
Song et al. Cybersecurity (2023) 6:19
https://doi.org/10.1186/s42400-023-00146-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

Rainbow: reliable personally identifiable
information retrieval across multi-cloud
Zishuai Song1,2, Hui Ma1,2* , Shuzhou Sun1,2, Yansen Xin1,2 and Rui Zhang1,2

Abstract

Personally identifiable information (PII) refers to any information that links to an individual. Sharing PII is extremely
useful in public affairs yet hard to implement due to the worries about privacy violations. Building a PII retrieval ser-
vice over multi-cloud, which is a modern strategy to make services stable where multiple servers are deployed, seems
to be a promising solution. However, three major technical challenges remain to be solved. The first is the privacy
and access control of PII. In fact, each entry in PII can be shared to different users with different access rights. Hence,
flexible and fine-grained access control is needed. Second, a reliable user revocation mechanism is required to ensure
that users can be revoked efficiently, even if few cloud servers are compromised or collapse, to avoid data leakage.
Third, verifying the correctness of received PII and locating a misbehaved server when wrong data are returned is cru-
cial to guarantee user’s privacy, but challenging to realize. In this paper, we propose Rainbow, a secure and practical
PII retrieval scheme to solve the above issues. In particular, we design an important cryptographic tool, called Reliable
Outsourced Attribute Based Encryption (ROABE) which provides data privacy, flexible and fine-grained access control,
reliable immediate user revocation and verification for multiple servers simultaneously, to support Rainbow. Moreo-
ver, we present how to build Rainbow with ROABE and several necessary cloud techniques in real world. To evaluate
the performance, we deploy Rainbow on multiple mainstream clouds, namely, AWS, GCP and Microsoft Azure, and
experiment in browsers on mobile phones and computers. Both theoretical analysis and experimental results indicate
that Rainbow is secure and practical.

Keywords Personally identifiable information, Data privacy, Flexible access control, Reliable user revocation,
Verification

Introduction
Personally identifiable information (PII) (DHS 2021)
refers to any information that links to an individual,
which is extremely useful for service providers, such as
Social Security Numbers, financial records. In particular,
securely sharing PII can play an important role in public
affairs, e.g., in 2020, the white house attempted to utilize

user data (including sensitive PII) of Google and Face-
book to fight COVID-19 (https:// www. cnbc. com), which
brought forth big worries about privacy violations by a
single-point failure and was not ever realized.

Building a PII retrieval service over multi-cloud whose
access control power is shared among multiple serv-
ers seems to overcome the single-point failure issue
and enhance the security protection of PII. In particu-
lar, a user encrypts and then uploads his PII data to the
retrieval service. In a later application, a service provider
that is authorized by the PII owner can access the data.
Furthermore, the PII owner can decide which subset
of his PII can be accessed and forms a specific PII form
(PIIF). However, the following three major technical
issues need to be addressed.

*Correspondence:
Hui Ma
mahui@iie.ac.cn
1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, No. 19 Shucun Road, Haidian
District, Beijing 100084, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00146-z&domain=pdf
http://orcid.org/0000-0001-8359-5158
https://www.cnbc.com

Page 2 of 21Song et al. Cybersecurity (2023) 6:19

Data privacy and flexible fine-grained access control.
A PIIF contains a series of user’s sensitive information,
e.g., address, Social Security Number (SSN) and aller-
gens. According to the data privacy laws, such as Gen-
eral Data Protection Regulation (GDPR) and the Health
Insurance Portability and Accountability Act (HIPAA),
the confidentiality of these information should be guar-
anteed. Moreover, traditional coarse-grained access
control mechanisms are unsuitable because they allow a
user to get a whole PIIF with all-or-nothing entries, but
cannot restrict the access rights of each entry. For exam-
ple, the SSN in the PIIF may be only opened to the gov-
ernment and the bank while allergens are only allowed
housekeeping attendants and doctors to access. There-
fore, we require a flexible and fine-grained access control
mechanism.

Reliable user revocation. When a large number of par-
ties joining the retrieval service, how to revoke inactive
or corrupt users stably and efficiently would be chal-
lenging. In particular, it requires that the user should
be revoked immediately, even if a few involved servers
collapse or they are compromised. Without such secu-
rity guarantee, it would cause unpredictable data leak-
age since a revoked user may still be able to access some
PIIFs. Thus, we demand for a reliable user revocation to
further guarantee the data privacy.

Data verification for multiple servers. When a party
requests a PIIF from the retrieval service, the received
result may be processed by multiple servers. Once one
of them produces a wrong result, it would cause seri-
ous consequences, such as giving a fatal prescription
due to wrong allergens. Therefore, we need a verification
mechanism to check the correctness of received results
and locate the misbehaved server in the cluster to avoid
accidents.

In this paper, we investigate these issues and try to give
a working solution.

Known techniques and their limitations
Attribute-Based Encryption (ABE) (Sahai and Waters
2005) is a promising solution to provide data privacy and
flexible access control. Goyal et al. (2006) formalized two
types of ABE: key-policy ABE (KP-ABE) (Ostrovsky et al.
2007; Okamoto and Takashima 2010; Lewko et al. 2010)
and ciphertext-policy ABE (CP-ABE) (Bethencourt et al.
2007; Waters 2011) which is suitable for data sharing
among multi-party. For simplicity, we limit the discus-
sions to CP-ABE hereafter. A user is assigned a secret key
with a number of attributes while data is encrypted by an
access policy which is formed by attributes and a Boolean
expression. Only when the user’s attributes satisfy the
access policy in the ciphertext, it can decrypt. However,
there are still a few subtle limitations.

• Lacking efficient and reliable user revocation mecha-
nism. In the literature, traditional revocation mech-
anisms for ABE fall into two categories, namely
indirect revocation (Attrapadung and Imai 2009;
Cui et al. 2016; Qin et al. 2017), and direct revoca-
tion (Attrapadung and Imai 2009; Datta et al. 2016).
However, these works suffer from limited scalability
as either all ciphertexts should be updated or all user
secret keys (or proxy-side keys) should be updated
when revoking a user from system. Recently, server-
aided approach (Yang et al. 2015; Ma et al. 2019) has
been proposed to efficiently revoke a user from sys-
tem. The server, which holds a cloud-side secret key
and an authorized user list, performs the immediate
user revocation by refusing to process the decryption
requests of revoked users. However, it is weak for the
cluster setting since multiple servers would hold a
same cloud-side secret key. Once a server is compro-
mised, the revocation mechanism would be broken.

• Needing verification mechanism to locate a misbe-
haved cloud server for wrong results. Outsourced
decryption was proposed by Green et al. (2011)
to improve the decryption efficiency and Lai et al.
(2013) put forward a property called verifiability
to check the correctness of outsourced decryption
result. Later on, the works (Mao et al. 2015; Ma et al.
2015; Lin et al. 2015) further improved the perfor-
mance. More recently, Ge et al. (2021) proposed a
method to verify the re-encryption result. However,
all above verification mechanisms are inapplicable
when multiple servers are deployed, where more
cloud servers could make mistakes for one coop-
erative computation operation. They cannot locate
a misbehaved server from the cluster when a wrong
result is found.

Besides, the existing works (Goyal et al. 2006; Bethen-
court et al. 2007; Waters 2011; Attrapadung and Imai
2009; Green et al. 2011; Lai et al. 2013; Yang et al. 2015;
Ma et al. 2015; Ma et al. 2019; Ge et al. 2021) only bench-
marked the performance of algorithms, but did not figure
out how to integrate their cryptographic schemes in real-
world system and give systematic solutions in practice.

Our contributions
To tackle the above challenges, we design and implement
Rainbow, a practical PII retrieval scheme which involves
modern cloud techniques and cryptographic tools,
including a well-designed ABE scheme called Reliable
Outsourced ABE (ROABE). Some dedicated techniques
of Rainbow are highlighted as follows:

Page 3 of 21Song et al. Cybersecurity (2023) 6:19

Field-level and fine-grained access control. In Rain-
bow, fine-grained access control and data encryption
are all done by ROABE. A PII owner can flexibly pose
an access policy on every single entry (field) in a PIIF via
ABE encryption, e.g., using policy “All” to encrypt the
entry “Name: Alice” while using “Government or Bank”
to encrypt the entry “SSN: XXX”. Only the user whose
attribute set satisfies the access policy can recover the
encrypted entry.

Reliable immediate user revocation. We design a reli-
able immediate user revocation mechanism with assis-
tance of cloud servers. In particular, when a user is no
longer involved, he will be revoked immediately by sim-
ple operations and cannot access any PIIF. Moreover, our
user revocation mechanism is reliable since it can still
work even if few cloud servers are compromised which
leads to the leakage of cloud-side secret key.

Verification mechanism for multiple servers. We pro-
pose a verification mechanism to trace misbehaviors
from multiple cloud servers. Users can efficiently verify
the PIIF returned from servers. Once a wrong result is
detected, the misbehaved cloud server will be identified
via digital evidence and cannot exculpate itself.

Systematic implementation with ownCloud. We imple-
ment Rainbow based on own Cloud (https:// owncl oud.
org/), a popular cloud storage hosting software, and use
several industrial techniques, such as Message Queue,
PKI, to deploy Rainbow in real world for providing PII
retrieval service. The functionalities and performances
are evaluated in mainstream cloud platforms, includ-
ing AWS, GCP and Azure, and on PC (in browsers) &
Android devices. Both the theoretical and experimental
results show that Rainbow is practical.

Technical overview
In this section, we briefly introduce our design ideas.

We borrow an idea from Yang et al. (2015) to achieve
immediate user revocation, combining a cloud-side
secret key, a user-side secret key and an original ABE
secret key to form a proxy key. Then, the decryption
requires the collaboration of both the cloud server and
the user, and the user decryption capability can be imme-
diately revoked if the cloud server refuses to help. Fur-
thermore, to make user revocation mechanism more
reliable, taking advantage of the architecture, we adopt (t,
n) Shamir secret sharing to split the cloud-side secret key
and each server maintains a unique share as its cloud-
side secret key. The mechanism is reliable since it can tol-
erate at most t − 1 keys to be compromised.

To guarantee the verifiability of all computation results
from multiple servers within an outsourced decryption
task to locate a misbehaved server, we follow the existing
verifiable ABE schemes (Lai et al. 2013; Ma et al. 2015),

which used the Pederson commitment (Pedersen 1991)
to verify the final decryption result. Besides, we require
more verifiable features since more servers are needed
to help with outsourced decryption. In particular, the
decryption shares, which are produced by t servers and
used to implicitly recover the original cloud-side secret
key, should be verified. We adopt Rabin’s technique (Rabin
1994) to give a private verification of the decryption share.

To initialize Rainbow in real world, first, similar to
WebCloud (Sun et al. 2020), which was proposed by Sun
et al. we utilize WebAssembly (W3C Community Group
2017), which is a low-level binary instruction format ena-
bling deployment on the web and providing faster execu-
tion than JavaScript, to implement ROABE in browsers
and adapt with ownCloud. Second, to provide crypto-
graphic interfaces on ownCloud servers, we build the
dynamic library of ROABE. Third, we use cross-compi-
lation technique to build an Android-support library for
mobile clients. Last but not least, many industrial tech-
niques, such as Message Queue, PKI, are used to enhance
the practicality of Rainbow in real world. Specifically, we
used JSON, one of the most popular data-interchange
formats, to form the PIIF.

Combining all the above techniques, we are then able
to solve the issues that we discussed before and build a
secure and practical PII retrieval scheme.

Future prospects
We also give three promising application scenarios with
Rainbow.

1 Automated form filling. An old people can upload his
PIIF to Rainbow. When he wants to transact business
with any third party, such as the bank, the govern-
ment, this application can help him to fill their infor-
mation quickly. With the access control that provided
by Rainbow, only authorized entries in the form can
be automatically filled with matched fields.

2 Flexible single sign-on (SSO). Rainbow can help with
password management for different websites with
distinct access policies since authentication cre-
dentials are part of PII. Moreover, for SSO, the sys-
tem authentication token is encrypted and stored in
Rainbow. The user whose attributes satisfy the access
policy can recover the token and use it for authenti-
cation. The token should be refreshed once used.

3 Secure data fusion. Data fusion is an advanced tech-
nology to produce accurate information by integrating
multiple data sources. Rainbow can protect the sensi-
tive information in different data sources. In particu-
lar, before users delegating their data to the data fusion
service, they could arbitrarily set the access policy of
each field and encrypt it. Then only authorized fields

https://owncloud.org/
https://owncloud.org/

Page 4 of 21Song et al. Cybersecurity (2023) 6:19

would be fused. Besides, it is allowed to flexibly specify
who is authorized to access the derived dataset result-
ing from the fusion for different usage.

Preliminary
Notations. Alg(arg1,arg2, . . . ,argn) → (ϑ1, ldots,ϑm)
denote running algorithm Alg with input arg1 , arg2

,ldots, argn and obtaining outputs ϑ1,..., ϑm . If S is a set,
let |S| be its size. The symbol s $

←−S means that an element
s is randomly chosen from a set S . The concatenation of
two strings x and y is described by the symbol x‖y .
A function f is negligible if for every κ > 0 , there
exists �′ > 0 such that f (�) < 1/�κ for all � > �

′ . Let �δ,J
denote the Lagrange coefficient for δ ∈ Zp and
a set J of elements in Zp : �δ,J (x) = j∈J ,j �=δ

x−j
δ−j . Let

[n] = {1, 2, . . . , n} and �z denote a set where 0 < z ≤ n ,
|�z| = z and �z ⊆ [n].

Definition 1 (Bilinear Maps) Assume there exist two
multiplicative cyclic groups G and GT with a same prime
order p.

A map e : G×G → GT is called bilinear map if
it is efficiently computable and has the follow-
ing properties: 1) Bilinearity: ∀ h1, h2 ∈ G and ∀
a, b ∈ Zp , e(ha1, h

b
2) = e(h1, h2)

ab . 2) Nondegeneracy:
e(h1, h2) = 1GT if h1, h2 = 1G.

Definition 2 (The Generic Bilinear Group Model)
The definition follows (Boneh et al. 2005). In
generic bilinear group model, there are two ran-
dom encodings over Fp , which are injective maps,
ϕ : Fp → {0, 1}n , ϕT : Fp → {0, 1}n , where Fp is the addi-
tive group and n > 3log(p) . Let G = {ϕ(x) : x ∈ Fp} and
GT = {ϕT (x) : x ∈ Fp} . The oracles are given to execute
the induced group computation on G,GT and a non-
degenerate bilinear map e : G×G → GT . Then G is ref-
ered to be a generic bilinear group.

Definition 3 (Access Tree (Goyal et al. 2006)) An access
policy which is in the form of monotonic formula, e.g.,
attr1 and attr2 or attr3 , can be transformed to an access
tree, where an attribute is related to a leaf node and a
threshold gate is assigned to a non-leaf node. In particu-
lar, the attribute associated with leaf node j is described
by the symbol A(j) . Let ω be a non-leaf node, thω be its
threshold value where 0 < thω ≤ Nω and Nω be the num-
ber of its child nodes. It is obvious that the ω is an OR
gate if thω = 1 and it is an AND gate if thω = Nω . We
also define the parent of ω using a symbol pt(ω) . Besides,
each node of the tree is ordered and the function idx(ω)

produces a unique number associated with the order of
ω , e.g., suppose the tree contains n nodes and the inor-
der traversal of these nodes is ω1,ω2, . . . ωn , the function
idx(ωi) could output i as the unique number of ωi.

Definition 4 (Satisfying an Access Tree (Goyal et al.
2006)) Let T be an access tree and Tω be the subtree of T
rooted at node ω . We use a binary relation Q to define the
relationship between a attribute set and an access tree. In
particular, let R denote an attribute set, when ω is a non-
leaf node, Q(Tω,R) is computed recursively as follows: it
computes Q(Tωc ,R) for all child nodes ωc of ω . Q(Tω,R)
returns 1 if and only if as least thω child nodes return 1.

When ω is a leaf node, Q(Tω,R) returns 1 if and only if
the attribute is matched, in other words, A(ω) ∈ R . If
none of the above cases is satisfied, Q(Tω,R) = 0.

Overview of rainbow
In this section, we present the system model and the
design goals of Rainbow. Some useful acronyms are sum-
marized in Table 1.

System model
As shown in Fig. 1, four entities are involved in Rain-
bow: Trusted Authority (TA), Cloud Service Provider
(CSP), PII Owner (PO) and PII User (PU). Each entity is
explained as follows.

TA is an honest entity. It is assigned to process sensitive
information, including initializing system (see Phase 1©)
and generating digital certificates and delegated keys for
users (see Phase 2© & 3©). In particular, it generates sys-
tematic public parameters and several cloud side keys for
system warming-up. The delegated key is used to decrypt
the encrypted PIIF.

CSP consists of multiple servers over multi-cloud and
the following four services.

• Upload service processes upload requests from PII
owners and provides reliable storage (see Phase 5© ,
Step 2). Once a PIIF is uploaded to CSP, it will be
stored and made a backup by this service. Note that
all PIIFs are encrypted.

• Confirmation service processes download requests
from PII users. When a PII user requests to access
a PIIF, this service transfers the request to the PII
owner for confirmation (see Phase 6© , Step 2).
Besides, it checks the response from the PII owner.
Only when the response indicates that the PII user is
allowed to obtain the PIIF, CSP would provide out-
sourced decryption with his delegated key.

Page 5 of 21Song et al. Cybersecurity (2023) 6:19

• Outsourced decryption service decrypts encrypted
entries in the requested PIIF to transformed cipher-
texts using the PII user’s delegated key and returns
them to the PII user (see Phase 7© , Step 1 & 2). An
outsourced decryption task involves several servers
and the computation results of each server can be
verified. Besides, without this service, nobody can
decrypt a ciphertext.

• User revocation service maintains a delegated key
list associated with users for revocation. It revokes
an inactive user by removing the correspond-
ing entry from the list. By the way, once the user
is revoked, the Outsourced Decryption Service
refuses to help with the decryption.

Table 1 Acronyms used in this paper

Acronym Description Acronym Description

TA Trusted authority CSP cloud service provider

PO PII owner PU PII user

MCS Master cloud server HCS helping cloud server

pk Public key msk master secret key

cpk Cloud-side public key cski the ith cloud-side secret key

upk User public key usk user secret key

dk Delegated key L delegated key list

dsj,i The decryption share generated by the jth server for
the ith server

πj,i the proof of dsj,i

ct Ciphertext dct partially decrypted ciphertext

csv Combined secret value

Fig. 1 System model of Rainbow

Page 6 of 21Song et al. Cybersecurity (2023) 6:19

PO decides a subset of his PII that to be shared and forms
a specific PIIF. Then he encrypts the PIIF and uploads it
to CSP (see Phase 4© & Phase 5© , Step 1). In particular,
he can set any desired access policy (formed by attrib-
utes and Boolean expressions) of each entry in the PIIF.
For example, as shown in Fig. 1, the entry “Address” is
encrypted by the policy “Housekeeping attendant or
Postman” while “Allergern” is encrypted by the policy
“Housekeeping attendant”. Moreover, the PO generates a
confirmation token (or a rejection token) to CSP when a
user requests to access the PO’s PIIF (see Phase 6© , Step
3).

PU consumes the encrypted PIIF from CSP, e.g., it can
be a doctor, a bank staff and a housekeeping attendant.
The access rights of PUs are described by a number of
attributes. A PU gets a secret key and a corresponding
delegated key which is associated with an attribute set
from TA when he registers to the system (see Phase 3©).
If his attribute set satisfies the access policy of an entry in
a PIIF, he can decrypt the encrypted entry and check the
correctness (see Phase 8©).

We assume that TA and PO are honest. Most of cloud
servers in CSP are assumed to be honest, while few of
them are assumed to be “covert” adversaries who may
deviate from the outsourced decryption protocol and try
to produce unsatisfied decryption results, but are unwill-
ing to be caught. As for PUs, we assume that a majority of
them are honest, while few of them are corrupt and leak-
age their secret keys in the collision to access unauthor-
ized data. This mimics the real world since some devices
of PUs may be lost and be corrupted by a few spiteful
people.

Design goals
Based on aforementioned system model and trust
assumptions, Rainbow should meet the following design
goals.

Data privacy. Due to the sensitive personal information
(e.g., address, phone number, social security number)
involved in a PIIF, any PIIF that is sent and outsourced
to public clouds should be only accessed by authorized
users.

Mandatory and flexible access control. The PO should
be able to arbitrarily decide which entries in his PIIF need
encryption and the access policy of each entry. Nobody
can recover the information of these encrypted entries
if his attribute set does not satisfies the policies, even he
can obtain all these ciphertexts.

Efficient and reliable user revocation. Once a PU
becomes inactive, he should be revoked with low costs.
Moreover, since there are multiple servers in Rainbow
to provide services, we require that even few servers

are compromised to work for a revoked user, he cannot
obtain any useful information of the encrypted PIIFs.

Full verifiability. In Rainbow, we need a feasible veri-
fication mechanism for PUs to check the outsourced
decryption result. Furthermore, the verification should
support to locate a misbehaved server if the result is
wrong, because several servers are involved in an out-
sourced decryption task.

An important tool: ROABE
Towards the design goals of Rainbow, we propose an
important tool called Reliable Outsourced ABE (ROABE)
and introduce it in this section.

Overview
The model of ROABE is shown in Fig. 2 where multiple
cloud servers are settled. An ROABE scheme consists of
following 10 algorithms:

• Setup(�, n, t) → (pk,msk,cpk, {cski}i∈[n],L) . On
input a security parameter � , the number of cloud
servers n and a threshold t, it outputs a public key
pk , a master secret key msk , a cloud-side public key
cpk , a cloud-side secret key set {cski}i∈[n] and a del-
egated key list L.

• UKeyGen(pk,u) → (upk,usk) . On input a public
key pk and an identity u, it outputs a user public key
upk and a user secret key usk.

• DKeyGen(msk,cpk,upk,R,L) → (dk,L′) . On
input a master secret key msk , a cloud-side public
key cpk , a user public key upk , an attribute set R
and a delegated key list L , it outputs a delegated key
dk and an updated list L′.

• Encrypt(pk,T ,m) → ct . On input a pk , an access
tree T and a message m , it outputs a ciphertext ct.

• DSGen(cskj ,dk, i,ct) → (dsj,i,πj,i)/⊥ . On input
a cloud-side secret key cskj with the serial number
j, a delegated key dk , a serial number i and a cipher-
text ct , it outputs a decryption share dsj,i and a cor-
responding proof πj,i or ⊥.

• DSVerify(cski,dk,dsj,i,πj,i,ct) → b . On input a
cski , a dk , a decryption share dsj,i , a proof πj,i and
a ct , it outputs a bit b ∈ {0, 1} where b = 1 indicates
that dsj,i is correct.

• DSCombine(cpk, {dsj,i}j∈�t) → csv . On input a
cloud-side public key cpk and t decryption shares
{dsj,i}j∈�t where �t ⊆ [n] and |�t | = t , it outputs a
combined secret value csv.

• CSDecrypt(pk,dk,ct,csv) → dct/⊥ . On input
a pk , a dk , a ct and a csv , it outputs a partially
decrypted ciphertext dct or ⊥.

Page 7 of 21Song et al. Cybersecurity (2023) 6:19

• UDecrypt(pk,dct,usk) → m′/⊥ . On input a pk , a
partially decrypted ciphertext dct and a user secret
key usk , it outputs a message m′ or ⊥.

• URevoke(u,L) → L′ . On input a u and a L , it out-
puts an updated list L′.

The algorithms Setup, UKeyGen, DKeyGen, and
Encrypt are probabilistic and DSGen, DSVerify,
DSCombine, CSDecrypt, UDecrypt, and URe-
voke are deterministic. The keys msk , cpk , cski (∀i ∈ [n])
contain pk.

Correctness The ROABE scheme is correct for
all attribute sets R , all access trees T where R satis-
fies T , all (pk,msk,cpk, {cski}i∈[n],L) ∈ Setup(�, n, t)
where t ≤ n , all (upk,usk) ∈ UKeyGen(pk,u) , all
dk ∈ DKeyGen(msk,cpk,upk,R,L) , all ct ∈ Encrypt

(pk, T ,m) , all (dsj,i,πj,i) ∈ DSGen(cskj ,dk, i,ct) where
i, j ∈ [n], j �= i , all csv ∈ DSCombine(cpk, {dsj,i}j∈�t)
where �t ⊆ [n] and |�t | = t , all dct ∈ CSDecrypt
(pk,dk,ct,csv) , and all m′ ∈ UDecrypt(pk,dct,usk) , if
m′ �= ⊥ , m′ = m and DSVerify(cski,dk,dsj,i,πj,i,ct) = 1

.

We now describe the workflow of ROABE. It con-
tains six phases, including system initialization (see 1© in
Fig. 2), user registration (see 2©), data upload (see 3©), data
download (see 4©), local decryption and user revocation.
As shown in Fig. 2, take n = 3 , t = 2 for example where
three cloud servers are settled and the threshold value is
two, at least two cloud servers are needed to complete the
outsourced decryption. We also mark each cloud server
with a serial number, e.g., the serial number of Cloud
Server 1 is 1. More details of the model are discussed as
follows and some useful acronyms are listed in Table 1.

(1) System initialization. TA runs the algorithm Setup
to generate a public key pk , a master secret key
msk , a cloud-side public key cpk , a set of cloud-
side secret key {cski}i∈[n] and an empty delegated
key list L . The secret key cski is securely transmit-
ted to the ith cloud server along with (pk , cpk , L)
and pk is published.

(2) User registration. A PU runs UKeyGen(pk,u) where
u is his identity to obtain a user public key upk and
a user secret key usk . Then the PU sends his attrib-

Fig. 2 Model of ROABE

Page 8 of 21Song et al. Cybersecurity (2023) 6:19

ute set R along with upk to TA. TA runs DKeyGen

(msk,cpk,upk,R,L) to generate a delegated key
dk associated with R and an updated list L′ . Note
that an entry in L is (u,dk) . The key dk and the
updated list L′ are sent to all servers.

(3) Data upload. A PO runs Encrypt(pk, T ,m) to
encrypt the message m with the access tree T to
get a ciphertext ct . Then he uploads the ciphertext
ct to a cloud server. The server synchronizes ct to
others to make a backup.

(4) Data download. When a PU u wants to down-
load a ct from a cloud server, called master cloud
server (MCS), the MCS sends an assistance request
of ct to other t cloud servers, called helping cloud
server(s) (HCS), for help, if the entry (u, dk) is in
L . Otherwise, it rejects to provide service. For
example, in Fig. 2, Cloud Server 1 & 2 are the HCSs
and Cloud Server 3 is the MCS in this session. Let
i be the serial number of MCS. The HCS whose
serial number is j rejects to provide service if (u,
dk) is not in its list L . Otherwise, it runs DSGen

(cskj ,dk, i,ct) to get a decryption share dsj,i and
a corresponding proof πj,i and returns (dsj,i,πj,i)
to the MCS. Or ⊥ is output, the HCS returns a
response message “Unsatisfied attributes” to indi-
cate that the attributes of the PU cannot satisfy
the access tree of ct . Then the MCS runs DSVerify
(cski,dk,dsj,i,πj,i,ct) to check the validity of
dsj,i . All other t − 1 decryption shares are also
verified. Only when at least t valid decryption
shares are obtained, the MCS runs DSCombine

(cpk, {dsj,i}j∈�t) to get a combined secret value
csv and runs CSDecrypt(pk,dk,ct,csv) to get a
partially decrypted ciphertext dct and returns it to
the user.

(5) Local decryption. When a PU receives dct from a
cloud server, he runs UDecrypt(pk,dct,usk) to
obtain a recovered message m′ or ⊥ . Note that only
when dct is correctly generated by the dk which is
produced by the upk corresponding to usk , a cor-
rect message can be output. Hence, it can verify the
correctness of dct.

(6) User revocation. Once a PU u is suggested to be
revoked, all cloud servers should run URevoke
(u,L) to remove the entry (u,dk) from L . Then the
cloud servers do not provide outsourced decryption
for u. Without the help of cloud servers, u cannot
decrypt ciphertexts anymore.

Security threats and formal definitions
In this section, we discuss the security threats and give
the formal security definitions of ROABE.

Three aspects of security are considered for ROABE,
namely, data privacy, reliable user revocation and full
verifiability. Data privacy requires that unauthorized
users and clouds are ignorant of encrypted data. Reliable
user revocation demands that once a PU is revoked, it
cannot decrypt any ct , even a few (less than a threshold
t) servers still provide outsourced decryption service for
it. Full verifiability requires that all outsourced decryp-
tion results, e.g., decryption shares ds and partially
decrypted ciphertexts dct , should be verified to locate a
misbehaved server.

According to the involved entities and their possible
behaviors, we consider five types of adversaries which
threat the above requirements as follows. In particular,
we assume that the public keys (pk , cpk) are held by all
adversaries.

 i. Type-1 adversary refers to some corrupted users
attempting to collude together to decrypt unau-
thorized ct to break the data privacy against users.
It can obtain corrupted users’ delegated keys dk
and secret keys usk and all ciphertexts ct . Moreo-
ver, we allow it to obtain all cloud-side secret keys
{cski}i∈[n].

 ii. Type-2 adversary refers to some cloud servers
attempting to decrypt a ct to break the data pri-
vacy against clouds. It can obtain all delegated keys
dk , a few user secret keys usk which are not asso-
ciated with dk , all cloud-side secret keys {cski}i∈[n]
and all ct . Note that it cannot hold any key pair
(dk , usk) to trivially decrypt a ct.

 iii. Type-3 adversary refers to a revoked user trying to
decrypt a ct to break the reliable user revocation.
It can obtain all dk , all usk , t − 1 cloud-side secret
keys {cski}i∈�t−1

 and all ciphertexts ct.
 iv. Type-4 adversary refers to an HCS attempting to

generate a wrong decryption share to pass the veri-
fication from an MCS (indexed by i) to break the
verifiability of decryption share. It can obtain all
dk , all usk , all cloud-side secret keys except the ith
one {cskk}k∈[n],k �=i and all ct.

 v. Type-5 adversary refers to an MCS trying to gener-
ate a wrong partially decrypted ciphertext to pass
the verification from a PU to break the verifiability
of partially decrypted ciphertext. It can obtain all
dk , all usk , all {cski}i∈[n] and all ct.

We now give the formal security definitions as follows.
Let C be the challenger and A be the adversary.

We follow the security definition of data privacy against
users in Yang et al. (2015) which used indistinguishabil-
ity against chosen plaintext attack (IND-CPA) model, to
define the data privacy against users of ROABE.

Page 9 of 21Song et al. Cybersecurity (2023) 6:19

Definition 5 (Data Privacy against Users) An ROABE
scheme achieves data privacy against users if any proba-
bilistic polynomial time (PPT) type-1 adversary has at
most a negligible advantage to win the following security
game Gamedupriv.

Setup C runs Setup and returns (pk,cpk, {cski}i∈[n],L)
to A . C also initializes an empty table W.
Phase 1 A is allowed to query following oracles:

• User-key oracle OUK(u) : C runs UKeyGen(pk,u) to
return (upk,usk) to A and stores (u,upk,usk) to
W.

• Delegated-key oracle ODK(R,u) : C gets the upk from
W that is indexed by u and rejects if no such upk
exists. Otherwise, with the queried attribute set R , C
runs DKeyGen(msk,cpk,upk,R,L) to get a dk and
returns it to A . Note that A can add (u,dk) to L by
himself.

Challenge A submits two message m0,m1 where
|m0| = |m1| and an access tree T ∗ , subjecting to a restric-
tion that none of the queried attribute set R in Phase 1
satisfies T ∗ . C flips a random coin b and runs Encrypt
(pk, T ∗,mb) to obtain ct∗ . Finally, C returns ct∗ to A.

Phase 2 A continues to query the oracles with the
restriction that any queried R does not satisfy T ∗.

Guess A outputs a guess b′ of b. A wins the game if
b = b′.

Similarly, we follow the security definition of data pri-
vacy against cloud server in Yang et al. (2015) to define
the data privacy against clouds of ROABE. In particular,
the adversary is not allowed to obtain a key pair (dk,usk)
to trivially decrypt the challenge ciphertext.

Definition 6 (Data Privacy against Clouds) An ROABE
scheme achieves data privacy against clouds if any PPT
type-2 adversary has at most a negligible advantage to
win the following security game Gamecspriv.

Setup. Same as Setup in Gamedupriv.
Phase 1. A is allowed to query following oracles:

• User-key oracle OUK(u) : C runs UKeyGen to get
(upk,usk) , stores (u,upk,usk) to W and returns
upk to A.

• Delegated-key oracle ODK(R,u) : C rejects if the entry
(u,upk,usk) is in W . Otherwise, C runs UKeyGen

(pk,u) and DKeyGen(msk,cpk,upk,R,L) to get
(upk,usk) and dk . Finally, C returns (dk,upk) to A.

Challenge. Almost same as Challenge in Gamedupriv ,
except that the restriction of T ∗ is removed.

Phase 2. Same as Phase 1.
Guess. Same as Guess in Gamedupriv.
To define reliable user revocation, we follow the

user revocation support in Yang et al. (2015). For a
revoked user, it cannot decrypt any ct even all keys
and a few cloud-side secret keys are given to it. In par-
ticular, t − 1 cloud-side secret keys are exposed to the
adversary.

Definition 7 (Reliable User Revocation) An ROABE
scheme achieves reliable user revocation if any PPT
type-3 adversary has at most a negligible advantage to
win the following indistinguishability game Gamervk.

Setup. Almost same as Setup in Gamedupriv , except that
{cski}i∈�t−1

 is sent to A rather than {cski}i∈[n].
Phase 1. Same as Phase 1 in Gamedupriv.
Challenge. Almost same as Challenge in Gamedupriv ,

except that the restriction of T ∗ is removed.
Phase 2. Same as Phase 1.
Guess. Same as Guess in Gamedupriv.
To describe the verifiability of decryption share, similar

to the verifiability defined in Lai et al. (2013), the adver-
sary should produce two different tuples (dsj,i,πj,i) and
(ds′j,i,π

′
j,i) where one of them is incorrect. Note that the

adversary can always compute a correct decryption share
by runnning DSGen with a corrupt csk . Besides, if the
adversary obtains the csk of the ith cloud which it wants
to cheat, it can trivially generate a wrong pair (dsj,i,πj,i)
to pass the verification. Thus, we have that nobody can
produce a wrong decryption share to pass the verification
without a target cski.

Definition 8 (Verifiability of Decryption Share) An
ROABE scheme achieves verifiability of decryption share
if any PPT type-4 adversary has at most a negligible prob-
ability to win the following security game Gamedsvrfy.

Setup A chooses a serial number i∗ as its attack target
and sends i∗ to C . C runs Setup with (t, n) and returns pk ,
msk , cpk , {cski}i �=i∗,i∈[n] , L to A.
Phase 1. Same as Phase 1 in Gamecspriv.
Challenge. A submits a message m∗ and an access tree T ∗

to C . C runs Encrypt (pk, T ∗,m∗) to return ct∗ to A.
Phase 2. Same as Phase 1.
Output. A outputs { dk∗ , (ds∗j,i∗ ,π

∗
j,i∗) , (ds

∗′
j,i∗ ,π

∗′
j,i∗) }

where the attribute set R∗ that is associated with dk∗ sat-
isfies the challenge access tree in ct∗ , and ds∗j,i∗ �= ds∗′j,i∗ .
Assume dk∗ has been generated by ODK and sent to A in
Phase 1 or Phase 2. A wins the game if

Page 10 of 21Song et al. Cybersecurity (2023) 6:19

To define the verifiability of partially decrypted cipher-
text, we follow the verifiability in Lai et al. (2013) that
nobody can produce an incorrect dct that can be
decrypted as a valid message.

Definition 9 (Verifiability of Partially Decrypted
Ciphertext) An ROABE scheme achieves verifiability of
partially decrypted ciphertext if any PPT type-5 adver-
sary has at most a negligible probability to win the fol-
lowing game Gamedctvrfy.

Setup. Almost same as Setup in Gamedsvrfy , except that C
returns {cski}i∈[n] to A.
Phase 1. Same as Phase 1 in Gamedsvrfy.
Challenge. Same as Challenge in Gamedsvrfy.
Phase 2. Same as Phase 1.
Output. A outputs a tuple { ct∗,usk∗,dct∗1,dct

∗
2 },

where ct∗ is the challenge ciphertext produced by C in
Challenge phase. Assume usk∗ has been hold by A in
Phase 1 or Phase 2. Then C runs UDecrypt with usk∗
to decrypt dct∗1 and dct∗2 to get m∗1 and m∗2 , respectively.
A wins the game if m∗1 �= m∗

2 ∧ m∗
1 �= ⊥ ∧ m∗2 �= ⊥.

A concrete construction
To initialize ROABE, in particular, we use a symmetric
key encryption scheme SKE and a key derivation func-
tion KDF (Krawczyk 2010) as building blocks. Specifi-
cally, we briefly review the definition of SKE.

A symmetric key encryption scheme SKE is a tuple of
algorithms (Gen , Enc , Dec) along with an associated key
space K , where:

• Gen(1�) → κ . On input a security parameter 1� , it
outputs a key κ ∈ K where |K| ≥ �.

• Enc(κ ,msg) → ct . On input a key κ ∈ K and a mes-
sage msg , it outputs a ciphertext ct.

• Dec(κ ,ct) → msg′ . On input a key κ ∈ K and a
ciphertext ct , it outputs a recovered message msg′.

Now we give a concrete construction of ROABE as
follows.

• Setup(�, n, t) . On input a security parameter � , the
number of cloud servers n and a threshold t, the algo-
rithm chooses a bilinear map e : G×G → GT , where
G and GT are cyclic groups of �-bit prime order p with a
generator g ∈ G . Then it chooses gc, hc

$
←−G , µ, ν $

←−Zp
and computes h = gν . Subsequently, it chooses two

1 ← DSVerify(cski∗ ,dk
∗
,ds

∗
j,i∗ ,π

∗
j,i∗ ,ct

∗) ∧

1 ← DSVerify(cski∗ ,dk
∗
,ds

∗′
j,i∗ ,π

∗′
j,i∗ ,ct

∗).

hash functions H1 : {0, 1}∗ → G , H2 : {0, 1}∗ → Zp ,
a key derivation function KDF(υ, L) → {0, 1}L where
υ is a value that sampled from a source of keying
material and ℓ is the output length of KDF , and an
SKE with the key space K where |K| = 2L . In particu-
lar, the source of keying material in ROABE is GT . It
sets pk = (G, e, g , h, gc, hc, e(g , g)

µ
,H1,H2,KDF, L)

as a public key and msk = (pk,µ, ν) as a mas-
ter secret key. To generate cloud-side keys, it com-
putes kcs = gγ where γ $

←−Zp and randomly defines
a polynomial P(x) over Zp with degree t − 1 where
P(0) = γ . ∀i, j ∈ [n], j �= i , it randomly chooses
a point (xi, yi) over P(x) where yi = P(xi) and

bj,i, cj,i
$
←−Zp , and computes zj,i = bj,i · yi + cj,i . It sets

cpk = (pk, kcs, {xi}i∈[n]) as a cloud-side public key, and
cski = (pk, dki = (yi , {zj,i}j �=i,j∈[n]), vki = {(bi,j , ci,j)}j �=i,j∈[n])
as a cloud-side secret key of the ith cloud, where dki is
used to help with decryption and vki is used for verifi-
cation. Finally, it initializes an empty delegated key list
L and outputs (pk,msk,cpk, {cski}i∈[n],L).

• UKeyGen(pk,u) . On input a public key pk and an
identity u, the algorithm picks au

$
←−Zp and outputs a

user’s public/secret key pair (upk = gau ,usk = au).
• DKeyGen(msk,cpk,upk,R,L) . On input a mas-

ter secret key msk , a cloud-side public key cpk , a
user public key upk = gau , a k-sized attribute set
R = {R1,R2, ...,Rk} and a delegated key list L , the
algorithm picks r, r′, ri

$
←−Zp, ∀i ∈ [k] and computes

 Note that kcs = gγ is contained in cpk . Above all, it
sets a delegated key dk = (R,K ,K ′

, {Ki,1,Ki,2}i∈[k])
and adds the entry (u,dk) to L to get an updated list
L′ . Finally, it outputs dk and L′.

• Encrypt(pk,T ,m) . On input a pk , an access tree T
and a message m , for each node ω of T , the algorithm
chooses a polynomial θω with degree dω = thω − 1
where thω is the threshold of ω as follows: it sets
θω(0) = θpt(ω)(idx(ω)) and randomly chooses other
dω points to completely define θω . For the root node
ωrt , it picks s, ξ $

←−Zp and sets θωrt (0) = s . Let J be
the set of leaf nodes, it computes C = hs = gνs ,
C ′ = gs , Y = e(g , g)µs and

K =
(

krcs
(

gau
)µ

gr
′
)

1

ν
= g

rγ+µau+r′

ν ,K ′ = gr

Ki,1 = gr
′
H1(Ri)

ri , Ki,2 = gri , ∀i ∈ [k],Ri ∈ R

X = SKE.Enc(KDF(Y , L),m||ξ), Ĉ = gH2(m)
c hξc

Cj,1 = gθj(0), Cj,2 = H1(A(j))
θj(0), ∀j ∈ J .

Page 11 of 21Song et al. Cybersecurity (2023) 6:19

 Finally, the algorithm outputs a ciphertext
ct = (T ,X ,C ,C ′

, Ĉ , {Cj,1,Cj,2}j∈J).
• DSGen(cskj ,dk, i,ct) . On input a cloud-side

secret key cskj corresponding to a serial number j,
a delegated key dk , a cloud’s serial number i and a
ciphertext ct , the algorithm outputs a decryption
share dsj,i = e(C ′

,K ′)yj = e(g , g)sryj and a corre-
sponding proof πj,i = e(C ′,K ′)zi,j = e(g , g)srzi,j if the
attribute set R in dk satisfies the access tree in ct .
Otherwise, it outputs ⊥.

• DSVerify(cski,dk,dsj,i,πj,i,ct) . On input a cski ,
a dk , a decryption share dsj,i = e(g , g)sryj , a proof
πj,i and a ct , the algorithm gets the terms (bi,j , ci,j)
which is indexed by j in cski . Then it checks
πj,i

?
=(e(g , g)sryj)bi,j · e(C ′,K ′)ci,j . If the equation

holds, it outputs b = 1 ; otherwise, b = 0.
• DSCombine(cpk, {dsj,i}j∈�t) . On input a cloud-side

public key cpk and t decryption shares {dsj,i}j∈�t
where dsj,i = e(g , g)sryj , �t ⊆ [n] and |�t | = t , the
algorithm sets X = {xj|j ∈ �t} where xj is in cpk and
computes the Lagrange coefficient
ηj = �j,X (0) =

∏

x∈X ,x �=j

0−x
j−x , ∀j ∈ �t . Finally, it out-

puts a combined secret value

• CSDecrypt(pk,dk,ct,csv) . On input a pk , a dk , a
ct and a combined secret value csv = e(g , g)srγ , the
algorithm outputs ⊥ if Q(T ,R) = 1 . Note that
Q(T ,R) = 1 means R does not satisfy the access
tree T . Otherwise, for each leaf node j, if there exists
an index i s.t. A(j) = Ri ∈ R , it sets a node function
Dj =

e(Ki,1,Cj,1)

e(Cj,2,Ki,2)
= e(g , g)r

′θj(0) ; otherwise, it sets

Dj = ⊥ . Then for each non-leaf node ω , it recursively
sets the node function Dω as follows: let Jω be a child
nodes set of ω with size thω , it tries to find a set Jω
s.t. Dωc = ⊥ for any child node ωc ∈ Jω . If no such
Jω , Dω = ⊥ . Otherwise, let Iω = {idx(ωc)|ωc ∈ Jω} ,
it uses polynomial interpolation to compute

 Then it has Dωrt = e(g , g)r
′θωrt (0) = e(g , g)r

′s for the
root node and computes C =

e(K ,C)
e(g ,g)srγ ·Dωrt

= e(g , g)µs·au .
Finally, it outputs a partially decrypted ciphertext

csv =
∏

j∈�t

(e(g , g)sryj)ηj = e(g , g)srP(0) = e(g , g)srγ .

Dω =
∏

ωc∈Jω

(Dωc)
ηωc , where ηωc = �δ,Iω(0), δ = idx(ωc)

=
∏

ωc∈Jω

(e(g , g)r
′θωc (0))ηωc

=
∏

ωc∈Jω

(e(g , g)r
′θω(δ))ηωc = e(g , g)r

′θω(0).

dct = (X ,C , Ĉ) . Note that X and Ĉ are the terms in
ct.

• UDecrypt(pk,dct,usk) . On input a pk , a par-
tially decrypted ciphertext dct and a user
secret key usk = au , the algorithm computes
Y ′ = (C)

1/au = (e(g , g)µs·au)1/au = e(g , g)µs and
m′||ξ ′ = SKE.Dec(KDF(Y ′, L),X) . It outputs m′ if
Ĉ = g

H2(m
′)

c h
ξ ′

c . Otherwise, it outputs ⊥.
• URevoke(u,L) . On input an identity u and a del-

egated key list L , the algorithm deletes the entry
(u,dk) from L to get an updated list L′.

Security analysis
In this section, we give four theorems with respect to
the security definitions and model the hash function H1
as a random oracle. The security proofs are postponed to
appendix.

Theorem 1 Our ROABE scheme achieves data privacy
against both users (type-1 adversary) and clouds (type-2
adversary) in the generic group model, assuming KDF is
secure.

Theorem 2 Our ROABE scheme achieves reliable user
revocation against type-3 adversary in the generic group
model, assuming KDF is secure.

Theorem 3 Our ROABE scheme achieves verifiability of
decryption share against type-4 adversary.

Theorem 4 Our ROABE scheme achieves verifiability of
intermediate ciphertext against type-5 adversary, assum-
ing the Discrete Logarithm (DL) problem is hard in the
prime order bilinear group system, KDF is secure and the
hash function H2 is collision-resistant.

Implementation of rainbow
In this section, we present how to build Rainbow with
ROABE and other cryptographic and industrial tools,
and the deployment in real world. In particular, ROABE,
Public Key Infrastructures (PKI), Message Queue (MQ),
ownCloud and digital signature are main components in
Rainbow. ROABE brings core security properties, which
have been defined in the design goals. PKI generates
certificates to authenticate system users and the servers
and MQ is adopted to transmit the confirmation mes-
sages (refer to next subsection). The software ownCloud
implies the basic functionalities of cloud storage host-
ing, e.g., data upload, download, and sharing. To ensure

Page 12 of 21Song et al. Cybersecurity (2023) 6:19

the confirmation message unforgeable, the signature is
applied.

Three mainstream clouds are chosen, namely AWS,
GCP and Azure, for building multiple cloud servers. The
users in Rainbow, including PO and PU, are equipped
with browsers and smart phones and client certificates
are settled ahead in browsers and the Android applica-
tion to build the secure channel.

Detailed construction
Now we present the details of Rainbow following the
workflow. Fig. 3 depicts the interactions of each entity of
Rainbow using ROABE where (n = 3 , t = 2).

(1) System Iiitialization. TA chooses the threshold
value t and labels each cloud server with a unique
serial number, e.g., in Fig. 3, the serial number of
MCS is 1 and the serial numbers of other two HCSs
are 2 and 3, respectively. Then TA initializes cryp-
tographic modules, e.g., using AES-GCM to initial-
ize SKE. For ROABE, a global attribute universe U
that contains all available attributes is set. Taking �
as input, ROABE.Setup is called to get (pk , msk ,
cpk , {cski}i∈[n] , L). TA also maintains a Public Key
Infrastructures (PKI) to issue certificates for users.
It generates a root certificate in this phase. Finally,
cski is securely transmitted to the ith cloud server
along with (pk , cpk). The empty delegated key list
L is initialized by each cloud server.

(2) User registration (PO). A PO generates a signing key
and a verification key for signature and sends his
registration information, such as identity and con-

tact details, along with the verification key to TA.
TA issues the request and generates a certificate
with the verification key for the PO. The certificate
will be transmitted to the PO.

(3) User registration (PU). A PU runs
ROABE.UKeyGen with his identity u to obtain
(upk,usk). Then he also generates a signing key and
a verification key for signature and sends a registra-
tion request which contains upk , an attribute set R
and the verification key to TA. TA also generates a
certificate for him and runs ROABE.DKeyGen to
produce a delegated key dk . The new entry (u, dk)
is added into L by each cloud server. Note that the
certificate of PO/PU is used for confirmation (see
Phase 5)

(4) Encryption and upload. For each entry in a
PO’s PIIF, he chooses an access policy and runs
ROABE.Encrypt to get a ciphertext ct . Note that
each entry in a PIIF is in “key-value” style like
JSON, e.g., {key: Name, value: Alice}, and only value
(e.g., Alice) is encrypted. Combining all encrypted
entries, he forms an encrypted PIIF and uploads it
to a cloud server. The encrypted PIIF are synchro-
nized to other servers to make a backup.

(5) Owner confirmation. In Rainbow, before a PU
obtaining an encrypted PIIF, he should get the con-
firmation from the PO. In particular, the PU signs
his request with the signing key and sends the
request along with his certificate and the signature
to a cloud server (MCS), where the request con-
tains his identity, purpose, requested PIIF, etc. The
MCS checks the validity of the signature and rejects

Fig. 3 Main interactions in Rainbow

Page 13 of 21Song et al. Cybersecurity (2023) 6:19

if it is invalid or the PU is not in L . Otherwise, it
pushes the request to the PO. If the PO allows the
PU to access this PIIF, he generates a confirmation
(or rejection) token and signs it. The token and the
signature are returned to the MCS.

(6) Outsourced Decryption. The MCS checks the valid-
ity of token with PO’s certificate and generates an
assistance request of the target PIIF if the token is
valid and sends the request to other t HCSs. When
an HCS, whose serial number is j, receives the
request from the MCS, it refuses to help if the PU is
not in L . Otherwise, suppose there are k encrypted
entries in the requested PIIF, for the ith entry,
it runs ROABE.DSGen to generate (ds(i)j,1,π

(i)
j,1) .

Recall that the serial numer of MCS is 1 in Fig. 3.
The HCS returns the set {(ds(i)j,1,π

(i)
j,1)}i∈[k] to the

MCS. For each tuple in the set, the MCS runs
ROABE.DSVerify to check the correctness of ds(i)j,1 .
If it is invalid, the MCS would choose another HCS
with a serial number j∗ (j∗ �= j) that has not been
requested in this session to obtain a new tuple.
The misbehavior of this HCS would be recorded.
Once the MCS gets t valid decryption shares for an
encrypted entry, it runs ROABE.DSCombine and
ROABE.CSDecrypt to get a partially decrypted
ciphertext dct . Finally, combining all transformed
ciphertexts, it forms a transformed PIIF and returns
it to the PU.

(7) Local decryption. When the transformed PIIF
received, for each partially decrypted entry, the PU
runs ROABE.UDecrypt to obtain a plaintext or ⊥ .

If ⊥ is output, the MCS is caught as a misbehaved
server since the partially decrypted ciphertext dct
is notwell-formed. Otherwise, the recovered entries
in the PIIF can be reconstructed as a decrypted
PIIF. We stress that the PU maybe cannot decrypt
all entries in the PIIF due to the access policy of
each entry.

(8) User revocation. Once a PU u is suggested
to be revoked, all cloud servers should run
ROABE.URevoke to remove the entry (u,dk) from
L . Then the cloud servers cannot provide out-
sourced decryption for u anymore. Besides, TA
would revoke his certificate as well.

Adapting rainbow with ownCloud
In this section, we introduce how to adapt Rainbow with
ownCloud. Besides, some practical middlewares and
tools are used to initialize Rainbow in real world. The
architecture is shown in Fig. 4.

We chose the BN curve (Barreto and Naehrig , 2005)
and implemented each algorithm in ROABE using MCL
library (Mitsunari , 2019). We also used AES-GCM from
OpenSSL to instantiate SKE. All the algorithms were
compiled to a dynamic library (.so). For the ownCloud
server, we used PHP-CPP (http:// www. php- cpp. com/)
to transform our dynamic library to a PHP extension.
For the Android client, we adopted Java Native Interface
(JNI) (https:// docs. oracle. com/ javase/ 8/ docs/ techn otes/
guides/ jni/) and cross-compilation technique to repack-
age APIs to fit Android OS. And for the web application,
we used JavaScript to implement algorithms by adopting

Fig. 4 System architecture

http://www.php-cpp.com/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/

Page 14 of 21Song et al. Cybersecurity (2023) 6:19

WebAssembly (W3C Community Group , 2017) and
MCL-WASM (Mitsunari , 2019). Besides, we used JSON,
which is one of the most popular data-interchange for-
mats, to form the PIIF. More details are given here.

TA. We used CFSSL (CloudFlare , 2014) which is cloud-
flare’s PKI and TLS toolkit to build the PKI in TA. To
deploy the algorithms of ROABE to TA, including Setup
and DKeyGen , we modified CFSSL using CGO, which
enables the creation of Go packages that call C code.

Cloud servers. As we discussed above, the algorithms of
ROABE are embedded into the ownCloud server, includ-
ing DSGen , DSVerify , DSCombine , CSDecrypt and
URevoke . To guarantee the confirmation request can be
pushed to the PO in time, we adopted the middleware
message queue (MQ), namely Kafka (Apache 2011), and
deployed it on cloud servers. Therefore, we additionally
built an MQ producer module to ownCloud server to
transmit the requests from users.

User side. Android client and web application are mod-
ified to adapt with ROABE.

• Android client. It is considered as a PO. The algo-
rithm Encrypt was implemented and exposed to
ownCloud via JNI. We additionally built an MQ con-
sumer module to fetch the transmitted requests from
Kafka.

• Web application. The algorithms of ROABE, namely
UKeyGen and UDecrypt , were implemented by
using JavaScript and WebAssembly-based API from
MCL.

System deployment
We now present how to deploy Rainbow in real world.

Basic clouds setting. We adopted AWS, GCP and Azure
as the cloud service provider. To use their services, they
mandate that we should create cloud accounts and follow

their access control rules, e.g., ABAC and RBAC (https://
docs. aws. amazon. com/ IAM/ latest/ UserG uide/ intro ducti
on_ attri bute- based- access- contr ol. html, https:// cloud.
google. com/ iam/ docs/ overv iew, https:// docs. micro soft.
com/ en- us/ azure/ role- based- access- contr ol/ overv iew). A
trivial idea is binding a user to a corresponding account
on each cloud, however, it is impractical since we have to
build an authentication module to link the access rights of
system users and cloud accounts. Instead, we created only
an account on each cloud that have definite access rights
and binded this account to the ownCloud server. Then the
user’s access rights are fully controlled by Rainbow, which
are independent with the cloud service providers.

Network configuration. The channels between all enti-
ties are protected by TLS protocol with public key certifi-
cates thus bi-directional authentication is promised. We
adopt VPN as the internal channel for the communica-
tion between each cloud server. All clients access to the
clouds through the public network.

Instance deployment. We deployed our modified own-
Cloud server on Amazon EC2, Google Compute Engine
and Azure Virtual Machines. Specifically, we appreci-
ate to adopt Trusted Execution Environment (TEE)
(http:// www. omtp. org/ OMTP_ Advan ced_ Trust ed_ Envir
onment_ OMTP_ TR1_ v1_1. pdf) to protect the compu-
tation on TA, however, it is out of our concern in this
work. We used Amazon S3, Google Drive and Azure File
Storage as external storage services of ownCloud. We
installed the modified Android client on smart phones to
perform as system users.

System evaluation
Theoretical comparison
For Rainbow, the majority of computation cost and security
functionalities come from ROABE. In Table 2, we compare
ROABE to other known schemes in three folds, including
functionality, security model and basic computation cost.

Table 2 Comparisons of Some CP-ABE Schemes

“–” denotes “not applicable”. “ × ” denotes “not support”, “ � ” denotes “partially support” and “ � ” denote “fully support”. “|I|” are the cardinality of the satisfied attribute
set. E, E ′ , P are the numbers of modular exponentiations in G and GT , and paring, respectively

Scheme User revocation Security Full
verifiability

User
decryption
computationImmediateness Reliability Trust on cloud server Model of attack

Attrapadung and Imai (2009) � × – Selective × 3|I|E + 4|I|P

Cui et al. (2016) × × Untrust Selective × 1E ′

Qin et al. (2017) × × Untrust Selective × 2P

Ma et al. (2015) – - Covert Selective � 1E ′

Ma et al. (2019) � × Semi-honest Selective × 1E ′

Yang et al. (2015) � × Semi-honest Adaptive × 1E ′

Our ROABE � � Covert Adaptive � 1E ′

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://cloud.google.com/iam/docs/overview
https://cloud.google.com/iam/docs/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf

Page 15 of 21Song et al. Cybersecurity (2023) 6:19

Attrapadung and Imai (2009) put forward a direct user
revocation that revokes a user directly by incorporating
a revocation list into encryption. However, it is heavy to
revoke a user from the system since all ciphertexts need
to be updated. ROABE achieves efficient and immedi-
ate user revocation via server-aided approach (Yang
et al. 2015; Ma et al. 2019). Although Cui et al. (2016)
and Qin et al. (2017) gave server-aided solutions, they
need to update all other users’ delegated keys when a
user revoked, which is impractical. The user revocation
mechanism proposed by Ma et al. (2019) does not fully
support the reliability if multiple servers are deployed
in practice. Because there is only one cloud-side secret
key holding by all servers. The mechanism in Ma et al.
(2019) can resist the leakage of cloud-side secret key by
updating ciphertexts, nevertheless, it costs too much.
Besides, the works (Cui et al. 2016; Qin et al. 2017) can
also achieve key-exposure, but updating all delegated
keys is demanded when leakage occurs. Our scheme can
resist key-exposure since unless the adversary obtains
more than t cloud-side secret keys, it is unable to break
the revocation. Above all, the schemes (Attrapadung and
Imai 2009; Cui et al. 2016; Qin et al. 2017; Ma et al. 2019;
Yang et al. 2015) and our ROABE all support user revoca-
tion, only ROABE achieves immediateness and reliability
simultaneously, nevertheless.

Our ROABE achieves full verifiability to check the cor-
rectness of outsourced decryption and locate a misbe-
haved server when a wrong decryption result returned,
while the verification mechanism proposed by Ma et al.
(2015) only supports the former. The works (Lai et al. 2013;
Mao et al. 2015; Lin et al. 2016) have the same limitation.
Since none of them can accurately locate the misbehaved
server over multi-cloud, we conclude that they “partially
support” the full verifiability. Besides, ROABE is efficient
on user side since only one exponentiation operation is
required for local decryption. The above theoretical com-
parison shows that our scheme is practical and secure.

Feature discussion
In this subsection, we further discuss the features of
Rainbow.

Reliable immediate user revocation. The user revoca-
tion in Rainbow is immediate since it is only required
to remove a PU’s delegated key from the list L on each
server. The reliability lies in two folds. One is key-
exposure resistance. When no more than t − 1 servers
compromised, the revocation mechanism still works,
referring to the security property of ROABE. The other
is high availability. Even several servers (less than n− t)
collapse, Rainbow can still provide retrieval service as
well as user revocation. In particular, in the outsourced
decryption phase, a PU can adaptively choose other

servers as MCS when the requested MCS collapses, and
the MCS can choose other alive servers as its HCS until
t valid decryption shares are obtained when any HCS
collapses.

Accurate Judgement for misbehaved outsourced decryp-
tion. In Rainbow, a misbehaved server cannot exculpate
itself for a wrong outsourced decryption result. In par-
ticular, suppose an HCS produces an incorrect decryp-
tion share, the MCS can check its correctness and
disclose its misbehavior according to the verifiability
of decryption share of ROABE. If the MCS shields the
HCS, since ROABE implies the verifiability of partially
decrypted ciphertext and a wrong decryption share
would cause an incorrect dct , the PU could blame the
MCS for its misbehavior. Although the misbehaved HCS
conceals himself in this case, the MCS is located and
punished, and the wrong result is eventually figured out
and never be used. In fact, according to this property, it
is worthless for the MCS to shield a misbehaved HCS.
Hence, no misbehaved server can exculpate itself.

More security properties. Regarding to the involved
components, Rainbow additionally brings the following
security properties.

(1) Secure communication. Since PKI generates cer-
tificates for system users, the communication chan-
nel between each entity can be easily secured by
implementing TLS. Besides, the message queue, i.e.,
Kafka, also implies secure communication by set-
ting TLS/SSL configuration.

(2) Undeniable confirmation token. In the owner con-
firmation phase, the PU would generate a confir-
mation token and send it to the MCS along with a
corresponding signature. It prevents any PU from
denying the retrieval request of PIIF, which gives a
promising solution to trace unexpected PIIF leak-
age in real world.

(3) Field-level access control. In Rainbow, each entry in
PIIF can be encrypted independently with arbitrary
access policy. It implies field-level access control.

Experimental results
To evaluate the performance of Rainbow, we hired sev-
eral cloud service providers, namely Amazon, Google
and Microsoft, and used various user devices, including
laptop, desktop and mobile phone, as our experimen-
tal subjects (see Table 3). We used AES-GCM-128 to
instantiate SKE and PBKDF2-HMAC-SHA256 to real-
ize KDF which outputs 128bit derived key. The signature
is implemented by the Boneh-Lynn-Shacham scheme
(Boneh et al. , 2001). All experimental results are shown
in Fig. 5 and all times are presented in milliseconds (ms).

Page 16 of 21Song et al. Cybersecurity (2023) 6:19

In particular, the experiment contains two parts: the raw
performance of ROABE (Fig. 5a–f) and the performance
of Rainbow based on ownCloud (Fig. 5g–i).

To evaluate the performance of algorithms in
ROABE, we set access policies in the form of
(R1 ∧ R2 ∧ · · · ∧ Rℓ) to simulate the worst case. We set
20 distinct access policies with ℓ increasing from 5 to

100, repeat each instance 50 times and take the aver-
age value. Figure 5a shows that the key generation
costs 1.8–36.8 ms which performs well on different
servers with different operating systems. As shown in
Fig. 5b, the running time of CSDecrypt is about 5.4–
132.1 ms on three cloud servers (S1–S3). Figure 5c
shows that DSGen , DSVerify and DSCombine cost

Fig. 5 Experimental performance

Table 3 Experiment setup

Label CPU OS Type

Client C1 Intel Core(TM) i7-3770 @3.40GHz Ubuntu 16.04 Desktop

C2 Intel Core i7-9750H @2.60GHz MacOS Catalina 10.15 Laptop

C3 HUAWEI Kirin 990E @2.86GHz HarmonyOS 2.0.0 Mobile

Server S1 Intel Xeon Platinum 8272CL @2.60GHz Centos 7 Azure

S2 Intel Xeon E5-2676 v3 @2.40GHz Amazon Linux 2 AWS

S3 Intel Xeon E5-2650 v4 @2.20GHz Centos 7 GCP

 Device Label Browser

Macbook Pro Intel Core i7-9750H @2.60GHz B1 Safari 15609.4.1

B2 Chrome 106.0.5249.119

B3 Firefox 102.0.1

Dell Laptop Intel Core i7-8550U @1.80GHz B4 Microsoft Edge 107.0.1418.26

B5 Chrome 107.0.5304.88

B6 Firefox 106.0.3

Page 17 of 21Song et al. Cybersecurity (2023) 6:19

about 0.8–1.0 ms, 0.6–0.7 ms and 0.3–0.4 ms, respec-
tively. Comparing Fig. 5b, c, the process of the decryp-
tion share costs much less than CSDecrypt . It indicates
that we can run these algorithms in parallel setting
to further optimize the performance on servers. We
discuss about the optimization in Rainbow later. Fig-
ure 5d shows that the running time of UKeyGen is
about 0.02–0.04 ms in browsers (B1–B6) and 0.04–
0.1 ms on clients (C1–C3). Figure 5e demonstrates that
Encrypt costs about 6.5–161.8 ms in browsers and 2.0–
127.1 ms on clients. Figure 5f indicates that the run-
ning time of UDecrypt is independent of the number
of attributes. It costs about 1.0–1.8 ms in browsers and
1.1–1.5 ms on clients.

To evaluate the performance of Rainbow, we pro-
duced multiple PIIFs which are formed in JSON
and mainly tested user-side performance, including
encryption and local decryption, and response latency
of retrieval. We increased the number of contained
entries from 5 to 100 and set the length of each entry
to be 20 bytes. The policy of each entry was set in
the form of (R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5) , where the num-
ber of attributes is fixed to be 5. Figure 5g, h indicate
that the encryption costs about 28.6–1158.0ms and
the decryption costs about 5.2–193.6ms in brows-
ers. Even 100 entries are contained, the encryption
costs less than 1.2 s and the decryption costs within
200ms. The network latency between each cloud
server is about 15ms on average and the public band-
width is 1Mbps. Figure 5i shows the response latency
of the cloud server is affordable when a PU sends his
request where (n = 5, t = 3) . In particular, it contains
confirmation and outsourced decryption. To optimize
the performance on server, in outsourced decryption
phase, Rainbow generates assistance requests and
runs CSDecrypt simultaneously with different pro-
cesses. When decryption shares are returned from
other servers, as shown in Fig. 5b, c, CSDecrypt pos-
sibly has not finished. And we observed that the out-
put of DSCombine , namely csv , is used at the last step
of CSDecrypt . Therefore, Rainbow can create another
process to deal with DSVerify and DSCombine and
pass csv to the main process which are still running
CSDecrypt via internal process communication (IPC).
The optimized results are shown in Fig. 5i. All experi-
mental results indicate that Rainbow is practical.

Conclusion
In this paper, we propose Rainbow, a secure and prac-
tical PII retrieval scheme. As a step towards our con-
struction and a by-product, we design and implement

a useful tool called ROABE with data privacy, flexible
and fine-grained access control, reliable immediate
user revocation and verification for multiple serv-
ers. Then we present a formal security model and give
theoretical security analysis of ROABE. With ROABE,
ownCloud, a popular cloud storage hosting appli-
cation, and other cloud techniques, we implement
Rainbow in real world. To evaluate its performance,
we deploy Rainbow on multiple mainstream clouds,
namely AWS, GCP and Azure, and different clients
and browsers. Combining the security analysis and the
experimental evaluation, we conclude that Rainbow
achieves great performance with enhanced security
guarantees.

Appendix
Proof of Theorem 1
In this section, we give our proofs of data privacy
against users and clouds, respectively, to prove Theo-
rem 1. Let � be the scheme in Yang et al. (2015).

Data privacy against users
Proof
We define the following games.

• Game0 : It is the original security game Gamedupriv.

• Game1 : Almost same as Game0 , except that Y $
←−GT ,

X∗ = SKE.Enc(KDF(Y , L),mb||ξ).
• Game2 : Almost same as Game1 , except that X∗ =

SKE.Enc(K ,mb||ξ) where K is randomly picked from
the key space of SKE.

• Game3 : Almost same as Game2 , except that X∗ =
SKE.Enc(K, M) where M is randomly picked from
the message space of SKE and |M| = |mb| + |ξ |.

• Game4 : Almost same as Game3 , except that
Ĉ∗ = g

H2(x)
c h

ξ
c where x is a randomness.

Lemma 1 Game0 and Game1 are indistinguishable, if �
achieves data privacy against users.

Proof
Assume that there exists a PPT adversary A who can dis-
tinguish Game0 and Game1 with a non-negligible advan-
tage ǫ , then we can build a PPT simulator B to break
the data privacy against users of � with a non-negligible
advantage ǫ′ . Let C be the challenger of �.

Page 18 of 21Song et al. Cybersecurity (2023) 6:19

Setup. C generates public parameters params = (G, e, g ,

h = gν , e(g , g)µ,H1) and a cloud’s key pair (pkcs = gγ ,

skcs = γ) , and returns them to B . Then B picks (t, n)
where t ≤ n , and chooses gc, hc

$
←−G , a hash function

H2 : {0, 1}∗ → Zp and a key derivation function KDF with
the output length L. B defines a polynomial P(x) over Zp
with degree t − 1 where P(0) = γ . ∀i, j ∈ [n], j �= i , it ran-
domly chooses a point (xi, yi) over P(x) where yi = P(xi)
and bj,i, cj,i

$
←−Zp , and computes zj,i = bj,i · yi + cj,i . B sets

pk = (params, gc , hc ,H2,KDF, L) , cpk = (pk, kcs , {xi}i∈[n]) and
cski = (pk, dki = (yi , {zj,i}j �=i,j∈[n]), vki = {(bi,j , ci,j)}j �=i,j∈[n]) .
Finally, B initializes an empty delegated key list L and a
table W , and returns (pk , cpk , {cski}i∈[n] , L) to A.

Phase 1. A is allowed to query following oracles:

• User-key oracle OUK(u) : B forwards the query to C . C
returns (upk,usk) to B . Finally, B stores them to the
table W and returns (upk,usk) to A.

• Delegated-key oracle ODK(R,u) : B rejects if no such
upk exists in W . Otherwise, B sends the attribute set
R to C to get a dk = (R,K ,K ′, {Ki,1,Ki,2}i∈[k]) where
k = |R| , and returns it to A.

Challenge. A submits two message m0,m1 where |m0| = |m1|
and an access tree T ∗ , subjecting to a restriction that none
of the queried attribute set R in Phase 1 satisfies T ∗ . B
randomly picks m∗0,m

∗
1 ∈ GT and sends m∗0,m

∗
1 to C to

get a ciphertext (T ∗
, c∗ = m

∗
b · e(g , g)

µs
,C∗ = hs,C

′∗ = gs,

{C∗
j,1 = gθj(0),C∗

j,2 = H1(A(j))
θj(0)}j∈J) , where J is the

set of leaf nodes. Then B flips a random coin b∗ and com-
putes Y = c∗/m∗

b∗ =
m∗b
m∗
b∗

· e(g , g)µs , Ĉ∗ = g
H2(mb∗)
c h

ξ
c where

ξ
$
←−Zp and X∗ = SKE.Enc(KDF(Y , L),mb∗ ||ξ) . Finally, B

sets ct∗ = (T ∗,X∗,C∗,C
′∗, Ĉ∗, {C∗

j,1,C
∗
j,2}j∈J) and

returns it to A.
Phase 2. A continues to query the oracles with the restric-
tion that any queried R does not satisfy T ∗.

Guess. A outputs a guess b′ ∈ {0, 1} to indicate that it
plays with the game Gameb′ . If b′ = 0 , B outputs b∗ as the
guess of b. Otherwise, B outputs 1− b∗.

Apparently, if b∗ = b , B has simulated Game0 properly
since Y = e(g , g)µs ; otherwise, it has simulated Game1
properly since Y is a randomness. Then B can break the
data privacy against users of � with the advantage ǫ′ = ǫ
which is non-negligible. Therefore, Game0 and Game1 are
indistinguishable. �

Since the security of the KDF implies that KDF(Y, L) is
indistinguishable from a randomly generated key of SKE,
then Game1 and Game2 are indistinguishable. Since the Ped-
ersen commitment is computationally hiding, Game3 and
Game4 are indistinguishable. To prove the indistinguishabil-
ity of Game2 and Game3 , we have the following lemma.

Lemma 2 If SKE is semantically secure, then Game2 and
Game3 are computationally indistinguishable.

Proof
Suppose there exists a PPT adversary A who can distin-
guish Game2 and Game3 with a non-negligible advan-
tage, then we can build a PPT simulator B to break the
semantic security of SKE. To avoid repetition, we only dis-
cuss the Challenge phase. When A submits (m0,m1) to
B , B flips a coin b∗ and sends (m∗0,m

∗
1) = (mb∗ ||ξ ,M) to C

(the challenger of SKE) where |m∗0| = |m∗1| , ξ
$
←−Zp and M is

randomly chooses from the message space of SKE. C flips
a coin b, randomly picks a symmetric key K and returns
X∗ = SKE.Enc(K ,m∗

b) to B . B generates other terms to get
the challenge ciphertext ct∗ and returns it to A . B sets b′
that is output by A as its guess.

Obviously, if b = 0 , then B has simulated Game2 ; oth-
erwise, it has simulated Game3 . Then B can break the
semantic security of SKE with a non-negligible advan-
tage. Thus, Game2 and Game3 are indistinguishable.

In Game4 , since the information of mb is lost in the chal-
lenge ciphertext, the advantage of A is exactly 0. Thus,
ROABE achieves data privacy against users.

Data privacy against clouds
Similarly, we define the following games.

• Game0 : It is the original security game Gamecspriv.

• Game1 : Almost same as Game0 , except that Y $
←−GT ,

X∗ = SKE.Enc(KDF(Y , L),mb||ξ).
• Game2 : Almost same as Game1 , except that X∗ =

SKE.Enc(K ,mb||ξ) where K is randomly picked from
the key space of SKE.

• Game3 : Almost same as Game2 , except that X∗ =
SKE.Enc(K, M) where M is randomly picked from
the message space of SKE and |M| = |mb| + |ξ |.

• Game4 : Almost same as Game3 , except that
Ĉ∗ = g

H2(x)
c h

ξ
c where x is a randomness.

�

�

Page 19 of 21Song et al. Cybersecurity (2023) 6:19

Lemma 3 Game0 and Game1 are indistinguishable, if �
achieves data privacy against clouds.

Proof
Assume there exists a PPT adversary A who can distin-
guish Game0 and Game1 with a non-negligible advantage
ǫ , then we can build a PPT simulator B to break the data
privacy against clouds of � with a non-negligible advan-
tage ǫ′ . Note that � is the scheme in Yang et al. (2015).

The simulation is almost same as that in the proof of Lemma
1. To avoid repetition, we only discuss the different phases.

Setup. C generates a public key and returns it to B . B runs
UKeyGen to get a cloud’s key pair (pkcs = gγ , skcs = γ)
and sends pkcs to C . Then B generates other terms as
Setup in the proof of Lemma 1.

Phase 1. Almost same as Phase 1 in the proof of
Lemma 1, except that in OUK , B only returns upk to A.

Challenge. Same as Challenge in the proof of Lemma 1.

Phase 2. A continues to query the oracles as Phase 1.

Guess. A outputs a guess b′ ∈ {0, 1} to indicate that it
plays with the game Gameb′ . If b′ = 0 , B outputs b∗ as the
guess of b. Otherwise, B outputs 1− b∗.

Similarly, if b∗ = b , B has simulated Game0 properly; oth-
erwise, it has simulated Game1 . Then B breaks the data
privacy against clouds of � with the advantage ǫ′ = ǫ
which is non-negligible. Therefore, Game0 and Game1 are
indistinguishable.

The proofs of the indistinguishability of other games
are omitted, since they are same as that in the proof of
data privacy against users. In Game4 , since the informa-
tion of mb is lost, the advantage of A is 0. Thus, ROABE
achieves data privacy against clouds. Above all, we
complete the proof of Theorem 1.

Proof of Theorem 2

Proof
We define the following games.

• Game0 : It is the original security game Gamervk.

�

• Game1 : Almost same as Game0 , except that Y $
←−GT ,

X∗ = SKE.Enc(KDF(Y , L),mb||ξ).
• Game2 : Almost same as Game1 , except that X∗ =

SKE.Enc(K ,mb||ξ) where K is randomly picked from
the key space of SKE.

• Game3 : Almost same as Game2 , except that X∗ =
SKE.Enc(K, M) where M is randomly picked from
the message space of SKE and |M| = |mb| + |ξ |.

• Game4 : Almost same as Game3 , except that
Ĉ∗ = g

H2(x)
c h

ξ
c where x is a randomness.

Lemma 4 Game0 and Game1 are indistinguishable, if �
supports user revocation.

Proof
Assume there exists a PPT adversary A who can distinguish
Game0 and Game1 with a non-negligible advantage ǫ , then
we can build a simulator B to break the data privacy against
users of � with a non-negligible advantage ǫ′ . Note that � is
the scheme in Yang et al. (2015). Let C be the challenger of �.

Similarly, the simulation is almost same as that in the
proof of Lemma 1. We only discuss the differences.
In Setup, C only returns pkcs = gγ to B . Although B
knows nothing about the real secret key skcs = γ that
C generates, B can randomly choose t − 1 secret keys
{cski}i∈�t−1 and returns them to A . Because Shamir’s
secret sharing is information-theoretic secure, A knows
nothing about skcs . Thus, the simulation of Setup is per-
fect. Other phases are almost same as that in the proof
of Lemma 1, except that the restrictions of T ∗ in Chal-
lenge and R in Phase 2 are removed. Therefore, Game0
and Game1 are indistinguishable. �

The proofs of the indistinguishability of other games are
omitted, since they are same as that in the proof of data
privacy against users. Therefore, ROABE achieves reliable
user revocation. We complete the proof of Theorem 2. �

Proof of Theorem 3

Proof
According to the security definition, A wins the game if
zi∗,j = bi∗,j · yj + ci∗,j ∧ z′i∗,j = bi∗,j · y

′
j + ci∗,j . It is obvi-

ous that A can output a pair (ds∗j,i∗ ,π
∗
j,i∗) by using cskj

where j = i∗ . However, since A does not know the verifi-
cation key vki∗ = (bi∗,j , ci∗,j) , the only way to find another
pair (z′j∗,i, y

′
i) to satisfy the equation is randomly guessing

in Zp with the probability 1/p which is negligible. �

Page 20 of 21Song et al. Cybersecurity (2023) 6:19

Proof of Theorem 4

Proof
Suppose there exists a PPT adversary A can break the
verifiability with non-negligible probability, then a PPT
simulator B can be constructed to solve DL problem. Spe-
cifically, B is given (p,G,GT, e, g ,A = ga) and intends to
calculate a = logg A . The simulation is shown as follows.

Setup. B sets gc = A and hc = gd where d $
←−Zp . B gener-

ates other terms as the algorithm Setup and returns the
public key pk to A.

Phase 1. Since B maintains the master secret key msk , it
can answer all queries.

Challenge. A submits a message m∗ and an access tree T ∗
to B . B runs Encrypt(pk, T ∗,m∗) to return ct∗ to A.

Phase 2. Same as Phase 1.

Output. A outputs a tuple { usk∗ , dct∗1 , dct
∗
2 }. Spe-

cifically, usk∗ has been generated by OUK and sent
to A in Phase 1 or Phase 2. Then B runs UDe-
crypt with usk∗ to decrypt dct∗1 and dct∗2 to get
(m∗1, ξ

∗
1) and (m∗2, ξ

∗
2) , respectively. A wins the game if

m∗1 �= ⊥ ∧ m∗
2 �= ⊥ ∧ m∗

1 �= m∗2 and

The inequality equation H2(m
∗
1) �= H2(m

∗
2) holds with

overwhelming probability, since H2 is collision-resistant.
Then B can compute

as the solution of the DL problem, since d, m∗1 , m
∗
2 , ξ

∗
1 , ξ∗2

are all known to B .

Acknowledgements
The authors would like to thank the reviewers for their valuable time.

Author contributions
ZS and HM proposed the Rainbow and drafted the manuscript. RZ partici-
pated in problem discussions and improvements of the manuscript. SS and YX
implemented and benchmarked the proposed system. All authors read and
approved the manuscript.

Funding
This work was supported by National Natural Science Foundation of China
(Nos. 62172411, 62172404, 61972094).

Availability of data and materials
Not applicable.

g
H2(m

∗
1)

c h
ξ∗1
c = gqH2(m

∗
1)+dξ∗1

= Ĉ∗ = g
H2(m

∗
2)h

ξ∗2
c

c = gaH2(m
∗
2)+dξ∗2

a =
d(ξ∗2 − ξ∗1)

H2(m
∗
1)− H2(m

∗
2)

�

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 9 November 2022 Accepted: 22 February 2023

References
Amazon: AWS Documentation: What is ABAC for AWS? https:// docs. aws.

amazon. com/ IAM/ latest/ UserG uide/ intro ducti on_ attri bute- based-
access- contr ol. html

Apache: Kafka (2011). https:// kafka. apache. org
Attrapadung N, Imai H (2009) Attribute-based encryption supporting direct/

indirect revocation modes. In: Cryptography and coding ’09 proceedings
of the 12th IMA international conference on cryptography and coding,
pp 278–300

Attrapadung N, Imai H (2009) Conjunctive broadcast and attribute-based
encryption. In: Pairing ’09 proceedings of the 3rd international confer-
ence palo alto on pairing-based cryptography, pp 248–265

Barreto P.S.L.M, Naehrig M (2005) Pairing-friendly elliptic curves of prime order.
In: SAC’05 Proceedings of the 12th international conference on selected
areas in cryptography, vol. 3897, pp 319–331

Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based
encryption. In: 2007 IEEE symposium on security and privacy (SP ’07), pp
321–334

Boneh D, Boyen X, Goh E.-J (2005) Hierarchical identity based encryption
with constant size ciphertext. In: Annual international conference on
the theory and applications of cryptographic techniques. Springer, pp
440–456

Boneh D, Lynn B, Shacham H (2001) Short signatures from the Weil pairing.
In: International conference on the theory and application of cryptology
and information security, Springer, pp 514–532

CloudFlare: CFSSL (2014). https:// github. com/ cloud flare/ cfssl
Copernica: the PHP-CPP Website. http:// www. php- cpp. com/
Cui H, Deng R.H, Li Y, Qin B (2016) Server-aided revocable attribute-based

encryption. In: European symposium on research in computer security
2016, vol. 9879, pp 570–587

Datta P, Dutta R, Mukhopadhyay S (2016) Adaptively secure unrestricted
attribute-based encryption with subset difference revocation in bilinear
groups of prime order. In: Proceedings of the 8th international conference
on progress in cryptology: AFRICACRYPT 2016, Vol. 9646, pp 325–345

DHS: Personally Identifiable Information (2021). https:// www. dhs. gov/ priva cy-
train ing/ what- perso nally- ident ifiab le- infor mation

Ellen Sheng: Facebook, Google discuss sharing smartphone data with govern-
ment to fight coronavirus, but there are risks. https:// www. cnbc. com

Ge C, Susilo W, Baek J, Liu Z, Xia J, Fang L (2021) A verifiable and fair attribute-
based proxy re-encryption scheme for data sharing in clouds. IEEE Trans
Dependable Secur Comput 19(5):2907–2919

Google: Google Cloud Documentation: IAM Overview. https:// cloud. google.
com/ iam/ docs/ overv iew

Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption for
fine-grained access control of encrypted data. In: Proceedings of the 13th
ACM conference on computer and communications security, pp 89–98

Green M, Hohenberger S, Waters B (2011) Outsourcing the decryption of abe
ciphertexts. In: SEC’11 Proceedings of the 20th USENIX conference on
security, pp 34–34

Krawczyk H (2010) Cryptographic extraction and key derivation: the hkdf
scheme. In: CRYPTO’10 proceedings of the 30th annual conference on
advances in cryptology, pp 631–648

Lai J, Deng RH, Guan C, Weng J (2013) Attribute-based encryption with verifi-
able outsourced decryption. IEEE Trans Inf Foren Secur 8(8):1343–1354

Lewko A, Okamoto T, Sahai A, Takashima K, Waters B (2010) Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner
product encryption. In: EUROCRYPT’10 proceedings of the 29th annual
international conference on theory and applications of cryptographic
techniques, pp 62–91

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://kafka.apache.org
https://github.com/cloudflare/cfssl
http://www.php-cpp.com/
https://www.dhs.gov/privacy-training/what-personally-identifiable-information
https://www.dhs.gov/privacy-training/what-personally-identifiable-information
https://www.cnbc.com
https://cloud.google.com/iam/docs/overview
https://cloud.google.com/iam/docs/overview

Page 21 of 21Song et al. Cybersecurity (2023) 6:19

Lin S, Zhang R, Ma H, Wang M (2015) Revisiting attribute-based encryp-
tion with verifiable outsourced decryption. IEEE Trans Inf Foren Secur
10(10):2119–2130

Lin S, Zhang R, Wang M (2016) Verifiable attribute-based proxy re-encryp-
tion for secure public cloud data sharing. Secur Commun Netw
9(12):1748–1758

Ma H, Zhang R, Wan Z, Lu Y, Lin S (2015) Verifiable and exculpable outsourced
attribute-based encryption for access control in cloud computing. IEEE
Trans Dependable Secur Comput 14(6):679–692

Ma H, Zhang R, Sun S, Song Z, Tan G (2019) Server-aided fine-grained access
control mechanism with robust revocation in cloud computing. IEEE
Trans Serv Comput 15(1):164–173

Mao X, Lai J, Mei Q, Chen K, Weng J (2015) Generic and efficient constructions
of attribute-based encryption with verifiable outsourced decryption. IEEE
Trans Dependable Secur Comput 13(5):533–546

Microsoft: Azure documentation: What is Azure RBAC? https:// docs. micro soft.
com/ en- us/ azure/ role- based- access- contr ol/ overv iew

Mitsunari S (2019) MCL Library. https:// github. com/ herumi/ mcl
Okamoto T, Takashima K (2010) Fully secure functional encryption with

general relations from the decisional linear assumption. In: CRYPTO’10
proceedings of the 30th annual conference on advances in cryptology,
pp 191–208

Oracle: Java Native Interface Docs. https:// docs. oracle. com/ javase/ 8/ docs/
techn otes/ guides/ jni/

Ostrovsky R, Sahai A, Waters B (2007) Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM confer-
ence on computer and communications security, pp 195–203

ownCloud Gmbh and Community: The ownCloud Website. https:// owncl oud.
org/

Pedersen T.P (1991) Non-interactive and information-theoretic secure verifi-
able secret sharing. In: Annual international cryptology conference,
Springer, pp 129–140

Qin B, Zhao Q, Zheng D, Cui H (2017) Server-aided revocable attribute-based
encryption resilient to decryption key exposure. In: Cryptology and
network security, pp 504–514

Rabin T (1994) Robust sharing of secrets when the dealer is honest or cheat-
ing. J ACM 41(6):1089–1109

Sahai A, Waters B (2005) Fuzzy identity-based encryption. In: EUROCRYPT’05
proceedings of the 24th annual international conference on theory and
applications of cryptographic techniques, pp 457–473

Sun S, Ma H, Song Z, Zhang R (2020) Webcloud: web-based cloud storage
for secure data sharing across platforms. IEEE Trans Dependable Secur
Comput 19(3):1871–1884

The open mobile terminal platform: advanced trusted environment:OMTP TR1.
http:// www. omtp. org/ OMTP_ Advan ced_ Trust ed_ Envir onment_ OMTP_
TR1_ v1_1. pdf

W3C Community Group: WebAssembly (2017). http:// webas sembly. org/
Waters B (2011) Ciphertext-policy attribute-based encryption: an expressive,

efficient, and provably secure realization. In: PKC’11 Proceedings of the
14th international conference on practice and theory in public key cryp-
tography conference on public key cryptography, pp 53–70

Yang Y, Liu J.K, Liang K, Choo K.-K.R, Zhou J (2015) Extended proxy-assisted
approach: Achieving revocable fine-grained encryption of cloud data.
In: European symposium on research in computer security 2015, pp
146–166

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://github.com/herumi/mcl
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://owncloud.org/
https://owncloud.org/
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://webassembly.org/

	Rainbow: reliable personally identifiable information retrieval across multi-cloud
	Abstract
	Introduction
	Known techniques and their limitations
	Our contributions
	Technical overview
	Future prospects

	Preliminary
	Overview of rainbow
	System model
	Design goals

	An important tool: ROABE
	Overview
	Security threats and formal definitions
	A concrete construction
	Security analysis

	Implementation of rainbow
	Detailed construction
	Adapting rainbow with ownCloud
	System deployment

	System evaluation
	Theoretical comparison
	Feature discussion
	Experimental results

	Conclusion
	Appendix
	Proof of Theorem 1
	Data privacy against users
	Data privacy against clouds

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Acknowledgements
	References

