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Abstract 

Personally identifiable information (PII) refers to any information that links to an individual. Sharing PII is extremely 
useful in public affairs yet hard to implement due to the worries about privacy violations. Building a PII retrieval ser-
vice over multi-cloud, which is a modern strategy to make services stable where multiple servers are deployed, seems 
to be a promising solution. However, three major technical challenges remain to be solved. The first is the privacy 
and access control of PII. In fact, each entry in PII can be shared to different users with different access rights. Hence, 
flexible and fine-grained access control is needed. Second, a reliable user revocation mechanism is required to ensure 
that users can be revoked efficiently, even if few cloud servers are compromised or collapse, to avoid data leakage. 
Third, verifying the correctness of received PII and locating a misbehaved server when wrong data are returned is cru-
cial to guarantee user’s privacy, but challenging to realize. In this paper, we propose Rainbow, a secure and practical 
PII retrieval scheme to solve the above issues. In particular, we design an important cryptographic tool, called Reliable 
Outsourced Attribute Based Encryption (ROABE) which provides data privacy, flexible and fine-grained access control, 
reliable immediate user revocation and verification for multiple servers simultaneously, to support Rainbow. Moreo-
ver, we present how to build Rainbow with ROABE and several necessary cloud techniques in real world. To evaluate 
the performance, we deploy Rainbow on multiple mainstream clouds, namely, AWS, GCP and Microsoft Azure, and 
experiment in browsers on mobile phones and computers. Both theoretical analysis and experimental results indicate 
that Rainbow is secure and practical.

Keywords Personally identifiable information, Data privacy, Flexible access control, Reliable user revocation, 
Verification

Introduction
Personally identifiable information (PII) (DHS  2021) 
refers to any information that links to an individual, 
which is extremely useful for service providers, such as 
Social Security Numbers, financial records. In particular, 
securely sharing PII can play an important role in public 
affairs, e.g., in 2020, the white house attempted to utilize 

user data (including sensitive PII) of Google and Face-
book to fight COVID-19 (https:// www. cnbc. com), which 
brought forth big worries about privacy violations by a 
single-point failure and was not ever realized.

Building a PII retrieval service over multi-cloud whose 
access control power is shared among multiple serv-
ers seems to overcome the single-point failure issue 
and enhance the security protection of PII. In particu-
lar, a user encrypts and then uploads his PII data to the 
retrieval service. In a later application, a service provider 
that is authorized by the PII owner can access the data. 
Furthermore, the PII owner can decide which subset 
of his PII can be accessed and forms a specific PII form 
(PIIF). However, the following three major technical 
issues need to be addressed.
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Data privacy and flexible fine-grained access control. 
A PIIF contains a series of user’s sensitive information, 
e.g., address, Social Security Number (SSN) and aller-
gens. According to the data privacy laws, such as Gen-
eral Data Protection Regulation (GDPR) and the Health 
Insurance Portability and Accountability Act (HIPAA), 
the confidentiality of these information should be guar-
anteed. Moreover, traditional coarse-grained access 
control mechanisms are unsuitable because they allow a 
user to get a whole PIIF with all-or-nothing entries, but 
cannot restrict the access rights of each entry. For exam-
ple, the SSN in the PIIF may be only opened to the gov-
ernment and the bank while allergens are only allowed 
housekeeping attendants and doctors to access. There-
fore, we require a flexible and fine-grained access control 
mechanism.

Reliable user revocation. When a large number of par-
ties joining the retrieval service, how to revoke inactive 
or corrupt users stably and efficiently would be chal-
lenging. In particular, it requires that the user should 
be revoked immediately, even if a few involved servers 
collapse or they are compromised. Without such secu-
rity guarantee, it would cause unpredictable data leak-
age since a revoked user may still be able to access some 
PIIFs. Thus, we demand for a reliable user revocation to 
further guarantee the data privacy.

Data verification for multiple servers. When a party 
requests a PIIF from the retrieval service, the received 
result may be processed by multiple servers. Once one 
of them produces a wrong result, it would cause seri-
ous consequences, such as giving a fatal prescription 
due to wrong allergens. Therefore, we need a verification 
mechanism to check the correctness of received results 
and locate the misbehaved server in the cluster to avoid 
accidents.

In this paper, we investigate these issues and try to give 
a working solution.

Known techniques and their limitations
Attribute-Based Encryption (ABE) (Sahai and Waters 
2005) is a promising solution to provide data privacy and 
flexible access control. Goyal et al. (2006) formalized two 
types of ABE: key-policy ABE (KP-ABE) (Ostrovsky et al. 
2007; Okamoto and Takashima 2010; Lewko et al. 2010) 
and ciphertext-policy ABE (CP-ABE) (Bethencourt et al. 
2007; Waters 2011) which is suitable for data sharing 
among multi-party. For simplicity, we limit the discus-
sions to CP-ABE hereafter. A user is assigned a secret key 
with a number of attributes while data is encrypted by an 
access policy which is formed by attributes and a Boolean 
expression. Only when the user’s attributes satisfy the 
access policy in the ciphertext, it can decrypt. However, 
there are still a few subtle limitations.

• Lacking efficient and reliable user revocation mecha-
nism. In the literature, traditional revocation mech-
anisms for ABE fall into two categories, namely 
indirect revocation (Attrapadung and Imai 2009; 
Cui et  al. 2016; Qin et  al. 2017), and direct revoca-
tion (Attrapadung and Imai 2009; Datta et al. 2016). 
However, these works suffer from limited scalability 
as either all ciphertexts should be updated or all user 
secret keys (or proxy-side keys) should be updated 
when revoking a user from system. Recently, server-
aided approach (Yang et al. 2015; Ma et al. 2019) has 
been proposed to efficiently revoke a user from sys-
tem. The server, which holds a cloud-side secret key 
and an authorized user list, performs the immediate 
user revocation by refusing to process the decryption 
requests of revoked users. However, it is weak for the 
cluster setting since multiple servers would hold a 
same cloud-side secret key. Once a server is compro-
mised, the revocation mechanism would be broken.

• Needing verification mechanism to locate a misbe-
haved cloud server for wrong results. Outsourced 
decryption was proposed by Green et  al. (2011) 
to improve the decryption efficiency and Lai et  al. 
(2013) put forward a property called verifiability 
to check the correctness of outsourced decryption 
result. Later on, the works (Mao et al. 2015; Ma et al. 
2015; Lin et  al. 2015) further improved the perfor-
mance. More recently, Ge et  al. (2021) proposed a 
method to verify the re-encryption result. However, 
all above verification mechanisms are inapplicable 
when multiple servers are deployed, where more 
cloud servers could make mistakes for one coop-
erative computation operation. They cannot locate 
a misbehaved server from the cluster when a wrong 
result is found.

Besides, the existing works (Goyal et  al. 2006; Bethen-
court et  al. 2007; Waters 2011; Attrapadung and Imai 
2009; Green et al. 2011; Lai et al. 2013; Yang et al. 2015; 
Ma et al. 2015; Ma et al. 2019; Ge et al. 2021) only bench-
marked the performance of algorithms, but did not figure 
out how to integrate their cryptographic schemes in real-
world system and give systematic solutions in practice.

Our contributions
To tackle the above challenges, we design and implement 
Rainbow, a practical PII retrieval scheme which involves 
modern cloud techniques and cryptographic tools, 
including a well-designed ABE scheme called Reliable 
Outsourced ABE (ROABE). Some dedicated techniques 
of Rainbow are highlighted as follows:
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Field-level and fine-grained access control. In Rain-
bow, fine-grained access control and data encryption 
are all done by ROABE. A PII owner can flexibly pose 
an access policy on every single entry (field) in a PIIF via 
ABE encryption, e.g., using policy “All” to encrypt the 
entry “Name: Alice” while using “Government or Bank” 
to encrypt the entry “SSN: XXX”. Only the user whose 
attribute set satisfies the access policy can recover the 
encrypted entry.

Reliable immediate user revocation. We design a reli-
able immediate user revocation mechanism with assis-
tance of cloud servers. In particular, when a user is no 
longer involved, he will be revoked immediately by sim-
ple operations and cannot access any PIIF. Moreover, our 
user revocation mechanism is reliable since it can still 
work even if few cloud servers are compromised which 
leads to the leakage of cloud-side secret key.

Verification mechanism for multiple servers. We pro-
pose a verification mechanism to trace misbehaviors 
from multiple cloud servers. Users can efficiently verify 
the PIIF returned from servers. Once a wrong result is 
detected, the misbehaved cloud server will be identified 
via digital evidence and cannot exculpate itself.

Systematic implementation with ownCloud. We imple-
ment Rainbow based on own Cloud (https:// owncl oud. 
org/), a popular cloud storage hosting software, and use 
several industrial techniques, such as Message Queue, 
PKI, to deploy Rainbow in real world for providing PII 
retrieval service. The functionalities and performances 
are evaluated in mainstream cloud platforms, includ-
ing AWS, GCP and Azure, and on PC (in browsers) & 
Android devices. Both the theoretical and experimental 
results show that Rainbow is practical.

Technical overview
In this section, we briefly introduce our design ideas.

We borrow an idea from Yang et al. (2015) to achieve 
immediate user revocation, combining a cloud-side 
secret key, a user-side secret key and an original ABE 
secret key to form a proxy key. Then, the decryption 
requires the collaboration of both the cloud server and 
the user, and the user decryption capability can be imme-
diately revoked if the cloud server refuses to help. Fur-
thermore, to make user revocation mechanism more 
reliable, taking advantage of the architecture, we adopt (t, 
n) Shamir secret sharing to split the cloud-side secret key 
and each server maintains a unique share as its cloud-
side secret key. The mechanism is reliable since it can tol-
erate at most t − 1 keys to be compromised.

To guarantee the verifiability of all computation results 
from multiple servers within an outsourced decryption 
task to locate a misbehaved server, we follow the existing 
verifiable ABE schemes (Lai et  al. 2013; Ma et  al. 2015), 

which used the Pederson commitment (Pedersen 1991) 
to verify the final decryption result. Besides, we require 
more verifiable features since more servers are needed 
to help with outsourced decryption. In particular, the 
decryption shares, which are produced by t servers and 
used to implicitly recover the original cloud-side secret 
key, should be verified. We adopt Rabin’s technique (Rabin 
1994) to give a private verification of the decryption share.

To initialize Rainbow in real world, first, similar to 
WebCloud (Sun et al. 2020), which was proposed by Sun 
et al. we utilize WebAssembly (W3C Community Group 
2017), which is a low-level binary instruction format ena-
bling deployment on the web and providing faster execu-
tion than JavaScript, to implement ROABE in browsers 
and adapt with ownCloud. Second, to provide crypto-
graphic interfaces on ownCloud servers, we build the 
dynamic library of ROABE. Third, we use cross-compi-
lation technique to build an Android-support library for 
mobile clients. Last but not least, many industrial tech-
niques, such as Message Queue, PKI, are used to enhance 
the practicality of Rainbow in real world. Specifically, we 
used JSON, one of the most popular data-interchange 
formats, to form the PIIF.

Combining all the above techniques, we are then able 
to solve the issues that we discussed before and build a 
secure and practical PII retrieval scheme.

Future prospects
We also give three promising application scenarios with 
Rainbow. 

1 Automated form filling. An old people can upload his 
PIIF to Rainbow. When he wants to transact business 
with any third party, such as the bank, the govern-
ment, this application can help him to fill their infor-
mation quickly. With the access control that provided 
by Rainbow, only authorized entries in the form can 
be automatically filled with matched fields.

2 Flexible single sign-on (SSO). Rainbow can help with 
password management for different websites with 
distinct access policies since authentication cre-
dentials are part of PII. Moreover, for SSO, the sys-
tem authentication token is encrypted and stored in 
Rainbow. The user whose attributes satisfy the access 
policy can recover the token and use it for authenti-
cation. The token should be refreshed once used.

3 Secure data fusion. Data fusion is an advanced tech-
nology to produce accurate information by integrating 
multiple data sources. Rainbow can protect the sensi-
tive information in different data sources. In particu-
lar, before users delegating their data to the data fusion 
service, they could arbitrarily set the access policy of 
each field and encrypt it. Then only authorized fields 

https://owncloud.org/
https://owncloud.org/
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would be fused. Besides, it is allowed to flexibly specify 
who is authorized to access the derived dataset result-
ing from the fusion for different usage.

Preliminary
Notations. Alg(arg1,arg2, . . . ,argn) → (ϑ1, ldots,ϑm) 
denote running algorithm Alg with input arg1 , arg2

,ldots, argn and obtaining outputs ϑ1,..., ϑm . If S is a set, 
let |S| be its size. The symbol s $

←−S means that an element 
s is randomly chosen from a set S . The concatenation of 
two strings x and y is described by the symbol x‖y .  
A function f is negligible if for every κ > 0 , there  
exists �′ > 0 such that f (�) < 1/�κ for all � > �

′ . Let �δ,J  
denote the Lagrange coefficient for δ ∈ Zp and  
a set J  of elements in Zp : �δ,J (x) = j∈J ,j �=δ

x−j
δ−j . Let 

[n] = {1, 2, . . . , n} and �z denote a set where 0 < z ≤ n , 
|�z| = z and �z ⊆ [n].

Definition 1 (Bilinear Maps) Assume there exist two 
multiplicative cyclic groups G and GT with a same prime 
order p.

A map e : G×G → GT is called bilinear map if 
it is efficiently computable and has the follow-
ing properties: 1) Bilinearity: ∀ h1, h2 ∈ G and ∀ 
a, b ∈ Zp , e(ha1, h

b
2) = e(h1, h2)

ab . 2) Nondegeneracy: 
e(h1, h2)  = 1GT if h1, h2  = 1G.

Definition 2 (The Generic Bilinear Group Model) 
The definition follows (Boneh et  al. 2005). In 
generic bilinear group model, there are two ran-
dom encodings over Fp , which are injective maps, 
ϕ : Fp → {0, 1}n , ϕT : Fp → {0, 1}n , where Fp is the addi-
tive group and n > 3log(p) . Let G = {ϕ(x) : x ∈ Fp} and 
GT = {ϕT (x) : x ∈ Fp} . The oracles are given to execute 
the induced group computation on G,GT and a non-
degenerate bilinear map e : G×G → GT . Then G is ref-
ered to be a generic bilinear group.

Definition 3 (Access Tree (Goyal et al. 2006)) An access 
policy which is in the form of monotonic formula, e.g., 
attr1 and attr2 or attr3 , can be transformed to an access 
tree, where an attribute is related to a leaf node and a 
threshold gate is assigned to a non-leaf node. In particu-
lar, the attribute associated with leaf node j is described 
by the symbol A(j) . Let ω be a non-leaf node, thω be its 
threshold value where 0 < thω ≤ Nω and Nω be the num-
ber of its child nodes. It is obvious that the ω is an OR 
gate if thω = 1 and it is an AND gate if thω = Nω . We 
also define the parent of ω using a symbol pt(ω) . Besides, 
each node of the tree is ordered and the function idx(ω) 

produces a unique number associated with the order of 
ω , e.g., suppose the tree contains n nodes and the inor-
der traversal of these nodes is ω1,ω2, . . . ωn , the function 
idx(ωi) could output i as the unique number of ωi.

Definition 4 (Satisfying an Access Tree (Goyal et  al. 
2006)) Let T  be an access tree and Tω be the subtree of T  
rooted at node ω . We use a binary relation Q to define the 
relationship between a attribute set and an access tree. In 
particular, let R denote an attribute set, when ω is a non-
leaf node, Q(Tω,R) is computed recursively as follows: it 
computes Q(Tωc ,R) for all child nodes ωc of ω . Q(Tω,R) 
returns 1 if and only if as least thω child nodes return 1.

When ω is a leaf node, Q(Tω,R) returns 1 if and only if 
the attribute is matched, in other words, A(ω) ∈ R . If 
none of the above cases is satisfied, Q(Tω,R) = 0.

Overview of rainbow
In this section, we present the system model and the 
design goals of Rainbow. Some useful acronyms are sum-
marized in Table 1.

System model
As shown in Fig.  1, four entities are involved in Rain-
bow: Trusted Authority (TA), Cloud Service Provider 
(CSP), PII Owner (PO) and PII User (PU). Each entity is 
explained as follows.

TA is an honest entity. It is assigned to process sensitive 
information, including initializing system (see Phase 1© ) 
and generating digital certificates and delegated keys for 
users (see Phase 2© & 3© ). In particular, it generates sys-
tematic public parameters and several cloud side keys for 
system warming-up. The delegated key is used to decrypt 
the encrypted PIIF.

CSP consists of multiple servers over multi-cloud and 
the following four services.

• Upload service processes upload requests from PII 
owners and provides reliable storage (see Phase 5© , 
Step 2). Once a PIIF is uploaded to CSP, it will be 
stored and made a backup by this service. Note that 
all PIIFs are encrypted.

• Confirmation service processes download requests 
from PII users. When a PII user requests to access 
a PIIF, this service transfers the request to the PII 
owner for confirmation (see Phase 6© , Step 2). 
Besides, it checks the response from the PII owner. 
Only when the response indicates that the PII user is 
allowed to obtain the PIIF, CSP would provide out-
sourced decryption with his delegated key.
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• Outsourced decryption service decrypts encrypted 
entries in the requested PIIF to transformed cipher-
texts using the PII user’s delegated key and returns 
them to the PII user (see Phase 7© , Step 1 & 2). An 
outsourced decryption task involves several servers 
and the computation results of each server can be 
verified. Besides, without this service, nobody can 
decrypt a ciphertext.

• User revocation service maintains a delegated key 
list associated with users for revocation. It revokes 
an inactive user by removing the correspond-
ing entry from the list. By the way, once the user 
is revoked, the Outsourced Decryption Service 
refuses to help with the decryption.

Table 1 Acronyms used in this paper

Acronym Description Acronym Description

TA Trusted authority CSP cloud service provider

PO PII owner PU PII user

MCS Master cloud server HCS helping cloud server

pk Public key msk master secret key

cpk Cloud-side public key cski the ith cloud-side secret key

upk User public key usk user secret key

dk Delegated key L delegated key list

dsj,i The decryption share generated by the jth server for 
the ith server

πj,i the proof of dsj,i

ct Ciphertext dct partially decrypted ciphertext

csv Combined secret value

Fig. 1 System model of Rainbow
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PO decides a subset of his PII that to be shared and forms 
a specific PIIF. Then he encrypts the PIIF and uploads it 
to CSP (see Phase 4© & Phase 5© , Step 1). In particular, 
he can set any desired access policy (formed by attrib-
utes and Boolean expressions) of each entry in the PIIF. 
For example, as shown in Fig.  1, the entry “Address” is 
encrypted by the policy “Housekeeping attendant or 
Postman” while “Allergern” is encrypted by the policy 
“Housekeeping attendant”. Moreover, the PO generates a 
confirmation token (or a rejection token) to CSP when a 
user requests to access the PO’s PIIF (see Phase 6© , Step 
3).

PU consumes the encrypted PIIF from CSP, e.g., it can 
be a doctor, a bank staff and a housekeeping attendant. 
The access rights of PUs are described by a number of 
attributes. A PU gets a secret key and a corresponding 
delegated key which is associated with an attribute set 
from TA when he registers to the system (see Phase 3© ). 
If his attribute set satisfies the access policy of an entry in 
a PIIF, he can decrypt the encrypted entry and check the 
correctness (see Phase 8©).

We assume that TA and PO are honest. Most of cloud 
servers in CSP are assumed to be honest, while few of 
them are assumed to be “covert” adversaries who may 
deviate from the outsourced decryption protocol and try 
to produce unsatisfied decryption results, but are unwill-
ing to be caught. As for PUs, we assume that a majority of 
them are honest, while few of them are corrupt and leak-
age their secret keys in the collision to access unauthor-
ized data. This mimics the real world since some devices 
of PUs may be lost and be corrupted by a few spiteful 
people.

Design goals
Based on aforementioned system model and trust 
assumptions, Rainbow should meet the following design 
goals.

Data privacy. Due to the sensitive personal information 
(e.g., address, phone number, social security number) 
involved in a PIIF, any PIIF that is sent and outsourced 
to public clouds should be only accessed by authorized 
users.

Mandatory and flexible access control. The PO should 
be able to arbitrarily decide which entries in his PIIF need 
encryption and the access policy of each entry. Nobody 
can recover the information of these encrypted entries 
if his attribute set does not satisfies the policies, even he 
can obtain all these ciphertexts.

Efficient and reliable user revocation. Once a PU 
becomes inactive, he should be revoked with low costs. 
Moreover, since there are multiple servers in Rainbow 
to provide services, we require that even few servers 

are compromised to work for a revoked user, he cannot 
obtain any useful information of the encrypted PIIFs.

Full verifiability. In Rainbow, we need a feasible veri-
fication mechanism for PUs to check the outsourced 
decryption result. Furthermore, the verification should 
support to locate a misbehaved server if the result is 
wrong, because several servers are involved in an out-
sourced decryption task.

An important tool: ROABE
Towards the design goals of Rainbow, we propose an 
important tool called Reliable Outsourced ABE (ROABE) 
and introduce it in this section.

Overview
The model of ROABE is shown in Fig. 2 where multiple 
cloud servers are settled. An ROABE scheme consists of 
following 10 algorithms:

• Setup(�, n, t) → (pk,msk,cpk, {cski}i∈[n],L) . On 
input a security parameter � , the number of cloud 
servers n and a threshold t, it outputs a public key 
pk , a master secret key msk , a cloud-side public key 
cpk , a cloud-side secret key set {cski}i∈[n] and a del-
egated key list L.

• UKeyGen(pk,u) → (upk,usk) . On input a public 
key pk and an identity u, it outputs a user public key 
upk and a user secret key usk.

• DKeyGen(msk,cpk,upk,R,L) → (dk,L′) . On 
input a master secret key msk , a cloud-side public 
key cpk , a user public key upk , an attribute set R 
and a delegated key list L , it outputs a delegated key 
dk and an updated list L′.

• Encrypt(pk,T ,m) → ct . On input a pk , an access 
tree T  and a message m , it outputs a ciphertext ct.

• DSGen(cskj ,dk, i,ct) → (dsj,i,πj,i)/⊥ . On input 
a cloud-side secret key cskj with the serial number 
j, a delegated key dk , a serial number i and a cipher-
text ct , it outputs a decryption share dsj,i and a cor-
responding proof πj,i or ⊥.

• DSVerify(cski,dk,dsj,i,πj,i,ct) → b . On input a 
cski , a dk , a decryption share dsj,i , a proof πj,i and 
a ct , it outputs a bit b ∈ {0, 1} where b = 1 indicates 
that dsj,i is correct.

• DSCombine(cpk, {dsj,i}j∈�t ) → csv . On input a 
cloud-side public key cpk and t decryption shares 
{dsj,i}j∈�t where �t ⊆ [n] and |�t | = t , it outputs a 
combined secret value csv.

• CSDecrypt(pk,dk,ct,csv) → dct/⊥ . On input 
a pk , a dk , a ct and a csv , it outputs a partially 
decrypted ciphertext dct or ⊥.
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• UDecrypt(pk,dct,usk) → m′/⊥ . On input a pk , a 
partially decrypted ciphertext dct and a user secret 
key usk , it outputs a message m′ or ⊥.

• URevoke(u,L) → L′ . On input a u and a L , it out-
puts an updated list L′.

The algorithms Setup, UKeyGen, DKeyGen, and 
Encrypt are probabilistic and DSGen, DSVerify, 
DSCombine, CSDecrypt, UDecrypt, and URe-
voke are deterministic. The keys msk , cpk , cski ( ∀i ∈ [n] ) 
contain pk.

Correctness The ROABE scheme is correct for  
all attribute sets R , all access trees T  where R satis-
fies T  , all (pk,msk,cpk, {cski}i∈[n],L) ∈ Setup(�, n, t) 
where t ≤ n , all (upk,usk) ∈ UKeyGen(pk,u) , all 
dk ∈ DKeyGen(msk,cpk,upk,R,L) , all ct ∈ Encrypt

(pk, T ,m) , all (dsj,i,πj,i) ∈ DSGen(cskj ,dk, i,ct) where 
i, j ∈ [n], j �= i , all csv ∈ DSCombine(cpk, {dsj,i}j∈�t ) 
where �t ⊆ [n] and |�t | = t , all dct ∈ CSDecrypt 
(pk,dk,ct,csv) , and all m′ ∈ UDecrypt(pk,dct,usk) , if 
m′ �= ⊥ , m′ = m and DSVerify(cski,dk,dsj,i,πj,i,ct) = 1

.

We now describe the workflow of ROABE. It con-
tains six phases, including system initialization (see 1© in 
Fig. 2), user registration (see 2© ), data upload (see 3© ), data 
download (see 4© ), local decryption and user revocation. 
As shown in Fig. 2, take n = 3 , t = 2 for example where 
three cloud servers are settled and the threshold value is 
two, at least two cloud servers are needed to complete the 
outsourced decryption. We also mark each cloud server 
with a serial number, e.g., the serial number of Cloud 
Server 1 is 1. More details of the model are discussed as 
follows and some useful acronyms are listed in Table 1.

(1) System initialization. TA runs the algorithm Setup 
to generate a public key pk , a master secret key 
msk , a cloud-side public key cpk , a set of cloud-
side secret key {cski}i∈[n] and an empty delegated 
key list L . The secret key cski is securely transmit-
ted to the ith cloud server along with ( pk , cpk , L ) 
and pk is published.

(2) User registration. A PU runs UKeyGen(pk,u) where 
u is his identity to obtain a user public key upk and 
a user secret key usk . Then the PU sends his attrib-

Fig. 2 Model of ROABE 
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ute set R along with upk to TA. TA runs DKeyGen

(msk,cpk,upk,R,L) to generate a delegated key 
dk associated with R and an updated list L′ . Note 
that an entry in L is (u,dk) . The key dk and the 
updated list L′ are sent to all servers.

(3) Data upload. A PO runs Encrypt(pk, T ,m) to 
encrypt the message m with the access tree T  to 
get a ciphertext ct . Then he uploads the ciphertext 
ct to a cloud server. The server synchronizes ct to 
others to make a backup.

(4) Data download. When a PU u wants to down-
load a ct from a cloud server, called master cloud 
server (MCS), the MCS sends an assistance request 
of ct to other t cloud servers, called helping cloud 
server(s) (HCS), for help, if the entry (u, dk ) is in 
L . Otherwise, it rejects to provide service. For 
example, in Fig. 2, Cloud Server 1 & 2 are the HCSs 
and Cloud Server 3 is the MCS in this session. Let 
i be the serial number of MCS. The HCS whose 
serial number is j rejects to provide service if (u, 
dk ) is not in its list L . Otherwise, it runs DSGen

(cskj ,dk, i,ct) to get a decryption share dsj,i and 
a corresponding proof πj,i and returns (dsj,i,πj,i) 
to the MCS. Or ⊥ is output, the HCS returns a 
response message “Unsatisfied attributes” to indi-
cate that the attributes of the PU cannot satisfy 
the access tree of ct . Then the MCS runs DSVerify
(cski,dk,dsj,i,πj,i,ct) to check the validity of 
dsj,i . All other t − 1 decryption shares are also 
verified. Only when at least t valid decryption 
shares are obtained, the MCS runs DSCombine

(cpk, {dsj,i}j∈�t ) to get a combined secret value 
csv and runs CSDecrypt(pk,dk,ct,csv) to get a 
partially decrypted ciphertext dct and returns it to 
the user.

(5) Local decryption. When a PU receives dct from a 
cloud server, he runs UDecrypt(pk,dct,usk) to 
obtain a recovered message m′ or ⊥ . Note that only 
when dct is correctly generated by the dk which is 
produced by the upk corresponding to usk , a cor-
rect message can be output. Hence, it can verify the 
correctness of dct.

(6) User revocation. Once a PU u is suggested to be 
revoked, all cloud servers should run URevoke
(u,L) to remove the entry (u,dk ) from L . Then the 
cloud servers do not provide outsourced decryption 
for u. Without the help of cloud servers, u cannot 
decrypt ciphertexts anymore.

Security threats and formal definitions
In this section, we discuss the security threats and give 
the formal security definitions of ROABE.

Three aspects of security are considered for ROABE, 
namely, data privacy, reliable user revocation and full 
verifiability. Data privacy requires that unauthorized 
users and clouds are ignorant of encrypted data. Reliable 
user revocation demands that once a PU is revoked, it 
cannot decrypt any ct , even a few (less than a threshold 
t) servers still provide outsourced decryption service for 
it. Full verifiability requires that all outsourced decryp-
tion results, e.g., decryption shares ds and partially 
decrypted ciphertexts dct , should be verified to locate a 
misbehaved server.

According to the involved entities and their possible 
behaviors, we consider five types of adversaries which 
threat the above requirements as follows. In particular, 
we assume that the public keys ( pk , cpk ) are held by all 
adversaries. 

 i. Type-1 adversary refers to some corrupted users 
attempting to collude together to decrypt unau-
thorized ct to break the data privacy against users. 
It can obtain corrupted users’ delegated keys dk 
and secret keys usk and all ciphertexts ct . Moreo-
ver, we allow it to obtain all cloud-side secret keys 
{cski}i∈[n].

 ii. Type-2 adversary refers to some cloud servers 
attempting to decrypt a ct to break the data pri-
vacy against clouds. It can obtain all delegated keys 
dk , a few user secret keys usk which are not asso-
ciated with dk , all cloud-side secret keys {cski}i∈[n] 
and all ct . Note that it cannot hold any key pair 
( dk , usk ) to trivially decrypt a ct.

 iii. Type-3 adversary refers to a revoked user trying to 
decrypt a ct to break the reliable user revocation. 
It can obtain all dk , all usk , t − 1 cloud-side secret 
keys {cski}i∈�t−1

 and all ciphertexts ct.
 iv. Type-4 adversary refers to an HCS attempting to 

generate a wrong decryption share to pass the veri-
fication from an MCS (indexed by i) to break the 
verifiability of decryption share. It can obtain all 
dk , all usk , all cloud-side secret keys except the ith 
one {cskk}k∈[n],k �=i and all ct.

 v. Type-5 adversary refers to an MCS trying to gener-
ate a wrong partially decrypted ciphertext to pass 
the verification from a PU to break the verifiability 
of partially decrypted ciphertext. It can obtain all 
dk , all usk , all {cski}i∈[n] and all ct.

We now give the formal security definitions as follows. 
Let C be the challenger and A be the adversary.

We follow the security definition of data privacy against 
users in Yang et al. (2015) which used indistinguishabil-
ity against chosen plaintext attack (IND-CPA) model, to 
define the data privacy against users of ROABE.
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Definition 5 (Data Privacy against Users) An ROABE 
scheme achieves data privacy against users if any proba-
bilistic polynomial time (PPT) type-1 adversary has at 
most a negligible advantage to win the following security 
game Gamedupriv.

Setup C runs Setup and returns (pk,cpk, {cski}i∈[n],L) 
to A . C also initializes an empty table W.
Phase 1 A is allowed to query following oracles:

• User-key oracle OUK(u) : C runs UKeyGen(pk,u) to 
return (upk,usk) to A and stores (u,upk,usk) to 
W.

• Delegated-key oracle ODK(R,u) : C gets the upk from 
W that is indexed by u and rejects if no such upk 
exists. Otherwise, with the queried attribute set R , C 
runs DKeyGen(msk,cpk,upk,R,L) to get a dk and 
returns it to A . Note that A can add (u,dk) to L by 
himself.

Challenge A submits two message m0,m1 where 
|m0| = |m1| and an access tree T ∗ , subjecting to a restric-
tion that none of the queried attribute set R in Phase 1 
satisfies T ∗ . C flips a random coin b and runs Encrypt 
(pk, T ∗,mb) to obtain ct∗ . Finally, C returns ct∗ to A.

Phase 2 A continues to query the oracles with the 
restriction that any queried R does not satisfy T ∗.

Guess A outputs a guess b′ of b. A wins the game if 
b = b′.

Similarly, we follow the security definition of data pri-
vacy against cloud server in Yang et  al. (2015) to define 
the data privacy against clouds of ROABE. In particular, 
the adversary is not allowed to obtain a key pair (dk,usk) 
to trivially decrypt the challenge ciphertext.

Definition 6 (Data Privacy against Clouds) An ROABE 
scheme achieves data privacy against clouds if any PPT 
type-2 adversary has at most a negligible advantage to 
win the following security game Gamecspriv.

Setup. Same as Setup in Gamedupriv.
Phase 1. A is allowed to query following oracles:

• User-key oracle OUK(u) : C runs UKeyGen to get 
(upk,usk) , stores (u,upk,usk) to W and returns 
upk to A.

• Delegated-key oracle ODK(R,u) : C rejects if the entry 
(u,upk,usk) is in W . Otherwise, C runs UKeyGen

(pk,u) and DKeyGen(msk,cpk,upk,R,L) to get 
(upk,usk) and dk . Finally, C returns (dk,upk) to A.

Challenge. Almost same as Challenge in Gamedupriv , 
except that the restriction of T ∗ is removed.

Phase 2. Same as Phase 1.
Guess. Same as Guess in Gamedupriv.
To define reliable user revocation, we follow the 

user revocation support in Yang et  al. (2015). For a 
revoked user, it cannot decrypt any ct even all keys 
and a few cloud-side secret keys are given to it. In par-
ticular, t − 1 cloud-side secret keys are exposed to the 
adversary.

Definition 7 (Reliable User Revocation) An ROABE 
scheme achieves reliable user revocation if any PPT 
type-3 adversary has at most a negligible advantage to 
win the following indistinguishability game Gamervk.

Setup. Almost same as Setup in Gamedupriv , except that 
{cski}i∈�t−1

 is sent to A rather than {cski}i∈[n].
Phase 1. Same as Phase 1 in Gamedupriv.
Challenge. Almost same as Challenge in Gamedupriv , 

except that the restriction of T ∗ is removed.
Phase 2. Same as Phase 1.
Guess. Same as Guess in Gamedupriv.
To describe the verifiability of decryption share, similar 

to the verifiability defined in Lai et  al. (2013), the adver-
sary should produce two different tuples (dsj,i,πj,i) and 
(ds′j,i,π

′
j,i) where one of them is incorrect. Note that the 

adversary can always compute a correct decryption share 
by runnning DSGen with a corrupt csk . Besides, if the 
adversary obtains the csk of the ith cloud which it wants 
to cheat, it can trivially generate a wrong pair (dsj,i,πj,i) 
to pass the verification. Thus, we have that nobody can 
produce a wrong decryption share to pass the verification 
without a target cski.

Definition 8 (Verifiability of Decryption Share) An 
ROABE scheme achieves verifiability of decryption share 
if any PPT type-4 adversary has at most a negligible prob-
ability to win the following security game Gamedsvrfy.

Setup A chooses a serial number i∗ as its attack target 
and sends i∗ to C . C runs Setup with (t, n) and returns pk , 
msk , cpk , {cski}i �=i∗,i∈[n] , L to A.
Phase 1. Same as Phase 1 in Gamecspriv.
Challenge. A submits a message m∗ and an access tree T ∗ 

to C . C runs Encrypt (pk, T ∗,m∗) to return ct∗ to A.
Phase 2. Same as Phase 1.
Output. A outputs { dk∗ , (ds∗j,i∗ ,π

∗
j,i∗) , (ds

∗′
j,i∗ ,π

∗′
j,i∗) } 

where the attribute set R∗ that is associated with dk∗ sat-
isfies the challenge access tree in ct∗ , and ds∗j,i∗ �= ds∗′j,i∗ . 
Assume dk∗ has been generated by ODK and sent to A in 
Phase 1 or Phase 2. A wins the game if
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To define the verifiability of partially decrypted cipher-
text, we follow the verifiability in Lai et  al. (2013) that 
nobody can produce an incorrect dct that can be 
decrypted as a valid message.

Definition 9 (Verifiability of Partially Decrypted 
Ciphertext) An ROABE scheme achieves verifiability of 
partially decrypted ciphertext if any PPT type-5 adver-
sary has at most a negligible probability to win the fol-
lowing game Gamedctvrfy.

Setup. Almost same as Setup in Gamedsvrfy , except that C 
returns {cski}i∈[n] to A.
Phase 1. Same as Phase 1 in Gamedsvrfy.
Challenge. Same as Challenge in Gamedsvrfy.
Phase 2. Same as Phase 1.
Output. A outputs a tuple { ct∗,usk∗,dct∗1,dct

∗
2 }, 

where ct∗ is the challenge ciphertext produced by C in 
Challenge phase. Assume usk∗ has been hold by A in 
Phase 1 or Phase 2. Then C runs UDecrypt with usk∗ 
to decrypt dct∗1 and dct∗2 to get m∗1 and m∗2 , respectively. 
A wins the game if m∗1 �= m∗

2 ∧ m∗
1 �= ⊥ ∧ m∗2 �= ⊥.

A concrete construction
To initialize ROABE, in particular, we use a symmetric 
key encryption scheme SKE and a key derivation func-
tion KDF (Krawczyk 2010) as building blocks. Specifi-
cally, we briefly review the definition of SKE.

A symmetric key encryption scheme SKE is a tuple of 
algorithms ( Gen , Enc , Dec ) along with an associated key 
space K , where:

• Gen(1�) → κ . On input a security parameter 1� , it 
outputs a key κ ∈ K where |K| ≥ �.

• Enc(κ ,msg) → ct . On input a key κ ∈ K and a mes-
sage msg , it outputs a ciphertext ct.

• Dec(κ ,ct) → msg′ . On input a key κ ∈ K and a 
ciphertext ct , it outputs a recovered message msg′.

Now we give a concrete construction of ROABE as 
follows.

• Setup(�, n, t) . On input a security parameter � , the 
number of cloud servers n and a threshold t, the algo-
rithm chooses a bilinear map e : G×G → GT , where 
G and GT are cyclic groups of �-bit prime order p with a 
generator g ∈ G . Then it chooses gc, hc

$
←−G , µ, ν $

←−Zp 
and computes h = gν . Subsequently, it chooses two 

1 ← DSVerify(cski∗ ,dk
∗
,ds

∗
j,i∗ ,π

∗
j,i∗ ,ct

∗) ∧

1 ← DSVerify(cski∗ ,dk
∗
,ds

∗′
j,i∗ ,π

∗′
j,i∗ ,ct

∗).

hash functions H1 : {0, 1}∗ → G , H2 : {0, 1}∗ → Zp , 
a key derivation function KDF(υ, L) → {0, 1}L where 
υ is a value that sampled from a source of keying 
material and ℓ is the output length of KDF , and an 
SKE with the key space K where |K| = 2L . In particu-
lar, the source of keying material in ROABE is GT . It 
sets pk = (G, e, g , h, gc, hc, e(g , g)

µ
,H1,H2,KDF, L) 

as a public key and msk = (pk,µ, ν) as a mas-
ter secret key. To generate cloud-side keys, it com-
putes kcs = gγ where γ $

←−Zp and randomly defines 
a polynomial P(x) over Zp with degree t − 1 where 
P(0) = γ . ∀i, j ∈ [n], j �= i , it randomly chooses 
a point (xi, yi) over P(x) where yi = P(xi) and 

bj,i, cj,i
$
←−Zp , and computes zj,i = bj,i · yi + cj,i . It sets 

cpk = (pk, kcs, {xi}i∈[n]) as a cloud-side public key, and 
cski = (pk, dki = (yi , {zj,i}j �=i,j∈[n]), vki = {(bi,j , ci,j)}j �=i,j∈[n]) 
as a cloud-side secret key of the ith cloud, where dki is 
used to help with decryption and vki is used for verifi-
cation. Finally, it initializes an empty delegated key list 
L and outputs (pk,msk,cpk, {cski}i∈[n],L).

• UKeyGen(pk,u) . On input a public key pk and an 
identity u, the algorithm picks au

$
←−Zp and outputs a 

user’s public/secret key pair (upk = gau ,usk = au).
• DKeyGen(msk,cpk,upk,R,L) . On input a mas-

ter secret key msk , a cloud-side public key cpk , a 
user public key upk = gau , a k-sized attribute set 
R = {R1,R2, ...,Rk} and a delegated key list L , the 
algorithm picks r, r′, ri

$
←−Zp, ∀i ∈ [k] and computes 

 Note that kcs = gγ is contained in cpk . Above all, it 
sets a delegated key dk = (R,K ,K ′

, {Ki,1,Ki,2}i∈[k]) 
and adds the entry (u,dk) to L to get an updated list 
L′ . Finally, it outputs dk and L′.

• Encrypt(pk,T ,m) . On input a pk , an access tree T  
and a message m , for each node ω of T  , the algorithm 
chooses a polynomial θω with degree dω = thω − 1 
where thω is the threshold of ω as follows: it sets 
θω(0) = θpt(ω)(idx(ω)) and randomly chooses other 
dω points to completely define θω . For the root node 
ωrt , it picks s, ξ $

←−Zp and sets θωrt (0) = s . Let J  be 
the set of leaf nodes, it computes C = hs = gνs , 
C ′ = gs , Y = e(g , g)µs and 

K =
(

krcs
(

gau
)µ

gr
′
)

1

ν
= g

rγ+µau+r′

ν ,K ′ = gr

Ki,1 = gr
′
H1(Ri)

ri , Ki,2 = gri , ∀i ∈ [k],Ri ∈ R

X = SKE.Enc(KDF(Y , L),m||ξ), Ĉ = gH2(m)
c hξc

Cj,1 = gθj(0), Cj,2 = H1(A(j))
θj(0), ∀j ∈ J .
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 Finally, the algorithm outputs a ciphertext 
ct = (T ,X ,C ,C ′

, Ĉ , {Cj,1,Cj,2}j∈J ).
• DSGen(cskj ,dk, i,ct) . On input a cloud-side 

secret key cskj corresponding to a serial number j, 
a delegated key dk , a cloud’s serial number i and a 
ciphertext ct , the algorithm outputs a decryption 
share dsj,i = e(C ′

,K ′)yj = e(g , g)sryj and a corre-
sponding proof πj,i = e(C ′,K ′)zi,j = e(g , g)srzi,j if the 
attribute set R in dk satisfies the access tree in ct . 
Otherwise, it outputs ⊥.

• DSVerify(cski,dk,dsj,i,πj,i,ct) . On input a cski , 
a dk , a decryption share dsj,i = e(g , g)sryj , a proof 
πj,i and a ct , the algorithm gets the terms (bi,j , ci,j) 
which is indexed by j in cski . Then it checks 
πj,i

?
=(e(g , g)sryj )bi,j · e(C ′,K ′)ci,j . If the equation 

holds, it outputs b = 1 ; otherwise, b = 0.
• DSCombine(cpk, {dsj,i}j∈�t ) . On input a cloud-side 

public key cpk and t decryption shares {dsj,i}j∈�t 
where dsj,i = e(g , g)sryj , �t ⊆ [n] and |�t | = t , the 
algorithm sets X = {xj|j ∈ �t} where xj is in cpk and 
computes the Lagrange coefficient 
ηj = �j,X (0) =

∏

x∈X ,x �=j

0−x
j−x , ∀j ∈ �t . Finally, it out-

puts a combined secret value 

• CSDecrypt(pk,dk,ct,csv) . On input a pk , a dk , a 
ct and a combined secret value csv = e(g , g)srγ , the 
algorithm outputs ⊥ if Q(T ,R)  = 1 . Note that 
Q(T ,R)  = 1 means R does not satisfy the access 
tree T  . Otherwise, for each leaf node j, if there exists 
an index i s.t. A(j) = Ri ∈ R , it sets a node function 
Dj =

e(Ki,1,Cj,1)

e(Cj,2,Ki,2)
= e(g , g)r

′θj(0) ; otherwise, it sets 

Dj = ⊥ . Then for each non-leaf node ω , it recursively 
sets the node function Dω as follows: let Jω be a child 
nodes set of ω with size thω , it tries to find a set Jω 
s.t. Dωc  = ⊥ for any child node ωc ∈ Jω . If no such 
Jω , Dω = ⊥ . Otherwise, let Iω = {idx(ωc)|ωc ∈ Jω} , 
it uses polynomial interpolation to compute 

 Then it has Dωrt = e(g , g)r
′θωrt (0) = e(g , g)r

′s for the 
root node and computes C =

e(K ,C)
e(g ,g)srγ ·Dωrt

= e(g , g)µs·au . 
Finally, it outputs a partially decrypted ciphertext 

csv =
∏

j∈�t

(e(g , g)sryj )ηj = e(g , g)srP(0) = e(g , g)srγ .

Dω =
∏

ωc∈Jω

(Dωc )
ηωc , where ηωc = �δ,Iω(0), δ = idx(ωc)

=
∏

ωc∈Jω

(e(g , g)r
′θωc (0))ηωc

=
∏

ωc∈Jω

(e(g , g)r
′θω(δ))ηωc = e(g , g)r

′θω(0).

dct = (X ,C , Ĉ) . Note that X and Ĉ are the terms in 
ct.

• UDecrypt(pk,dct,usk) . On input a pk , a par-
tially decrypted ciphertext dct and a user 
secret key usk = au , the algorithm computes 
Y ′ = (C)

1/au = (e(g , g)µs·au)1/au = e(g , g)µs and 
m′||ξ ′ = SKE.Dec(KDF(Y ′, L),X) . It outputs m′ if 
Ĉ = g

H2(m
′)

c h
ξ ′

c  . Otherwise, it outputs ⊥.
• URevoke(u,L) . On input an identity u and a del-

egated key list L , the algorithm deletes the entry 
(u,dk) from L to get an updated list L′.

Security analysis
In this section, we give four theorems with respect to 
the security definitions and model the hash function H1 
as a random oracle. The security proofs are postponed to 
appendix.

Theorem 1 Our ROABE scheme achieves data privacy 
against both users (type-1 adversary) and clouds (type-2 
adversary) in the generic group model, assuming KDF is 
secure.

Theorem  2 Our ROABE scheme achieves reliable user 
revocation against type-3 adversary in the generic group 
model, assuming KDF is secure.

Theorem 3 Our ROABE scheme achieves verifiability of 
decryption share against type-4 adversary.

Theorem 4 Our ROABE scheme achieves verifiability of 
intermediate ciphertext against type-5 adversary, assum-
ing the Discrete Logarithm (DL) problem is hard in the 
prime order bilinear group system, KDF is secure and the 
hash function H2 is collision-resistant.

Implementation of rainbow
In this section, we present how to build Rainbow with 
ROABE and other cryptographic and industrial tools, 
and the deployment in real world. In particular, ROABE, 
Public Key Infrastructures (PKI), Message Queue (MQ), 
ownCloud and digital signature are main components in 
Rainbow. ROABE brings core security properties, which 
have been defined in the design goals. PKI generates 
certificates to authenticate system users and the servers 
and MQ is adopted to transmit the confirmation mes-
sages (refer to next subsection). The software ownCloud 
implies the basic functionalities of cloud storage host-
ing, e.g., data upload, download, and sharing. To ensure 
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the confirmation message unforgeable, the signature is 
applied.

Three mainstream clouds are chosen, namely AWS, 
GCP and Azure, for building multiple cloud servers. The 
users in Rainbow, including PO and PU, are equipped 
with browsers and smart phones and client certificates 
are settled ahead in browsers and the Android applica-
tion to build the secure channel.

Detailed construction
Now we present the details of Rainbow following the 
workflow. Fig. 3 depicts the interactions of each entity of 
Rainbow using ROABE where ( n = 3 , t = 2).

(1) System Iiitialization. TA chooses the threshold 
value t and labels each cloud server with a unique 
serial number, e.g., in Fig.  3, the serial number of 
MCS is 1 and the serial numbers of other two HCSs 
are 2 and 3, respectively. Then TA initializes cryp-
tographic modules, e.g., using AES-GCM to initial-
ize SKE. For ROABE, a global attribute universe U 
that contains all available attributes is set. Taking � 
as input, ROABE.Setup is called to get ( pk , msk , 
cpk , {cski}i∈[n] , L ). TA also maintains a Public Key 
Infrastructures (PKI) to issue certificates for users. 
It generates a root certificate in this phase. Finally, 
cski is securely transmitted to the ith cloud server 
along with ( pk , cpk ). The empty delegated key list 
L is initialized by each cloud server.

(2) User registration (PO). A PO generates a signing key 
and a verification key for signature and sends his 
registration information, such as identity and con-

tact details, along with the verification key to TA. 
TA issues the request and generates a certificate 
with the verification key for the PO. The certificate 
will be transmitted to the PO.

(3) User registration (PU). A PU runs 
ROABE.UKeyGen with his identity u to obtain 
( upk,usk ). Then he also generates a signing key and 
a verification key for signature and sends a registra-
tion request which contains upk , an attribute set R 
and the verification key to TA. TA also generates a 
certificate for him and runs ROABE.DKeyGen to 
produce a delegated key dk . The new entry (u, dk ) 
is added into L by each cloud server. Note that the 
certificate of PO/PU is used for confirmation (see 
Phase 5)

(4) Encryption and upload. For each entry in a 
PO’s PIIF, he chooses an access policy and runs 
ROABE.Encrypt to get a ciphertext ct . Note that 
each entry in a PIIF is in “key-value” style like 
JSON, e.g., {key: Name, value: Alice}, and only value 
(e.g., Alice) is encrypted. Combining all encrypted 
entries, he forms an encrypted PIIF and uploads it 
to a cloud server. The encrypted PIIF are synchro-
nized to other servers to make a backup.

(5) Owner confirmation. In Rainbow, before a PU 
obtaining an encrypted PIIF, he should get the con-
firmation from the PO. In particular, the PU signs 
his request with the signing key and sends the 
request along with his certificate and the signature 
to a cloud server (MCS), where the request con-
tains his identity, purpose, requested PIIF, etc. The 
MCS checks the validity of the signature and rejects 

Fig. 3 Main interactions in Rainbow
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if it is invalid or the PU is not in L . Otherwise, it 
pushes the request to the PO. If the PO allows the 
PU to access this PIIF, he generates a confirmation 
(or rejection) token and signs it. The token and the 
signature are returned to the MCS.

(6) Outsourced Decryption. The MCS checks the valid-
ity of token with PO’s certificate and generates an 
assistance request of the target PIIF if the token is 
valid and sends the request to other t HCSs. When 
an HCS, whose serial number is j, receives the 
request from the MCS, it refuses to help if the PU is 
not in L . Otherwise, suppose there are k encrypted 
entries in the requested PIIF, for the ith entry, 
it runs ROABE.DSGen to generate (ds(i)j,1,π

(i)
j,1 ) . 

Recall that the serial numer of MCS is 1 in Fig. 3. 
The HCS returns the set {(ds(i)j,1,π

(i)
j,1 )}i∈[k] to the 

MCS. For each tuple in the set, the MCS runs 
ROABE.DSVerify to check the correctness of ds(i)j,1 . 
If it is invalid, the MCS would choose another HCS 
with a serial number j∗ (j∗ �= j) that has not been 
requested in this session to obtain a new tuple. 
The misbehavior of this HCS would be recorded. 
Once the MCS gets t valid decryption shares for an 
encrypted entry, it runs ROABE.DSCombine and 
ROABE.CSDecrypt to get a partially decrypted 
ciphertext dct . Finally, combining all transformed 
ciphertexts, it forms a transformed PIIF and returns 
it to the PU.

(7) Local decryption. When the transformed PIIF 
received, for each partially decrypted entry, the PU 
runs ROABE.UDecrypt to obtain a plaintext or ⊥ . 

If ⊥ is output, the MCS is caught as a misbehaved 
server since the partially decrypted ciphertext dct 
is notwell-formed. Otherwise, the recovered entries 
in the PIIF can be reconstructed as a decrypted 
PIIF. We stress that the PU maybe cannot decrypt 
all entries in the PIIF due to the access policy of 
each entry.

(8) User revocation. Once a PU u is suggested 
to be revoked, all cloud servers should run 
ROABE.URevoke to remove the entry (u,dk ) from 
L . Then the cloud servers cannot provide out-
sourced decryption for u anymore. Besides, TA 
would revoke his certificate as well.

Adapting rainbow with ownCloud
In this section, we introduce how to adapt Rainbow with 
ownCloud. Besides, some practical middlewares and 
tools are used to initialize Rainbow in real world. The 
architecture is shown in Fig. 4.

We chose the BN curve (Barreto and Naehrig , 2005) 
and implemented each algorithm in ROABE using MCL 
library (Mitsunari , 2019). We also used AES-GCM from 
OpenSSL to instantiate SKE. All the algorithms were 
compiled to a dynamic library (.so). For the ownCloud 
server, we used PHP-CPP (http:// www. php- cpp. com/) 
to transform our dynamic library to a PHP extension. 
For the Android client, we adopted Java Native Interface 
(JNI) (https:// docs. oracle. com/ javase/ 8/ docs/ techn otes/ 
guides/ jni/) and cross-compilation technique to repack-
age APIs to fit Android OS. And for the web application, 
we used JavaScript to implement algorithms by adopting 

Fig. 4 System architecture

http://www.php-cpp.com/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
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WebAssembly (W3C Community Group , 2017) and 
MCL-WASM (Mitsunari , 2019). Besides, we used JSON, 
which is one of the most popular data-interchange for-
mats, to form the PIIF. More details are given here.

TA. We used CFSSL (CloudFlare , 2014) which is cloud-
flare’s PKI and TLS toolkit to build the PKI in TA. To 
deploy the algorithms of ROABE to TA, including Setup 
and DKeyGen , we modified CFSSL using CGO, which 
enables the creation of Go packages that call C code.

Cloud servers. As we discussed above, the algorithms of 
ROABE are embedded into the ownCloud server, includ-
ing DSGen , DSVerify , DSCombine , CSDecrypt and 
URevoke . To guarantee the confirmation request can be 
pushed to the PO in time, we adopted the middleware 
message queue (MQ), namely Kafka (Apache 2011), and 
deployed it on cloud servers. Therefore, we additionally 
built an MQ producer module to ownCloud server to 
transmit the requests from users.

User side. Android client and web application are mod-
ified to adapt with ROABE.

• Android client. It is considered as a PO. The algo-
rithm Encrypt was implemented and exposed to 
ownCloud via JNI. We additionally built an MQ con-
sumer module to fetch the transmitted requests from 
Kafka.

• Web application. The algorithms of ROABE, namely 
UKeyGen and UDecrypt , were implemented by 
using JavaScript and WebAssembly-based API from 
MCL.

System deployment
We now present how to deploy Rainbow in real world.

Basic clouds setting. We adopted AWS, GCP and Azure 
as the cloud service provider. To use their services, they 
mandate that we should create cloud accounts and follow 

their access control rules, e.g., ABAC and RBAC (https:// 
docs. aws. amazon. com/ IAM/ latest/ UserG uide/ intro ducti 
on_ attri bute- based- access- contr ol. html, https:// cloud. 
google. com/ iam/ docs/ overv iew, https:// docs. micro soft. 
com/ en- us/ azure/ role- based- access- contr ol/ overv iew). A 
trivial idea is binding a user to a corresponding account 
on each cloud, however, it is impractical since we have to 
build an authentication module to link the access rights of 
system users and cloud accounts. Instead, we created only 
an account on each cloud that have definite access rights 
and binded this account to the ownCloud server. Then the 
user’s access rights are fully controlled by Rainbow, which 
are independent with the cloud service providers.

Network configuration. The channels between all enti-
ties are protected by TLS protocol with public key certifi-
cates thus bi-directional authentication is promised. We 
adopt VPN as the internal channel for the communica-
tion between each cloud server. All clients access to the 
clouds through the public network.

Instance deployment. We deployed our modified own-
Cloud server on Amazon EC2, Google Compute Engine 
and Azure Virtual Machines. Specifically, we appreci-
ate to adopt Trusted Execution Environment (TEE) 
(http:// www. omtp. org/ OMTP_ Advan ced_ Trust ed_ Envir 
onment_ OMTP_ TR1_ v1_1. pdf ) to protect the compu-
tation on TA, however, it is out of our concern in this 
work. We used Amazon S3, Google Drive and Azure File 
Storage as external storage services of ownCloud. We 
installed the modified Android client on smart phones to 
perform as system users.

System evaluation
Theoretical comparison
For Rainbow, the majority of computation cost and security 
functionalities come from ROABE. In Table 2, we compare 
ROABE to other known schemes in three folds, including 
functionality, security model and basic computation cost.

Table 2 Comparisons of Some CP-ABE Schemes

“–” denotes “not applicable”. “ × ” denotes “not support”, “ � ” denotes “partially support” and “ � ” denote “fully support”. “|I|” are the cardinality of the satisfied attribute 
set. E, E ′ , P are the numbers of modular exponentiations in G and GT , and paring, respectively

Scheme User revocation Security Full 
verifiability

User 
decryption 
computationImmediateness Reliability Trust on cloud server Model of attack

Attrapadung and Imai (2009) � × – Selective × 3|I|E + 4|I|P

Cui et al. (2016) × × Untrust Selective × 1E ′

Qin et al. (2017) × × Untrust Selective × 2P

Ma et al. (2015) – - Covert Selective � 1E ′

Ma et al. (2019) � × Semi-honest Selective × 1E ′

Yang et al. (2015) � × Semi-honest Adaptive × 1E ′

Our ROABE � � Covert Adaptive � 1E ′

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://cloud.google.com/iam/docs/overview
https://cloud.google.com/iam/docs/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
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Attrapadung and Imai (2009) put forward a direct user 
revocation that revokes a user directly by incorporating 
a revocation list into encryption. However, it is heavy to 
revoke a user from the system since all ciphertexts need 
to be updated. ROABE achieves efficient and immedi-
ate user revocation via server-aided approach (Yang 
et  al. 2015; Ma et  al. 2019). Although Cui et  al. (2016) 
and Qin et  al. (2017) gave server-aided solutions, they 
need to update all other users’ delegated keys when a 
user revoked, which is impractical. The user revocation 
mechanism proposed by Ma et  al. (2019) does not fully 
support the reliability if multiple servers are deployed 
in practice. Because there is only one cloud-side secret 
key holding by all servers. The mechanism in Ma et  al. 
(2019) can resist the leakage of cloud-side secret key by 
updating ciphertexts, nevertheless, it costs too much. 
Besides, the works (Cui et al. 2016; Qin et al. 2017) can 
also achieve key-exposure, but updating all delegated 
keys is demanded when leakage occurs. Our scheme can 
resist key-exposure since unless the adversary obtains 
more than t cloud-side secret keys, it is unable to break 
the revocation. Above all, the schemes (Attrapadung and 
Imai 2009; Cui et al. 2016; Qin et al. 2017; Ma et al. 2019; 
Yang et al. 2015) and our ROABE all support user revoca-
tion, only ROABE achieves immediateness and reliability 
simultaneously, nevertheless.

Our ROABE achieves full verifiability to check the cor-
rectness of outsourced decryption and locate a misbe-
haved server when a wrong decryption result returned, 
while the verification mechanism proposed by Ma et  al. 
(2015) only supports the former. The works (Lai et al. 2013; 
Mao et al. 2015; Lin et al. 2016) have the same limitation. 
Since none of them can accurately locate the misbehaved 
server over multi-cloud, we conclude that they “partially 
support” the full verifiability. Besides, ROABE is efficient 
on user side since only one exponentiation operation is 
required for local decryption. The above theoretical com-
parison shows that our scheme is practical and secure.

Feature discussion
In this subsection, we further discuss the features of 
Rainbow.

Reliable immediate user revocation. The user revoca-
tion in Rainbow is immediate since it is only required 
to remove a PU’s delegated key from the list L on each 
server. The reliability lies in two folds. One is key-
exposure resistance. When no more than t − 1 servers 
compromised, the revocation mechanism still works, 
referring to the security property of ROABE. The other 
is high availability. Even several servers (less than n− t ) 
collapse, Rainbow can still provide retrieval service as 
well as user revocation. In particular, in the outsourced 
decryption phase, a PU can adaptively choose other 

servers as MCS when the requested MCS collapses, and 
the MCS can choose other alive servers as its HCS until 
t valid decryption shares are obtained when any HCS 
collapses.

Accurate Judgement for misbehaved outsourced decryp-
tion. In Rainbow, a misbehaved server cannot exculpate 
itself for a wrong outsourced decryption result. In par-
ticular, suppose an HCS produces an incorrect decryp-
tion share, the MCS can check its correctness and 
disclose its misbehavior according to the verifiability 
of decryption share of ROABE. If the MCS shields the 
HCS, since ROABE implies the verifiability of partially 
decrypted ciphertext and a wrong decryption share 
would cause an incorrect dct , the PU could blame the 
MCS for its misbehavior. Although the misbehaved HCS 
conceals himself in this case, the MCS is located and 
punished, and the wrong result is eventually figured out 
and never be used. In fact, according to this property, it 
is worthless for the MCS to shield a misbehaved HCS. 
Hence, no misbehaved server can exculpate itself.

More security properties. Regarding to the involved 
components, Rainbow additionally brings the following 
security properties. 

(1) Secure communication. Since PKI generates cer-
tificates for system users, the communication chan-
nel between each entity can be easily secured by 
implementing TLS. Besides, the message queue, i.e., 
Kafka, also implies secure communication by set-
ting TLS/SSL configuration.

(2) Undeniable confirmation token. In the owner con-
firmation phase, the PU would generate a confir-
mation token and send it to the MCS along with a 
corresponding signature. It prevents any PU from 
denying the retrieval request of PIIF, which gives a 
promising solution to trace unexpected PIIF leak-
age in real world.

(3) Field-level access control. In Rainbow, each entry in 
PIIF can be encrypted independently with arbitrary 
access policy. It implies field-level access control.

Experimental results
To evaluate the performance of Rainbow, we hired sev-
eral cloud service providers, namely Amazon, Google 
and Microsoft, and used various user devices, including 
laptop, desktop and mobile phone, as our experimen-
tal subjects (see Table  3). We used AES-GCM-128 to 
instantiate SKE and PBKDF2-HMAC-SHA256 to real-
ize KDF which outputs 128bit derived key. The signature 
is implemented by the Boneh-Lynn-Shacham scheme 
(Boneh et al. , 2001). All experimental results are shown 
in Fig. 5 and all times are presented in milliseconds (ms). 
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In particular, the experiment contains two parts: the raw 
performance of ROABE (Fig. 5a–f) and the performance 
of Rainbow based on ownCloud (Fig. 5g–i).

To evaluate the performance of algorithms in 
ROABE, we set access policies in the form of 
(R1 ∧ R2 ∧ · · · ∧ Rℓ) to simulate the worst case. We set 
20 distinct access policies with ℓ increasing from 5 to 

100, repeat each instance 50 times and take the aver-
age value. Figure  5a shows that the key generation 
costs 1.8–36.8  ms which performs well on different 
servers with different operating systems. As shown in 
Fig.  5b, the running time of CSDecrypt is about 5.4–
132.1  ms on three cloud servers (S1–S3). Figure  5c 
shows that DSGen , DSVerify and DSCombine cost 

Fig. 5 Experimental performance

Table 3 Experiment setup

Label CPU OS Type

Client C1 Intel Core(TM) i7-3770 @3.40GHz Ubuntu 16.04 Desktop

C2 Intel Core i7-9750H @2.60GHz MacOS Catalina 10.15 Laptop

C3 HUAWEI Kirin 990E @2.86GHz HarmonyOS 2.0.0 Mobile

Server S1 Intel Xeon Platinum 8272CL @2.60GHz Centos 7 Azure

S2 Intel Xeon E5-2676 v3 @2.40GHz Amazon Linux 2 AWS

S3 Intel Xeon E5-2650 v4 @2.20GHz Centos 7 GCP

 Device Label Browser

Macbook Pro Intel Core i7-9750H @2.60GHz B1 Safari 15609.4.1

B2 Chrome 106.0.5249.119

B3 Firefox 102.0.1

Dell Laptop Intel Core i7-8550U @1.80GHz B4 Microsoft Edge 107.0.1418.26

B5 Chrome 107.0.5304.88

B6 Firefox 106.0.3
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about 0.8–1.0 ms, 0.6–0.7 ms and 0.3–0.4 ms, respec-
tively. Comparing Fig. 5b, c, the process of the decryp-
tion share costs much less than CSDecrypt . It indicates 
that we can run these algorithms in parallel setting 
to further optimize the performance on servers. We 
discuss about the optimization in Rainbow later. Fig-
ure  5d shows that the running time of UKeyGen is 
about 0.02–0.04  ms in browsers (B1–B6) and 0.04–
0.1 ms on clients (C1–C3). Figure 5e demonstrates that 
Encrypt costs about 6.5–161.8 ms in browsers and 2.0–
127.1  ms on clients. Figure  5f indicates that the run-
ning time of UDecrypt is independent of the number 
of attributes. It costs about 1.0–1.8 ms in browsers and 
1.1–1.5 ms on clients.

To evaluate the performance of Rainbow, we pro-
duced multiple PIIFs which are formed in JSON 
and mainly tested user-side performance, including 
encryption and local decryption, and response latency 
of retrieval. We increased the number of contained 
entries from 5 to 100 and set the length of each entry 
to be 20 bytes. The policy of each entry was set in 
the form of (R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5) , where the num-
ber of attributes is fixed to be 5. Figure 5g, h indicate 
that the encryption costs about 28.6–1158.0ms and 
the decryption costs about 5.2–193.6ms in brows-
ers. Even 100 entries are contained, the encryption 
costs less than 1.2  s and the decryption costs within 
200ms. The network latency between each cloud 
server is about 15ms on average and the public band-
width is 1Mbps. Figure 5i shows the response latency 
of the cloud server is affordable when a PU sends his 
request where (n = 5, t = 3) . In particular, it contains 
confirmation and outsourced decryption. To optimize 
the performance on server, in outsourced decryption 
phase, Rainbow generates assistance requests and 
runs CSDecrypt simultaneously with different pro-
cesses. When decryption shares are returned from 
other servers, as shown in Fig.  5b, c, CSDecrypt pos-
sibly has not finished. And we observed that the out-
put of DSCombine , namely csv , is used at the last step 
of CSDecrypt . Therefore, Rainbow can create another 
process to deal with DSVerify and DSCombine and 
pass csv to the main process which are still running 
CSDecrypt via internal process communication (IPC). 
The optimized results are shown in Fig. 5i. All experi-
mental results indicate that Rainbow is practical.

Conclusion
In this paper, we propose Rainbow, a secure and prac-
tical PII retrieval scheme. As a step towards our con-
struction and a by-product, we design and implement 

a useful tool called ROABE with data privacy, flexible 
and fine-grained access control, reliable immediate 
user revocation and verification for multiple serv-
ers. Then we present a formal security model and give 
theoretical security analysis of ROABE. With ROABE, 
ownCloud, a popular cloud storage hosting appli-
cation, and other cloud techniques, we implement 
Rainbow in real world. To evaluate its performance, 
we deploy Rainbow on multiple mainstream clouds, 
namely AWS, GCP and Azure, and different clients 
and browsers. Combining the security analysis and the 
experimental evaluation, we conclude that Rainbow 
achieves great performance with enhanced security 
guarantees.

Appendix
Proof of Theorem 1
In this section, we give our proofs of data privacy 
against users and clouds, respectively, to prove Theo-
rem 1. Let � be the scheme in Yang et al. (2015).

Data privacy against users
Proof
We define the following games.

• Game0 : It is the original security game Gamedupriv.

• Game1 : Almost same as Game0 , except that Y $
←−GT , 

X∗ = SKE.Enc(KDF(Y , L),mb||ξ).
• Game2 : Almost same as Game1 , except that X∗ = 

SKE.Enc(K ,mb||ξ) where K is randomly picked from 
the key space of SKE.

• Game3 : Almost same as Game2 , except that X∗ = 
SKE.Enc(K,  M) where M is randomly picked from 
the message space of SKE and |M| = |mb| + |ξ |.

• Game4 : Almost same as Game3 , except that 
Ĉ∗ = g

H2(x)
c h

ξ
c where x is a randomness.

Lemma 1 Game0 and Game1 are indistinguishable, if � 
achieves data privacy against users.

Proof
Assume that there exists a PPT adversary A who can dis-
tinguish Game0 and Game1 with a non-negligible advan-
tage ǫ , then we can build a PPT simulator B to break 
the data privacy against users of � with a non-negligible 
advantage ǫ′ . Let C be the challenger of �.
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Setup. C generates public parameters params = (G, e, g ,

h = gν , e(g , g)µ,H1) and a cloud’s key pair (pkcs = gγ ,

skcs = γ ) , and returns them to B . Then B picks (t, n) 
where t ≤ n , and chooses gc, hc

$
←−G , a hash function 

H2 : {0, 1}∗ → Zp and a key derivation function KDF with 
the output length L. B defines a polynomial P(x) over Zp 
with degree t − 1 where P(0) = γ . ∀i, j ∈ [n], j �= i , it ran-
domly chooses a point (xi, yi) over P(x) where yi = P(xi) 
and bj,i, cj,i

$
←−Zp , and computes zj,i = bj,i · yi + cj,i . B sets 

pk = (params, gc , hc ,H2,KDF, L) , cpk = (pk, kcs , {xi}i∈[n]) and 
cski = (pk, dki = (yi , {zj,i}j �=i,j∈[n]), vki = {(bi,j , ci,j)}j �=i,j∈[n])  . 
Finally, B initializes an empty delegated key list L and a 
table W , and returns ( pk , cpk , {cski}i∈[n] , L ) to A.

Phase 1. A is allowed to query following oracles:

• User-key oracle OUK(u) : B forwards the query to C . C 
returns (upk,usk) to B . Finally, B stores them to the 
table W and returns (upk,usk) to A.

• Delegated-key oracle ODK(R,u) : B rejects if no such 
upk exists in W . Otherwise, B sends the attribute set 
R to C to get a dk = (R,K ,K ′, {Ki,1,Ki,2}i∈[k]) where 
k = |R| , and returns it to A.

Challenge. A submits two message m0,m1 where |m0| = |m1| 
and an access tree T ∗ , subjecting to a restriction that none 
of the queried attribute set R in Phase 1 satisfies T ∗ . B 
randomly picks m∗0,m

∗
1 ∈ GT and sends m∗0,m

∗
1 to C to  

get a ciphertext (T ∗
, c∗ = m

∗
b · e(g , g)

µs
,C∗ = hs,C

′∗ = gs,

{C∗
j,1 = gθj(0),C∗

j,2 = H1(A(j))
θj(0)}j∈J ) , where J  is the  

set of leaf nodes. Then B flips a random coin b∗ and com-
putes Y = c∗/m∗

b∗ =
m∗b
m∗
b∗

· e(g , g)µs , Ĉ∗ = g
H2(mb∗ )
c h

ξ
c where 

ξ
$
←−Zp and X∗ = SKE.Enc(KDF(Y , L),mb∗ ||ξ) . Finally, B 

sets ct∗ = (T ∗,X∗,C∗,C
′∗, Ĉ∗, {C∗

j,1,C
∗
j,2}j∈J ) and 

returns it to A.
Phase 2. A continues to query the oracles with the restric-
tion that any queried R does not satisfy T ∗.

Guess. A outputs a guess b′ ∈ {0, 1} to indicate that it 
plays with the game Gameb′ . If b′ = 0 , B outputs b∗ as the 
guess of b. Otherwise, B outputs 1− b∗.

Apparently, if b∗ = b , B has simulated Game0 properly 
since Y = e(g , g)µs ; otherwise, it has simulated Game1 
properly since Y is a randomness. Then B can break the 
data privacy against users of � with the advantage ǫ′ = ǫ 
which is non-negligible. Therefore, Game0 and Game1 are 
indistinguishable. �

Since the security of the KDF implies that KDF(Y,  L) is 
indistinguishable from a randomly generated key of SKE, 
then Game1 and Game2 are indistinguishable. Since the Ped-
ersen commitment is computationally hiding, Game3 and 
Game4 are indistinguishable. To prove the indistinguishabil-
ity of Game2 and Game3 , we have the following lemma.

Lemma 2 If SKE is semantically secure, then Game2 and 
Game3 are computationally indistinguishable.

Proof
Suppose there exists a PPT adversary A who can distin-
guish Game2 and Game3 with a non-negligible advan-
tage, then we can build a PPT simulator B to break the 
semantic security of SKE. To avoid repetition, we only dis-
cuss the Challenge phase. When A submits (m0,m1) to 
B , B flips a coin b∗ and sends (m∗0,m

∗
1) = (mb∗ ||ξ ,M) to C 

(the challenger of SKE) where |m∗0| = |m∗1| , ξ
$
←−Zp and M is 

randomly chooses from the message space of SKE. C flips 
a coin b, randomly picks a symmetric key K and returns 
X∗ = SKE.Enc(K ,m∗

b) to B . B generates other terms to get 
the challenge ciphertext ct∗ and returns it to A . B sets b′ 
that is output by A as its guess.

Obviously, if b = 0 , then B has simulated Game2 ; oth-
erwise, it has simulated Game3 . Then B can break the 
semantic security of SKE with a non-negligible advan-
tage. Thus, Game2 and Game3 are indistinguishable. 

In Game4 , since the information of mb is lost in the chal-
lenge ciphertext, the advantage of A is exactly 0. Thus, 
ROABE achieves data privacy against users. 

Data privacy against clouds
Similarly, we define the following games.

• Game0 : It is the original security game Gamecspriv.

• Game1 : Almost same as Game0 , except that Y $
←−GT , 

X∗ = SKE.Enc(KDF(Y , L),mb||ξ).
• Game2 : Almost same as Game1 , except that X∗ = 

SKE.Enc(K ,mb||ξ) where K is randomly picked from 
the key space of SKE.

• Game3 : Almost same as Game2 , except that X∗ = 
SKE.Enc(K,  M) where M is randomly picked from 
the message space of SKE and |M| = |mb| + |ξ |.

• Game4 : Almost same as Game3 , except that 
Ĉ∗ = g

H2(x)
c h

ξ
c where x is a randomness.

�

�
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Lemma 3 Game0 and Game1 are indistinguishable, if � 
achieves data privacy against clouds.

Proof
Assume there exists a PPT adversary A who can distin-
guish Game0 and Game1 with a non-negligible advantage 
ǫ , then we can build a PPT simulator B to break the data 
privacy against clouds of � with a non-negligible advan-
tage ǫ′ . Note that � is the scheme in Yang et al. (2015).

The simulation is almost same as that in the proof of Lemma 
1. To avoid repetition, we only discuss the different phases.

Setup. C generates a public key and returns it to B . B runs 
UKeyGen to get a cloud’s key pair (pkcs = gγ , skcs = γ ) 
and sends pkcs to C . Then B generates other terms as 
Setup in the proof of Lemma 1.

Phase 1. Almost same as Phase 1 in the proof of 
Lemma 1, except that in OUK  , B only returns upk to A.

Challenge. Same as Challenge in the proof of Lemma 1.

Phase 2. A continues to query the oracles as Phase 1.

Guess. A outputs a guess b′ ∈ {0, 1} to indicate that it 
plays with the game Gameb′ . If b′ = 0 , B outputs b∗ as the 
guess of b. Otherwise, B outputs 1− b∗.

Similarly, if b∗ = b , B has simulated Game0 properly; oth-
erwise, it has simulated Game1 . Then B breaks the data 
privacy against clouds of � with the advantage ǫ′ = ǫ 
which is non-negligible. Therefore, Game0 and Game1 are 
indistinguishable. 

The proofs of the indistinguishability of other games 
are omitted, since they are same as that in the proof of 
data privacy against users. In Game4 , since the informa-
tion of mb is lost, the advantage of A is 0. Thus, ROABE 
achieves data privacy against clouds. Above all, we 
complete the proof of Theorem 1.

Proof of Theorem 2

Proof
We define the following games.

• Game0 : It is the original security game Gamervk.

�

• Game1 : Almost same as Game0 , except that Y $
←−GT , 

X∗ = SKE.Enc(KDF(Y , L),mb||ξ).
• Game2 : Almost same as Game1 , except that X∗ = 

SKE.Enc(K ,mb||ξ) where K is randomly picked from 
the key space of SKE.

• Game3 : Almost same as Game2 , except that X∗ = 
SKE.Enc(K,  M) where M is randomly picked from 
the message space of SKE and |M| = |mb| + |ξ |.

• Game4 : Almost same as Game3 , except that 
Ĉ∗ = g

H2(x)
c h

ξ
c where x is a randomness.

Lemma 4 Game0 and Game1 are indistinguishable, if � 
supports user revocation.

Proof
Assume there exists a PPT adversary A who can distinguish 
Game0 and Game1 with a non-negligible advantage ǫ , then 
we can build a simulator B to break the data privacy against 
users of � with a non-negligible advantage ǫ′ . Note that � is 
the scheme in Yang et al. (2015). Let C be the challenger of �.

Similarly, the simulation is almost same as that in the 
proof of Lemma  1. We only discuss the differences. 
In Setup, C only returns pkcs = gγ to B . Although B 
knows nothing about the real secret key skcs = γ that 
C generates, B can randomly choose t − 1 secret keys 
{cski}i∈�t−1 and returns them to A . Because Shamir’s 
secret sharing is information-theoretic secure, A knows 
nothing about skcs . Thus, the simulation of Setup is per-
fect. Other phases are almost same as that in the proof 
of Lemma 1, except that the restrictions of T ∗ in Chal-
lenge and R in Phase 2 are removed. Therefore, Game0 
and Game1 are indistinguishable. �

The proofs of the indistinguishability of other games are 
omitted, since they are same as that in the proof of data 
privacy against users. Therefore, ROABE achieves reliable 
user revocation. We complete the proof of Theorem 2. �

Proof of Theorem 3

Proof
According to the security definition, A wins the game if 
zi∗,j = bi∗,j · yj + ci∗,j ∧ z′i∗,j = bi∗,j · y

′
j + ci∗,j . It is obvi-

ous that A can output a pair (ds∗j,i∗ ,π
∗
j,i∗) by using cskj 

where j  = i∗ . However, since A does not know the verifi-
cation key vki∗ = (bi∗,j , ci∗,j) , the only way to find another 
pair (z′j∗,i, y

′
i) to satisfy the equation is randomly guessing 

in Zp with the probability 1/p which is negligible. �
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Proof of Theorem 4

Proof
Suppose there exists a PPT adversary A can break the 
verifiability with non-negligible probability, then a PPT 
simulator B can be constructed to solve DL problem. Spe-
cifically, B is given (p,G,GT, e, g ,A = ga) and intends to 
calculate a = logg A . The simulation is shown as follows.

Setup. B sets gc = A and hc = gd where d $
←−Zp . B gener-

ates other terms as the algorithm Setup and returns the 
public key pk to A.

Phase 1. Since B maintains the master secret key msk , it 
can answer all queries.

Challenge. A submits a message m∗ and an access tree T ∗ 
to B . B runs Encrypt(pk, T ∗,m∗) to return ct∗ to A.

Phase 2. Same as Phase 1.

Output. A outputs a tuple { usk∗ , dct∗1 , dct
∗
2 }. Spe-

cifically, usk∗ has been generated by OUK  and sent 
to A in Phase 1 or Phase 2. Then B runs UDe-
crypt with usk∗ to decrypt dct∗1 and dct∗2 to get 
(m∗1, ξ

∗
1 ) and (m∗2, ξ

∗
2 ) , respectively. A wins the game if 

m∗1 �= ⊥ ∧ m∗
2 �= ⊥ ∧ m∗

1 �= m∗2 and

The inequality equation H2(m
∗
1) �= H2(m

∗
2) holds with 

overwhelming probability, since H2 is collision-resistant. 
Then B can compute

as the solution of the DL problem, since d, m∗1 , m
∗
2 , ξ

∗
1  , ξ∗2  

are all known to B . 
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