
Huang et al. Cybersecurity (2023) 6:14
https://doi.org/10.1186/s42400-023-00148-x

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access

Cybersecurity

Are our clone detectors good enough?
An empirical study of code effects
by obfuscation
Weihao Huang1,2, Guozhu Meng1,2* , Chaoyang Lin1,2, Qiucun Yan1,2, Kai Chen1,2 and Zhuo Ma3

Abstract

Clone detection has received much attention in many fields such as malicious code detection, vulnerability hunting,
and code copyright infringement detection. However, cyber criminals may obfuscate code to impede violation detec-
tion. To date, few studies have investigated the robustness of clone detectors, especially in-fashion deep learning-
based ones, against obfuscation. Meanwhile, most of these studies only measure the difference between one code
snippet and its obfuscation version. However, in reality, the attackers may modify the original code before obfuscating
it. Then what we should evaluate is the detection of obfuscated code from cloned code, not the original code. For
this, we conduct a comprehensive study evaluating 3 popular deep-learning based clone detectors and 6 commonly
used traditional ones. Regarding the data, we collect 6512 clone pairs of five types from the dataset BigCloneBench
and obfuscate one program of each pair via 64 strategies of 6 state-of-art commercial obfuscators. We also collect
1424 non-clone pairs to evaluate the false positives. In sum, a benchmark of 524,148 code pairs (either clone or not)
are generated, which are passed to clone detectors for evaluation. To automate the evaluation, we develop one uni-
form evaluation framework, integrating the clone detectors and obfuscators. The results bring us interesting findings
on how obfuscation affects the performance of clone detection and what is the difference between traditional and
deep learning-based clone detectors. In addition, we conduct manual code reviews to uncover the root cause of the
phenomenon and give suggestions to users from different perspectives.

Keywords Clone detection, Obfuscation, Evaluation

Introduction
Source code clone refers to the existence of identical
or similar source code between two or more code seg-
ments. Many studies (Duala-Ekoko and Robillard 2007;
Livieri et al. 2007; Göde and Koschke 2011) have shown
that code cloning widely exists in software development

to improve work efficiency. However, code cloning is a
double-edged sword that can also bring negative effects.
Due to insufficient inspection of open source projects,
lots of problematic malicious or vulnerable code flow into
downstream projects, of which the unfavorable impact
is drastically magnified through code cloning (Monden
et al. 2002; Kim et al. 2017). On the other hand, the reuse
of open source projects may cause copyright disputes
(Wu et al. 2015). Code plagiarism has always been an
intractable problem in intellectual property protection.
To identify these code clones, there are emerging many
studies (Sheneamer and Kalita 2016; Roy and Cordy
2007) to compute the similarity between two pieces of
code. If the similarity exceeds a certain degree, they are

*Correspondence:
Guozhu Meng
mengguozhu@iie.ac.cn
1 SKLOIS, Institute of Information Engineering, Chinese Academy
of Sciences, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China
3 Xidian University, Xi’an, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00148-x&domain=pdf
http://orcid.org/0000-0001-6388-2571

Page 2 of 19Huang et al. Cybersecurity (2023) 6:14

clone pairs, otherwise not. The detection performance of
a clone detector largely relies on the features harvested
from code and their representation. Generally, features
are extracted and represented in mainly four levels: literal
text, token, syntax, and semantics (Ben-Nun et al. 2018;
Kuhn et al. 2007). Based on the features, a clone detector
employs varying approaches to compute their similarity.
Code obfuscation is a technique that transforms a com-
puter program into code representation that are func-
tionally equivalent but difficult to read and understand
(Viticchié et al. 2016). It is an effective manner for pro-
gram developers to protect their code from being stolen.
On the opposite side, attackers are also apt to obfuscate
their code, either for making malicious code evade from
detection (OKane et al. 2011; You and Yim 2010), or for
getting out of a charge of intellectual property infringe-
ment. Hence, it is necessary to evaluate the effect of
obfuscation against clone detectors.

After surveying for papers in software engineering and
security published over the past two decades, we find
that although some studies (Schulze and Meyer 2013;
Ragkhitwetsagul et al. 2016; Meyer and Schulze 2012)
evaluate the resistant of the clone detectors to obfus-
cation, almost all of them only evaluate the similarity
between one code snippet before and after obfuscation
(a and a’ as shown in Fig. 1). However, in real scenar-
ios, attackers may not obfuscate the problematic code
a directly, but firstly customize it manually as b accord-
ing to their own needs and then obfuscate b to c. Hence,
what should be evaluated is whether clone detectors
can find clones between 〈a, c〉 , rather than �a, a′� . On the
other hand, recent years witness the superior ability of
deep learning in abstracting the semantics of code, and
hence a line of research (Tufano et al. 2018; Nguyen
et al. 2009) learns the embedding of code semantics for
clone detection. However, none of these studies have
assessed the deep learning-based detectors. In addition,
the number of clone detectors evaluated is smaller and
the evaluation subjects are mostly proposed before 2010.
Meanwhile, the way of obfuscation is relatively simple,

implementing several simpler code conversion methods,
or employing a smaller number of obfuscators, thus the
obfuscation strategies are insufficient in both type and
number. All the above impedes in-depth findings and the
drawn conclusions are correspondingly plain. Therefore,
it is desired to conduct a comprehensive and meticulous
evaluation, assessing the attack effects of code obfusca-
tion, and identifying the potential risks of clone detectors
under real circumstances.

In this work, we carefully study the status quo of clone
detectors, select representative, state-of-art open-source
detectors, including 3 deep learning-based and 6 tradi-
tional ones. At the same time, we research the obfusca-
tors in detail and select 6 commercial ones widely used in
practice, which basically cover all the four types of basic
obfuscation strategies, layout, data, structure, and control
flow (Cimitile et al. 2017; Balakrishnan and Schulze 2005;
Cimato et al. 2005). Here, we define the first two types
as a simple strategy and the rest as a complex strategy.
Furthermore, we devise 69 combinations of compound
strategies to measure the superimposed effects between
strategies. To simulate the real scenarios, we collect 7,936
code pairs from BigCloneBench (Svajlenko et al. 2014),
which contains five types of true clone pairs and false
ones, both on function granularity, and employ these
obfuscation strategies on them, obtain 428,695 clone
pairs and 95,453 non-clone pairs after obfuscation. These
samples are then passed to clone detectors for evaluation
as our benchmark.

By comparing the change of clone detection perfor-
mance, we study the effect of obfuscation on clone detec-
tors, including not only obfuscation strategies but also
obfuscation tools. We provide cause analysis to explain
the essence of these effects. Additionally, we compare the
performance of the traditional clone detectors and deep
learning-based ones in the consideration of the impact
of obfuscation. For ease of evaluation, we construct one
unified and scalable framework, which integrates clone
detectors and obfuscators freely, obfuscates the code
pairs collected from BigCloneBench, passes it to clone
detectors for evaluation, and processes the experimental
results of various detectors uniformly.

Last, we present a number of insightful findings,
including but not limited to: (1) the effect of simple
strategies may be greater than the complex ones under
some circumstances; (2) the effect of the combined
strategies are not necessarily more significant than the
basic ones; (3) the deep learning-based detectors are
more prone to misclassifying a non-clone pair; (4) for
traditional and DL-based detectors, the obfuscation
strategy or obfuscation tool having a greater impact
on them could be different. (5) The performance of Fig. 1 The comparison between the evaluation manner of our study

and previous studies

Page 3 of 19Huang et al. Cybersecurity (2023) 6:14

traditional and DL-based detectors under obfuscation
for various clone types is just the opposite. To facilitate
future research on clone detection, we will publish our
benchmark and evaluation framework at Anonymous
(2021) after the work has been accepted.

Biographytions. We summarize the contributions as
follows.

• A comprehensive and large-scale evaluation of
the attack and confrontation effects between
obfuscators and clone detectors. We construct
69 strategies based on six obfuscators, generating
282,845 obfuscation methods and 524,148 code
pairs to evaluate 9 clone detectors, including 6 tra-
ditional and 3 deep learning-based tools. It is noted
that we are the first to make an assessment of DL-
based detectors under obfuscation.

• We construct one benchmark fitting the real sce-
narios. As mentioned above, to restore the real
scenes, we collect 6512 clone pairs of five types
and 1424 non-clone pairs from BigCloneBench and
obtain 428,695 clone pairs and 95,453 non-clone
pairs after obfuscation through a series of auto-
matic manipulation, which is detailed in Sect. 3,
as the benchmark of our evaluation. Furthermore,
it could be used for research in related fields and
expanded utilizing more obfuscation strategies
according to real needs.

• One open-source and uniform evaluation frame-
work. We construct an evaluation framework that
automates code obfuscation and clone detection.
It is extensible and can incorporate more obfus-
cators and clone detectors easily, expanding the
benchmark as needed, making a unified process on
the experimental results of various clone detectors
according to the performance metrics.

• Insightful findings and suggestions. Based on our
evaluation results, we conclude a series of findings
and suggestions which could be helpful for users
from different perspectives, such as designers or
analyzers of clone detectors, sparking new thinking
in the related research field.

Background and related work
Code clone detection
A code clone is a piece of code that is identical or simi-
lar to another due to copy and paste programming. To
clarify the definition and categories of code clone, (Bel-
lon et al. 2007) first classify them into four categories as
per the similarity between clone code pairs. Svajlenko

et al. (2014) further refine Type3 by considering varying
degrees of syntactic similarity between code clones.

• T 1 Code is exactly the same except for spaces and
comments.

• T 2 Code is syntactically the same, and only variable
names, variable types, function types, spaces, and
comments are different.

• ST 3 Code is syntactically the same, but there are
additions, reductions, or modifications in the state-
ments. The syntactical similarity of code clones
locates in the range [0.7, 1.0).

• MT 3 Code is syntactically the same and its syntacti-
cal similarity of code clones locates in the range [0.5,
0.7).

• T 4 The functions in code are the same, but the syn-
tax may be significantly different.

In this study, we focus on the clones between Java meth-
ods. Therefore, given a set of Java methods M and clone
types T (|T | = 5), we have a definition for a clone pair as:
〈m1, m2, t〉 where m1,m2 ∈ M and t ∈ T . A false clone
pair can be denoted as �m1, m2, ⊥�.

Clone detection is a technique to identify the cloned
code through automated similarity comparison and
locate their accurate positions (Ain et al. 2019). Given
this, it has achieved significant results in malicious code
detection, vulnerability hunting, copyright management
(Chen et al. 2015; Kim et al. 2017; Liu et al. 2017), and so
on. There are a lot of tools and techniques to detect code
clones (Jiang et al. 2007; Zhao and Huang 2018; Zhang
et al. 2019; Lee and Jeong 2005). In this study, we focus
on two types of clone detection as below.

Traditional detection
It mainly contains three steps: removing meaningless

code, extracting representative features, and calculating
the similarity between two code fragments. As for code
representation, SDD (Lee and Jeong 2005) constructs
text representation from code, CCFinder (Kamiya et al.
2002) and CCAligner (Wang et al. 2018) rely on the token
representation. Deckard (Jiang et al. 2007) constructs an
abstract syntax tree for code, and Duplix (Krinke 2001) is
based on a program dependence graph. Compared with
detectors extracting features with text or token repre-
sentations, the ones based on grammar (such as abstract
syntax tree) and semantics (e.g., program dependency
graph, control flow graph) can mine deeper information,
thereby having the ability to detect more complex clone
types such as ST3, MT3, and T4.

Deep learning-based detection Recently, researchers
apply deep learning to clone detection (Zhao and Huang
2018; Zhang et al. 2019). Compared with the traditional

Page 4 of 19Huang et al. Cybersecurity (2023) 6:14

detector, DL-based detector can further learn the code
features thoroughly with layers of networks, thereby
digging deeper code semantic information and improv-
ing clone detection. In particular, some DL-based clone
detectors combine syntax- and semantic-level code rep-
resentation with DL models, and have obtained supe-
rior experimental results. For example, CDLH (Wei and
Li 2017) converts the source code into an AST, extracts
feature vectors, and then feeds the feature vectors into
a customized Convolutional Neural Network (CNN) for
training, and finally uses the learned features for simi-
larity analysis. White et al. (2016) use the data obtained
by manual sampling as a training set, which is com-
bined with their own defined tree structure and CNN to
construct a clone detection model. Zhang et al. (2019)
develop ASTNN to solve the problem of gradient disap-
pearance caused by the excessive number of syntax tree
layers in the training process by dividing the original
abstract syntax tree into smaller subtrees, and combines
LSTM for clone detection. DeepSim (Zhao and Huang
2018) generates original features from the control flow
graph and data flow graph of the code according to the
designed coding method and uses a customized forward
neural network model to perform deeper digging of code
information at the semantic level.

Code obfuscation
Code obfuscation is widely used for intellectual property
protection and malicious code hiding. Here, we aim to
explore how it influences the detection of code clones.
Therefore, we employ four types of basic obfuscation
strategies (Collberg et al. 1997) to transform our source
code, which are detailed as follows.

• Layout obfuscation. In this strategy, we only take into
account identifier replacement (IR). It replaces the
name of variables, methods, and classes in the origi-
nal code with randomly generated strings to elimi-
nate the meaning of specific variables at the source
code level.

• Data obfuscation. It contains two forms. Numeric
constant replacement (NCO) replaces all numeric
constants in the original code with arithmetic opera-
tions between multiple numbers, thereby chang-
ing the expression of digital constants at the source
code level. String constants encryption (SCE) encrypts
all string constants and provides the correspond-
ing decryption function at the same time. When the
string constants are needed, the decryption function
is invoked to decrypt the strings, changing the form
of string constants without changing the program
semantics.

• Structure obfuscation. There are four forms of struc-
ture obfuscation. In particular, expression replace-
ment (ER) performs the equivalent replacement of
expressions in the source code. For example, adding
more useless operations makes arithmetic expres-
sions more complicated, thereby increasing the com-
plexity of the original code; class structure reorgani-
zation (ISC) changes the internal structure of a Java
class,such as the order of the fields inside one class;
internal class removal (ICR) removes the internal
classes defined in one Java class; code rolling and
unrolling (CC) merge several functions into one or
split one function into many while retaining the orig-
inal control flows.

• Control flow obfuscation. It adds a number of false
conditional control statements to blur the execution
logic of code and hinder the comprehension of the
original source code (CFO). For instance, junk code
without any relevance to the original code can be
inserted into the code (Cao et al. 2006).

Obfuscation on clone detection
Few studies have evaluated the robustness of clone
detectors under obfuscation. Schulze and Meyer (2013)
studied the effect of 16 simpler obfuscation strategies
developed by themselves on three clone detectors. Meyer
and Schulze (2012) researched the effect of one obfusca-
tor integrating six obfuscation strategies on three clone
detection tools. Ragkhitwetsagul et al. (2016) assessed
the performance of five detectors under two obfuscators
employing six strategies. All these works mainly focus
on presenting the different performance of clone detec-
tors under obfuscation from the perspective of code
representation form, such as text, token, etc.. In addi-
tion, Ragkhitwetsagul et al. (2016) explores the optimal
parameter settings of the clone detection tools. Roy and
Cordy (2009) proposes one mutation-based approach
for generating clone data, adopting 14 personally defined
mutation methods and assessing the performance of only
one clone detector.

Approach
Figure 2 shows the overview of our evaluation work.
First, we collect a number of Java code pairs from the
benchmark BigCloneBench (Svajlenko et al. 2014).
Second, we perform a transformation on every source
code to make it compilable and compile it into bytecode.
We then build an obfuscation framework that integrates
six obfuscators and obfuscates one bytecode of each
bytecode pair. The bytecode pair is further decompiled
and passed to the clone detection framework, including

Page 5 of 19Huang et al. Cybersecurity (2023) 6:14

nine state-of-the-art clone detectors. It is noted that both
the obfuscators and clone detectors could be expanded
freely. Based on the results of clone detection, we pro-
pose two research questions and identify eight findings
that characterize the combat between obfuscation and
clone detection.

Data preprocessing
The obfuscation tools only accept bytecode as input, so
we need to first make Java methods in the dataset com-
pilable. To this end, we perform static analysis on the tar-
get Java methods to: (1) infer the types of local variables
(including class fields), the parameters of methods, and
the return type of each method; (2) create a dummy class
that declares all the missing types of identified objects.

As Algorithm 1, we first use JavaParser (2020) to
obtain the abstract syntax tree of the target method.
Then we traverse the expressions in this AST (line 2). If
the expression contains a type declaration (line 3), we can
determine the type of current variable. Otherwise, we
check whether there is an implicit relationship between
variables (line 4). For example, if one variable v2 is
assigned to v1 , the type of v1 should be consistent with v2 .
If there exist any variables whose types are undetermined
(lines 8-11), we will query the traversed type relation-
ships. Particularly, if v is of the same type of the undeter-
mined variable var (line 9) and v is determined, the type
of var can be determined thereout. Last, we generate Java
classes based on ctx (line 12).

Fig. 2 Overview of the evaluation work

Page 6 of 19Huang et al. Cybersecurity (2023) 6:14

Obfuscation framework
In the framework, we have developed one uniform con-
troller Wrapper that can automatically make the required
configurations for specific obfuscation strategies and
invoke the corresponding tools to obfuscate code in
batches, which is convenient to integrate obfuscation
tools. Currently, we select six Java obfuscation tools with
a high Github star rank. These tools and their supported
strategies are summarized in Table 1 and described
below.

• Radon ItzSomebody (2020) is an open-source small
Java bytecode obfuscation tool. This tool obfuscates
Java jar packages and supports multiple obfuscation
strategies at the same time.

• JBCO JBCO (2020) is an obfuscator based on the
Soot framework (Soot (2020)). It supports multiple
obfuscation strategies to obfuscate jar packages at the
same time and achieves stronger obfuscation.

• Obfuscator Obfuscator (2020) is an open-source
Java bytecode obfuscation tool that supports multiple
obfuscation strategies to obfuscate jar packages at the
same time and provides a GUI interface to configure
obfuscation options.

• JODE (Hoenicke 2020) is a decompilation tool and
obfuscation tool for Java packages. It supports chang-
ing the class name, method name, and field name
of Java code to randomly generated ones. Users can
provide a conversion table to replace the names of
these identifiers.

• yGuard yGuard (2020) is a free obfuscator and com-
pressor for Java bytecode. It needs to rely on the
Apache Ant tool (2020) ant to run and can be inte-
grated into most commonly used IDEs. It supports
the renaming of identifiers in Java bytecode.

• ProGuard ProGuard (2020) is currently a well-known
optimizer, compressor, and obfuscator for Java byte-
code. This tool supports the replacement of identifi-
ers in Java bytecode and the obfuscation of Android

applications. It provides a GUI interface to configure
various options.

Obfuscation strategies. We select all the basic strat-
egies of the six obfuscation tools, and combine differ-
ent types of strategies of each obfuscation tool, which is
a common practice in reality, e.g. (Hammad et al. 2018),
obfuscates code with combined strategies to evaluate
anti-malware tools. Therefore, we have formed com-
pound strategies that contain either 1, 2, 3, or 4 single
strategies. In this manner, we finally obtain 20 basic sin-
gle obfuscation strategies and 49 combined strategies.

Code decompilation and clone preparation
We use Procyon (Steiger 2020) to decompile .jar files
to obtain Java source code, where the target methods
are located. Since the name of the target function may
be changed after obfuscation, we recognize it from the
main function where we pre-implant a referent to the
target method. By traversing all the functions, we man-
age to extract the target function based on this reference.

To form the benchmark for clone detection, we
replace the original methods with their decompiled ver-
sions. The reason that we use the decompiled methods
is: after decompilation, minor changes may occur in the
layout of the original method, such as the replacement
of the variables. Therefore, the method we get after
obfuscation is not only influenced by the corresponding
obfuscation strategies, but also the decompilation pro-
cess. In order to eliminate this influence from decom-
pilation to make our experiment more accurate, we use
the decompiled version of the original method uni-
formly in both the generation of the obfuscation data
set and the original one. Besides, it has been verified
that the use of decompiled version could improve the
performance of clone detectors (Ragkhitwetsagul et al.
2016; Ragkhitwetsagul and Krinke 2017).

Table 1 Obfuscation tools and the corresponding strategies

Obfuscation tools Simple strategy Complex strategy Stars

Layout Data Structure Control-Flow

IR NCO SCE ER ISC ICR CC CFO

Radon ✓ ✓ ✓ ✓ ✓ ✓ 200

JBCO ✓ ✓ ✓ ✓ ✓ 1.5K

Obfuscator ✓ ✓ ✓ ✓ ✓ ✓ 249

JODE ✓ –

yGuard ✓ 102

ProGuard ✓ 352

Page 7 of 19Huang et al. Cybersecurity (2023) 6:14

To ensure that the type of clone pairs remain
unchanged after decompilation during the generation
of the original data set process, we randomly select 100
pieces of records from BigCloneBench covering both
the true and false clone pairs and analyze them manu-
ally. The analysis result shows that 92 pairs of them
retain the original clone type except for individual fail-
ures due to the compilation optimization, the percent-
age of which reaches 92%.

All clone detectors evaluated in this study are binary
classifiers, i.e., only distinguish whether the input is a
clone or not while not clone types. However, clones of
different types may greatly influence detection perfor-
mance. For a more in-depth study, we create five exper-
imental datasets. More specifically,

we rely on BigCloneBench’s labels for clone type and
divide the clone pairs into five categories T1, T2, ST3,
MT3, T4. Then they are combined with the false clone
pairs respectively to form five test subsets. The indica-
tors of detection rate of the five types of clone pairs are
calculated to evaluate the effect of the obfuscation on
the detection rate of these five clone types.

Clone detection framework
In this study, we establish a framework to host clone
detectors for evaluation. It provides a consistent data-
set for experiments and conducts unified processing of
experimental results, comparing the detection rate of
the five types of clone pairs respectively before and after
obfuscation, and the false clone pairs as well. All these
operations are done automatically. For deployment of
the clone detectors, what matters most is whether the
selected clone detectors are representative and can cover
the current mainstream cloning detection techniques
commonly used. Although the number of clone detectors

is not so large as other types, such as malware detection
tools, after decades of research and development, the cat-
egory and number of it is also considerable, which could
be reflected in clone (2020). However these tools have
many features in common with each other, thus there
is no need to evaluate all of them one by one, resulting
in redundancy. To this end, we conduct a comprehen-
sive and in-depth investigation of the source code clone
detection work published at academic venues since 2000
and selected nine relatively mature works that are open-
sourced as our evaluation objects as shown in Table 2,
among which several tools are selected as they are the
more classic and influenced ones in clone detection
research history, such as SDD, CCFinder, Deckard and
the others are relatively new and representative excel-
lent works mainly published on the top conferences or
journals in recent years. Meanwhile, these tools basically
cover all the code representation forms and mainstream
detection techniques.

These tools are categorized into two mainstream
clone detection approaches, i.e., traditional clone detec-
tion, and deep learning-based clone detection. From
the view of code representation, there are a variety
of features extracted from code, such as text by SDD,
token by CCFinder, SourcererCC, Oreo, CCAligner and
CCLearner, AST by Deckard and ASTNN, and other
semantic representation by DeepSim, spanning from text,
token, and syntax to semantics; from the clone detec-
tion algorithm or model employed, for DL-based tools,
ASTNN, DeepSim, CCLearner focus on abstracting
deeper semantic information through various deep learn-
ing models, i.e., ASTNN by bidirectional RNN (Schuster
and Paliwal 1997), DeepSim by Multilayer Perceptron
(Gardner and Dorling 1998) and CCFinder by DNNs
(Szegedy et al. 2013); for traditional tools, Deckard,

Table 2 Code clone detectors and their manifest including extracted feature, used dataset, and supported clone types

Tools Venue Method Feature Dataset Clone Type

T1 T2 ST3 MT3 T4

CCFinder (Kamiya et al. 2002) TSE 2002 token normalization + token-
wised comparison

Token JDK 1.3.0, FreeBSD 4.0 ✓ ✓

SDD (Lee and Jeong 2005) OOPSLA 2005 inverted index + N-neighbor Text JDK 1.5, httpd-2.0.54 ✓ ✓ ✓
Deckard (Jiang et al. 2007) ICSE 2007 Locality Sensitive Hash AST JDK 1.4.2, Linux kernel 2.6.16 ✓ ✓ ✓
SourcererCC (Sajnani et al.
2016)

ICSE 2016 Filtering Heuristics Token BigCloneBench, Mutation/
Injection

✓ ✓ ✓

Oreo (Saini et al. 2018) ESEC/FSE 2018 action token + metric com-
parison

Token BigCloneBench ✓ ✓ ✓

CCAligner (Wang et al. 2018) ICSE 2018 code window + edit distance Token JDK 1.2.2, OpenNLP 1.8.1 ✓ ✓ ✓
DeepSim (Zhao and Huang
2018)

FSE 2018 Multilayer Perceptron CFG BigCloneBench, GCJ ✓ ✓ ✓ ✓ ✓

ASTNN (Zhang et al. 2019) ICSE 2019 Bidirectional RNN AST BigCloneBench ✓ ✓ ✓ ✓ ✓
CCLearner (Li et al. 2017) ICSME 2017 DNNs Token BigCloneBench ✓ ✓ ✓ ✓

Page 8 of 19Huang et al. Cybersecurity (2023) 6:14

SourcererCC, Oreo focus on improving detection effi-
ciency by utilizing Locality Sensitive Hash (LSH) (Datar
et al. 2004), Filtering Heuristics (Sajnani et al. 2013) and
Action Filtering respectively, and CCFinder, CCAligner
on the abstraction of code information through sym-
bolic processing and code window. The workflow of the
approaches adopted by the nine clone detectors are listed
as follows.

• CCFinder First, code snippets are converted into
token sequences, followed by symbolic process-
ing and encoding, thereby computing the similarity
between clone pairs.

• SDD It first converts the source code into code block
sequence, and builds an inverted index for it, then
uses the n-nearest neighbor algorithm to calculate
the similarity between the source code snippets.

• Deckard The source code is firstly converted into an
abstract syntax tree and traversed in preorder. Each
of the subtrees is represented as one vector which
then hashed through the LSH. The similarity is calcu-
lated based on it.

• SourcereCC It converts the source code into a code
block sequence represented by tokens and the Fil-
tering Heuristics has been adopted to construct an
inverted index for the blocks and reduce its size.
Finally, the similarity is measured based on the simi-
lar blocks matched between the code snippets.

• Oreo The code snippets are transformed into token
sequences and then filtered through size and Action
Filtering to obtain the candidate clone pairs, which
will be finally judged based on the metrics compari-
son.

• CCAligner It first converts code snippets into tokens
and symbolizes them, which are then divided by the
size of the window predefined. The windows con-
taining similar codes are screened out as candidates,
which will be finally judged through the similarity
measurement function.

• CCLearner The code snippets are firstly converted
into token sequences and then embedded through
word2vec, which put forward to model DNNs for
similarity comparison between code pairs.

• DeepSim It first constructs control flow and data
flow based on the source code snippet, then encodes
them into one semantic matrix, which is sent to one
multilayer perception model for clone code snippets
detection.

• ASTNN It first transforms the source code into an
abstract syntax tree and divides it into several sub-
trees based on one set division rule. The word2vec
is utilized to embed the subtrees into vectors, which
are then sent to model bidirectional RNN for clone

detection training and judgment. It is noted that dif-
ferent from the detectors introduced above, it could
give out the type of clone pair instead of a simple
judgment about if it is a clone or not.

This framework can be used for the performance com-
parison between these two types of approaches and eas-
ily extended to integrate other clone detection tools to be
assessed.

Evaluation
In this section, we first introduce the research questions
to answer and how we set up our experiments and then
evaluate the efficacy of our evaluation framework.

We intend to answer the following questions.

RQ1. How are clone detectors affected by obfusca-
tion, spanning from obfuscation strategies to
tools?

RQ2. What are the detection differences between tra-
ditional and deep learning-based clone detec-
tors in front of obfuscation strategies?

Experiment setup
Clone dataset

We collect 7,936 code pairs from BigCloneBench,
which consist of 6,512 clone pairs and 1,424 non-clone
pairs, i.e., |{�m1,m2, t�}| = 7, 936 as shown below.

T1 T2 ST3 MT3 T4 ⊥

2,084 1,125 1,450 1,062 701 1,424

For each clone or non-clone pair 〈m1,m2〉 , we per-
form obfuscation on m2 with 69 strategies as discussed
in Sect. 3.2 and generate 282,845 obfuscated methods,
termed as m′

2
 . These methods, together with m1 , can form

524,148 code pairs, among which clone pairs amount to
428,695, and non-clone pairs, i.e., �m1,m

′
2
,⊥� , come to

95,453. More details about the dataset can be viewed at
Anonymous (2022). It is noted that we did not evaluate
clone detectors with the pairs �m′

1
,m′

2
� (m′

1
 is the obfus-

cated version of m1) since this cannot reveal the effects of
obfuscation.

Experimental configurations In our experiment, we
evaluate a total of 9 clone detectors, including 5 tradi-
tional clone detectors and 4 deep learning-based ones.
Most of the experiments are conducted in a server run-
ning Ubuntu with Intel(R) Xeon(R) CPU E5-2620 @
2.10GHz. Moreover, we set up three virtual machines
that are running Windows XP for SDD, Windows 10 for

Page 9 of 19Huang et al. Cybersecurity (2023) 6:14

CCFinder, and Ubuntu 10 for SourcererCC. For tradi-
tional clone detectors, we have optimized their param-
eters as [61] for better analysis. For deep learning-based
approaches, we follow the network structures as their
papers and train the models with clone pairs from Big-
CloneBench. In particular, we uniformly utilize the same
dataset containing 58,521 clone pairs collected from
BigCloneBench for training ASTNN, DeepSim, and
CCLearner.

Efficacy
With the same testing clone pairs, we first evaluate the
accuracy of clone detection among the deployed tools.
We feed all the original clone pairs before obfusca-
tion to the nine clone detectors and calculate the preci-
sion, recall, and F1 score, respectively. Table 3 shows the
detection performance of the nine clone detectors for the
five types of clone pairs before obfuscation. Each cell in
this table contains a triad, the elements of which denote
Precision, Recall, F1-Score in turn. Generally, a clone
detector is regarded as being effective if its clone detec-
tion rate is above 50%. It is observed that except for some
traditional tools, other tools perform effectively on two
to five clone types. In particular, the detection rates of T1
and T2 clone pairs by various detectors are all close to
100%. Most of the detectors can achieve a higher detec-
tion rate than 80% on ST3 clones.

As for obfuscators, we conduct an experiment to meas-
ure their practicality by testing whether the obfuscated
code can be executed as expected. Here we utilize Google
Code Jam Google (2020) and randomly select 10 programs
from each of the 30 programming problems belonging to
all the six rounds of contests held in one year and obtain
300 ones in total, which covers a considerable number of
mainstream algorithms used in the real scenarios. We
obfuscate these Java projects via six obfuscators selected
in our work with the corresponding obfuscation strate-
gies, which include all the basic strategies of each tool and

combination strategies shown to be representative, totally
34 ones. The result shows that 99% of 10,132 obfuscated
projects can be run normally. The details of the strategies
and the percentage of runnable projects after obfuscation
could be referred to [61]. Through a manual investigation,
we obtain three main reasons that lead to a failure of obfus-
cation: (1) JDK incompatibility. Many exceptions “java.
lang.IllegalAccessError” are caught in JBCO-
obfuscated code since JBCO adds a lot of accesses to the
classes in the package jdk.*. However, the latest JDK
undergoes significant changes where the previous classes
are no longer available. (2) Object conflicts. Junk variables
may be added by obfuscators that can lead to a conflict if
there exist variables with identical names. It is found in
NCO-obfuscated code where a member field with the
same name is added into the class and it causes a compi-
lation error. (3) Bytecode breakdown. The bytecode may
be destroyed by an obfuscator. For example, Radon may
empty the main method during obfuscation which causes
a runtime error. Several programs fail to run after obfusca-
tion by ProGuard because the name of the entrance class
and method are replaced when using IR strategy. A num-
ber of programs fail to execute after being obfuscated with
the strategy CFO. The error is thrown with JNI errors, for
which the reason is probably the destruction of the Java
bytecode during the process of using CFO strategy.

Data analysis and measurement
In this section, we conduct a comprehensive analysis in
terms of our research questions. Due to the space limita-
tion, we cannot present all experimental results and anal-
ysis in the paper, but interested readers can visit [61] for
more details. It is noted that for consistency, we uniformly
use Recall to measure the detection rate of clone detectors
for both the true and false clone pairs. In addition, for the
assessment of obfuscation strategies, as the same obfus-
cation of different obfuscators could be different, we uni-
formly use the strategies of Radon as the evaluation target.

Table 3 Performance of clone detectors on not-yet-obfuscated clones as per type

T1 T2 ST3 MT3 T4

SDD (100, 21, 34) (100, 32, 49) (100, 21, 34) (100, 2, 3) (100, 0, 0)
CCFinder (100, 100, 100) (98, 100, 99) (100, 38, 55) (97, 3, 7) (75, 0, 1)
CCAligner (92, 99, 95) (86, 97, 91) (87, 81, 84) (73, 48, 58) (54, 31, 39)
Deckard (99, 100, 100) (82, 100, 90) (99, 80, 88) (96, 26, 40) (71, 4, 8)
SourcererCC (100, 43, 60) (100, 5, 9) (100, 3, 6) (100, 1, 2) (100, 0, 0)
Oreo (100, 66, 79) (99, 22, 35) (100, 35, 52) (99, 6, 11) (60, 0, 0)
ASTNN (100, 100, 100) (100, 92, 96) (99, 95, 97) (100, 92, 96) (100, 89, 94)

DeepSim (87, 100, 93) (65, 100, 76) (76, 66, 70) (61, 50, 54) (31, 25, 28)
CCLearner (97, 100, 99) (95, 100, 97) (96, 95, 95) (93, 71, 81) (61, 13, 22)

Page 10 of 19Huang et al. Cybersecurity (2023) 6:14

On one hand, Radon covers all the four types of obfusca-
tion strategies as shown in Table 2; on the other hand, the
overall impact on the detection rate of clone detectors is
more obvious, thus bringing a better presentation effect.

Clone detectors under obfuscation
In this section, we aim to investigate the influence of obfus-
cation in clone detection by comparing the detection rate
between original code and obfuscated code. More specifi-
cally, it consists the influence of both obfuscation strategies
and tools.

Changes in the detection rate of clone detectors
before and after code obfuscation
After obfuscating the code using obfuscation strategies,
the detection rate of the clone code by the clone detec-
tors has been significantly affected except when ASTNN
is coping with ST3, MT3, T4 clones. We have made sta-
tistics on the changes in the detection rate of various
types of clones by the clone detector after obfuscation as
shown in Fig. 3. In general, the detection rate of the clone
detector falls in the range of 21%-100%. The tool with the
biggest drop is Deckard, whose detection rate of the cor-
responding clone type drops by between 80% and 100%.
For clone types that the clone detectors cannot detect
effectively, as the bold font in Table 3 shows, after being
affected by the obfuscation strategy, the ability to detect
the corresponding clone code type is basically lost.

Finding 1 Obfuscation has a great impact on the detec-
tion rate of clone detectors. Except for some special
cases, the detection rate of these detectors on varying
types of clones can be reduced by an average of 21%-
100%, and hence they cease to work towards the obfus-
cated code.

Influence of basic obfuscation strategies
In order to better measure the impact of obfuscation
strategies, we compare the impact of the basic obfusca-
tion strategies on the clone detectors and find that the
degree of its impact is not necessarily proportional to the
level of obfuscation. For example, some seemingly sim-
ple obfuscation strategies, such as IR and NCO, have a
greater impact on the detection results. Table 4 records
the average impact brought by the obfuscation strategies
of Radon on the detection rate of different clone types.
The symbol “*” indicates an unavailable result since the
detection rate of SDD and SoucererCC on clone pairs
are all below 50%, and ASTNN could not analyze the
test records obfuscated by several strategies of Radon
because of its own design problems. As to distinguish the
traditional tools and deep-learning based tools, we calcu-
late the average impact on them respectively. The result is
represented as (x1 , x2), where x1 represents the impact on

Fig. 3 Average detection rate change of clone detectors on T1, T2, ST3, MT3, T4 under the impact of the various strategies of Radon

Page 11 of 19Huang et al. Cybersecurity (2023) 6:14

Ta
bl

e
4

Th
e

ch
an

ge
 o

f t
he

 d
et

ec
tio

n
ra

te
 o

f t
he

 c
lo

ne
 d

et
ec

to
rs

 u
nd

er
 th

e
im

pa
ct

 o
f s

tr
at

eg
ie

s
of

 R
ad

on

To
ol

s
Ba

si
c

St
ra

te
gy

 (%
)

2-
Co

m
bi

ne
d

(%
)

3-
Co

m
bi

ne
d

(%
)

4-
Co

m
bi

ne
d

(%
)

IR
N

CO
SC

E
IS

C
CF

O
IR

_N
CO

IR
_S

CE
IR

_I
SC

IR
_C

FO
N

CO
_

SC
E

N
CO

_
IS

C
N

CO
_

CF
O

SC
E_

IS
C

SC
E_

CF
O

IS
C_

CF
O

IR
_

N
CO

_
IS

C

IR
_

N
CO

_
CF

O

IR
_I

SC
_

CF
O

N
CO

_
IS

C_
CF

O

IR
_N

CO
_I

SC
_

CF
O

SD
D

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

CC
Fi

nd
er

60
60

49
2

10
0

74
75

50
10

0
10

0
49

10
0

31
10

0
10

0
74

10
0

10
0

10
0

10
0

CC
A

lig
ne

r
11

36
19

10
93

38
14

11
93

55
36

93
13

93
93

38
93

93
93

93

D
ec

ka
rd

79
93

93
77

93
93

93
93

93
93

93
93

93
93

93
93

93
93

93
93

So
ur

ce
re

rC
C

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

O
re

o
66

64
1

0
66

66
66

66
66

65
64

66
1

66
66

66
66

66
66

66

Av
er

ag
e

51
61

43
31

80
66

60
49

80
76

60
80

42
80

80
66

80
80

80
80

A
ST

N
N

29
24

18
20

15
33

28
29

14
23

27
*

20
20

17
35

*
12

*
*

D
ee

pS
im

28
45

6
0

49
65

43
37

42
54

48
68

3
45

35
62

39
63

64
65

CC
Le

ar
ne

r
68

7
0

0
92

89
68

68
92

6
8

92
0

92
92

89
92

92
92

92

Av
er

ag
e

42
25

8
7

52
62

46
45

49
28

28
**

8
52

48
62

**
56

**
**

Page 12 of 19Huang et al. Cybersecurity (2023) 6:14

traditional tools and x2 is the impact on deep learning-
based ones.

Averagely, the impact of IR on traditional tools and
deep learning tools is (51%, 42%), that of NCO is (61%,
25%), surpassing the structure strategy ISC whose impact
is only (30%, 7%). As for CFO, it induces the largest
detection rate drop for both traditional (95%) and deep
learning-based tools (52%).

Finding 2 Even simple obfuscation strategies (e.g., IR
and NCO) can have a serious impact on the detection
rate of clone detectors, compared with more complex
strategies (e.g., ISC, CFO).

Cause analysis. We manually examine the obfus-
cated code and explain this phenomenon with regard to
the code representation methods considered by clone
detectors.

Firstly, it should be clear that simple strategies (e.g.,
IR) can either replace or encode the identifiers or
strings in code, which significantly changes the textual
information; CFO inserts a large number of branch
statements like “switch” and “goto”, then affects both
textual and structural information greatly; structure
obfuscation adjusts the order of specific statements or
methods, possessing a certain effect on structural infor-
mation but little on textual one.

• Token based detectors–CCFinder, CCAligner, Oreo,
and CCLearner. Simple strategies like IR have almost
the same effect as CFO, far exceeding structure
obfuscation (e.g., ISC). As token mainly reflects tex-
tual information of the code snippet.

• AST based detectors–Deckard and ASTNN. AST is a
type of representation that reflects both the textual
and structural information of the code snippet. Then,
the effect of simple strategy coincide CFO, slightly
higher than structure obfuscation.

• CFG, DFG based detector–DeepSim. The impact of
NCO and CFO is roughly the same, which all exceed
other obfuscation strategies. As the feature matrix of
DeepSim comes from CFG and DFG of code snippets,
then passed to Multilayer Perceptron model for
further semantic mining, NCO could cause greater
impact to DFG, and CFO to CFG.

Summary. It could be observed that firstly, involv-
ing multiple (e.g., DeepSim) or more complex code
representations (e.g., ASTNN) can indeed dig
deeper into code semantics, but it also introduces
more attack surfaces, as the code snippet has been
depicted from more types of feature information.
For example, compared with the token-based tools,
AST-based ones are more susceptible to structure
strategy, as the structure information could be
reflected in AST but not token, which only contains
textual information; Secondly, the effect of various
types of obfuscation strategies on clone detector is
closely related to its code representation method,
from which the features have been extracted and
then encoded for further similarity calculation
between code pairs.

Basic obfuscation strategies vs. combined strategies
Perhaps the most surprising thing is that the combined
strategy’s influence on clone detectors is not necessar-
ily better than a single strategy, and sometimes it may be
severely weakened. As shown in Table 4, the impact of IR
on the detection rate of CCAligner was originally 11% and
keeps 11% after being combined with strategy ISC; the
impact of IR on the detection rate of ASTNN is originally
29% and drops to 14% after combined with CFO. Overall,
the average influence of IR on the detection rate of clone
detectors is (51%, 42%), while the combination strategy
including IR has an influence on traditional clone detec-
tors and deep learning ones in the range of [11%, 100%] and
[0%, 92%] respectively.

Finding 3 The combination strategy is not necessar-
ily better than the original single strategy. If one strategy
is combined with another of the same obfuscation level,
it more likely becomes stronger. However, it does not
exhibit a complementary effect between one single strat-
egy and a more complex one. If this one’s interference is
bigger, the combination tends to be stronger; if not, then
more likely to be the same or even weaker.

False positives caused by code obfuscation
In the previous sections, we have measured how many true
clone pairs cannot be detected after obfuscations. Here we

Table 5 The drop (%) in detection rate of false clone pairs of ASTNN and DeepSim under various obfuscators

Radon Obfuscator JBCO JODE yGuard ProGuard

ASTNN 4 3 3 9 9 6

DeepSim 0 0 3 4 0 0

Page 13 of 19Huang et al. Cybersecurity (2023) 6:14

investigate whether any false clone pairs, i.e., �m1,m2,⊥� ,
can be falsely classified as a clone.

It is observed that under certain circumstances the false
positive rate has been increased by varying percents for
clone detection. This phenomenon is pervasive among
these obfuscation tools, in the two deep learning-based
clone detectors, ASTNN and DeepSim as shown in Fig. 5.
Taking ASTNN as an example, it is affected by almost all
the obfuscation tools and their corresponding strategies.

We further study the situation of yGuard, which causes
a 9% drop using the strategy IR, with the number of being
falsely marked as clone pairs rising from 6 to 130 averagely
out of 1,488 pieces of records in total. Although the rise
may be minor in terms of rate, the change can also be obvi-
ous as the number of programs to be analyzed increases.
Therefore, in reality, this situation can be really serious
when detecting massive of data and becomes unaccepta-
ble to the benign users who use obfuscation tools for legal
purposes. Figure 5 shows that Obfuscator has the weakest
influence, which only affects ASTNN with the smallest
impact (3%).

Finding 4 Almost all the obfuscators make false clone
pairs after obfuscation easier to be falsely recognized by
certain DL-based clone detectors, producing more false
positives, possibly because some false clone pairs after
obfuscation have exceeded their learning range. Moreo-
ver, Obfuscator is the weakest one that may cause these
alarms, which may be one ideal obfuscation tool for
benign developers to protect their own code while avoid-
ing being misjudged.

Cause analysis. We adopt a mask-based approach
to analyze which statements in the obfuscated code
fragment affect the judgement. As shown in Fig. 4, for
ASTNN, 〈a, c〉 is originally judged as a false clone, after
obfuscation, 〈b, c〉 judged as a clone. For each statement in
b, we comment it out, then 〈b, c〉 fed to ASTNN for judge-
ment. Further, for the conditional expression in the If
statement, we modify it to False to verify its influence. If
the result is true, it means this statement is not a key fac-
tor. Otherwise, it is that. Lastly, the If statement is judged
as the key factor, which is inserted by the obfuscator.

Fig. 4 An example of false clone pair misjudged after obfuscation

Page 14 of 19Huang et al. Cybersecurity (2023) 6:14

Meanwhile, taking Radon, Obfuscator, JBCO which all
have various obfuscation strategies for comparison,
the effect of Radon and JBCO all exceed Obfuscator. As
Radon may insert lots of lines of code, JBCO may convert
the identifiers or constants to a more complicated form,
but Obfuscator mainly makes some simpler replacements
or modifications.

Summary. In the process of obfuscation, obfusca-
tors could add some irrelevant statements, which
may have similarities with the code snippet to be
compared, thus making one original false clone pair
judged as true.

Traditional clone detectors versus DL-based detectors
Here we compare the traditional and deep learning-based
clone detectors from four aspects.

Overall performance comparison
It is observed that the detection stability of DL-based
tools on the detection of clone pairs in the face of obfus-
cation attacks is better than that of traditional tools. As
shown in Table 4, the average influence of obfuscation
strategies on the detection rate of traditional tools is

between 31% and 80%, and the impact on deep learning
tools is between 7% and 62%.

However, the false alarm rate is just the opposite. As
aforementioned, there is a minor rise in the false alarm
rate of the deep learning-based tools after obfuscation,
but this phenomenon never occurs for traditional tools,
whereas all decrease.

Finding 5 In general, the clone code detection rate of
deep learning tools is more robust than the traditional
ones. However, the situation of the false alarm rate is just
the opposite.

Cause analysis. Compared with traditional tools, deep
learning tools could conduct deeper mining and abstrac-
tion of code semantics. Therefore, in general, deep learn-
ing tools are relatively robust. However, when detecting
the false clone pairs after obfuscation, the detection
principle of traditional tools is to compare the difference
value between the code pairs with the threshold set, as
the difference value after obfuscation is almost impossi-
ble to get smaller, but basically, it may only become larger
or unchanged. So the false alarm rate will not increase,
but a small decrease will occur, thus showing better
robustness.

Fig. 5 The average change ratio of detection rate of both the traditional clone detectors and the DL-based ones for various clone types under the
influence of obfuscation strategies

Page 15 of 19Huang et al. Cybersecurity (2023) 6:14

Performance comparison for various clone types
For the accuracy and rationality of the experiment, the
average change ratio of the clone detector’s detection
rate on T1, T2, ST3, MT3, T4 is calculated to indicate
the degree of influence of obfuscation strategy on it as
shown in Fig. 5. It indicates that the effect of obfuscation
strategies on traditional tools has an upward trend in the
detection rate of the five clone types. That is, their detec-
tion rate of simple clone types (i.e., T1 and T2) is affected
relatively small, while the one of complex clone types (i.e.,
ST3, MT3, and T4) is affected comparatively large. How-
ever, the performance of DL-based tools is just the oppo-
site. Especially, as shown in Fig. 5, the detection rate on
ST3, MT3, T4 of ASTNN almost suffers no impact.

Finding 6 Overall, Deep learning-based approaches
exhibit a more superior resilience to obfuscation for com-
plex clone pairs, i.e., ST3, MT3, and T4 than simple ones,
e.g., T1, T2, while the performance of traditional ones is
just the opposite.

Cause analysis. This is caused by the essential dif-
ference between traditional and DL-based tools. For
traditional tools, the feature extraction method and com-
parison threshold are fixed. Compared with the clone
pairs of ST3, MT3, and T4, the similarity between the
code snippets of T1 and T2 is relatively higher. Therefore,
when the same obfuscation strategy is used to disturb
them, the difference between T1 and T2 clone codes is
still small. Hence the probability of exceeding the similar-
ity threshold should be small, and the degree of influence
on its detection rate is corresponding weaker.

For deep learning tools, the structure and parameters
of the feature extraction and comparison model are all
closely related to the training set data. When the same
obfuscation strategy is used to interfere with the clone
code, the clone codes of ST3, MT3, and T4 are less
changed compared to T1 and T2. So their detection rate
is relatively less affected. According to the way the model
is built, DL-based tools can be divided into two cat-
egories: first, five two-classifier models (e.g., ASTNN)
are trained based on T1, T2, ST3, MT3, T4 clone pairs
respectively. Second, one two-classifier model (e.g.,
DeepSim) is trained based on these five types of clone
pairs. For the first type, the five two-classifier models
are more suitable for the detection of their corresponding
clone type. Compared with the two-classifier model of
T1 and T2, the ones of ST3, MT3, and T4 are not so sen-
sitive to the difference between clone pairs. For example,
the abstraction of feature extraction may be higher, and
the threshold setting for similarity comparison could be
looser. Therefore, when using the same obfuscation strat-
egy to disturb the clone pairs, the detection rate of ST3,

MT3, and T4 will be less affected. For the second type,
whose training data is composed of various types of clone
data, its structure and parameters are affected by multi-
ple clone types, then the difference between the effect on
the detection rate of ST3, MT3, T4 and T1, T2 is not as
large as the first type.

The effect of obfuscation strategy on two types of clone
detectors
For traditional tools, among the basic obfuscation strat-
egies, the one that has the most significance is CFO.
Table 4 shows CFO makes the detection rate of all the
traditional clone detectors drop by 66∼100%. From
Fig. 3, we observe that the detection rate of clone types
that cannot be well detected by traditional clone detec-
tors (i.e., the detection rate is less than 50%) has almost
dropped to 0%. All in all, CFO basically makes traditional
tools lose their ability to detect clone code. All the com-
bined strategies formed by CFO have exactly the same
effect. The average effect of other obfuscation strategies
is between 31% and 61%, which has an obvious gap.

However, the most effective basic strategy for deep
learning-based tools could be IR, NCO, whose effect is up
to 29%, 45% on ASTNN, DeepSim respectively, as shown
in Table 4. Additionally, the combined strategy that per-
forms most effectively is IR_NCO, which causes a 62%
drop, much larger than others. In contrast, CFO has a
trivial impact on some deep learning tools. For example,
except for the clone pairs of T2, ASTNN’s detection rate
is only affected by 4% average by CFO.

Finding 7 For traditional tools, the most influential
strategy is control flow obfuscation. However, for deep
learning tools, the most influential strategy could be
some simple ones like IR and NCO.

Cause analysis. Similarly, we make the inference for
the potential reason in the light of the different changes
made by obfuscations to the features considered by clone
detectors.

• For traditional tools, CFO can increase the difference
between code snippets to a greater extent compared
to other obfuscation methods, so that it is easier to
exceed the preset judgment threshold and have a
greater impact on the detection result.

• For deep learning tools, here, we select a more obvi-
ous example for analysis. In the experiments on
ASTNN, the attack effect of IR is almost twice that of
CFO (29% and 15%, respectively). The reason is that
ASTNN uses word2vec to generate the initial fea-
ture vector based on the identifier in the code, and

Page 16 of 19Huang et al. Cybersecurity (2023) 6:14

then generates the feature vector of one code snip-
pet according to the corresponding conversion algo-
rithm, which will make the text information such
as the identifier has a greater effect on the analysis
result of the detectors. Meanwhile, the use of the
bifirectional RNN strengthens the degree of min-
ing corresponding semantic information and fur-
ther strengthens its influence on the detection result.
When the IR is used for obfuscation, the identifier
information is greatly changed, as the ASTNN does
not uniformly process the identifier, thus it will have
a greater impact on the detection rate.

Summary. DL-based detectors are prone to be
affected by some simple strategies, as they possess
a greater impact on the information which is the
source of input vectors of the deep learning model
and the deep learning network will perform in-depth
semantic mining, so a little change in such infor-
mation will have a greater impact on the judgment
result.

Comparison of the impact brought by different obfuscation
tools on traditional tools and DL‑based ones
Obfuscation tools perform different impacts on tradi-
tional tools and deep learning-based tools. The average
effect of JBCO on traditional tools is 73%, which is the
biggest among these tools. However, in the meantime,
its effect on deep learning-based detectors is only 28%,
which is also the smallest one among them. In contrast,
apart from the three tools possessing only one strategy
IR, the effect of Radon on traditional tools is 66%, which
is a moderate effect, however, its effect on deep-learning
based tools is highest among them.

Finding 8 Among the obfuscation tools evaluated,
JBCO has the greatest impact on traditional clone detec-
tors and the least on deep learning clone detectors, which
is almost opposite for Radon.

Cause analysis. By comparing and analyzing the code
snippets after obfuscation of JBCO and Radon, it can be
found that JBCO modifies code identifiers, constants,
and other information to a greater extent than Radon,
which only uses fixed value replacement for some vari-
ables, then on textual information; however, for structure
information, the impact of Radon is bigger, as it could
increase the number of code lines to tens of times and
make its control flow much complicated.

As mentioned in Finding 2, most of the traditional
tools evaluated in this study are based on tokens, which

mainly reflect textual information of the code, then JBCO
will have a greater impact on these tools.

For DL-based detectors, the detection rate largely
depends on its training data BigCloneBench, which is
composed of five types of clones, having greater tolerance
for code differences caused by simple strategy and less for
CFO. Therefore, although JBCO has made major changes
to the textual information, it still does not exceed the
learning range of the DL-based tools, the impact is cor-
responding weaker; Radon changes more structure
information, exceeding the feature boundary of the deep
learning model, then resulting in greater effect.

Discussion
Threats to validity. First, few mature clone detectors
could be directly used for assessment. Compared to
traditional clone detection, deep learning-based clone
detection is just a newly emerging technique, and few
of them have been open-sourced. Thus, the number of
clone detectors based on deep learning in our assess-
ment is relatively small, which inevitably makes the
findings have certain limitations. Second, the decompi-
lation may cause minor changes on the original method
besides the obfuscation that make the results less accu-
rate. To mitigate it, we turn to using the decompilation
version of clone methods during the whole assessment
experiment.

Selection of obfuscators. In this study, we choose six
commercial code obfuscators to transform Java bytecode
while not using source code obfuscators is threefold: (1)
it has a wide applicable scenario in reality, especially for
malicious code detection, vulnerability hunting, and code
copyright infringement detection. For example, Android
is now the biggest platform for Java projects, and most
Android apps are compiled into bytecode before distribu-
tion. Many works have proposed their own methods to
detect clones from the bytecode of Android apps (Crus-
sell et al. 2012; Wang et al. 2015, 2020). (2) to our best
knowledge, there are currently no public obfuscators for
Java source code. Although a previous study (Schulze
and Meyer 2013) has implemented a semi-automated
code obfuscator, its functionality and robustness can-
not rival these commercial ones. Additionally, since the
Java code in BigCloneBench is not complete, for example,
with many missing declarations for variables and meth-
ods. Source code obfuscators may not be able to perform
advanced strategies like control flow obfuscations to the
code. (3) Last, to minimize the noise caused by compi-
lation and decompilation, we only use the decompiled
version of these Java methods. Meanwhile, the clone
type almost (92%) keeps unchanged after decompilation
according to our observation.

Page 17 of 19Huang et al. Cybersecurity (2023) 6:14

Improvement suggestions. Based on the findings and
analysis, we summarize a number of suggestions for users
from different perspectives.

From the perspective of designers of clone detectors

• Considering the attack surface, it’s more effective
and safer for the defenders to choose a simpler code
representation and focus on optimizing the compari-
son algorithms or models as Finding 2. That is why
CCAligner performs well in both the detection rate
and the anti-interference ability. For on one hand,
it represents source code as token sequence, thus
reducing the attack surfaces probably brought com-
pared to AST or more complex code representation
methods; on the other hand, one sliding code win-
dow is introduced, on which granularity the code
pairs would be compared, capturing local sequence
features, improving detection accuracy while ensur-
ing robustness.

• It is suggested to construct one clone detector for
each type of clone pair. When detecting the target,
use these five detectors to analyze it one by one. As
long as one of them judges it to be true, then it is
one clone pair, which could not only improve the
clone detection rate but also enhance the robust-
ness of the detection model according to Finding 6.

• For deep learning-based clone detectors, we must
fulfill the abstraction process of code closely related
to the initialization of feature vectors as Finding 7,
e.g., normalizing the identifiers of code snippet,
avoiding seemingly slighter interference caused by
some simple strategies.

• Except for the possible attack surface brought by
code representation, developers should also be aware
of the tolerance range of feature extraction and com-
parison algorithms with regard to the difference
between code snippets from Finding 8. For tradi-
tional clone detectors, the key is to obtain more code
information of higher-level abstraction, then the tol-
erance range is larger, thereby improving its robust-
ness. Taking the tools based on tokens as an exam-
ple, compared to CCFinder, which directly compares
the similarity between code snippets based on the
token sequences, CCAligner achieves better robust-
ness by employing a sliding window mechanism to
harvest more windows of code for feature extraction
and similarity comparison. For DL-based ones, their
tolerance for code differences largely depend on the
richness of their training set, then it is recommended
to select clone pairs processed by popular obfusca-
tion tools, e.g., the clone pairs obfuscated in this
study, to supplement their training set data, so as to
have better resistance.

From the perspective of analyzers who are eager to
evaluate clone detectors

• According to Finding 2, it is suggested that the code
representation method of clone detector could be
inferred by comparing the effects of different obfus-
cation strategies, e.g., if the effects of simple strategy
and CFO are almost the same, far greater than struc-
ture ones, then the method should be taken.

• For a black box clone detection model, users can
determine the specific type of the model by observ-
ing and comparing the changes of detection rate of
different clone types. For example, according to the
impact of T1, T2 and ST3, MT3, T4, it can be judged
to be either a traditional model or a deep learn-
ing one. Based on the magnitude of the difference
between them, it could be further judged as the first
or second type of DL-based tools from Finding 6.

• From Finding 7, users can first use a variety of single
obfuscation strategies to test the deep learning tools.
If some simple strategies have a more prominent
impact on the clone detector than other strategies,
the corresponding code information interfered by
the strategy can be used as the adjustment target for
the generation of adversarial samples. For instance,
the identifier information could be the target for
ASTNN. In this way, on one hand, since only the
layout information of the code needs to be adjusted,
the difficulty of generating adversarial samples can be
greatly reduced, and at the same time, the adversarial
attack could achieve the best effect.

From the perspective of users and designers of
obfuscators

• It is recommended that the designers of obfusca-
tors could follow the concept of Obfuscator, do
more replacement or modification, and try to avoid
insertion operations as Radono or JBCO. In this
way, on one hand, as depicted in Finding 4, reduc-
ing the false alarm rate for benign users who just
want to protect their own codes; on the other hand,
diminishing the possible damage brought by attack-
ers utilizing relatively powerful obfuscators, i.e.,
Radon and IBCO shown in Finding 8. Meanwhile,
this could also help improve the efficiency of obfus-
cators as fewer process needed. During our evalua-
tion, the process of Radon or JBCO could be hours
of time, but obfuscator only in minutes, which is
ideal for the users.

Page 18 of 19Huang et al. Cybersecurity (2023) 6:14

Conclusion
In order to evaluate the effect of code obfuscation in
clone detection, we build an evaluation framework inte-
grating six commercial obfuscation tools and nine clone
detectors. In particular, there are six traditional clone
detectors and three deep learning-based detectors as
evaluation subjects. We collect a number of Java code
pairs from BigCloneBench and perform 69 strategies to
obfuscate them. Last, we obtain 428,695 true clone pairs
and 95,453 false pairs which are fed into clone detectors
for evaluation. Two analyses are subsequently conducted
to measure the effect of varying obfuscation strategies
and tools and the different performance of traditional
and deep learning-based clone detection. Eight findings
and discussion have revealed the issues in both code
obfuscation and clone detection as well as improvement
suggestions.

Acknowledgements
We would like to thank the anonymous reviewers for detailed comments and
useful feedback.

Authors’ Information
Guozhu Meng obtained his Ph.D degree from the School of Computer Science
and Engineering, Nanyang Technological University, Singapore at 2017. His
supervisors are Full Prof. Liu Yang and Full Prof. Zhang Jie. He joined Institute of
Information Engineering of Chinese Academy of Sciences as Associate Profes-
sor in 2018. His research focuses on system security and artificial intelligence
security as follows: Android security, big data analysis, vulnerability detection,
and AI security and privacy.

Author Contributions
WH: investigation, conceptualization, methodology, materials, writing, editing,
experiment, validation, review, resources. GM: methodology, discussion, writ-
ing, review, supervision. CL: investigation, resources, discussion, experiment,
validation, review. QY: resources, discussion, experiment, review. KC: discus-
sion, review, supervision. ZM: discussion, review, supervision. All authors read
and approved the final manuscript.

Funding
IIE authors are supported in part by the National Key R &D Program of China
(2020AAA0140001), NSFC U1836211, Beijing Natural Science Foundation (No.
M22004), the Anhui Department of Science and Technology under Grant
202103a05020009, Youth Innovation Promotion Association CAS, Beijing
Academy of Artificial Intelligence (BAAI) and a research grant from Huawei.

 Availibility of data and materials
We will publish our benchmark and evaluation framework after the work has
been accepted.

Declarations

Competing interests
The authors declare that they have no competing interests

Received: 22 December 2022 Accepted: 22 February 2023

References
Ain QU, Butt WH, Anwar MW, Azam F, Maqbool B (2019) A systematic review

on code clone detection. IEEE Access 7:86121–86144

Anonymous: CloneVsObf. https:// github. com/ Clone VsObf/ Clone VsObf (2021)
Anonymous: Impacts of obfuscation on clone detection. https:// sites. google.

com/ view/ obf- clone- eval/ (2022)
Apache: The Apache Ant Project. https:// ant. apache. org/ (2020)
Balakrishnan A, Schulze C (2005) Code obfuscation literature survey. CS701

Construction of compilers, 19
Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E (2007) Comparison and

evaluation of clone detection tools. IEEE Trans Softw Eng 33(9):577–591
Ben-Nun T, Jakobovits AS, Hoefler T (2018) Neural code comprehension: a

learnable representation of code semantics. In: Advances in neural infor-
mation processing systems, pp 3585–3597

Cao L, Sun G, Wang H, WANG S (2006) Logic invariability study of junk code
transformation. Computer Engineering 20, 048

Chen J, Alalfi MH, Dean TR, Zou Y (2015) Detecting android malware using
clone detection. J Comput Sci Technol 30(5):942–956

Cimato S, De Santis A, Petrillo UF (2005) Overcoming the obfuscation of java
programs by identifier renaming. J Syst Softw 78(1):60–72

Cimitile A, Martinelli F, Mercaldo F, Nardone V, Santone A (2017) Formal
methods meet mobile code obfuscation identification of code reorder-
ing technique. In: 2017 IEEE 26th International conference on enabling
technologies: infrastructure for collaborative enterprises (WETICE), pp
263–268. IEEE

clone: overview of clone detection tools for java. https:// github. com/c- oberle/
clone- detec tion- tools (2020)

Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating transfor-
mations. http:// www. cs. auckl and. ac. nz/ staff- cgi- bin/ mjd/ csTRc gi. pl? serial

Crussell J, Gibler C, Chen H (2012) Attack of the clones: Detecting cloned
applications on android markets. In: Computer Security—ESORICS 2012,
pp 37–54. Springer, Berlin, Heidelberg

Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the twentieth
annual symposium on computational geometry, pp 253–262

Duala-Ekoko E, Robillard MP (2007) Tracking code clones in evolving software.
In: 29th international conference on software engineering (ICSE’07), pp
158–167. IEEE

Gardner MW, Dorling SR (1998) Artificial neural networks (the multilayer
perceptron)-a review of applications in the atmospheric sciences. Atmos
Environ 32:2627–2636

Göde N, Koschke R (2011) Frequency and risks of changes to clones. In: Pro-
ceedings of the 33rd international conference on software engineering,
pp 311–320

Google: Google Code Jam. https:// codin gcomp etiti ons. withg oogle. com/
codej am (2020)

Guardsquare: ProGuard. https:// github. com/ Guard square/ progu ard (2020)
Hammad M, Garcia J, Malek S (2018) A large-scale empirical study on the

effects of code obfuscations on android apps and anti-malware prod-
ucts. In: Proceedings of the 40th international conference on software
engineering, pp 421–431

Hoenicke J (2020) JODE. http:// jode. sourc eforge. net/
ItzSomebody: radon. https:// github. com/ ItzSo mebody/ Radon (2020)
JavaParser: tools for your Java code Transform. https:// javap arser. org/ (2020)
Jiang L, Misherghi G, Su Z, Glondu S (2007) Deckard: Scalable and accurate

tree-based detection of code clones. In: 29th international conference
on software engineering (ICSE’07), 96–105

Kamiya T, Kusumoto S, Inoue K (2002) Ccfinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE
Trans Softw Eng 28(7):654–670

Kim S, Woo S, Lee H, Oh H (2017) Vuddy: A scalable approach for vulnerable
code clone discovery. In: 2017 IEEE symposium on security and privacy
(SP), pp 595–614. IEEE

Krinke J (2001) Identifying similar code with program dependence graphs.
In: Proceedings eighth working conference on reverse engineering, pp
301–309. IEEE

Kuhn A, Ducasse S, Gírba T (2007) Semantic clustering: identifying topics in
source code. Inf Softw Technol 49(3):230–243

Lee S, Jeong I (2005) Sdd: high performance code clone detection system
for large scale source code. In: Companion to the 20th annual ACM
SIGPLAN conference on object-oriented programming, systems, lan-
guages, and applications, pp 140–141

https://github.com/CloneVsObf/CloneVsObf
https://sites.google.com/view/obf-clone-eval/
https://sites.google.com/view/obf-clone-eval/
https://ant.apache.org/
https://github.com/c-oberle/clone-detection-tools
https://github.com/c-oberle/clone-detection-tools
http://www.cs.auckland.ac.nz/staff-cgi-bin/mjd/csTRcgi.pl?serial
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/codejam
https://github.com/Guardsquare/proguard
http://jode.sourceforge.net/
https://github.com/ItzSomebody/Radon
https://javaparser.org/

Page 19 of 19Huang et al. Cybersecurity (2023) 6:14

Li L, Feng H, Zhuang W, Meng N, Ryder B (2017) Cclearner: A deep learning-
based clone detection approach. In: 2017 IEEE international confer-
ence on software maintenance and evolution (ICSME), pp 249–260.
IEEE

Liu Z, Wei Q, Cao Y (2017) Vfdetect: A vulnerable code clone detection
system based on vulnerability fingerprint. In: 2017 IEEE 3rd information
technology and mechatronics engineering conference (ITOEC), pp
548–553. IEEE

Livieri S, Higo Y, Matsushita M, Inoue K (2007) Analysis of the linux kernel
evolution using code clone coverage. In: Fourth international work-
shop on mining software repositories (MSR’07: ICSE Workshops 2007),
pp 22–22. IEEE

Meyer D, Schulze D-IS (2012) Analyzing the robustness of clone detec-
tion tools regarding code obfuscation. Bachelor thesis, University of
Magdeburg

Monden A, Nakae D, Kamiya T, Sato S-i, Matsumoto K-i (2002) Software qual-
ity analysis by code clones in industrial legacy software. In: Proceed-
ings eighth IEEE symposium on software metrics, pp 87–94. IEEE

Nguyen HA, Nguyen TT, Pham NH, Al-Kofahi JM, Nguyen TN (2009) Accurate
and efficient structural characteristic feature extraction for clone detec-
tion. In: International conference on fundamental approaches to software
engineering, pp 440–455. Springer

OKane P, Sezer S, McLaughlin K (2011) Obfuscation: the hidden malware. IEEE
Secur Priv 9(5):41–47

Ragkhitwetsagul C, Krinke J (2017) Using compilation/decompilation to
enhance clone detection. In: 2017 IEEE 11th international workshop on
software clones (IWSC), pp 1–7. IEEE

Ragkhitwetsagul C, Krinke J, Clark D (2016) Similarity of source code in the
presence of pervasive modifications. In: 2016 IEEE 16th international
working conference on source code analysis and manipulation (SCAM),
pp 117–126. IEEE

Roy CK, Cordy JR (2009) A mutation/injection-based automatic framework for
evaluating code clone detection tools. In: 2009 International conference
on software testing, verification, and validation workshops, pp 157–166.
IEEE

Roy CK, Cordy JR (2007) A survey on software clone detection research.
Queen’s Sch Comput TR 541(115):64–68

Sable: JBCO. http:// www. sable. mcgill. ca/ JBCO/ (2020)
Saini V, Farmahinifarahani F, Lu Y, Baldi P, Lopes CV (2018) Oreo: Detection of

clones in the twilight zone. In: Proceedings of the 2018 26th ACM joint
meeting on european software engineering conference and symposium
on the foundations of software engineering, pp 354–365

Sajnani H, Saini V, Lopes CV (2013) A parallel and efficient approach to large
scale clone detection. 2013 7th international workshop on software
clones (IWSC), 46–52

Sajnani H, Saini V, Svajlenko J, Roy CK, Lopes CV (2016) Sourcerercc: Scaling
code clone detection to big-code. In: Proceedings of the 38th interna-
tional conference on software engineering, pp 1157–1168

Schulze S, Meyer D (2013) On the robustness of clone detection to code
obfuscation. In: 2013 7th international workshop on software clones
(IWSC), pp 62–68

Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE
Trans Signal Process 45:2673–2681

Sheneamer A, Kalita JK (2016) A survey of software clone detection tech-
niques. Int J Comput Appl 137:1–21

Soot: Soot: a Java Optimization Framework. https:// www. sable. mcgill. ca/ soot/
(2020)

Steiger S (2020) Procyon. https:// github. com/ stste iger/ procy on
superblaubeere27: Obfuscator. https:// github. com/ super blaub eere27/ obfus

cator/ (2020)
Svajlenko J, Islam JF, Keivanloo I, Roy CK, Mia MM (2014) Towards a big data

curated benchmark of inter-project code clones. In: 2014 IEEE interna-
tional conference on software maintenance and evolution, pp 476–480.
IEEE

Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detec-
tion. Adv Neural Inf Proces Syst 26

Tufano M, Watson C, Bavota G, Di Penta M, White M, Poshyvanyk D (2018)
Deep learning similarities from different representations of source code.
In: 2018 IEEE/ACM 15th international conference on mining software
repositories (MSR), pp 542–553. IEEE

Viticchié A, Regano L, Torchiano M, Basile C, Ceccato M, Tonella P, Tiella R (2016)
Assessment of source code obfuscation techniques. In: 2016 IEEE 16th
international working conference on source code analysis and manipula-
tion (SCAM), pp 11–20. IEEE

Wang H, Guo Y, Ma Z, Chen X (2015) Wukong: A scalable and accurate two-
phase approach to android app clone detection. In: Proceedings of the
2015 international symposium on software testing and analysis, pp.
71–82. Association for Computing Machinery, New York, NY, USA. https://
doi. org/ 10. 1145/ 27717 83. 27717 95

Wang W, Meng G, Wang H, Chen K, Ge W, Li X (2020) A 3 ident: a two-phased
approach to identify the leading authors of android apps. In: 2020
IEEE international conference on software maintenance and evolution
(ICSME), pp 617–628. IEEE

Wang P, Svajlenko J, Wu Y, Xu Y, Roy CK (2018) Ccaligner: a token based large-
gap clone detector. In: 2018 IEEE/ACM 40th international conference on
software engineering (ICSE), pp 1066–1077

Wei H, Li M (2017) Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source
code. In: IJCAI, pp 3034–3040

White M, Tufano M, Vendome C, Poshyvanyk D (2016) Deep learning code
fragments for code clone detection. In: 2016 31st IEEE/ACM international
conference on automated software engineering (ASE), pp 87–98. IEEE

Wu Y, Manabe Y, Kanda T, German DM, Inoue K (2015) A method to detect
license inconsistencies in large-scale open source projects. In: 2015 IEEE/
ACM 12th working conference on mining software repositories, pp
324–333. IEEE

You I, Yim K (2010) Malware obfuscation techniques: a brief survey. In: 2010
international conference on broadband, wireless computing, communi-
cation and applications, pp 297–300. IEEE

yWorks: yGuard. https:// www. yworks. com/ produ cts/ yguard (2020)
Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X (2019) A novel neural source

code representation based on abstract syntax tree. In: 2019 IEEE/ACM
41st international conference on software engineering (ICSE), 783–794

Zhao G, Huang J (2018) Deepsim: Deep learning code functional similarity. In:
Proceedings of the 2018 26th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering. ESEC/FSE 2018, pp. 141–151. Association for Computing
Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 32360 24. 32360 68

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.sable.mcgill.ca/JBCO/
https://www.sable.mcgill.ca/soot/
https://github.com/ststeiger/procyon
https://github.com/superblaubeere27/obfuscator/
https://github.com/superblaubeere27/obfuscator/
https://doi.org/10.1145/2771783.2771795
https://doi.org/10.1145/2771783.2771795
https://www.yworks.com/products/yguard
https://doi.org/10.1145/3236024.3236068

	Are our clone detectors good enough? An empirical study of code effects by obfuscation
	Abstract
	Introduction
	Background and related work
	Code clone detection
	Code obfuscation
	Obfuscation on clone detection

	Approach
	Data preprocessing
	Obfuscation framework
	Code decompilation and clone preparation
	Clone detection framework

	Evaluation
	Experiment setup
	Efficacy

	Data analysis and measurement
	Clone detectors under obfuscation
	Changes in the detection rate of clone detectors before and after code obfuscation
	Influence of basic obfuscation strategies
	Basic obfuscation strategies vs. combined strategies
	False positives caused by code obfuscation

	Traditional clone detectors versus DL-based detectors
	Overall performance comparison
	Performance comparison for various clone types
	The effect of obfuscation strategy on two types of clone detectors
	Comparison of the impact brought by different obfuscation tools on traditional tools and DL-based ones

	Discussion
	Conclusion
	Acknowledgements
	References

