can be extended 
to object recognition models with preliminary results on the popular YOLOv3 model. We found that the patch can 
change the classification of a remote target region with a success rate of up to 93% on average.

Introduction
Deep learning has become the go-to method for auto-
mating image-based tasks. This is because, deep neural 
networks (DNNs) are excellent at learning and identify-
ing spatial patterns and abstract concepts. With advances 
in both hardware and neural architectures, deep learning 
has become both a practical and reliable solution. Com-
panies now use image-based deep learning to automate 
tasks in life critical operations such as autonomous driv-
ing Leetaru (2019); Autopilot ai-tesla (2021), surveillance 
Vincent (2018), and medical image screening Siemens 
(2021).

In tasks such as these, multiple objects must be identi-
fied per image. One way to accomplish this is to predict a 
class probability for each pixel in the input image x. This 
approach is called image segmentation and companies 
such as Telsa use it to guide their autonomous vehicles 
safely through an environment Autopilot ai-tesla (2021). 

Another approach is called object detection where x is 
split into a grid of cells or regions and the model predicts 
both a class probability and a bounding box for each of 
them Redmon and Farhadi (2018); Ren et  al. (2015). In 
both cases, these models rely on image semantics to suc-
cessfully parse and interpret a scene.

Just like other deep learning models, these seman-
tic models are also susceptible to adversarial attacks. In 
2017, researchers demonstrated how a small ‘adversarial’ 
patch can be placed in a real world scene and override 
an image-classifier’s prediction, regardless of the patch’s 
location or orientation Brown et  al. (2017). This gave 
rise to a number of works which demonstrated the con-
cept of adversarial patches against image segmentation 
and object detection models Song et al. (2018); Liu et al. 
(2018); Chen et  al. (2018); Sitawarin et  al. (2018); Lee 
and Kolter (2019); Thys et al. (2019); Zhao et al. (2019); 
Li et al. (2020); den Hollander et al. (2020); Huang et al. 
(2020); Hoory et  al. (2020); Wu et  al. (2020). However, 
current adversarial patches are limited in the following 
ways: 

Location	� Only predictions around the patch 
itself are explicitly affected. This limits 
where objects can be made to ‘appear’ 
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in a scene. For example, a patch can-
not make a plane appear in the sky 
and it is difficult to put a patch in the 
middle of a busy road. Furthermore, 
patches in noticeable areas can raise 
suspicion (e.g., a stop sign with a 
colorful patch on it).

Interpretation	� Existing patches do not explicitly 
alter the shape or layout of a scene’s 
perceived semantics. Changes to 
these semantics can be used to guide 
behaviors (e.g., drive a car off the road 
Teichmann et  al. (2018) or change a 
head count He et  al. (2020)) and has 
wide implications on tasks such as 
surveillance Iglovikov et  al. (2017); 
Vincent (2018) and medical screening 
Prajna and Nath (2021) among others.

In this paper we identify a new type of attack which 
we call a Remote Adversarial Patch (RAP). A RAP is an 
adversarial patch which can alter an image’s perceived 
semantics from a remote location in the image. Our 
implementation of a RAP (IPatch) can be placed any-
where in the field of view and alter the predictions of 
nearly any predetermined location within the same view. 
This is demonstrated in Fig.  1 where an attacker has 
crafted an IPatch which causes a segmentation model to 
think that there is pavement (a sidewalk) in the middle 
of the road. Moreover, this adversarial attack is robust 
because the same patch works on different images using 
different positions and scales. Therefore, this attack more 
flexible and more covert than previous approaches. later 
in " Threat model" section we discuss the attack model 
further.

Since the IPatch can alter an image’s perceived seman-
tics, and attacker can craft patches which cause these 
models to see objects of arbitrary shapes and classes. For 
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Fig. 1  An example of a remote adversarial attack on a segmentation model. Here the patch has been designed to alter a predetermined location 
(the red box) to the class of ‘pavement’. The same patch works on different images and with different positions and scales
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example, in Fig.  2 a street view segmentation model is 
convinced that a slice of bread is a tree shaped like the 
USENIX security symposium logo (top) or the NDSS 
logo (bottom). This is possible because semantic models 
rely on global and contextual features to parse an image. 
However, an object and its contextual information can be 
very far apart in x. For example, consider an image with a 
boat next to the water. Here, the water will boost the con-
fidence of the boat’s classification even though the boat is 
not in the water. The IPatch exploits these correlations by 
masquerading as these contextual features.

Creating a robust RAP is more challenging than exist-
ing adversarial patches. This is because the content of x 
directly affects the leverage of the patch. For example, 
an IPatch cannot make a segmentation model perceive 
remote semantics on a blank image. However, to create 
a robust patch, we must be able to generalize to different 
images which have not been seen before. To overcome 
these challenges, we (1) use an incremental training strat-
egy to slowly increase the entropy of the expectation over 
transformation (EoT) objective and (2) use Kullback–Lei-
bler divergence loss to help the optimizer leverage and 
exploit the contextual relationships.

In this work, we study how RAPs work without clipping 
the pixel ranges to understand how locality of a patch can 
affect remote regions. In particular, we study IPatches as 
a RAP against semantic segmentation models. We also 
demonstrate that the same technique can be applied to 
object detectors, such as YOLO, as well. To evaluate the 
IPatch, we train 37 segmentation models using 8 differ-
ent encoders and 5 state-of-the-art architectures. In our 
evaluations, we focus on the autonomous car scenario 
Autopilot ai-tesla (2021); Siam et al. (2018), and perform 

rigorous tests to determine the limitations and capabili-
ties of the attack. On the top 4 classes, we found that the 
attack works up to 93% of the time on average, depend-
ing on the victim’s model. We also found that all of the 
segmentation models are susceptible to the attack, where 
the most susceptible architectures were the FPN and 
Unet++ and the least susceptible architecture was the 
PSPNet. Finally, even if the attacker does not have the 
same architecture as the victim, we found that without 
any additional training effort, an IPatch trained on one 
architecture works on others with an attack success rate 
of up to 25.3%.

The contributions of this paper are as follows:

•	 We introduce a new class of adversarial patches 
(RAP) which can manipulate a scene’s interpretation 
remotely and explicitly. This type of attack not only 
has significant implications on the security of auton-
omous vehicles, but also on a wide range of seman-
tic-based applications such as medical scan analysis, 
surveillance, and robotics (section "Threat model").

•	 We present a training framework which enables the 
creation of a robust RAP (IPatch) by incrementally 
increasing the training entropy. Without this strategy, 
the entropy starts too high which makes it difficult 
to converge on some learning objectives, especially 
given large patch transformations on scale, shift, and 
so on (section "Makingan IPatch").

•	 We provide an in-depth evaluation of the patch used 
as a remote adversarial attack against road segmenta-
tion models (section "Evaluation"). We show that the 
attack is robust, universal (works on unseen images 
sampled from the same distribution), and has trans-

Fig. 2  An example of how an IPatch can change the semantics of an image to an arbitrary shape. Here, a street view segmentation model is 
convinced that the slice of bread is a tree in the shape of the USENIX logo (top) and NDSS logo (bottom)
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ferability (works across multiple models). We also 
provide initial results which demonstrate that the 
attack works on object detectors as well (specifically 
YOLOv3).

•	 We identify the attack’s limitations and provide 
insight as to why this attack can alter the percep-
tion of remote regions in an image. Building on these 
observations, we suggest countermeasures and direc-
tions for future work (section "Discussion& counter-
measures").

•	 To the best of our knowledge, this the first adversarial 
patch demonstrated on segmentation models (sec-
tion "Related works").

Related works
Soon after the popularization of deep learning, research-
ers demonstrated that DNNs can be exploited using 
adversarial examples Biggio and Roli (2018). In 2014 it 
was shown how an attacker can alter an image-classifi-
cation model’s predictions by adding an imperceivable 
amount of noise to the input image Szegedy et al. (2013); 
Goodfellow et  al. (2014); Nguyen et  al. (2015). Initially, 
these attacks were impractical to perform in a real envi-
ronment since every combination of lighting, camera 
noise, and perspective would require a different adver-
sarial perturbation Luo et  al. (2015); Lu et  al. (2017). 
However, in 2017 the authors of Athalye et  al. (2018) 
showed that an adversary can consider these distortions 
while generating the adversarial example in a process 
called Expectation over Transformation (EoT). Using 
this method, the authors were able to generate robust 
adversarial samples which can be deployed in the real 
world. In the same year, the authors of Brown et al. (2017) 
used EoT to create adversarial patches. Their adversarial 
patches were designed to fool image-classifiers (single-
object detection models).

Later in 2018, the authors of Song et al. (2018) devel-
oped an adversarial patch that works on object detection 
models (multi-object detection models). More recently, 
researchers have proposed patches which can remove 
objects which wear the patch Liu et  al. (2018); Zhao 
et al. (2019); Thys et al. (2019); Wu et al. (2020); Huang 
et al. (2020); den Hollander et al. (2020); Li et al. (2020) 
and patches which can perform denial of service (DoS) 
attacks by corrupting a scene’s interpretation Liu et  al. 
(2018); Lee and Kolter (2019).

In Table 1, we summarize the related works on adver-
sarial examples against image segmentation and object 
detection models (the domain of the proposed attack). In 
general, the attack goals of these papers are either add/
change an object in the scene or to remove all objects 
altogether (DoS). The methods which add adversarial 

perturbations (noise) can change the semantics of an 
image at any location Hendrik Metzen et al. (2017); Fis-
cher et  al. (2017); Arnab et  al. (2018); Ozbulak et  al. 
(2019); Kang et al. (2020), but they cannot be deployed in 
the real world since they are applied directly to an image 
itself. Currently, there no patches for image segmentation 
models, and the patches for object detection models only 
affect the prediction around the patch itself. The excep-
tion are patches which perform DoS attacks by remov-
ing/corrupting all objects detected in the scene like Liu 
et al. (2018); Lee and Kolter (2019).

Therefore, to the best of our knowledge, the attack 
which we introduce is the first RAP, and (1) the only 
method which can add, change, or remove objects in a 
scene remotely (far from the location of the patch itself ), 
(2) the first adversarial patch proposed for segmentation 
networks, and (3) the first adversarial patch which can 
cause a model to perceive custom semantic shapes.

Threat model
The Vulnerability. The vulnerability which this paper 
introduces is that semantic models, such as image seg-
mentation models, utilize global and contextual features 
in an image to improve their predictive capabilities. 
However, these dependencies expose channels which can 
an attacker can exploit to change the interpretation of an 
image from one remote location to another.

The Attack Scenario. In this work we will focus on 
the remote adversarial attack scenario. In this attack sce-
nario, the victim has an application which uses the image 
segmentation model M. The attacker wants M to predict 
a specific class at a specific location L, while looking at 
a certain scene. To accomplish this, the attacker needs 
a training set of 1 or more images and a segmentation 
model to work with.

For the training set, the attacker has two options: (1) 
obtain images similar to those used to train M, or (2) take 
pictures of the target scene. For the model, the attacker 
can either follow a white-box or black-box approach: 
In a white box-approach, the attacker obtains a copy 
of M to achieve the most accurate results. The white-
box approach is a common assumption for adversarial 
patches. Alternatively, the attacker can follow a black-box 
approach and train a surrogate model M′ on a similar 
dataset used to train M. Although the black box approach 
performs worse, we have found that there is some trans-
ferability between a patch trained on one model and then 
used against another (section "Evaluation"). Finally, the 
attacker generates an IPatch P which targets L using X 
and M.

Motivation. There are several reasons why an attacker 
would want to use an IPatch over an ordinary adversarial 
patch (illustrated in Fig. 3: 
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Fig. 3  Some illustrative examples showing how a remote adversarial patch can be used by an attacker

Table 1  Related works on adversarial examples which target image segmentation and object detection

∗Patch can be anywhere only when used to hide all objects in the scene (DoS)

Type Attack goal Deployment Flexibility

Patch Noise Add/Change Hide Applied 
to image

Physically 
deployed

Must be 
near/on 
target

Can be 
placed 
anywhere

Object Detection Song et al. (2018) • • • •

Chen et al. (2018) • • • •

Liu et al. (2018) • • • • • •*

Sitawarin et al. (2018) • • • •

Wei et al. (2018) • • • •

Zhao et al. (2019) • • • •

Thys et al. (2019) • • • •

Lee and Kolter (2019) • • • •*

Wu et al. (2020) • • • •

Hoory et al. (2020) • • • •

Zhao et al. (2020) • • • •

Huang et al. (2020) • • • •

Chow et al. (2020) • • • • •

den Hollander et al. (2020) • • • •

Zhang et al. (2020) • • • •

Zolfi et al. (2020) • • • •

Li et al. (2020) • • • •

Li et al. (2020) • • • •

den Hollander et al. (2020) • • • •

Img. Segment. Fischer et al. (2017) • • • •

Hendrik Metzen et al. (2017) • • • •

Arnab et al. (2018) • • • •

Kang et al. (2020) • • • •

Ozbulak et al. (2019) • • • •

Both Xie et al. (2017) • • • • •

IPatch • • • • •
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Stealth	� The attacker may want to place the 
patch in a less obvious place so it won’t 
be removed or noticed by the victim. 
For example, a sticker on a stop sign is 
anomalous and can be contextually iden-
tified as malicious Sitawarin et al. (2018) 
but a sticker on a nearby billboard is 
less obvious. Another example, is in the 
domain of medicine where segmenta-
tion models are used to highlight and 
identify different lesions such as tumors. 
Here, an attacker can’t put a patch in the 
image in the location of the lesion since 
it would be an obvious attack. However, 
the attack could be trigger remotely by 
placing a dark RAP in the dark space of 
a scan where it is common to have noise, 
or in a location of the scan which is not 
under investigation (e.g., the first few 
slices on the z-axis). For motivations why 
an attacker would want to target medical 
scans, see Mirsky et al. (2019).

Practicality	� The attacker may want to generate an 
object or semantic illusion in a location 
which is hard to reach or impractical to 
place a patch on it. For example, in the 
sky region, on the back of an arbitrary car 
on the freeway.

Flexibility	� The attacker may need to craft or alter 
specific semantics for a scene. For exam-
ple, many works show how image seg-
mentation can be used to identify homes, 
roads and resources from satellite and 
drone footage Audebert et  al. (2017). 
Here an attacker can feed false intel by 
hiding or increasing the number of struc-
tures, people, and resources before it can 
be investigated manually.

Overall, the IPatch attack is more flexible and enables 
more attack vectors than location-based patches (e.g., 
Song et al. (2018); den Hollander et al. (2020)). However, 
it is significantly more challenging to generate an IPatch. 
Therefore, its flexibility comes with a trade-off in terms of 
attack performance.

Making an IPatch
In this section we first provide an overview of how 
image segmentation models work. Then we present our 
approach on how to create an IPatch.

Technical background
There are a wide variety of deep learning models 
for image segmentation Garcia-Garcia et  al. (2018); 
Minaee et al. (2020). The most common form involves 
an encoder En and decoder De such that

illustrated in Fig.  4. The objective of a segmentation 
model is to take an N-by-M image (s) with 1-3 color 
channels and predict an N-by-M-by-C probability map-
ping ( ys ). The output ys can be mapped directly to the 
pixels of x such that ys[i, j, k] is the probability that pixel 
x[i,  j] belongs to the k-th class (among the C possible 
classes).

To train S, the common approach is to follow two 
phases: In the first phase, the encoder network is 
trained as an image-classifier on a large image data-
set in a supervised manner (i.e., where each image x is 
associated with a label y). Note that the classifier’s task 
is to predict a single class for the entire image (e.g., x is 
a dog). After training the classifier, we discard the dense 
layers at the end of the network (used to predict y) and 
retain the convolutional layers at the front of encoder 
En. In this way, we can use the feature mapping learned 
by the classifier to perform image segmentation. In the 
second phase, the decoder architecture De is added on 
and S is trained end-to-end. Often, the weights of En 
are locked during this phase, and we do the same in this 
paper.

(1)S(x) = De(En(x))

Fig. 4  A basic schematic showing how a common Image 
Segmentation model is trained and executed. En is an encoder 
architecture which compressed an input into a smaller 
representation. De is a decoder model which expands an encoded 
representation into meaningful content
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One reason why the encoder-decoder approach is so 
popular, is because obtaining a labeled segmentation 
ground truth ys is significantly more challenging than 
for image classification y (massive datasets for classifi-
cation exist and new datasets can be crowd sourced as 
well). Therefore, by using a pre-trained encoder, far fewer 
examples of segmentations are needed to achieve quality 
results.

To train S, a differentiable loss function L is used to 
compare the model’s predicted output y′s to the ground 
truth ys in order to perform backpropagation and update 
network’s weights. There are many loss functions used 
in for segmentation. One common approach is to simply 
apply the binary cross entropy loss ( LCE ) since S is essen-
tially trying to solve a multi-class classification problem. 
However, LCE does not consider whether a pixel is on 
the boundary or not so results tends to be blurry and be 
biased to large segments such as backgrounds Deng et al. 
(2018). To counter this issue, in 2016 the authors of Mil-
letari et al. (2016) proposed using Dice loss ( LD ) for med-
ical image segmentation, and it has since been considered 
a state-of-the-art approach. The Dice loss is defined as

We use LD to train all of the image segmentation models 
in this paper.

When selecting the encoder’s model, there are a wide 
variety of options. Some include ResNext, DenseNet, 
xception, EfficientNet, MobileNet, DPN, VGG, 
and variations thereof. However, regarding the decod-
er’s architecture, there are several which are considered 
state-of-the-art. Many of them utilize a ‘feature pyra-
mid’ approach and skip connections to identify features 
at multiple scales, or an autoencoder (encoder decoder 
pair) to encode and extract the semantics. We will now 
briefly describe the five architectures used in this paper:

Unet++  Zhou et al. (2018): An autoencoder architec-
ture which improves on its predecessor, the Unet. The 
encoder and decoder are connected through a series of 
nested dense skip connections which reduce the seman-
tic gap between the feature maps of the two networks.

Linknet Chaurasia et  al. (2017): An efficient autoen-
coder which passes spatial information across the net-
work to avoid losing it in the encoder’s compression.

FPN Lin et al. (2017): A feature pyramid network which 
uses lateral connections across a fully convolution neural 
network (FCN) to utilize feature maps learned from mul-
tiple image scales.

PSPNet Zhao et al. (2017): An FCN which uses a pyra-
mid parsing module on different sub-region represen-
tations in order to better capture global category clues. 

(2)LD(x, y) =
2 N

i xiyi
N
i x2i +

N
i y2i

The architecture won first place in multiple segmentation 
challenge contests.

PAN Li et al. (2018): A network which uses both pyra-
mid and global attention mechanisms to capture spatial 
and global semantic information.

Approach
In a remote adversarial attack, the attacker wants a region 
around the location L = (i, j) to be predicted as class k. To 
ensure that the optimizer does not waste energy on other 
semantics in the scene, we focus the effort to a region of 
operation. Let m denote the region operation and let t be 
the target pattern for that region. To capture m, we use 
an N-by-M-by-C mask of zeros. To select L, a square or 
circle with a radius of r pixels1 around L in m is marked 
with ones along the k-th channel. To insert an object, we 
set t = m since our objective is to change the probability 
of those pixels to one. To insert a custom shape (like in 
Fig. 2) t is set accordingly.

To generate a patch for the objective (L, k), we follow 
the EoT approach similar to previous works Brown et al. 
(2017); Song et al. (2018); Liu et al. (2018), but using our 
semantic masks. Concretely, we would like to find a patch 
P which is trained to optimize the following objective 
function

where X is a distribution of input images, ℓ is a distribu-
tion of patch locations, and S is a set of scales to resize P̂ . 
The operator A is the ‘Apply’ procedure which takes the 
current P̂ and inserts it into x while sampling uniformly 
on the distributions X, ℓ , and S.

We note that clipping must be applied to x to ensure 
the pixel values are within realistic bounds. However, 
in our study we do not perform clipping to understand 
the range of influence a remote patch can have across an 
image.

Loss Function. We experimented with many differ-
ent loss functions on the CamVid dataset Brostow et al. 
(2009): LCE,LD,L1,L2 , and LKL (Kullback–Leibler Diver-
gence loss). Most of these loss functions took too long to 
converge or got stuck in local optima. Instead, we found 
that L1 works best in emptier scenes (like Fig.  2) and 
LKL works best in busy scenes like those in CamVid. We 
believe the reason why LKL performs well busy scenes is 
because it measures the relative entropy from one distri-
bution to another. As a result, the optimizer had an easier 

(3)P = arg min
P̂

E
x∼X ,l∼ℓ,s∼S

[S(A(x, P̂, l, s))⊙m− t]

1  For an x with a dimension of 384x480, we found that a radius of 50 pixels 
empirically performs best when targeting region with a radius of 10 pixels.
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time ‘leeching’ nearby features and contexts in x to match 
the goal in t.

Creating a Robust RAP. In order to make an RAP 
which is robust to different transformations (scale and 
location), and universal to different images (not in the 
training set of the patch), we must use EoT. However, in 
some cases we found that the patch does not converge 
well when the range of (X, ℓ , S) is large (i.e, large shifts, 
hundreds of images, etc). This is because (1) the IPatch 
leverages the variable contents of x to impact S(y′s) and 
(2) the placement of P in x affects the influence of P on 
S(y′s).

For these cases, we propose an incremental train-
ing strategy where we gradually increase the place-
ment radius of the patch ℓ . Whenever the training has 
converged or a time limit has elapsed, we increase the 
radius by one pixel. We repeat this process until the 
entire dataset is covered. At the start of each epoch, we 
give the optimizer time to adjust by setting the learning 
rate to a fraction of its value and then slowly ramp it 
back up. A similar strategy can be applied to the other 
distributions, such as the number of images in X, the 
shift size, or the patch scale. This strategy works well 
because we gradually increase the entropy, enabling the 

optimizer capture foundational concepts. It can also 
be viewed that at each epoch we are placing the gradi-
ent descent optimizer at a more advantageous position 
instead of a random starting point.

To demonstrate the value of the incremental strat-
egy, we performed an experiment. We trained a RAP 
using 70k images from the BDD100k street segmenta-
tion dataset Yu et  al. (2018). The RAP was configured 
to make the center of th image perceived as the class 
‘tree’ when placed in any location within the image (i.e., 
a placement radius of 500 pixels). The experiment was 
performed using (1) our incremental training strategy 
by increasing the placement radius up to the maxi-
mum radius and (2) the baseline approach of training 
the patch using the maximum radius from the start. 
For the incremental strategy, the placement radius was 
increased by one pixel whenever the attack success 
rate reached 25%. In Fig. 5, we plot the results from the 
experiment. We found that that our approach reaches 
the maximum radius after one hour and then exceeds 
the performance of the baseline shortly after by a mar-
gin of 35%.

In summary, the training framework for creating an 
IPatch is as follows (illustrated in Fig. 6):

Training Procedure for an IPatch

Initialize an initial patch P̂ with random values and set its origin (default 
location in x) to be o. If incremental, then add one image to X. 
Otherwise, add all images to X. Repeat until P̂ has converged on the 
entire dataset:

1. Apply: Draw a batch of samples from X. For each sample x in the 
batch, perform a random transformation: scale down P̂ and shift its 
location from origin o.

2. Forward pass: Pass the batch through S and obtain the segmenta-
tion maps (as a set of y′s).

3. Apply mask: Take the product of each y′s with the mask m to omit 
irrelevant semantics.
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Fig. 6  An overview of the IPatch training framework for creating a RAP. For simplicity, only one sample x is shown, though in practice batches of 
images are used
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Training Procedure for an IPatch

 4. Loss & gradient: Compute the loss LKL(y
∗
s , t) and use it to perform 

back propagation through S to P̂.

 5-6. Update: Use gradient descent (e.g., Adamax) to update the values 
of P̂.

7. If incremental and the has time elapsed or training has con-
verged, then increase the entropy (e.g., patch placement radius) and 
ramp the learning rate.

Evaluation
To evaluate the IPatch as a RAP, we will focus our evalu-
ation on the scenario of autonomous vehicles. The task 
of street view segmentation is challenging because the 
scenes are typically very busy with many layers, objects, 
and wide perspectives Siam et  al. (2018). Therefore 
attacking this application is will provide us with good 
insights into the IPatch’s capabilities.

Datasets. We use the CamVid dataset Brostow et  al. 
(2009) to train our segmentation models and evaluate 
our adversarial patches. The CamVid dataset is a well-
known benchmark dataset used for image segmentation. 
It contains 46,869 street view images with a resolution 
of 360x480 from the point of view of a car. The images 
are supplied with pixel-wise annotations which indicate 
the class of the corresponding content (e.g., car, building, 
etc). The dataset comes split into three partitions: train 
Dtrain , test Dtest , and validation Dval . We use Dtrain to 
train the segmentation models and the rest to train the 
patches. This way there is will be no bias on the images 
which we attack. The Dtest dataset is used to evaluate the 
influence of the patch’s parameters (size and location) 
and to train robust patches with EoT. Finally, the Dval 
dataset is use to validate that the robust patches work on 
unseen imagery.

Segmentation Models. In our evaluations we trained 
and attacked 37 different models which were combina-
tions of 8 different encoders and 5 state-of-the-art seg-
mentation architectures.2 The encoders were the vgg19, 
densenet121, efficientnet-b4, efficientnet-b7, 
mobilenet_v2, resnext50_32x4d, dpn68, and 
xception. All of the models were obtained from the 
Torch library and were pretrained on the ImageNet Data-
set Deng et al. (2009). For the architectures, we used the 
implementations3 of the state-of-the-art segmentation 
networks described in section "Technical background". 
The models were trained on Dtrain for 100 epochs each, 
with a batch size of 8, learning rate of 1e-4, using Dice 
Loss LD and an Adam optimizer. Finally, to increase the 

training set size and improve generalization, we per-
formed data augmentation. The augmentations were: flip, 
shift, crop, blur, sharpen and change perspective, bright-
ness, and gamma.

The Experiments. We performed three experiments: 

EXP1:	� In this experiment we investigate the influence 
which a patch’s size and location have on the 
attack performance. We also investigate the 
influence of the remote target’s size and loca-
tion. Here patches are crafted to target individ-
ual images. Therefore, the results of this exper-
iment also tell us how well the attack performs 
on static images.

EXP2:	� To use this attack in the wild, the patch must 
work under various transformations and in 
new scenes. This experiment evaluates the 
attack’s robustness by (1) training the patches 
with EoT according to (3), and by (2) measur-
ing the performance of these patches on new 
images (unseen during training).

EXP3:	� To get an idea of the vulnerability’s prevalence, 
we attack 32 different segmentation models 
and measure their performance. To evaluate 
the case where the attacker has no informa-
tion on the model, we take the robust patches 
trained in EXP2 and use them on the other 36 
models to measure the attack’s transferability.

When measuring attack performance, we omit all 
cases where the targeted region already contains the tar-
get class. For all of the experiments, we trained on an 
NVIDIA Titan RTX with 24GB of RAM. For the opti-
mizer, we experimented on a variety of options in the 
Torch library. We found that the Adamax optimizer 
works best on the CamVid Dataset.

Patch Complexity. We found that the time it takes 
to train a patch varies depending on the difficulty of 
the objective function in equation (3). For example, if 
the patch is trained to work on a specific image and in 
a specific location, then it can take anywhere from 100 
to 1,000 epochs to converge. This is about 3  min using 
an NVIDIA Titan RTX with 24GB RAM. Complexity 
can increase if the target t is further from the patch, or 
if batches of random images are used when training with 
EoT. For example, with EoT we found it can take any-
where from 4-24 h to train a single patch.

EXP1: the impact of size and location
The purpose of this experiment is to see how the size 
and locations of a patch and its target affect the attack’s 
performance. In this experiment, we craft patches which 

2  Every combination of encoder and architecture except for the architecture 
PAN which was incompatible with three of the encoders.
3  https://​github.​com/​qubvel/​segme​ntati​on_​models.​pytor​ch

https://github.com/qubvel/segmentation_models.pytorch
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target a single image. Later in section "EXP2: patch 
robustness" we evaluate multi-image ‘robust’ patches.

Experiment Setup. For EXP1 we attacked the effi-
cientnet-b7_FPN model since it performed best on 
the CamVid dataset. A list the evaluations and param-
eters used in EXP1 can be found in Table 2. For each of 
these parameters, we varied their values while locking 
the rest to measure their influence. This was repeated 
for each of the model’s top six performing classes. Due 
to time restrictions,4 we only used the entirety of Dtest 
for the fixed parameter experiment. For the other experi-
ments, we used 20 random images from Dtest.

The training procedure was as follows: For each patch, 
we used a learning rate of 2.5 and stopped the training 
after three minutes to ensure that each of the five experi-
ments would take no more than 5 days. We note that 
in many cases, the patches were still converging so the 
results can be improved. Finally, we count a successful 
attack as any image with at least 80% of target t marked 
by the model as the target class.

Performance with all parameters locked
The results for the experiment, where the patch param-
eters are locked, can be found in Fig.  7. The top of the 
figure shows that the attack has a greater impact on 
structural classes than others. This might be because 
these semantics have the largest regions CamVid dataset 
(i.e., are common). As a result, the patch is able to lev-
erage these contexts better from one side of an image to 
another. For example, if there are is a row of buildings on 
one side of the road, then there is a higher probability 
that the other side will have one too. This kind of corre-
lation is exploited by the patch. The road class out per-
forms all the rest because the target t in this experiment 

is in the center of the image, where the road is most com-
monly found (77% of the images). However, the patch is 
able to successfully attack the classes of pavement, build-
ing, and tree at the same location, even though on the 
clean images, the model predicts 1.4%, 0.3%, and 0% of 
them to have these classes respectively (top of Fig. 7).

At the bottom of Fig. 7 we can see the aggregated con-
fidence of the model for each of the images in Dtest . The 
plot shows that all of the images are susceptible to the 
attack for at least one of the target classes.

Impact of the patch size
Figure  8 plots the model’s confidence over increasingly 
larger patch sizes. In the figure, we have marked 0.5 as 
the decision threshold which is the default for segmen-
tation models. This is because segmentation models per-
form binary-classification on each pixel. As a result, the 
confidence scores per class are either close to zero or one, 
but not so much in between (as seen in Fig. 7).

As expected, larger patches increase the attack success 
rate. However, the trade off appears to be linear (captured 
by the average in red). What is meaningful about these 
results is that some classes excel with smaller patch sizes 
(e.g., pavement and building) while others require larger 
ones to succeed (e.g., tree). This is probably because some 

Table 2  The parameters used in EXP1. The values listed for ‘size’ 
are both the height and width

 *P is scaled down to S from 100x100. **On the diagonal from the image center 
to bottom right. ***8x6 grid over entire image

Parameters

Patch P Target t

Experiment Size* S Location ℓ Size r Location L

Locked 80 (370,270) 20 (250,250)

Patch size 30:130 (370,270) 20 (250,250)

Patch location 80 ** 20 (250,250)

Target size 80 (370,270) 20:280 (250,250)

Target location 80 (370,270) 20 ***
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Fig. 7  The attack performance with locked parameters. Top- The 
average attack performance per class. Bottom- the aggregated 
confidence of the model on each image, where the max confidence 
per class is one

4  Each of these experiments on takes 3-5 days on a NVIDIA Titan RTX with 
24GB RAM.
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of the remote contextual semantics which the model 
considers cannot be compressed into small spaces when 
others can. Overall, we observe that the minimum patch 
size required to fool the model on a static image this size 
is about 60-75 pixels in width, and with a patch width of 
100 pixels, nearly all attacks succeed.

Impact of the patch location
In Fig. 9 we can see that the attack is highly effective for 
all classes up to about 62% of the distance away from 
the target (image center). The sharp drop in attack per-
formance for the tree and sky classes is understandable 
since there are fewer contextual semantics which can be 
exploited by the patch in the bottom right of the image. 
On the other hand, in areas just below the horizon (0−0.5 
on the x-axis), the patch can exploit contextual seman-
tics which the model uses (e.g., features such as lighting, 
reflections, and building geometry).

These results indicate that an attacker may be able to 
increase the likelihood of success by placing the patch on 
objects which have some contextual influence on the tar-
get region. For example, to create a crosswalk, it may be 
advantageous to put the sticker on a lamp post or parking 
meter since these objects may be found near crosswalks.

Impact of the target size
In this experiment, we increased the size of target t but 
observe the performance of the same 20x20 pixel region 
at the center of t (i.e., our objective). In Fig.  10 we can 
see that large targets do not perform well. The reason for 
this is that having a large target requires the IPatch to 
subdue more semantics. As a result, the patch fails and 
the region of t becomes patchy and an corrupted. Small 
targets fail because it is hard for the patch to make high 
precision results. Rather, there is a balance between the 
intended 20x20 target and the actual target painted in t. 
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Fig. 9  The average attack performance with different patch locations, shifted from near-center of x to the bottom-right
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We found that increasing the target size by a factor of 3 
improves the performance at the intended region.

The reason why a larger target helps the patch reach 
the 20x20 region is that the patch tends to ‘leech’ nearby 
semantic regions. This makes sense since it is easier to 
change the boundaries of existing semantics (e.g., per-
ceive a larger car) than generate new ones which are iso-
lated (e.g., a tree in the middle of the road). Therefore, the 
added target size encourages the model to perform simi-
lar tactics.

Impact of the target location
In Fig.  11 we present the attack performance when tar-
geting different remote locations in x. It is clear that the 
influence of a patch on different regions is dependent 
on both the image’s content and the targeted class. For 
example, it is easier to convince the model that any space 
under the horizon is a road, yet it is hard to change the 
class of the top-center to building because it is rarely 
found there. Overall, this experiment demonstrates that 
the patch can target locations on far remote locations 

within the image. However, this capability is not uniform 
across the classes, as we can see with the class ‘car’.

EXP2: patch robustness
In is experiment we evaluate how well a single patch per-
forms on (1) different transformations and (2) on multi-
ple seen and unseen images.

Experiment Setup. To perform this experiment, we 
used EoT (3) to train a single patch for each class. The 
incremental training framework from 4.2 was used with 
the patch origin o set to (370,270). For the patch size S, 
we sampled uniformly on the range of [50,80] pixels. 
For the shifts ℓ , we sampled uniformly within the entire 
bottom-right quadrant of x. We found that training the 
patch in one region helps it converge using the incremen-
tal strategy, while still generalizing to the opposite side. 
We targeted the same segmentation model used in EXP1, 
and the training was performed using a batch size of 20 
(the maximum for a 24GB GPU) with a learning rate of 
0.5.
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Generalization to Multiple Images In Fig.  12 we 
present the performance of the patches in the form of 
the model’s perception. The images demonstrate that 
the IPatch generalizes well to multiple images, even at 

different locations and scales. In Fig.  13 we present the 
attack performance when training on different numbers 
of images from Dtest (evaluated against the same set). 

Car        Tree       Pavement       Road        Building        Sky       Other

Fig. 12  Examples showing the semantic segmentation maps of efficientnet-b7_FPN when attacked with ‘robust’ patches trained using 
EoT. Top two rows- the original image and the original segmentation map, where the target and patch are marked in red and white accordingly. 
Right- the IPatch used in the attack, each one has been trained for a different class but the same remote target location

pavement tree car

sky building road

1 3 9 27 81 243 1 3 9 27 81 243 1 3 9 27 81 243

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

# Images in Adversary's Training Set (EoT)

Pe
rc

en
t o

f S
uc

ce
ss

fu
l A

tta
ck

s

Fig. 13  The performance of a robust patch when trained on different set sizes



Page 14 of 19Mirsky ﻿Cybersecurity            (2023) 6:18 

From here we can see that an exponential number of 
examples are needed to increase the performance.

Generalization to New Images. To use the patch in 
a real world setting, it must work well in scenes which 
were not in the attacker’s training set. Figure 14 presents 
the attack performance of patches trained on Dtest (those 
displayed in Fig. 12) when applied to images in Dval . The 
results show that the patches generalize well to unseen 
images. More interestingly, the performance of some 
classes are dramatically different compared to patches 
trained on single images without EoT (EXP1, Fig. 7). For 
example, ‘tree’ now has a 0.98% success rate compared 
to 50% and ‘building’ is now 25% compared to 65%. We 
learn from this that by considering multiple images, the 
model can learn stronger tactics. At the same time, the 
variability of the transformations prevent the model from 
using highly specific adversarial patterns. We also note 
that the class ’car’ does not transfer to unseen images like 
the other classes. We attribute this to the segmentation 
model’s poor performance on detecting cars in general.5

EXP3: the impact on different models
In is experiment we explore the suceptibilty and transfer-
ability of patches between models.

Model susceptibility
Experiment Setup. To evaluate the performance of the 
attack on different model architectures, we used 32 of 
the 37 segmentation models described at the beginning 
of section "Evaluation" (PAN was omitted since it was 
not compatible with Torch’s autograd in our framework). 
Due to time limitations, the attacks on each model were 
limited to 4 classes, 10 images, and 3 min training time 
for each image.

Results. We found that all 36 models are suscepti-
ble to the RAP attack for at least one class(Fig.  15). By 

observing the patterns in the columns, we note that some 
architectures are less susceptible to attacks on certain 
classes. For example, Linknet, PSPNet, and Unet++ 
on pavement and PSPNet on car.

In Fig. 16, we can see the suceptibilty of the encoders 
and architectures overall. Some of the most susceptible 
encoders (xception and resnext) and architectures 
(FPN and Unet++) use skip connections or residual 
pathways in their networks. These pathways enable the 
networks to capture features at multiple scales and cap-
ture the global contexts better. However, just as these 
network utilize these pathways to obtain better perspec-
tives, so can the IPatch in order to reach deeper into the 
image. Interestingly we found that the dpn68 encoder is 
consistently resilient against the attack. This encoder is 
formally called a Dual Path Network Chen et al. (2017). 
It uses a residual path like a ResNet to reuse learned 
features and a densely connected path like DenseNet 
to encourage the network to explore new features. These 
diverse features may be preventing the IPatch, and pos-
sibly the segmentation model, from reaching remote 
contexts.

Inter‑model transferability
In the case where the attacker does not have knowledge 
of the victim’s model, we would like to know well a patch 
trained on one model transfers to others.
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5  Although the selected efficientnet-b7_FPN achieves a lesser intersec-
tion over union score of 0.75 on that class, it outperforms the other models 
overall.
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Experiment Setup. To perform this experiment, we 
took the robust patches trained using the efficient-
net-b7_FPN (EXP2) and attacked each of the other 
36 models (listed in Fig. 17). The patches for the top 4 

classes (sky, building, pavement, tree) were applied to 
the images in Dtest using the random transformations 
described in EXP2.

Results. We found that patch from efficientnet-
b7_FPN can influence the other models’ predictions on 
the target region with an attack success rate of 11-37% 
(about 1-4 times in every 10 cases). We note that a cam-
eras on an autonomous car processes at least 30 frames 
per second. Therefore, there is a high likelihood that 
the car’s model will be susceptible to the attack while 
driving by.

Figure  17 shows the largest confidences for each 
model, measured as the relative increase from the origi-
nal confidence (on clean image). Interestingly models 
using the Unet++ architecture were the most sus-
ceptible, followed by Linknet. We believe the reason 
for this is that both of these models use skip-connec-
tions to allow for feature maps to bypass the encoding 
process. As a result, features in the patch have a more 
direct impact on the output. It is known that skip-
connections make models more vulnerable to adver-
sarial examples Wu et al. (2020) but it is interesting to 
see that they are vulnerable to transfer attacks as well. 
Another observation is that there does not seem to 
be a correlation between the results and the encoder 
used. This is probably because all of the encoders were 
trained on the same ImageNet Dataset.

Finally, we note that there are ways in which an 
adversarial example can be made to be more transfer-
able Xie et al. (2019); Huang et al. (2019). We leave this 
for future work.
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Fig. 17  The average attack success rate on each model when 
attacked with a patch trained on efficientnet-b7_FPN 
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Extending to object recognition
In section "Evaluation" we performed an in-depth evalua-
tion and analysis of the IPatch as a RAP against segmen-
tation models. However, the same training framework in 
"Approach" can be used on other semantic models as well. 
In this section, we present preliminary results against a 
popular object recognition model called YOLOv3 Red-
mon and Farhadi (2018).

Technical background
The family of YOLO models follow a similar architec-
ture (Fig. 18). The image x is passed through a series of 
convolutional layers (M in the figure) and then those fea-
ture maps are shuttled to various decoders. The decod-
ers predict coarse maps to the image at different scales 
using the semantic information shared between them. 
The multiple scales help the model detect objects of dif-
ferent sizes (e.g., D1 detects large objects). Each cell in a 
map, contains an objectness score, class probability, and 
a bounding box (obtained via regression). If a cell has an 
objectness score above some threshold, then there is an 
object there with the associated class probability. Finally, 
a non-maximal suppression (NMS) algorithm is used on 
the maps to identify and unify the detections.

Evaluation
Experiment Setup. To see if the attack would work on 
YOLO, we created an IPatch which convinces YOLO that 
there is a person standing in the middle of the road. To 
accomplish this, we used a pre-trained YOLOv3 model 
implementation6 as the victim, and trained our patch 
using 30k images: 15k random samples from the Bdd100k 

dataset Yu et  al. (2020) and 15k frames from a Toronto 
car driving video on YouTube.7

For training, we needed to ensure that both the object-
ness score and probability of the class ‘person’ were high. 
This was done by taking the product of D1’s probability 
map and objectness map as y′s , and by setting t to high-
light the cell in the lower-center of the image. For the 
loss functions, we took the sum of LKL and L1 since it 
increased the rate of convergence. EoT was used to scale 

Fig. 18  The architecture of the YOLOv3 object detector

Objectness Probability (person)

Fig. 19  An example of the YOLOv3 object detector being attacked 
by an IPatch. Here, the patch has convinced the model that there is a 
person standing in the middle of the road

6  https://​github.​com/​erikl​inder​noren/​PyTor​ch-​YOLOv3 7  https://​youtu.​be/​50Uf_​T12OGY

https://github.com/eriklindernoren/PyTorch-YOLOv3
https://youtu.be/50Uf_T12OGY
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the patch between 60-70 pixels in width and shift it ran-
domly within the bottom-right quadrant of the image. 
Finally, we trained the patch for 3 days with a learning 
rate of 0.05.

Results. We found that the YOLOv3 object detector is 
susceptible to the attack with an 85% attack success rate. 
In Fig. 19 we present an example frame which shows the 
objectness and probability maps in D1 during the attack. 
We also found that smaller patches ranging from 50-60 
pixels in width achieve an 80% attack success rate. Over-
all, it was relatively easy for the framework to change the 
objectness score of arbitrary locations in the image, com-
pared to the class probability. We also observed that it is 
significantly harder to target the maps from D2 and D3 
which capture smaller objects. We believe this is because 
D2 and D3 rely less on contexts around the image, giving 
the IPatch less leverage to perform a remote attack.

As future work, we plan to explore RAPs on other 
object detectors and investigate other semantic models as 
well.

Discussion & countermeasures
The concept of a remote adversarial patch, introduced in 
this paper, opens up wide range of possible attack vec-
tors against image-based semantic models. Through our 
observations in 5, we were able to identify some of the 
attack’s capabilities and limitations.

Trade-Offs. Due to its flexibility, it may seem like the 
IPatch is harder to defend against compared to an ordi-
nary adversarial patch. However, the performance of 
the patch is less compared to a ’point-based’ patch. This 
means that the adversary must consider whether a more 
reliable attack needed over having flexibility and stealth. 
Another consideration is that the adversary may want to 
experiment to find the optimal placement of the patch. 
This is because some regions give the patch more lever-
age based on the local semantics (section "Impact of the 
patch location"). One strategy is that the attacker can first 
scout the target region by videoing the scene from mul-
tiple perspectives and then optimize the patch location 
using that dataset.

Defenses. Although the IPatch can be placed in arbi-
trary locations, we noticed that its presence highly 
noticeable in the semantic segmentations (e.g., Fig.  12). 
We found that it is very hard to generate a patch which 
both achieves the attack and masks its own presence at 
the same time. Concretely, when setting t = y′s except 
for the target region (as done in Fig.  2), we found that 
the model struggles to influence remote locations to 
the same extent. In future work, this may be improved 
through a custom loss function which balances the trade-
off between the two objectives. Another solution might 

be to generate RAPs using a conditional GAN which con-
siders the errors on the semantic map in ( ¬m ). Doing so 
may also reduce the corruptions to nearby semantics as 
well.

Another direction for defending against this attack 
is to limit the model’s dependency on global features. 
Although these global features are key to state-of-the-
art models Lin et  al. (2017); Li et  al. (2018); Fan et  al. 
(2020), it is possible to utilize them while also consid-
ering their layout and origin. One option may be to 
integrate capsule networks Sabour et al. (2017) as part 
of the model’s architecture, since capsule networks are 
good at considering the spatial relationship in images.

Improvements. We noticed that the RAP attack is 
dependent on an image’s content when targeting seg-
mentation models, but less so for the object detector 
YOLO. For example, we were able to perform remote 
adversarial attacks on a blank image x with YOLO. 
The reason for this is not clear to us, and investigating 
it may lead to improvements in the proposed training 
methodology. Moreover, as future work, it would be 
interesting to investigate which types of features and 
classes the a RAP can manipulate best and why. This 
research may lead to deeper insights into the vulner-
ability’s extents and limitations. Finally, to improve 
transferabilty, we suggest two directions: (1) include 
multiple models in the training loop to help the model 
identify common features, and (2) use adversarial 
training to improve the generalization of the patch. As 
future work, it would also be interesting to see if an 
incremental strategy can be used with clipping (to pixel 
values 0-255) to produce strong real-world patches.

Conclusion
In this paper, we have introduced the concept of a 
‘remote adversarial patch’ (RAP) which can alter the 
semantic interpretation of an image while being placed 
anywhere within the field of view. We have imple-
mented an RAP called IPatch. When generated without 
pixel clipping, we demonstrated that it is robust, can 
generalize to new scenes, and can impact other seman-
tic models such as object detectors. With an average 
attack success rate of up to 93%, this attack forms a tan-
gible threat. As future work, we plan to investigate the 
range of RAPs with clipping enforced. Although RAPs 
are in their infancy, we hope that this paper has laid 
some of the groundwork for exploring this new adver-
sarial example.

In summary, neural networks are notorious for being 
black-boxes which are difficult to interpret. However, 
they are still used in critical tasks because their advan-
tages outweigh their potential disadvantages. We hope 
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that our findings will help the community improve the 
security of deep learning applications so that we may 
continue to benefit from safe and reliable autonomous 
systems.
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