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Abstract 

Clone detection has received much attention in many fields such as malicious code detection, vulnerability hunting, 
and code copyright infringement detection. However, cyber criminals may obfuscate code to impede violation detec-
tion. To date, few studies have investigated the robustness of clone detectors, especially in-fashion deep learning-
based ones, against obfuscation. Meanwhile, most of these studies only measure the difference between one code 
snippet and its obfuscation version. However, in reality, the attackers may modify the original code before obfuscating 
it. Then what we should evaluate is the detection of obfuscated code from cloned code, not the original code. For 
this, we conduct a comprehensive study evaluating 3 popular deep-learning based clone detectors and 6 commonly 
used traditional ones. Regarding the data, we collect 6512 clone pairs of five types from the dataset BigCloneBench 
and obfuscate one program of each pair via 64 strategies of 6 state-of-art commercial obfuscators. We also collect 
1424 non-clone pairs to evaluate the false positives. In sum, a benchmark of 524,148 code pairs (either clone or not) 
are generated, which are passed to clone detectors for evaluation. To automate the evaluation, we develop one uni-
form evaluation framework, integrating the clone detectors and obfuscators. The results bring us interesting findings 
on how obfuscation affects the performance of clone detection and what is the difference between traditional and 
deep learning-based clone detectors. In addition, we conduct manual code reviews to uncover the root cause of the 
phenomenon and give suggestions to users from different perspectives.
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Introduction
Source code clone refers to the existence of identical 
or similar source code between two or more code seg-
ments. Many studies (Duala-Ekoko and Robillard 2007; 
Livieri et al. 2007; Göde and Koschke 2011) have shown 
that code cloning widely exists in software development 

to improve work efficiency. However, code cloning is a 
double-edged sword that can also bring negative effects. 
Due to insufficient inspection of open source projects, 
lots of problematic malicious or vulnerable code flow into 
downstream projects, of which the unfavorable impact 
is drastically magnified through code cloning (Monden 
et al. 2002; Kim et al. 2017). On the other hand, the reuse 
of open source projects may cause copyright disputes 
(Wu et  al. 2015). Code plagiarism has always been an 
intractable problem in intellectual property protection. 
To identify these code clones, there are emerging many 
studies (Sheneamer and Kalita 2016; Roy and Cordy 
2007) to compute the similarity between two pieces of 
code. If the similarity exceeds a certain degree, they are 
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clone pairs, otherwise not. The detection performance of 
a clone detector largely relies on the features harvested 
from code and their representation. Generally, features 
are extracted and represented in mainly four levels: literal 
text, token, syntax, and semantics (Ben-Nun et al. 2018; 
Kuhn et al. 2007). Based on the features, a clone detector 
employs varying approaches to compute their similarity. 
Code obfuscation is a technique that transforms a com-
puter program into code representation that are func-
tionally equivalent but difficult to read and understand 
(Viticchié et al. 2016). It is an effective manner for pro-
gram developers to protect their code from being stolen. 
On the opposite side, attackers are also apt to obfuscate 
their code, either for making malicious code evade from 
detection (OKane et al. 2011; You and Yim 2010), or for 
getting out of a charge of intellectual property infringe-
ment. Hence, it is necessary to evaluate the effect of 
obfuscation against clone detectors.

After surveying for papers in software engineering and 
security published over the past two decades, we find 
that although some studies (Schulze and Meyer 2013; 
Ragkhitwetsagul et  al. 2016; Meyer and Schulze 2012) 
evaluate the resistant of the clone detectors to obfus-
cation, almost all of them only evaluate the similarity 
between one code snippet before and after obfuscation 
(a and a’ as shown in Fig.  1). However, in real scenar-
ios, attackers may not obfuscate the problematic code 
a directly, but firstly customize it manually as b accord-
ing to their own needs and then obfuscate b to c. Hence, 
what should be evaluated is whether clone detectors 
can find clones between 〈a, c〉 , rather than �a, a′� . On the 
other hand, recent years witness the superior ability of 
deep learning in abstracting the semantics of code, and 
hence a line of research (Tufano et  al. 2018; Nguyen 
et al. 2009) learns the embedding of code semantics for 
clone detection. However, none of these studies have 
assessed the deep learning-based detectors. In addition, 
the number of clone detectors evaluated is smaller and 
the evaluation subjects are mostly proposed before 2010. 
Meanwhile, the way of obfuscation is relatively simple, 

implementing several simpler code conversion methods, 
or employing a smaller number of obfuscators, thus the 
obfuscation strategies are insufficient in both type and 
number. All the above impedes in-depth findings and the 
drawn conclusions are correspondingly plain. Therefore, 
it is desired to conduct a comprehensive and meticulous 
evaluation, assessing the attack effects of code obfusca-
tion, and identifying the potential risks of clone detectors 
under real circumstances.

In this work, we carefully study the status quo of clone 
detectors, select representative, state-of-art open-source 
detectors, including 3 deep learning-based and 6 tradi-
tional ones. At the same time, we research the obfusca-
tors in detail and select 6 commercial ones widely used in 
practice, which basically cover all the four types of basic 
obfuscation strategies, layout, data, structure, and control 
flow (Cimitile et al. 2017; Balakrishnan and Schulze 2005; 
Cimato et  al. 2005). Here, we define the first two types 
as a simple strategy and the rest as a complex strategy. 
Furthermore, we devise 69 combinations of compound 
strategies to measure the superimposed effects between 
strategies. To simulate the real scenarios, we collect 7,936 
code pairs from BigCloneBench (Svajlenko et  al. 2014), 
which contains five types of true clone pairs and false 
ones, both on function granularity, and employ these 
obfuscation strategies on them, obtain 428,695 clone 
pairs and 95,453 non-clone pairs after obfuscation. These 
samples are then passed to clone detectors for evaluation 
as our benchmark.

By comparing the change of clone detection perfor-
mance, we study the effect of obfuscation on clone detec-
tors, including not only obfuscation strategies but also 
obfuscation tools. We provide cause analysis to explain 
the essence of these effects. Additionally, we compare the 
performance of the traditional clone detectors and deep 
learning-based ones in the consideration of the impact 
of obfuscation. For ease of evaluation, we construct one 
unified and scalable framework, which integrates clone 
detectors and obfuscators freely, obfuscates the code 
pairs collected from BigCloneBench, passes it to clone 
detectors for evaluation, and processes the experimental 
results of various detectors uniformly.

Last, we present a number of insightful findings, 
including but not limited to: (1) the effect of simple 
strategies may be greater than the complex ones under 
some circumstances; (2) the effect of the combined 
strategies are not necessarily more significant than the 
basic ones; (3) the deep learning-based detectors are 
more prone to misclassifying a non-clone pair; (4) for 
traditional and DL-based detectors, the obfuscation 
strategy or obfuscation tool having a greater impact 
on them could be different. (5) The performance of Fig. 1 The comparison between the evaluation manner of our study 

and previous studies
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traditional and DL-based detectors under obfuscation 
for various clone types is just the opposite. To facilitate 
future research on clone detection, we will publish our 
benchmark and evaluation framework at Anonymous 
(2021) after the work has been accepted.

Biographytions. We summarize the contributions as 
follows.

• A comprehensive and large-scale evaluation of 
the attack and confrontation effects between 
obfuscators and clone detectors. We construct 
69 strategies based on six obfuscators, generating 
282,845 obfuscation methods and 524,148 code 
pairs to evaluate 9 clone detectors, including 6 tra-
ditional and 3 deep learning-based tools. It is noted 
that we are the first to make an assessment of DL-
based detectors under obfuscation.

• We construct one benchmark fitting the real sce-
narios. As mentioned above, to restore the real 
scenes, we collect 6512 clone pairs of five types 
and 1424 non-clone pairs from BigCloneBench and 
obtain 428,695 clone pairs and 95,453 non-clone 
pairs after obfuscation through a series of auto-
matic manipulation, which is detailed in Sect.  3, 
as the benchmark of our evaluation. Furthermore, 
it could be used for research in related fields and 
expanded utilizing more obfuscation strategies 
according to real needs.

• One open-source and uniform evaluation frame-
work. We construct an evaluation framework that 
automates code obfuscation and clone detection. 
It is extensible and can incorporate more obfus-
cators and clone detectors easily, expanding the 
benchmark as needed, making a unified process on 
the experimental results of various clone detectors 
according to the performance metrics.

• Insightful findings and suggestions. Based on our 
evaluation results, we conclude a series of findings 
and suggestions which could be helpful for users 
from different perspectives, such as designers or 
analyzers of clone detectors, sparking new thinking 
in the related research field.

Background and related work
Code clone detection
A code clone is a piece of code that is identical or simi-
lar to another due to copy and paste programming. To 
clarify the definition and categories of code clone, (Bel-
lon et al. 2007) first classify them into four categories as 
per the similarity between clone code pairs. Svajlenko 

et al. (2014) further refine Type3 by considering varying 
degrees of syntactic similarity between code clones.

• T 1 Code is exactly the same except for spaces and 
comments.

• T 2 Code is syntactically the same, and only variable 
names, variable types, function types, spaces, and 
comments are different.

• ST 3 Code is syntactically the same, but there are 
additions, reductions, or modifications in the state-
ments. The syntactical similarity of code clones 
locates in the range [0.7, 1.0).

• MT 3 Code is syntactically the same and its syntacti-
cal similarity of code clones locates in the range [0.5, 
0.7).

• T 4 The functions in code are the same, but the syn-
tax may be significantly different.

In this study, we focus on the clones between Java meth-
ods. Therefore, given a set of Java methods M and clone 
types T  ( |T | = 5 ), we have a definition for a clone pair as: 
〈m1, m2, t〉 where m1,m2 ∈ M and t ∈ T  . A false clone 
pair can be denoted as �m1, m2, ⊥�.

Clone detection is a technique to identify the cloned 
code through automated similarity comparison and 
locate their accurate positions (Ain et  al. 2019). Given 
this, it has achieved significant results in malicious code 
detection, vulnerability hunting, copyright management 
(Chen et al. 2015; Kim et al. 2017; Liu et al. 2017), and so 
on. There are a lot of tools and techniques to detect code 
clones (Jiang et  al. 2007; Zhao and Huang 2018; Zhang 
et al. 2019; Lee and Jeong 2005). In this study, we focus 
on two types of clone detection as below.

Traditional detection
It mainly contains three steps: removing meaningless 

code, extracting representative features, and calculating 
the similarity between two code fragments. As for code 
representation, SDD (Lee and Jeong 2005) constructs 
text representation from code, CCFinder (Kamiya et  al. 
2002) and CCAligner (Wang et al. 2018) rely on the token 
representation. Deckard (Jiang et al. 2007) constructs an 
abstract syntax tree for code, and Duplix (Krinke 2001) is 
based on a program dependence graph. Compared with 
detectors extracting features with text or token repre-
sentations, the ones based on grammar (such as abstract 
syntax tree) and semantics (e.g., program dependency 
graph, control flow graph) can mine deeper information, 
thereby having the ability to detect more complex clone 
types such as ST3, MT3, and T4.

Deep learning-based detection Recently, researchers 
apply deep learning to clone detection (Zhao and Huang 
2018; Zhang et al. 2019). Compared with the traditional 
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detector, DL-based detector can further learn the code 
features thoroughly with layers of networks, thereby 
digging deeper code semantic information and improv-
ing clone detection. In particular, some DL-based clone 
detectors combine syntax- and semantic-level code rep-
resentation with DL models, and have obtained supe-
rior experimental results. For example, CDLH (Wei and 
Li 2017) converts the source code into an AST, extracts 
feature vectors, and then feeds the feature vectors into 
a customized Convolutional Neural Network (CNN) for 
training, and finally uses the learned features for simi-
larity analysis. White et al. (2016) use the data obtained 
by manual sampling as a training set, which is com-
bined with their own defined tree structure and CNN to 
construct a clone detection model. Zhang et  al. (2019) 
develop ASTNN to solve the problem of gradient disap-
pearance caused by the excessive number of syntax tree 
layers in the training process by dividing the original 
abstract syntax tree into smaller subtrees, and combines 
LSTM for clone detection. DeepSim (Zhao and Huang 
2018) generates original features from the control flow 
graph and data flow graph of the code according to the 
designed coding method and uses a customized forward 
neural network model to perform deeper digging of code 
information at the semantic level.

Code obfuscation
Code obfuscation is widely used for intellectual property 
protection and malicious code hiding. Here, we aim to 
explore how it influences the detection of code clones. 
Therefore, we employ four types of basic obfuscation 
strategies (Collberg et al. 1997) to transform our source 
code, which are detailed as follows.

• Layout obfuscation. In this strategy, we only take into 
account identifier replacement (IR). It replaces the 
name of variables, methods, and classes in the origi-
nal code with randomly generated strings to elimi-
nate the meaning of specific variables at the source 
code level.

• Data obfuscation. It contains two forms. Numeric 
constant replacement (NCO) replaces all numeric 
constants in the original code with arithmetic opera-
tions between multiple numbers, thereby chang-
ing the expression of digital constants at the source 
code level. String constants encryption (SCE) encrypts 
all string constants and provides the correspond-
ing decryption function at the same time. When the 
string constants are needed, the decryption function 
is invoked to decrypt the strings, changing the form 
of string constants without changing the program 
semantics.

• Structure obfuscation. There are four forms of struc-
ture obfuscation. In particular, expression replace-
ment (ER) performs the equivalent replacement of 
expressions in the source code. For example, adding 
more useless operations makes arithmetic expres-
sions more complicated, thereby increasing the com-
plexity of the original code; class structure reorgani-
zation (ISC) changes the internal structure of a Java 
class,such as the order of the fields inside one class; 
internal class removal (ICR) removes the internal 
classes defined in one Java class; code rolling and 
unrolling (CC) merge several functions into one or 
split one function into many while retaining the orig-
inal control flows.

• Control flow obfuscation. It adds a number of false 
conditional control statements to blur the execution 
logic of code and hinder the comprehension of the 
original source code (CFO). For instance, junk code 
without any relevance to the original code can be 
inserted into the code (Cao et al. 2006).

Obfuscation on clone detection
Few studies have evaluated the robustness of clone 
detectors under obfuscation. Schulze and Meyer (2013) 
studied the effect of 16 simpler obfuscation strategies 
developed by themselves on three clone detectors. Meyer 
and Schulze (2012) researched the effect of one obfusca-
tor integrating six obfuscation strategies on three clone 
detection tools. Ragkhitwetsagul et  al. (2016) assessed 
the performance of five detectors under two obfuscators 
employing six strategies. All these works mainly focus 
on presenting the different performance of clone detec-
tors under obfuscation from the perspective of code 
representation form, such as text, token, etc.. In addi-
tion, Ragkhitwetsagul et  al. (2016) explores the optimal 
parameter settings of the clone detection tools. Roy and 
Cordy (2009) proposes one mutation-based approach 
for generating clone data, adopting 14 personally defined 
mutation methods and assessing the performance of only 
one clone detector.

Approach
Figure  2 shows the overview of our evaluation work. 
First, we collect a number of Java code pairs from the 
benchmark BigCloneBench (Svajlenko et  al. 2014). 
Second, we perform a transformation on every source 
code to make it compilable and compile it into bytecode. 
We then build an obfuscation framework that integrates 
six obfuscators and obfuscates one bytecode of each 
bytecode pair. The bytecode pair is further decompiled 
and passed to the clone detection framework, including 
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nine state-of-the-art clone detectors. It is noted that both 
the obfuscators and clone detectors could be expanded 
freely. Based on the results of clone detection, we pro-
pose two research questions and identify eight findings 
that characterize the combat between obfuscation and 
clone detection.

Data preprocessing
The obfuscation tools only accept bytecode as input, so 
we need to first make Java methods in the dataset com-
pilable. To this end, we perform static analysis on the tar-
get Java methods to: (1) infer the types of local variables 
(including class fields), the parameters of methods, and 
the return type of each method; (2) create a dummy class 
that declares all the missing types of identified objects.

As Algorithm  1, we first use JavaParser (2020) to 
obtain the abstract syntax tree of the target method. 
Then we traverse the expressions in this AST (line 2). If 
the expression contains a type declaration (line 3), we can 
determine the type of current variable. Otherwise, we 
check whether there is an implicit relationship between 
variables (line 4). For example, if one variable v2 is 
assigned to v1 , the type of v1 should be consistent with v2 . 
If there exist any variables whose types are undetermined 
(lines 8-11), we will query the traversed type relation-
ships. Particularly, if v is of the same type of the undeter-
mined variable var (line 9) and v is determined, the type 
of var can be determined thereout. Last, we generate Java 
classes based on ctx (line 12).

Fig. 2 Overview of the evaluation work
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Obfuscation framework
In the framework, we have developed one uniform con-
troller Wrapper that can automatically make the required 
configurations for specific obfuscation strategies and 
invoke the corresponding tools to obfuscate code in 
batches, which is convenient to integrate obfuscation 
tools. Currently, we select six Java obfuscation tools with 
a high Github star rank. These tools and their supported 
strategies are summarized in Table  1 and described 
below.

• Radon ItzSomebody (2020) is an open-source small 
Java bytecode obfuscation tool. This tool obfuscates 
Java jar packages and supports multiple obfuscation 
strategies at the same time.

• JBCO JBCO (2020) is an obfuscator based on the 
Soot framework (Soot (2020)). It supports multiple 
obfuscation strategies to obfuscate jar packages at the 
same time and achieves stronger obfuscation.

• Obfuscator Obfuscator (2020) is an open-source 
Java bytecode obfuscation tool that supports multiple 
obfuscation strategies to obfuscate jar packages at the 
same time and provides a GUI interface to configure 
obfuscation options.

• JODE (Hoenicke 2020) is a decompilation tool and 
obfuscation tool for Java packages. It supports chang-
ing the class name, method name, and field name 
of Java code to randomly generated ones. Users can 
provide a conversion table to replace the names of 
these identifiers.

• yGuard yGuard (2020) is a free obfuscator and com-
pressor for Java bytecode. It needs to rely on the 
Apache Ant tool (2020) ant  to run and can be inte-
grated into most commonly used IDEs. It supports 
the renaming of identifiers in Java bytecode.

• ProGuard ProGuard (2020) is currently a well-known 
optimizer, compressor, and obfuscator for Java byte-
code. This tool supports the replacement of identifi-
ers in Java bytecode and the obfuscation of Android 

applications. It provides a GUI interface to configure 
various options.

Obfuscation strategies. We select all the basic strat-
egies of the six obfuscation tools, and combine differ-
ent types of strategies of each obfuscation tool, which is 
a common practice in reality, e.g. (Hammad et al. 2018), 
obfuscates code with combined strategies to evaluate 
anti-malware tools. Therefore, we have formed com-
pound strategies that contain either 1, 2, 3, or 4 single 
strategies. In this manner, we finally obtain 20 basic sin-
gle obfuscation strategies and 49 combined strategies.

Code decompilation and clone preparation
We use Procyon (Steiger 2020) to decompile .jar files 
to obtain Java source code, where the target methods 
are located. Since the name of the target function may 
be changed after obfuscation, we recognize it from the 
main function where we pre-implant a referent to the 
target method. By traversing all the functions, we man-
age to extract the target function based on this reference.

To form the benchmark for clone detection, we 
replace the original methods with their decompiled ver-
sions. The reason that we use the decompiled methods 
is: after decompilation, minor changes may occur in the 
layout of the original method, such as the replacement 
of the variables. Therefore, the method we get after 
obfuscation is not only influenced by the corresponding 
obfuscation strategies, but also the decompilation pro-
cess. In order to eliminate this influence from decom-
pilation to make our experiment more accurate, we use 
the decompiled version of the original method uni-
formly in both the generation of the obfuscation data 
set and the original one. Besides, it has been verified 
that the use of decompiled version could improve the 
performance of clone detectors (Ragkhitwetsagul et al. 
2016; Ragkhitwetsagul and Krinke 2017).

Table 1 Obfuscation tools and the corresponding strategies

Obfuscation tools Simple strategy Complex strategy Stars

Layout Data Structure Control-Flow

IR NCO SCE ER ISC ICR CC CFO

Radon ✓ ✓ ✓ ✓ ✓ ✓ 200

JBCO ✓ ✓ ✓ ✓ ✓ 1.5K

Obfuscator ✓ ✓ ✓ ✓ ✓ ✓ 249

JODE ✓ –

yGuard ✓ 102

ProGuard ✓ 352
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To ensure that the type of clone pairs remain 
unchanged after decompilation during the generation 
of the original data set process, we randomly select 100 
pieces of records from BigCloneBench covering both 
the true and false clone pairs and analyze them manu-
ally. The analysis result shows that 92 pairs of them 
retain the original clone type except for individual fail-
ures due to the compilation optimization, the percent-
age of which reaches 92%.

All clone detectors evaluated in this study are binary 
classifiers, i.e., only distinguish whether the input is a 
clone or not while not clone types. However, clones of 
different types may greatly influence detection perfor-
mance. For a more in-depth study, we create five exper-
imental datasets. More specifically,

we rely on BigCloneBench’s labels for clone type and 
divide the clone pairs into five categories T1, T2, ST3, 
MT3, T4. Then they are combined with the false clone 
pairs respectively to form five test subsets. The indica-
tors of detection rate of the five types of clone pairs are 
calculated to evaluate the effect of the obfuscation on 
the detection rate of these five clone types.

Clone detection framework
In this study, we establish a framework to host clone 
detectors for evaluation. It provides a consistent data-
set for experiments and conducts unified processing of 
experimental results, comparing the detection rate of 
the five types of clone pairs respectively before and after 
obfuscation, and the false clone pairs as well. All these 
operations are done automatically. For deployment of 
the clone detectors, what matters most is whether the 
selected clone detectors are representative and can cover 
the current mainstream cloning detection techniques 
commonly used. Although the number of clone detectors 

is not so large as other types, such as malware detection 
tools, after decades of research and development, the cat-
egory and number of it is also considerable, which could 
be reflected in clone (2020). However these tools have 
many features in common with each other, thus there 
is no need to evaluate all of them one by one, resulting 
in redundancy. To this end, we conduct a comprehen-
sive and in-depth investigation of the source code clone 
detection work published at academic venues since 2000 
and selected nine relatively mature works that are open-
sourced as our evaluation objects as shown in Table  2, 
among which several tools are selected as they are the 
more classic and influenced ones in clone detection 
research history, such as SDD, CCFinder, Deckard and 
the others are relatively new and representative excel-
lent works mainly published on the top conferences or 
journals in recent years. Meanwhile, these tools basically 
cover all the code representation forms and mainstream 
detection techniques.

These tools are categorized into two mainstream 
clone detection approaches, i.e., traditional clone detec-
tion, and deep learning-based clone detection. From 
the view of code representation, there are a variety 
of features extracted from code, such as text by SDD, 
token by CCFinder, SourcererCC, Oreo, CCAligner and 
CCLearner, AST by Deckard and ASTNN, and other 
semantic representation by DeepSim, spanning from text, 
token, and syntax to semantics; from the clone detec-
tion algorithm or model employed, for DL-based tools, 
ASTNN, DeepSim, CCLearner focus on abstracting 
deeper semantic information through various deep learn-
ing models, i.e., ASTNN by bidirectional RNN (Schuster 
and Paliwal 1997), DeepSim by Multilayer Perceptron 
(Gardner and Dorling 1998) and CCFinder by DNNs 
(Szegedy et  al. 2013); for traditional tools, Deckard, 

Table 2 Code clone detectors and their manifest including extracted feature, used dataset, and supported clone types

Tools Venue Method Feature Dataset Clone Type

T1 T2 ST3 MT3 T4

CCFinder (Kamiya et al. 2002) TSE 2002 token normalization + token-
wised comparison

Token JDK 1.3.0, FreeBSD 4.0 ✓ ✓

SDD (Lee and Jeong 2005) OOPSLA 2005 inverted index + N-neighbor Text JDK 1.5, httpd-2.0.54 ✓ ✓ ✓
Deckard (Jiang et al. 2007) ICSE 2007 Locality Sensitive Hash AST JDK 1.4.2, Linux kernel 2.6.16 ✓ ✓ ✓
SourcererCC (Sajnani et al. 
2016)

ICSE 2016 Filtering Heuristics Token BigCloneBench, Mutation/
Injection

✓ ✓ ✓

Oreo (Saini et al. 2018) ESEC/FSE 2018 action token + metric com-
parison

Token BigCloneBench ✓ ✓ ✓

CCAligner (Wang et al. 2018) ICSE 2018 code window + edit distance Token JDK 1.2.2, OpenNLP 1.8.1 ✓ ✓ ✓
DeepSim (Zhao and Huang 
2018)

FSE 2018 Multilayer Perceptron CFG BigCloneBench, GCJ ✓ ✓ ✓ ✓ ✓

ASTNN (Zhang et al. 2019) ICSE 2019 Bidirectional RNN AST BigCloneBench ✓ ✓ ✓ ✓ ✓
CCLearner (Li et al. 2017) ICSME 2017 DNNs Token BigCloneBench ✓ ✓ ✓ ✓
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SourcererCC, Oreo focus on improving detection effi-
ciency by utilizing Locality Sensitive Hash (LSH) (Datar 
et al. 2004), Filtering Heuristics (Sajnani et al. 2013) and 
Action Filtering respectively, and CCFinder, CCAligner 
on the abstraction of code information through sym-
bolic processing and code window. The workflow of the 
approaches adopted by the nine clone detectors are listed 
as follows.

• CCFinder First, code snippets are converted into 
token sequences, followed by symbolic process-
ing and encoding, thereby computing the similarity 
between clone pairs.

• SDD It first converts the source code into code block 
sequence, and builds an inverted index for it, then 
uses the n-nearest neighbor algorithm to calculate 
the similarity between the source code snippets.

• Deckard The source code is firstly converted into an 
abstract syntax tree and traversed in preorder. Each 
of the subtrees is represented as one vector which 
then hashed through the LSH. The similarity is calcu-
lated based on it.

• SourcereCC It converts the source code into a code 
block sequence represented by tokens and the Fil-
tering Heuristics has been adopted to construct an 
inverted index for the blocks and reduce its size. 
Finally, the similarity is measured based on the simi-
lar blocks matched between the code snippets.

• Oreo The code snippets are transformed into token 
sequences and then filtered through size and Action 
Filtering to obtain the candidate clone pairs, which 
will be finally judged based on the metrics compari-
son.

• CCAligner It first converts code snippets into tokens 
and symbolizes them, which are then divided by the 
size of the window predefined. The windows con-
taining similar codes are screened out as candidates, 
which will be finally judged through the similarity 
measurement function.

• CCLearner The code snippets are firstly converted 
into token sequences and then embedded through 
word2vec, which put forward to model DNNs for 
similarity comparison between code pairs.

• DeepSim It first constructs control flow and data 
flow based on the source code snippet, then encodes 
them into one semantic matrix, which is sent to one 
multilayer perception model for clone code snippets 
detection.

• ASTNN It first transforms the source code into an 
abstract syntax tree and divides it into several sub-
trees based on one set division rule. The word2vec 
is utilized to embed the subtrees into vectors, which 
are then sent to model bidirectional RNN for clone 

detection training and judgment. It is noted that dif-
ferent from the detectors introduced above, it could 
give out the type of clone pair instead of a simple 
judgment about if it is a clone or not.

This framework can be used for the performance com-
parison between these two types of approaches and eas-
ily extended to integrate other clone detection tools to be 
assessed.

Evaluation
In this section, we first introduce the research questions 
to answer and how we set up our experiments and then 
evaluate the efficacy of our evaluation framework.

We intend to answer the following questions. 

RQ1.  How are clone detectors affected by obfusca-
tion, spanning from obfuscation strategies to 
tools?

RQ2.  What are the detection differences between tra-
ditional and deep learning-based clone detec-
tors in front of obfuscation strategies?

Experiment setup
Clone dataset

We collect 7,936 code pairs from BigCloneBench, 
which consist of 6,512 clone pairs and 1,424 non-clone 
pairs, i.e., |{�m1,m2, t�}| = 7, 936 as shown below. 

T1 T2 ST3 MT3 T4 ⊥

2,084 1,125 1,450 1,062 701 1,424

For each clone or non-clone pair 〈m1,m2〉 , we per-
form obfuscation on m2 with 69 strategies as discussed 
in Sect.  3.2 and generate 282,845 obfuscated methods, 
termed as m′

2
 . These methods, together with m1 , can form 

524,148 code pairs, among which clone pairs amount to 
428,695, and non-clone pairs, i.e., �m1,m

′
2
,⊥� , come to 

95,453. More details about the dataset can be viewed at 
Anonymous (2022). It is noted that we did not evaluate 
clone detectors with the pairs �m′

1
,m′

2
� ( m′

1
 is the obfus-

cated version of m1 ) since this cannot reveal the effects of 
obfuscation.

Experimental configurations In our experiment, we 
evaluate a total of 9 clone detectors, including 5 tradi-
tional clone detectors and 4 deep learning-based ones. 
Most of the experiments are conducted in a server run-
ning Ubuntu with Intel(R) Xeon(R) CPU E5-2620 @ 
2.10GHz. Moreover, we set up three virtual machines 
that are running Windows XP for SDD, Windows 10 for 
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CCFinder, and Ubuntu 10 for SourcererCC. For tradi-
tional clone detectors, we have optimized their param-
eters as [61] for better analysis. For deep learning-based 
approaches, we follow the network structures as their 
papers and train the models with clone pairs from Big-
CloneBench. In particular, we uniformly utilize the same 
dataset containing 58,521 clone pairs collected from 
BigCloneBench for training ASTNN, DeepSim, and 
CCLearner.

Efficacy
With the same testing clone pairs, we first evaluate the 
accuracy of clone detection among the deployed tools. 
We feed all the original clone pairs before obfusca-
tion to the nine clone detectors and calculate the preci-
sion, recall, and F1 score, respectively. Table 3 shows the 
detection performance of the nine clone detectors for the 
five types of clone pairs before obfuscation. Each cell in 
this table contains a triad, the elements of which denote 
Precision, Recall, F1-Score in turn. Generally, a clone 
detector is regarded as being effective if its clone detec-
tion rate is above 50%. It is observed that except for some 
traditional tools, other tools perform effectively on two 
to five clone types. In particular, the detection rates of T1 
and T2 clone pairs by various detectors are all close to 
100%. Most of the detectors can achieve a higher detec-
tion rate than 80% on ST3 clones.

As for obfuscators, we conduct an experiment to meas-
ure their practicality by testing whether the obfuscated 
code can be executed as expected. Here we utilize Google 
Code Jam Google (2020) and randomly select 10 programs 
from each of the 30 programming problems belonging to 
all the six rounds of contests held in one year and obtain 
300 ones in total, which covers a considerable number of 
mainstream algorithms used in the real scenarios. We 
obfuscate these Java projects via six obfuscators selected 
in our work with the corresponding obfuscation strate-
gies, which include all the basic strategies of each tool and 

combination strategies shown to be representative, totally 
34 ones. The result shows that 99% of 10,132 obfuscated 
projects can be run normally. The details of the strategies 
and the percentage of runnable projects after obfuscation 
could be referred to [61]. Through a manual investigation, 
we obtain three main reasons that lead to a failure of obfus-
cation: (1) JDK incompatibility. Many exceptions “java.
lang.IllegalAccessError” are caught in JBCO-
obfuscated code since JBCO adds a lot of accesses to the 
classes in the package jdk.*. However, the latest JDK 
undergoes significant changes where the previous classes 
are no longer available. (2) Object conflicts. Junk variables 
may be added by obfuscators that can lead to a conflict if 
there exist variables with identical names. It is found in 
NCO-obfuscated code where a member field with the 
same name is added into the class and it causes a compi-
lation error. (3) Bytecode breakdown. The bytecode may 
be destroyed by an obfuscator. For example, Radon may 
empty the main method during obfuscation which causes 
a runtime error. Several programs fail to run after obfusca-
tion by ProGuard because the name of the entrance class 
and method are replaced when using IR strategy. A num-
ber of programs fail to execute after being obfuscated with 
the strategy CFO. The error is thrown with JNI errors, for 
which the reason is probably the destruction of the Java 
bytecode during the process of using CFO strategy.

Data analysis and measurement
In this section, we conduct a comprehensive analysis in 
terms of our research questions. Due to the space limita-
tion, we cannot present all experimental results and anal-
ysis in the paper, but interested readers can visit [61] for 
more details. It is noted that for consistency, we uniformly 
use Recall to measure the detection rate of clone detectors 
for both the true and false clone pairs. In addition, for the 
assessment of obfuscation strategies, as the same obfus-
cation of different obfuscators could be different, we uni-
formly use the strategies of Radon as the evaluation target. 

Table 3 Performance of clone detectors on not-yet-obfuscated clones as per type

T1 T2 ST3 MT3 T4

SDD (100, 21, 34) (100, 32, 49) (100, 21, 34) (100, 2, 3) (100, 0, 0)
CCFinder (100, 100, 100) (98, 100, 99) (100, 38, 55) (97, 3, 7) (75, 0, 1)
CCAligner (92, 99, 95) (86, 97, 91) (87, 81, 84) (73, 48, 58) (54, 31, 39)
Deckard (99, 100, 100) (82, 100, 90) (99, 80, 88) (96, 26, 40) (71, 4, 8)
SourcererCC (100, 43, 60) (100, 5, 9) (100, 3, 6) (100, 1, 2) (100, 0, 0)
Oreo (100, 66, 79) (99, 22, 35) (100, 35, 52) (99, 6, 11) (60, 0, 0)
ASTNN (100, 100, 100) (100, 92, 96) (99, 95, 97) (100, 92, 96) (100, 89, 94)

DeepSim (87, 100, 93) (65, 100, 76) (76, 66, 70) (61, 50, 54) (31, 25, 28)
CCLearner (97, 100, 99) (95, 100, 97) (96, 95, 95) (93, 71, 81) (61, 13, 22)
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On one hand, Radon covers all the four types of obfusca-
tion strategies as shown in Table 2; on the other hand, the 
overall impact on the detection rate of clone detectors is 
more obvious, thus bringing a better presentation effect.

Clone detectors under obfuscation
In this section, we aim to investigate the influence of obfus-
cation in clone detection by comparing the detection rate 
between original code and obfuscated code. More specifi-
cally, it consists the influence of both obfuscation strategies 
and tools.

Changes in the detection rate of clone detectors 
before and after code obfuscation
After obfuscating the code using obfuscation strategies, 
the detection rate of the clone code by the clone detec-
tors has been significantly affected except when ASTNN 
is coping with ST3, MT3, T4 clones. We have made sta-
tistics on the changes in the detection rate of various 
types of clones by the clone detector after obfuscation as 
shown in Fig. 3. In general, the detection rate of the clone 
detector falls in the range of 21%-100%. The tool with the 
biggest drop is Deckard, whose detection rate of the cor-
responding clone type drops by between 80% and 100%. 
For clone types that the clone detectors cannot detect 
effectively, as the bold font in Table 3 shows, after being 
affected by the obfuscation strategy, the ability to detect 
the corresponding clone code type is basically lost.

Finding 1 Obfuscation has a great impact on the detec-
tion rate of clone detectors. Except for some special 
cases, the detection rate of these detectors on varying 
types of clones can be reduced by an average of 21%-
100%, and hence they cease to work towards the obfus-
cated code.

Influence of basic obfuscation strategies
In order to better measure the impact of obfuscation 
strategies, we compare the impact of the basic obfusca-
tion strategies on the clone detectors and find that the 
degree of its impact is not necessarily proportional to the 
level of obfuscation. For example, some seemingly sim-
ple obfuscation strategies, such as IR and NCO, have a 
greater impact on the detection results. Table 4 records 
the average impact brought by the obfuscation strategies 
of Radon on the detection rate of different clone types. 
The symbol “*” indicates an unavailable result since the 
detection rate of SDD and SoucererCC on clone pairs 
are all below 50%, and ASTNN could not analyze the 
test records obfuscated by several strategies of Radon 
because of its own design problems. As to distinguish the 
traditional tools and deep-learning based tools, we calcu-
late the average impact on them respectively. The result is 
represented as ( x1 , x2 ), where x1 represents the impact on 

Fig. 3 Average detection rate change of clone detectors on T1, T2, ST3, MT3, T4 under the impact of the various strategies of Radon
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traditional tools and x2 is the impact on deep learning-
based ones.

Averagely, the impact of IR on traditional tools and 
deep learning tools is (51%, 42%), that of NCO is (61%, 
25%), surpassing the structure strategy ISC whose impact 
is only (30%, 7%). As for CFO, it induces the largest 
detection rate drop for both traditional (95%) and deep 
learning-based tools (52%).

Finding 2 Even simple obfuscation strategies (e.g., IR 
and NCO) can have a serious impact on the detection 
rate of clone detectors, compared with more complex 
strategies (e.g., ISC, CFO).

Cause analysis. We manually examine the obfus-
cated code and explain this phenomenon with regard to 
the code representation methods considered by clone 
detectors.

Firstly, it should be clear that simple strategies (e.g., 
IR) can either replace or encode the identifiers or 
strings in code, which significantly changes the textual 
information; CFO inserts a large number of branch 
statements like “switch” and “goto”, then affects both 
textual and structural information greatly; structure 
obfuscation adjusts the order of specific statements or 
methods, possessing a certain effect on structural infor-
mation but little on textual one.

• Token based detectors–CCFinder, CCAligner, Oreo, 
and CCLearner. Simple strategies like IR have almost 
the same effect as CFO, far exceeding structure 
obfuscation (e.g., ISC). As token mainly reflects tex-
tual information of the code snippet.

• AST based detectors–Deckard and ASTNN. AST is a 
type of representation that reflects both the textual 
and structural information of the code snippet. Then, 
the effect of simple strategy coincide CFO, slightly 
higher than structure obfuscation.

• CFG, DFG based detector–DeepSim. The impact of 
NCO and CFO is roughly the same, which all exceed 
other obfuscation strategies. As the feature matrix of 
DeepSim comes from CFG and DFG of code snippets, 
then passed to Multilayer Perceptron model for 
further semantic mining, NCO could cause greater 
impact to DFG, and CFO to CFG.

Summary. It could be observed that firstly, involv-
ing multiple (e.g., DeepSim) or more complex code 
representations (e.g., ASTNN) can indeed dig 
deeper into code semantics, but it also introduces 
more attack surfaces, as the code snippet has been 
depicted from more types of feature information. 
For example, compared with the token-based tools, 
AST-based ones are more susceptible to structure 
strategy, as the structure information could be 
reflected in AST but not token, which only contains 
textual information; Secondly, the effect of various 
types of obfuscation strategies on clone detector is 
closely related to its code representation method, 
from which the features have been extracted and 
then encoded for further similarity calculation 
between code pairs.

Basic obfuscation strategies vs. combined strategies
Perhaps the most surprising thing is that the combined 
strategy’s influence on clone detectors is not necessar-
ily better than a single strategy, and sometimes it may be 
severely weakened. As shown in Table 4, the impact of IR 
on the detection rate of CCAligner was originally 11% and 
keeps 11% after being combined with strategy ISC; the 
impact of IR on the detection rate of ASTNN is originally 
29% and drops to 14% after combined with CFO. Overall, 
the average influence of IR on the detection rate of clone 
detectors is (51%, 42%), while the combination strategy 
including IR has an influence on traditional clone detec-
tors and deep learning ones in the range of [11%, 100%] and 
[0%, 92%] respectively.

Finding 3 The combination strategy is not necessar-
ily better than the original single strategy. If one strategy 
is combined with another of the same obfuscation level, 
it more likely becomes stronger. However, it does not 
exhibit a complementary effect between one single strat-
egy and a more complex one. If this one’s interference is 
bigger, the combination tends to be stronger; if not, then 
more likely to be the same or even weaker.

False positives caused by code obfuscation
In the previous sections, we have measured how many true 
clone pairs cannot be detected after obfuscations. Here we 

Table 5 The drop (%) in detection rate of false clone pairs of ASTNN and DeepSim under various obfuscators

Radon Obfuscator JBCO JODE yGuard ProGuard

ASTNN 4 3 3 9 9 6

DeepSim 0 0 3 4 0 0
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investigate whether any false clone pairs, i.e., �m1,m2,⊥� , 
can be falsely classified as a clone.

It is observed that under certain circumstances the false 
positive rate has been increased by varying percents for 
clone detection. This phenomenon is pervasive among 
these obfuscation tools, in the two deep learning-based 
clone detectors, ASTNN and DeepSim as shown in Fig. 5. 
Taking ASTNN as an example, it is affected by almost all 
the obfuscation tools and their corresponding strategies.

We further study the situation of yGuard, which causes 
a 9% drop using the strategy IR, with the number of being 
falsely marked as clone pairs rising from 6 to 130 averagely 
out of 1,488 pieces of records in total. Although the rise 
may be minor in terms of rate, the change can also be obvi-
ous as the number of programs to be analyzed increases. 
Therefore, in reality, this situation can be really serious 
when detecting massive of data and becomes unaccepta-
ble to the benign users who use obfuscation tools for legal 
purposes. Figure 5 shows that Obfuscator has the weakest 
influence, which only affects ASTNN with the smallest 
impact (3%).

Finding 4 Almost all the obfuscators make false clone 
pairs after obfuscation easier to be falsely recognized by 
certain DL-based clone detectors, producing more false 
positives, possibly because some false clone pairs after 
obfuscation have exceeded their learning range. Moreo-
ver, Obfuscator is the weakest one that may cause these 
alarms, which may be one ideal obfuscation tool for 
benign developers to protect their own code while avoid-
ing being misjudged.

Cause analysis. We adopt a mask-based approach 
to analyze which statements in the obfuscated code 
fragment affect the judgement. As shown in Fig.  4, for 
ASTNN, 〈a, c〉 is originally judged as a false clone, after 
obfuscation, 〈b, c〉 judged as a clone. For each statement in 
b, we comment it out, then 〈b, c〉 fed to ASTNN for judge-
ment. Further, for the conditional expression in the If 
statement, we modify it to False to verify its influence. If 
the result is true, it means this statement is not a key fac-
tor. Otherwise, it is that. Lastly, the If statement is judged 
as the key factor, which is inserted by the obfuscator. 

Fig. 4 An example of false clone pair misjudged after obfuscation
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Meanwhile, taking Radon, Obfuscator, JBCO which all 
have various obfuscation strategies for comparison, 
the effect of Radon and JBCO all exceed Obfuscator. As 
Radon may insert lots of lines of code, JBCO may convert 
the identifiers or constants to a more complicated form, 
but Obfuscator mainly makes some simpler replacements 
or modifications.

Summary. In the process of obfuscation, obfusca-
tors could add some irrelevant statements, which 
may have similarities with the code snippet to be 
compared, thus making one original false clone pair 
judged as true.

Traditional clone detectors versus DL-based detectors
Here we compare the traditional and deep learning-based 
clone detectors from four aspects.

Overall performance comparison
It is observed that the detection stability of DL-based 
tools on the detection of clone pairs in the face of obfus-
cation attacks is better than that of traditional tools. As 
shown in Table  4, the average influence of obfuscation 
strategies on the detection rate of traditional tools is 

between 31% and 80%, and the impact on deep learning 
tools is between 7% and 62%.

However, the false alarm rate is just the opposite. As 
aforementioned, there is a minor rise in the false alarm 
rate of the deep learning-based tools after obfuscation, 
but this phenomenon never occurs for traditional tools, 
whereas all decrease.

Finding 5 In general, the clone code detection rate of 
deep learning tools is more robust than the traditional 
ones. However, the situation of the false alarm rate is just 
the opposite.

Cause analysis. Compared with traditional tools, deep 
learning tools could conduct deeper mining and abstrac-
tion of code semantics. Therefore, in general, deep learn-
ing tools are relatively robust. However, when detecting 
the false clone pairs after obfuscation, the detection 
principle of traditional tools is to compare the difference 
value between the code pairs with the threshold set, as 
the difference value after obfuscation is almost impossi-
ble to get smaller, but basically, it may only become larger 
or unchanged. So the false alarm rate will not increase, 
but a small decrease will occur, thus showing better 
robustness.

Fig. 5 The average change ratio of detection rate of both the traditional clone detectors and the DL-based ones for various clone types under the 
influence of obfuscation strategies
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Performance comparison for various clone types
For the accuracy and rationality of the experiment, the 
average change ratio of the clone detector’s detection 
rate on T1, T2, ST3, MT3, T4 is calculated to indicate 
the degree of influence of obfuscation strategy on it as 
shown in Fig. 5. It indicates that the effect of obfuscation 
strategies on traditional tools has an upward trend in the 
detection rate of the five clone types. That is, their detec-
tion rate of simple clone types (i.e., T1 and T2) is affected 
relatively small, while the one of complex clone types (i.e., 
ST3, MT3, and T4) is affected comparatively large. How-
ever, the performance of DL-based tools is just the oppo-
site. Especially, as shown in Fig. 5, the detection rate on 
ST3, MT3, T4 of ASTNN almost suffers no impact.

Finding 6 Overall, Deep learning-based approaches 
exhibit a more superior resilience to obfuscation for com-
plex clone pairs, i.e., ST3, MT3, and T4 than simple ones, 
e.g., T1, T2, while the performance of traditional ones is 
just the opposite.

Cause analysis. This is caused by the essential dif-
ference between traditional and DL-based tools. For 
traditional tools, the feature extraction method and com-
parison threshold are fixed. Compared with the clone 
pairs of ST3, MT3, and T4, the similarity between the 
code snippets of T1 and T2 is relatively higher. Therefore, 
when the same obfuscation strategy is used to disturb 
them, the difference between T1 and T2 clone codes is 
still small. Hence the probability of exceeding the similar-
ity threshold should be small, and the degree of influence 
on its detection rate is corresponding weaker.

For deep learning tools, the structure and parameters 
of the feature extraction and comparison model are all 
closely related to the training set data. When the same 
obfuscation strategy is used to interfere with the clone 
code, the clone codes of ST3, MT3, and T4 are less 
changed compared to T1 and T2. So their detection rate 
is relatively less affected. According to the way the model 
is built, DL-based tools can be divided into two cat-
egories: first, five two-classifier models (e.g., ASTNN) 
are trained based on T1, T2, ST3, MT3, T4 clone pairs 
respectively. Second, one two-classifier model (e.g., 
DeepSim) is trained based on these five types of clone 
pairs. For the first type, the five two-classifier models 
are more suitable for the detection of their corresponding 
clone type. Compared with the two-classifier model of 
T1 and T2, the ones of ST3, MT3, and T4 are not so sen-
sitive to the difference between clone pairs. For example, 
the abstraction of feature extraction may be higher, and 
the threshold setting for similarity comparison could be 
looser. Therefore, when using the same obfuscation strat-
egy to disturb the clone pairs, the detection rate of ST3, 

MT3, and T4 will be less affected. For the second type, 
whose training data is composed of various types of clone 
data, its structure and parameters are affected by multi-
ple clone types, then the difference between the effect on 
the detection rate of ST3, MT3, T4 and T1, T2 is not as 
large as the first type.

The effect of obfuscation strategy on two types of clone 
detectors
For traditional tools, among the basic obfuscation strat-
egies, the one that has the most significance is CFO. 
Table  4 shows CFO makes the detection rate of all the 
traditional clone detectors drop by 66∼100%. From 
Fig. 3, we observe that the detection rate of clone types 
that cannot be well detected by traditional clone detec-
tors (i.e., the detection rate is less than 50%) has almost 
dropped to 0%. All in all, CFO basically makes traditional 
tools lose their ability to detect clone code. All the com-
bined strategies formed by CFO have exactly the same 
effect. The average effect of other obfuscation strategies 
is between 31% and 61%, which has an obvious gap.

However, the most effective basic strategy for deep 
learning-based tools could be IR, NCO, whose effect is up 
to 29%, 45% on ASTNN, DeepSim respectively, as shown 
in Table 4. Additionally, the combined strategy that per-
forms most effectively is IR_NCO, which causes a 62% 
drop, much larger than others. In contrast, CFO has a 
trivial impact on some deep learning tools. For example, 
except for the clone pairs of T2, ASTNN’s detection rate 
is only affected by 4% average by CFO.

Finding 7 For traditional tools, the most influential 
strategy is control flow obfuscation. However, for deep 
learning tools, the most influential strategy could be 
some simple ones like IR and NCO.

Cause analysis. Similarly, we make the inference for 
the potential reason in the light of the different changes 
made by obfuscations to the features considered by clone 
detectors.

• For traditional tools, CFO can increase the difference 
between code snippets to a greater extent compared 
to other obfuscation methods, so that it is easier to 
exceed the preset judgment threshold and have a 
greater impact on the detection result.

• For deep learning tools, here, we select a more obvi-
ous example for analysis. In the experiments on 
ASTNN, the attack effect of IR is almost twice that of 
CFO (29% and 15%, respectively). The reason is that 
ASTNN uses word2vec to generate the initial fea-
ture vector based on the identifier in the code, and 
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then generates the feature vector of one code snip-
pet according to the corresponding conversion algo-
rithm, which will make the text information such 
as the identifier has a greater effect on the analysis 
result of the detectors. Meanwhile, the use of the 
bifirectional RNN strengthens the degree of min-
ing corresponding semantic information and fur-
ther strengthens its influence on the detection result. 
When the IR is used for obfuscation, the identifier 
information is greatly changed, as the ASTNN does 
not uniformly process the identifier, thus it will have 
a greater impact on the detection rate.

Summary. DL-based detectors are prone to be 
affected by some simple strategies, as they possess 
a greater impact on the information which is the 
source of input vectors of the deep learning model 
and the deep learning network will perform in-depth 
semantic mining, so a little change in such infor-
mation will have a greater impact on the judgment 
result.

Comparison of the impact brought by different obfuscation 
tools on traditional tools and DL‑based ones
Obfuscation tools perform different impacts on tradi-
tional tools and deep learning-based tools. The average 
effect of JBCO on traditional tools is 73%, which is the 
biggest among these tools. However, in the meantime, 
its effect on deep learning-based detectors is only 28%, 
which is also the smallest one among them. In contrast, 
apart from the three tools possessing only one strategy 
IR, the effect of Radon on traditional tools is 66%, which 
is a moderate effect, however, its effect on deep-learning 
based tools is highest among them.

Finding 8 Among the obfuscation tools evaluated, 
JBCO has the greatest impact on traditional clone detec-
tors and the least on deep learning clone detectors, which 
is almost opposite for Radon.

Cause analysis. By comparing and analyzing the code 
snippets after obfuscation of JBCO and Radon, it can be 
found that JBCO modifies code identifiers, constants, 
and other information to a greater extent than Radon, 
which only uses fixed value replacement for some vari-
ables, then on textual information; however, for structure 
information, the impact of Radon is bigger, as it could 
increase the number of code lines to tens of times and 
make its control flow much complicated.

As mentioned in Finding  2, most of the traditional 
tools evaluated in this study are based on tokens, which 

mainly reflect textual information of the code, then JBCO 
will have a greater impact on these tools.

For DL-based detectors, the detection rate largely 
depends on its training data BigCloneBench, which is 
composed of five types of clones, having greater tolerance 
for code differences caused by simple strategy and less for 
CFO. Therefore, although JBCO has made major changes 
to the textual information, it still does not exceed the 
learning range of the DL-based tools, the impact is cor-
responding weaker; Radon changes more structure 
information, exceeding the feature boundary of the deep 
learning model, then resulting in greater effect.

Discussion
Threats to validity. First, few mature clone detectors 
could be directly used for assessment. Compared to 
traditional clone detection, deep learning-based clone 
detection is just a newly emerging technique, and few 
of them have been open-sourced. Thus, the number of 
clone detectors based on deep learning in our assess-
ment is relatively small, which inevitably makes the 
findings have certain limitations. Second, the decompi-
lation may cause minor changes on the original method 
besides the obfuscation that make the results less accu-
rate. To mitigate it, we turn to using the decompilation 
version of clone methods during the whole assessment 
experiment.

Selection of obfuscators. In this study, we choose six 
commercial code obfuscators to transform Java bytecode 
while not using source code obfuscators is threefold: (1) 
it has a wide applicable scenario in reality, especially for 
malicious code detection, vulnerability hunting, and code 
copyright infringement detection. For example, Android 
is now the biggest platform for Java projects, and most 
Android apps are compiled into bytecode before distribu-
tion. Many works have proposed their own methods to 
detect clones from the bytecode of Android apps (Crus-
sell et  al. 2012; Wang et  al. 2015, 2020). (2) to our best 
knowledge, there are currently no public obfuscators for 
Java source code. Although a previous study (Schulze 
and Meyer 2013) has implemented a semi-automated 
code obfuscator, its functionality and robustness can-
not rival these commercial ones. Additionally, since the 
Java code in BigCloneBench is not complete, for example, 
with many missing declarations for variables and meth-
ods. Source code obfuscators may not be able to perform 
advanced strategies like control flow obfuscations to the 
code. (3) Last, to minimize the noise caused by compi-
lation and decompilation, we only use the decompiled 
version of these Java methods. Meanwhile, the clone 
type almost (92%) keeps unchanged after decompilation 
according to our observation.
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Improvement suggestions. Based on the findings and 
analysis, we summarize a number of suggestions for users 
from different perspectives.

From the perspective of designers of clone detectors

• Considering the attack surface, it’s more effective 
and safer for the defenders to choose a simpler code 
representation and focus on optimizing the compari-
son algorithms or models as Finding  2. That is why 
CCAligner performs well in both the detection rate 
and the anti-interference ability. For on one hand, 
it represents source code as token sequence, thus 
reducing the attack surfaces probably brought com-
pared to AST or more complex code representation 
methods; on the other hand, one sliding code win-
dow is introduced, on which granularity the code 
pairs would be compared, capturing local sequence 
features, improving detection accuracy while ensur-
ing robustness.

• It is suggested to construct one clone detector for 
each type of clone pair. When detecting the target, 
use these five detectors to analyze it one by one. As 
long as one of them judges it to be true, then it is 
one clone pair, which could not only improve the 
clone detection rate but also enhance the robust-
ness of the detection model according to Finding 6.

• For deep learning-based clone detectors, we must 
fulfill the abstraction process of code closely related 
to the initialization of feature vectors as Finding  7, 
e.g., normalizing the identifiers of code snippet, 
avoiding seemingly slighter interference caused by 
some simple strategies.

• Except for the possible attack surface brought by 
code representation, developers should also be aware 
of the tolerance range of feature extraction and com-
parison algorithms with regard to the difference 
between code snippets from Finding  8. For tradi-
tional clone detectors, the key is to obtain more code 
information of higher-level abstraction, then the tol-
erance range is larger, thereby improving its robust-
ness. Taking the tools based on tokens as an exam-
ple, compared to CCFinder, which directly compares 
the similarity between code snippets based on the 
token sequences, CCAligner achieves better robust-
ness by employing a sliding window mechanism to 
harvest more windows of code for feature extraction 
and similarity comparison. For DL-based ones, their 
tolerance for code differences largely depend on the 
richness of their training set, then it is recommended 
to select clone pairs processed by popular obfusca-
tion tools, e.g., the clone pairs obfuscated in this 
study, to supplement their training set data, so as to 
have better resistance.

From the perspective of analyzers who are eager to 
evaluate clone detectors

• According to Finding 2, it is suggested that the code 
representation method of clone detector could be 
inferred by comparing the effects of different obfus-
cation strategies, e.g., if the effects of simple strategy 
and CFO are almost the same, far greater than struc-
ture ones, then the method should be taken.

• For a black box clone detection model, users can 
determine the specific type of the model by observ-
ing and comparing the changes of detection rate of 
different clone types. For example, according to the 
impact of T1, T2 and ST3, MT3, T4, it can be judged 
to be either a traditional model or a deep learn-
ing one. Based on the magnitude of the difference 
between them, it could be further judged as the first 
or second type of DL-based tools from Finding 6.

• From Finding 7, users can first use a variety of single 
obfuscation strategies to test the deep learning tools. 
If some simple strategies have a more prominent 
impact on the clone detector than other strategies, 
the corresponding code information interfered by 
the strategy can be used as the adjustment target for 
the generation of adversarial samples. For instance, 
the identifier information could be the target for 
ASTNN. In this way, on one hand, since only the 
layout information of the code needs to be adjusted, 
the difficulty of generating adversarial samples can be 
greatly reduced, and at the same time, the adversarial 
attack could achieve the best effect.

From the perspective of users and designers of 
obfuscators

• It is recommended that the designers of obfusca-
tors could follow the concept of Obfuscator, do 
more replacement or modification, and try to avoid 
insertion operations as Radono or JBCO. In this 
way, on one hand, as depicted in Finding 4, reduc-
ing the false alarm rate for benign users who just 
want to protect their own codes; on the other hand, 
diminishing the possible damage brought by attack-
ers utilizing relatively powerful obfuscators, i.e., 
Radon and IBCO shown in Finding 8. Meanwhile, 
this could also help improve the efficiency of obfus-
cators as fewer process needed. During our evalua-
tion, the process of Radon or JBCO could be hours 
of time, but obfuscator only in minutes, which is 
ideal for the users.
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Conclusion
In order to evaluate the effect of code obfuscation in 
clone detection, we build an evaluation framework inte-
grating six commercial obfuscation tools and nine clone 
detectors. In particular, there are six traditional clone 
detectors and three deep learning-based detectors as 
evaluation subjects. We collect a number of Java code 
pairs from BigCloneBench and perform 69 strategies to 
obfuscate them. Last, we obtain 428,695 true clone pairs 
and 95,453 false pairs which are fed into clone detectors 
for evaluation. Two analyses are subsequently conducted 
to measure the effect of varying obfuscation strategies 
and tools and the different performance of traditional 
and deep learning-based clone detection. Eight findings 
and discussion have revealed the issues in both code 
obfuscation and clone detection as well as improvement 
suggestions.
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