
Guo et al. Cybersecurity (2023) 6:13
https://doi.org/10.1186/s42400-023-00150-3

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access

Cybersecurity

SkillSim: voice apps similarity detection
Zhixiu Guo1,2, Ruigang Liang1,2* , Guozhu Meng1,2 and Kai Chen1,2

Abstract

Virtual personal assistants (VPAs), such as Amazon Alexa and Google Assistant, are software agents designed to
perform tasks or provide services to individuals in response to user commands. VPAs extend their functions through
third-party voice apps, thereby attracting more users to use VPA-equipped products. Previous studies demonstrate
vulnerabilities in the certification, installation, and usage of these third-party voice apps. However, these studies focus
on individual apps. To the best of our knowledge, there is no prior research that explores the correlations among
voice apps.Voice apps represent a new type of applications that interact with users mainly through a voice user inter-
face instead of a graphical user interface, requiring a distinct approach to analysis. In this study, we present a novel
voice app similarity analysis approach to analyze voice apps in the market from a new perspective. Our approach,
called SkillSim, detects similarities among voice apps (i.e. skills) based on two dimensions: text similarity and structure
similarity. SkillSim measures 30,000 voice apps in the Amazon skill market and reveals that more than 25.9% have at
least one other skill with a text similarity greater than 70%. Our analysis identifies several factors that contribute to a
high number of similar skills, including the assistant development platforms and their limited templates. Addition-
ally, we observe interesting phenomena, such as developers or platforms creating multiple similar skills with different
accounts for purposes such as advertising. Furthermore, we also find that some assistant development platforms
develop multiple similar but non-compliant skills, such as requesting user privacy in a non-compliance way, which
poses a security risk. Based on the similarity analysis results, we have a deeper understanding of voice apps in the
mainstream market.

Keywords Voice app, Similarity analysis, Skills

Introduction
Virtual Personal Assistants (VPAs), such as Ama-
zon Alexa, Google Assistant and Xiaomi Xiao AI, are
equipped on different smart devices, like smart speakers,
to assist users with tasks like getting weather informa-
tion and turning on the radio. In addition to the built-in
functions, VPA platforms also allow third-party develop-
ers to submit their voice apps (called skills by Amazon or

actions by Google1) to VPA app stores to provide a wider
range of functions.

The ecosystem centered on VPA services is constantly
growing and expanding. Most researches focus on ana-
lyzing VPAs’ security, such as the security of speech rec-
ognition (Yuan et al. 2018; Chen et al. 2020). With the
rapid increase of third-party skills (over 100,000 Amazon
(2019)), the security of skills raises concerns. The emer-
gence of skills expands the attack surface of VPAs, as
malicious developers may develop harmful or unwanted
skills (Guo et al. 2020; Kumar et al. 2018; Zhang et al.
2019a; SRLabs 2022). To mitigate such risks, VPA plat-
forms establish a series of policies for third-party devel-
opers to follow, and they certify these skills through
manual or automated processes. If a skill violates these

*Correspondence:
Ruigang Liang
liangruigang@iie.ac.cn
1 SKLOIS, Institute of Information Engineering, Chinese Academy
of Sciences, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China 1 Hereinafter, voice apps are collectively referred to as skills.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00150-3&domain=pdf
http://orcid.org/0000-0002-8751-9918

Page 2 of 17Guo et al. Cybersecurity (2023) 6:13

policies, it will not be published in the voice app store.
However, previous studies prove that there are vulner-
abilities in the certification process, and some skills that
violate policies still appear in VPA app stores (Cheng
et al. 2020; Wang et al. 2021).

Some VPA platforms, like Amazon, have low barri-
ers for creating developer accounts and do not limit the
number of accounts. As a result, developers can cre-
ate multiple accounts to develop similar unwanted skills
without drawing reviewers’ attention. Reviewers for VPA
platforms can identify skills under the same developer
account. However, they cannot correlate skills published
by different accounts belonging to the same person or
team, even if these skills are very similar (Cheng et al.
2020; Wang et al. 2021). Therefore, it is significant to
detect the similarity among skills. Firstly, it can correlate
similar skills and offers a new perspective on the voice
app market. Secondly, it can associate different accounts
belonging to the same developer to enhance the detec-
tion of suspicious or malicious behavior.

Challenge. To the best of our knowledge, no prior
research explores skill similarity analysis, mainly due to
the following challenges. First, the skill’s code is unavail-
able. It is maintained on the developer’s server and is not
even available to platform reviewers. Most skills also have
no graphical user interface (GUI). All that is available is
the natural-language-based interaction content between
users and skills, making it impossible to detect similar
skills in the same manner as traditional software. Sec-
ond, defining skill similarity is challenging. For instance,
should skills with cross-content be considered similar, or
should those with the same topic be considered similar?
Skills are essentially software and have structural features
that are specific to code, requiring more than just detect-
ing text similarities.

Our approach. Skills have two characteristics: one is
that developers implement functionality through code,
and the other is that skills interact with users in the form
of a natural-language-based conversation. Considering
the two characteristics of skills, we design SkillSim to
detect similarities among skills by comparing both texts
and structures of skills’ interaction content. In particular,
SkillSim extracts different features from multiple dimen-
sions. For example, to detect text similarity, SkillSim
extracts both overall text features and key text features
separately based on different purposes. In terms of struc-
ture similarity, SkillSim abstracts skill interaction content
as tree structures, where each node contains an input and
an output. Structure similarity is then determined based
on node features. Through these dimensions, we are able
to assess skill similarities from different viewpoints.

SkillSim evaluates 30,000 skills and finds that 25.9%
of the skills have at least one skill with more than 70%

text similarity to them. In addition, we identify three
main factors contributing to the large number of similar
skills in the market, such as the assistant development
platforms and their limited templates. Further analysis
reveals that one developer or development platform may
develop multiple similar skills using the same or different
accounts for certain purposes such as advertising. Addi-
tionally, some assistant development platforms develop a
large number of similar and non-compliant skills, putting
users’ privacy at risk.

Contribution. The contributions of the paper are as
follows:

• A skill similarity detection method and a large-
scale analysis. This paper presents the first skill simi-
larity analysis. SkillSim calculates similarities among
skills based on their text and structure character-
istics. The study involves a comprehensive analysis
of 30,000 skills in the mainstream market, and the
results are representative.

• Interesting findings and a new perspective. The
similarity analysis results indicate that a significant
portion (accounting for 25.9%) of skills have at least
one other skill with more than 70% text similarity to
them. We summarize three reasons behind that and
propose suggestions. Our analysis reveals that some
developers or platforms create multiple similar skills
with different accounts for purposes such as adver-
tising. In addition, some assistant development plat-
forms create multiple similar but non-compliant
skills, thus posing a risk to user privacy. These results
offer a novel perspective on the current voice app
market.

Background
VPAs and skills
VPAs, such as Amazon Alexa and Google Assistant,
provide services to users through voice-based interac-
tions. The functionality of these services can be greatly
expanded through third-party skills. As with traditional
apps, third-party skills are developed by third-party
developers and uploaded to the VPA app stores for vet-
ting. If a skill passes the vetting process, it can be pub-
lished on the voice app stores. The code of the skill is
maintained on the developer’s server. Like users, VPA
platform reviewers can only review a skill by interact-
ing with it through the natural- language-based interface
with sample utterances provided by the developer.

Figure 1 shows a process flow of user interaction
with skills. The user first speaks a wake-up word (e.g.,
“Alexa”) to wake up the VPA-equipped device (e.g., smart
speaker). After the VPA is awakened, the user continues

Page 3 of 17Guo et al. Cybersecurity (2023) 6:13

to send voice commands combining keywords (e.g.,
“open”, “enable”) with skill invocation name (e.g., “open
clever real estate”). This command is transmitted to the
VPA server via the smart speaker for analysis. The VPA
server identifies the corresponding skill based on the skill
invocation name (e.g., “clever real estate”) and sends the
instruction to the server where the developer can process
the command. The third-party skill returns the processed
results to the user layer by layer to achieve the interaction
goal. Figure 2 shows an interaction content example that
a user interacts with a third-party skill called “Clever Real
Estate”.

If third-party skills want to be published on VPA app
stores, they must adhere to a set of policies established
by VPA platforms and undergo review (Amazon 2022a).
The VPA platform assesses these skills either manually or
automatically to determine if they comply with the poli-
cies (Wang et al. 2021). For example, if a skill requests
users’ personal information such as name, phone num-
ber, and email, Amazon requires the skill to include a
privacy policy link and configure corresponding permis-
sions (Amazon 2022b). Despite these measures, some
studies discover that the review process is vulnerable,

Users VPA Devices VPA Server

Native Skills

Third-Party Skills
Fig. 1 User-skill interaction process flow

open clever real estate

Ok, Here's Clever Real Estate. …… For a complete list of
commands, please say help. But to get started say, List with
Clever! Now, what can I do for you?

yes

Starting with the area code, please tell me your phone number.

……

……

help

I have a few things I want you to know about Clever. You
can say things like, Tell me about Clever, How does it work,
Give me some testimonials, or contact Clever. What can I
do for you?

Fig. 2 An interaction path sample with the skill “Clever Real Estate”

Page 4 of 17Guo et al. Cybersecurity (2023) 6:13

and some skills that do not meet the policy requirements
still make it to the app stores (Guo et al. 2020; Cheng
et al. 2020). In addition, the VPA platform can only iden-
tify multiple skills under the same developer account, but
cannot detect similar skills among different accounts,
which makes it feasible for developers to create similar
skills using multiple accounts (Cheng et al. 2020). As a
result, it becomes critical to detect similarities among
skills.

Skill interaction
To use a skill, a user installs it using sample instructions
provided by the developer. The user then analyzes the
content returned by the skill to generate new input. The
interaction path will end when the skill ends the interac-
tion or the user actively terminates the interaction. Fig-
ure 2 shows an example of an interaction path. Here, we
briefly introduce the frequently used terms.

• Input. The user’scommand for skills.
• Output. The content returned by the skill after

accepting the user’s input.
• Interaction path. A path from the first input of the

user to the final output of the skill.
• Interaction record. All interaction paths of a skill.
• Question. For the output returned by a skill, if users

can parse the content and generate new inputs, the
output will be a question. There are different types
of questions. We refer to the classification and defi-
nition of question types in SkillExplorer (Guo et al.
2020), which is shown in Table 1.

Software clone detection
Traditional software clone detection is mainly to detect
code, graphical user interface, etc. Among them, code

clone detection can be roughly categorized into four
types: identical code, renamed code, almost identical
code, and semantically similar code (Bellon et al. 2007).
Based on different representation forms of code (such as
token, control flow graph and data flow graph), different
detection methods are used to detect software clone (Ain
et al. 2019; Meng et al. 2016).

However, skills lack graphical user interfaces and their
code is not accessible. Only interaction content based on
natural language text is available, thus making traditional
software clone detection methods inapplicable to skills.
This paper presents a novel method for identifying skill
similarity based on the text and structure of skill interac-
tion content.

Our approach
Overview
As mentioned above, when computing skill similarity,
both the text and structure dimensions of skills must be
considered. Figure 3 illustrates the framework of Skill-
Sim, which inputs the interaction records of two skills
and extracts their features to calculate skill similarities.

For text features, SkillSim extracts the overall text and
the key text to calculate the text similarity separately. For
structural features, SkillSim extracts the tree structures
from skill interaction records and employs node features,
such as the question type, for the calculation of structure
similarity.

Text similarity
An interaction record contains all interaction paths of a
skill, and each interaction path encompasses all inputs
and outputs from the start to the end of a complete inter-
action. In this study, we focus on the skill content. The
automated analysis of SkillExplorer (Guo et al., 2020) and
VITAS (Li et al., 2022) generates inputs of skills from the
output of the previous round. Therefore we can extract
only skills’ response content, i.e., the outputs in interac-
tions, and ignore the inputs.

For text similarity, two cases are considered. Case 1
involves a situation where the content is similar, but the
topics may vary. For instance, the same advertisement
template may be utilized for different themes. Case 2
involves a situation where the themes are identical, but

Table 1 Question types in skills

Question Type Description

Yes/No questions A Yes/No question is an interrogative
construction and expects answers like “yes”
or “no”.

Instruction questions An instruction question gives users direct
guidance on how to answer it. Instruction
questions often contain key keywords like
“say”, “ask”.

Selection questions A selection question contains multiple
parallel options for users to choose from.

Wh questions A Wh question begins with WH-tag.

Mix questions A mix question contains more than one of
the previous four question types.

Skill interaction records

Overall text

Interaction trees

Text
similarity

Structure
similarity

Key text

Fig. 3 The framework of SkillSim

Page 5 of 17Guo et al. Cybersecurity (2023) 6:13

the content is distinct, as in the case of different adver-
tisement templates being utilized for the same theme.

Therefore, we calculate the overall text similarity and
key text similarity separately.

Overall text similarity. SkillSim extracts all outputs
from a skill’s interaction record as its overall text.2 Next,
it calculates the overall text similarity among skills. Since
we are concerned with content duplication, we choose
n-shingles as the granularity and use Jaccard to calculate
the similarity. If the overall text between two skills is very
similar, it can determine that the two skills are clones.

• Jaccard similarity. Jaccard index Jaccard (1912),
also known as Jaccard similarity coefficient, is used
to compare the similarities and differences between
sets. Given two sets A and B, Jaccard coefficient is
defined as the ratio of the intersection of A and B to
the union of A and B. The larger the Jaccard coeffi-
cient value, the higher the similarity of the skills. As
shown in Eq. 1, na is the n-shingles elements in set A,
and nb is the n-shingles elements in set B.

 However, performing pairwise comparisons in a
document corpus is time-consuming because the
number of comparisons grows geometrically with the
size of the documents. Most of those comparisons
are unnecessary because they are not similar. There-
fore, before calculating the true Jaccard similarity, we
perform a pre-filter.

• Minhash and locality-sensitive hashing. The gen-
eral idea of Minhash algorithm (Broder 1997) is to
use hash functions to disrupt the positions of ele-
ments uniformly, and then take the first element of
each set in the new order as the features of the set.
Under the condition that the hash function is uni-
formly distributed, the probability that the Minhash
value of set S1 and set S2 are equal will be equal to
the Jaccard similarity of the two sets. MinHash is
essentially a Jaccard approximation. As shown in
Fig. 4, MinHash can produce an n-dimensional vec-
tor from skill interaction records signature where n is
much smaller than m (the total number of words in
interaction records).

The basic idea of locality-sensitive hashing (LSH) Indyk
and Motwani (1998) is to gather similar sets together

(1)

Simoverall(A,B) =
|na ∩ nb|

|na ∪ nb|
=

|na ∩ nb|

|na| + |nb| − |na ∩ nb|

and avoid more different sets. It divides a signature from
Minhash into multiple lower-dimensional vectors, called
bands. LSH uses a hash function to assign identical bands
to the same hash bucket to obtain candidates of similar
skills. With this approach, we can filter irrelevant skill
pairs and thus focus on candidate skill pairs that are likely
to be similar.

Key text similarity. Unlike the overall text, key text
highlights specific themes or elements of a skill, thus
distinguishing it from other skills. Key text can help
SkillSim to find skills with the same topic or the same
key elements. Here we choose IDF to calculate key text
similarity.
• Inverse document frequency. Inverse Document

Frequency (IDF) (Wu et al. 2008) is often used to evalu-
ate the importance of a word to a document set. The
main idea of IDF is that the fewer documents that con-
tain a term, the better ability it will have to distinguish
between categories. Therefore, IDF can help to filter out
common words and keep important words. This is con-
sistent with what we want to achieve.

The formula of IDF is as follows. The subscript i means
the sequence number of the word w and j means the
sequence number of the document d. A document is the
overall text of a skill (i.e. outputs in an interactive record).
M is the number of documents (i.e. the number of skills),
and | j : wi ∈ dj | is the number of documents in which
the word wi appears.

We use the overall text of all skills as a corpus. Based on
the corpus, we calculate the IDF value of each word. The
higher the IDF value, the more representative the word
is. Next, we calculate key text similarity between skills.
We use A and B to denote two documents, and na and nb
are the words in the two documents respectively. The cal-
culation formulas are as follows. We obtain the common
words in na and nb and add up their IDF values, then we
calculate the sum of IDF value of the words in the union
set of na and nb . Finally, the key text similarity is obtained
by calculating the ratio of the two sums.

Structure similarity
As mentioned above, a skill is essentially software, with
its functional logic being realized through code stored
on a developer server, thus possessing application-spe-
cific structural information. In this section, we abstract

(2)idfi = log
M

1+ |
{

j : wi ∈ dj
}

|

(3)

Simkey(A,B) =

∑

log M
1+|{j:wi∈dj}|

∑

log M
1+|{k:wu∈dk}|

,wi ∈ |na ∩ nb|,wu ∈ |na ∪ nb|

2 Skill descriptions reflect skill functions, so we also add skill descriptions to
the overall text.

Page 6 of 17Guo et al. Cybersecurity (2023) 6:13

the natural language content in the skill interaction
record into tree structures to realize structure similarity
calculation.

Tree structure similarity. A skill interaction record
contains multiple interaction paths, similar to execution
paths in a program. As shown in Fig. 5, the root node
N1 contains the user’s wake-up statement and output
returned by the skill for the first time. Each child node
contains the new input generated based on the skill out-
put in the parent node, and the output returned by the
skill in response to this new input. For example, node
N2_2 contains an input generated from the output of
node N1, and an output returned from the skill after the
user sends the input in N2_2 .

When the first nodes of several paths are consistent,
these paths can be integrated, and the same child nodes
can also be merged. Finally, the interaction records
can be abstracted into trees. At this time, the struc-
ture of a skill can be reflected in a tree structure, and
the skill structure similarity can be calculated through
tree structure similarity. It is important to note that
the order of tree nodes in the same layer is ignored

when calculating similarities. It depends on the order
in which users generate their answers and the order
in which they select them. Therefore, the order is not
controllable.

SkillSim disregards the order of interaction trees, i.e.
does not care about the order of sibling nodes. SkillSim
mainly focuses on the hierarchical structure, extracting
four features of each node in a tree. The feature d rep-
resents the depth of the current node. The feature h rep-
resents the distance from this node to the longest path
leaf node, that is, the height of the current node. And
the feature o represents the node’s out degree, that is, the
number of answers that can be generated by the output
in this node. To compare the similarity of tree structures
more accurately, we assign a value to each node, which is
the question type of the output in that node. We use the
feature c to represent it. As shown in Table 1, the ques-
tion types are divided into 5 types. If the output does not
belong to any of these categories, we will assign the node
a value of “none”.

As a result, SkillSim extracts a 4-tuple (d, h, o, c) from
each node as its feature. In particular, SkillSim eliminates

Skills
(interaction records)

……
Profiles & features

(1, 0, 0, 0, 1, 0……1, 0, 1)
(1, 0, 1, 1, 1, 0……0, 0, 1)

(1, 1, 0, 0, 1, 0……1, 1, 1)
…

m

Signatures

(5, 3, 2, 1, 1, 2……6, 5, 1)
(7, 4, 8, 3, 1, 1……6, 5, 1)

(5, 6, 7, 9, 1, 3……1, 4, 1)

…

n (n<<m)

Minhash

LSH

(5, 3, 2, 1, 1, 2……6, 5, 1)
(7, 4, 8, 3, 1, 1……6, 5, 1)

(5, 6, 7, 9, 1, 3……1, 4, 1)

…
n (n<<m)

…

bandband band

Candidates of
similar skills

……

Mapping
by hash
function

Signatures Buckets

Hash tables

(6, 5, 1)

(1, 4, 1)

Fig. 4 The framework of Minhash and LSH

Page 7 of 17Guo et al. Cybersecurity (2023) 6:13

the distraction of the different ways that the user uses
the wake-up sentence. For example, one way is to ena-
ble the skill and input the desired function after the skill
response, while the other way is to start the skill with the
desired function (such as “Alexa, play the album from
Barbie De Facto Insider”). SkillSim eliminates this inter-
ference by comparing the similarity of subtrees. Through
the above methods, SkillSim abstracts a skill to a set of
tuples. It then calculates the Jaccard similarity of the two
skills.

Implementation
Dataset. SkillSim aims to detect skill similarity, and
interaction with skills is not the focus of this paper.
Therefore, we request a part of the experimental data
from SkillExplorer (Guo et al. 2020) as our dataset. The
dataset includes interaction records of 30,000 skills, and
basic information of 68,066 skills crawled from the Ama-
zon skill store, as shown in Table 2.

Text similarity. SkillSim first pre-processes interaction
content. For the overall text, SkillSim only performs sim-
ple processing, such as converting words to lowercase,
deleting punctuation marks, etc. Then, SkillSim splits the
content with 3-shingles as granularity. Minhash and LSH
algorithms are implemented using datasketch (2022) so
that the overall text can be pre-filtered. Here we set the
number of random permutation functions in Minhash to
the default value 128. We get the candidate similar skill
pairs with approximate Jaccard similarity greater than
10% based on LSH. SkillSim performs pairwise Jaccard
similarity calculation based on pre-filtering results. Then,
SkillSim extracts the key text of skills from the overall
text. It uses NLTK (2022) and spaCy (2022) to perform
more detailed preprocessing on the overall text, includ-
ing removing stopwords, and recovering word stems,
etc. Finally, SkillSim calculates IDF value and key text

similarity with these words. The settings are shown in
Table 3.

SkillSim employs the response content of skills as the
text comparison object. This is because the input of the
skills generated by SkillExplorer is already reflected in
the comparison object, as it originates from the output of
the previous round. To confirm this, we randomly choose
1,000 skill pairs and recompute their overall text simi-
larity and key text similarity by incorporating the inputs

Fig. 5 The interaction tree of the skill “Clever Real Estate”

Table 2 The number of skills in different categories

Skill type Total With records

Business and finance 3,336 1,420

Connected car 115 74

Education and reference 6,422 3,296

Enterprise 4 2

Food and drink 1,336 1,008

Games and trivia 11,413 7,182

Kids 2,684 423

Lifestyle 10,405 3,816

Local 1,223 324

Movies and tv 869 427

Music and audio 8,743 3,194

News 6,394 854

Novelty and humor 3,360 2,154

Productivity 3,737 2,019

Shopping 283 214

Smart Home 2204 626

Social 1,224 549

Sports 1,516 292

Travel and transportation 1,161 880

Utilities 803 570

Weather 834 676

Total 68,066 30,000

Page 8 of 17Guo et al. Cybersecurity (2023) 6:13

of the skills. The average difference in similarity values,
when comparing the results with and without including
the inputs, is 0.46%. Thus, not including the inputs does
not have a significant impact on the results.

Structure similarity. SkillSim analysis interaction
records to build trees. According to the method of clas-
sifying question types described in SkillExplorer (Guo
et al. 2020), SkillSim uses spaCy to obtain question types
and constructs 4-tuple for each node. In addition, Skill-
Sim extracts subtrees (height > 2) of the tree and changes
the corresponding depth. Each interaction tree is stored
as a sequence of tuples. It should be mentioned that Skill-
Sim only focuses on the presence or absence of nodes but
not on the order of the nodes when calculating the simi-
larity. Also, SkillSim uses pre-filtering method to exclude
skill pairs that are completely irrelevant or have little sim-
ilarity (< 10%), and calculates the true similarity based
on the filtering results.

Evaluation
In this section, we aim to answer the following research
questions.

• RQ1: What characteristics do the skills exhibit at a
large scale?

• RQ2: What can be concluded from similarity analy-
sis?

• RQ3: How effective is SkillSim in detecting similar
skills?

Landscape
To answer RQ1, we evaluate 68,066 skills. Out of these
skills, we obtain 23,352 developer names, with an average
of 2.9 skills per developer. Among them, 42.65% of devel-
opers have at least two skills.3 We construct a Cumulative
Distribution Function (CDF) graph to show the number
of skills each developer possesses. As shown in Fig. 6, the
X-axis represents the number of skills for a given devel-
oper name. 57.35% of developers possess one skill, and

less than 0.4% of developers have more than 54 skills. 49
developers have over 100 skills.

Three developers possess over 1,000 skills, they are
InfoByVoice (with more than 2,500 skills), Rhall (with
more than 1,400 skills) and Patch.com (with more than
1,000 skills). We analyze these three developers fur-
ther. InfoByVoice and Rhall both refer to voiceapps.
com, a platformwhich helps non-technical individuals
to develop their skills. Its homepage claims “Building
complex skills is easy with Voice Apps.....”. Although both
developers come from the same platform, the skills
developed by InfoByVoice are mainly in the Lifestyle
category, while the skills developed by Rhall are mainly
in the Games & Trivia category, with very few in Nov-
elty and Humor and Education & Reference. Moreover,
Patch.com points to the website Patch.com, an adver-
tising promotion site that helps companies place ads.
Most of the skills developed by this developer belong
to the News category. All three developers belong to
advertising or assistant development platforms.

Answer to RQ1: Many developers are associated with
multiple skills, with 42.65% of them having more than
one skill. Some developers or development platforms
even have thousands of skills.

Similarity analysis
To answer RQ2, we analyze the results of the similarity
calculation. This section presents an in-depth analysis
from two different perspectives: the similarities among
skills and the developers associated with those skills.
Based on the pre-filtering results, we obtain skill pairs
with similarity greater than 10%.

Similar skills. We analyze the similarity results
from various perspectives. Figure 7 depicts the CDF
of similarities distribution, where the X-axis repre-
sents the similarity values and the Y-axis displays

Table 3 Similarity calculation configuration

Similarity Granularity Feature expressions

Overall text 3-shingles 3-shingles

Key text Word IDF

Tree structure Node Tree feature tuples

Fig. 6 The number of skills owned by a developer

3 Note that the developer names are not unique, so the same name does not
represent the same developer. Here is just an analysis of the basic information,
and we will analyze further later based on the skill interaction content.

Page 9 of 17Guo et al. Cybersecurity (2023) 6:13

the percentage of values that are less than the given
similarity.

For the overall text similarity, the percentage of
skill pairs with similarity greater than 10% is 2.3%,
and we perform analysis based on these skill pairs.
Of these data, as shown by the red line, 11.9% of the
skill pairs are more than 50% similar, while 7.5% of the
skill pairs are more than 70% similar. 0.1% of the skill
pairs have a similarity greater than 90%. We carry out
manual analysis on a total of 900 skill pairs by select-
ing 100 skill pairs for each varying degree of similar-
ity (i.e. from 10% to 90%). Skill pairs with a similarity
greater than 70% typically have almost identical con-
tent. This is consistent with previous works (Manaa and

Abdulameer, 2018). These skill pairs may only differ in
the name or have slight modifications to their content.
The first four rows of Table 4 are two skill pairs. The
skill “SingleStone” and the skill “SolitaryStone” are both
advertising “singlestone” although they come from dif-
ferent developers “SingleStone Consulting” and “Pepper
Industries”. Except for the different skill names in the
first sentence, the rest content is exactly the same. The
skills in the second pair come from the same developer,
and they have roughly the same content except for the
skill names. Most of the skills with a similarity greater
than 50% use identical templates with only minor
modifications in content. For example, a skill named
“Harvest Christian Fellowship” is developed by “InfoBy-
Voice”, and the skill “Wave Church Seaboard, Virginia
Beach, VA” developed by “SkillSet” have an overall text
similarity of 58.1%. Although they present information
about two different churches, they use the same ques-
tioning phrase and the same contact information. The
skill pairs with more than 30% overall text similarity are
some based on the same template but with significant
differences in content, and others due to the common
phrases in short conversations, such as “for help please
visit help pages on amazon web site”.

For key text similarity, 4.1% of the skill pairs have a sim-
ilarity greater than 10%. In these data, as shown by the
green line, 12.4% of skill pairs are more than 50% similar
and the percentage of skill pairs that are more than 70%
similar is 7.8%. In addition, Furthermore, 0.05% of skill

Fig. 7 Similarity probability distribution

Table 4 Examples of similar skill pairs

Skill name Developer Contents Osim Ksim

SingleStone SingleStone Consulting “Ok here is singlestone. singlestone is a consulting firm that focuses on reduc-
ing friction and removing barriers in business. it has expertise in customer
experience product development and internal collaboration. singlestone is
located at 4101 cox road suite 350 glen allen virginia 23060”

95.0% 91.1%

SolitaryStone Pepper Industries “Ok here is solitarystone. singlestone is a consulting firm that focuses on reduc-
ing friction and removing barriers in business. it has expertise in customer
experience product development and internal collaboration. singlestone is
located at 4101 cox road suite 350 glen allen virginia 23060”

Find Seafood Specials Black Point Lobster “Ok here is find seafood specials. are you cooking whole live lobsters or lobster
tails. would you like to grill boil bake or steam your lobster tails remove
from freezer making sure it is no longer moving. push the tip of a skewer or
large sharp heavy knife into the center of the cross on its head”

73.9% 81.1%

How to Eat Lobster Tail Black Point Lobster “Ok here is how to eat lobster tail. are you cooking whole live lobsters or lob-
ster tails. would you like to grill boil bake or steam your lobster tails remove
from freezer making sure it is no longer moving. push the tip of a skewer or
large sharp heavy knife into the center of the cross on its head”

Fire Fact Number One Card Rhall “......card with fact is being sent to your alexa app. this app sends a card to your
alexa app. this card will give you a fact about fire. this skill was built with love
by voiceappscom”

40.0% 71.83%

Wolf Facts SJ “......card with link is being sent to your alexa app. this app gives facts about
wolves. open it and it will randomly give you a fact about wolves. this skill was
built with love by voiceappscom”

Page 10 of 17Guo et al. Cybersecurity (2023) 6:13

pairs have a similarity greater than 90%. Here we focus
on the difference between key text similarity and overall
text similarity. As shown in the last two rows of Table 4,
the skills Fire Fact Number One Card and Wolf Facts have
different developer names, and the overall text similar-
ity is 40%. It is difficult to distinguish whether they are
related just from the overall text similarity. However, key
text similarity captures important information voiceapp.
com, with a similarity of 71.83%. Thus, by combining the
key text similarity with overall text similarity, we can
effectively identify skills on the same topic or important
key items.

For the tree structure, we filter out skills with less
than 2 responses (about 1/3), most of which are sim-
ple ad skills or skills related to news. We then calculate
the tree structure similarity. The percentage of skills
with more than 10% similarity in the skill pairs is 1.33%.
Among these skill pairs, as shown in the blue line of the
figure, 18.4% of the skill pairs have more than 50% simi-
larity, 16.7% have more than 70% similarity, and 15.1%
have more than 90% similarity. We further combine the
tree structure similarity with the overall text similarity
for an in-depth analysis. The results show that for skill
pairs with overall text similarity greater than 90%, 71.3%
of the tree structure similarity is greater than 70%. For
skill pairs with overall text similarity over 70%, 48% of
skill pairs display a tree structure similarity of more than
70%. We find that the order in which the skill commands
are used in the interaction affects the skill response con-
tent (e.g. different responses for the first and second
time when opening skill). Besides, the mechanisms of
SkillExplorer (Guo et al. 2020) for answering questions
(e.g. ending the path if a response is visited) also affect
the tree structure similarity. These two reasons decrease
the tree structure similarity value. We randomly select
500 skill pairs with overall text similarity over 70%. After
manually and completely traversing the skills in a certain
order, SkillSim automatically draws the tree structure
and calculates the similarity. We find that the percent-
age of skill pairs with tree structure similarity over 90%
is 93.5%, and the percentage of skill pairs with more than
70% similarity is 89.2%. This indicates that the tree struc-
ture similarity can be used to detect templates.

In summary, the three similarity measures evaluate
skill similarity from distinct perspectives, and they can be
utilized in combination as required.

We also analyze the number of similar skills. We cal-
culate the percentage of skills with skill similarity greater
than 90%, 80%, and 70% based on overall text similarity,
key text similarity, and tree structure similarity, as shown
in Table 5. As many as 25.9% of the skills have skill pairs
with an overall text similarity greater than 70%. 16.4% of
the skills have skill pairs with a key text similarity greater

than 70%. And for the tree structure, 36% of the skills
have other skills with similarity greater than 90%. Then
we combine the overall text similarity and key text simi-
larity for a more rigorous analysis. The result shows that
11.1% of the skills have both similarities greater than 70%.
This percentage is surprising because, as analyzed above,
a 70% similarity largely means that the template and con-
tent of these skills are basically the same.

In order to know how many similar skills there are for
each skill, we count the data based on different similar-
ity perspectives under different similarity values (70%
and 50%). As shown in Fig. 8, the two sub-figures have
roughly the same trend, mainly distributed in 1− 2 and
> 50 . Among the skills with similarity greater than 70%,
nearly 50% of them have more than 50 other skills with
similar overall text, and the tree structure has a tendency
to be consistent with the overall text. This phenomenon
indicates that many similar skills use the same develop-
ment template.

Developers. In landscape, we count developer names
based on the skill’s basic information. Here, we combine
developers and skill similarity for further analysis. We
get 14,211 developer names in the 30,000 skills. Then we
analyze similar skills under the same developer name and
similar skills among different developer names.

For the same developer name, we count a total of 3,516
developer names corresponding to more than 1 skill. We
group the skills corresponding to each developer name.
If the number of categories after clustering is fewer than
the number of skills, we consider it to be changed. Table 6
shows that the more skills a developer name possesses,
the more likely it is to be changed. When clustering based
on a text similarity greater than 70%, 27.2% of developer
names with 5 or more skills changed. This value reaches
44.5% when based on an overall similarity of greater than
50%. This makes sense because when developers need
to develop multiple skills, using the original template or
content can reduce the workload.

Among these developer names, “InfoByVoice” has 2,412
skills, the largest number, followed by developer “Rhall”
with 1,232, which is consistent with the result obtained
from the previous basic information. We further analyze
the content of skills corresponding to the same developer

Table 5 Proportion of similar skills

Similarity perspectives ≥ 90% ≥ 80% ≥ 70%

Overall text 9.6% 21.0% 25.9%

Key text 5.5% 11.2% 16.4%

Tree text 36.0% 37.9% 40.1%

Overall text + Key text 4.6% 8.6% 11.1%

Page 11 of 17Guo et al. Cybersecurity (2023) 6:13

name. We perform similarity clustering for skills with
“InfoByVoice” developer name. The 2,412 skills are clus-
tered into 2,089 categories based on an overall text simi-
larity of 90%. In addition, these skills are clustered into 79
categories based on an 80% similarity and are clustered
into 19 categories based on a 70% similarity. This sug-
gests that “InfoByVoice” uses very similar templates and
contents to advertise different topics, which is confirmed
manually. Therefore, there are indeed cases in which
the same developer or development platform develops a
large number of skills with similar content.

For different developers, we obtain skill pairs with over-
all text similarity and key text similarity both greater than
50%, and cluster 30,000 skills into 21,754 categories. The
largest category encompasses more than 2,500 skills.
After conducting manual analysis, three main cases are
identified. In the first case, these similar skills are devel-
oped with the skill assistant development platforms. They

include official assistant platforms such as “Blueprints”,
and third-party assistant development platforms such
as “VoiceApps”. Among the 30,000 skills, there are more
than 900 skills from “Blueprints” that have obvious hints.
For the third-party platforms, we analyze the categories
with more than 50 skills and get a total of 16 third-party
platforms. Using these third-party platforms, skills can be
published either through the platform account or devel-
opers’ own accounts. There are some identical elements in
these skills, such as the same statements (e.g. “ok here is...
get standings and records for the...”) or information about
the platform (e.g. email and phone number). These 16
third-party platforms can associate more than 9,000 skills
and more than 200 developer names. The number of skills
is more than 30% of the total number of skills we analyze.
In the second case, the developer is an organization that
develops multiple similar skills either by itself or through
third-party platforms. For example, “SnoCountry” devel-
ops more than 400 similar skills for broadcasting detailed
ski and snow condition reports and resort information.
The last case is skills that are suspected to be developed
by the same developer using different accounts, such as
skills “SingleStone” and “Pepper Industries” in Table 4.

Non-compliant behaviors. During the analysis, we
find some non-compliant behaviors. For example, Ama-
zon requires developers cannot explicitly request that
users leave a positive rating of the skill (Amazon 2022c).
However, up to 2,090 skills in several cluster categories
from third-party developer platforms like “getstoryline”,
“VoiceSkillsInc”, “Appbly.com” all explicitly mention
“please leave a 5 star review” or “give us a 5 star rating”
, etc. We further analyze the issues related to user pri-
vacy. Amazon requires developers to include a privacy
policy link and configure permissions when they need

Fig. 8 Similar skill numbers

Table 6 Skill clustering changed based on the same developer
name

of
developer’s
skills

Similarity
value

Overall text
(%)

Key text (%) Tree
structure
(%)

≥ 2 0.9 2.6 2.8 10.1

≥ 3 4.4 4.7 17.1

≥ 5 8.7 8.6 28.1

≥ 2 0.7 9.4 7.3 11.0

≥ 3 15.6 12.1 18.5

≥ 5 27.2 23.1 30.4

≥ 2 0.5 17.1 13.2 12.8

≥ 3 27.4 21.0 21.2

≥ 5 44.5 35.4 34.3

Page 12 of 17Guo et al. Cybersecurity (2023) 6:13

user privacy to enhance services. However, Witlingo, a
third-party assistant development platform with over
100 skills (in 30,000), develops 51 similar skills related
to news and asks users for their cell phone numbers
through conversations without configuring the permis-
sions. This behavior facilitates the skill to bypass plat-
form control and access user privacy. The platform is
even recommended by Amazon in the third-party tools
list (Amazon 2022d). “Voiceter Pro Inc”, also a third-
party development platform, develops 36 similar skills
related to real estate, asking users for zip codes and
addresses without configuring permissions. In addition,
in the same cluster category as ‘Voiceter Pro Inc’, there
is also a developer named ‘Voiceter Pro LLC’ who devel-
ops similar skills that asks for user address and does not
configure permissions.

Findings. Through analysis, we find that although
Amazon claims 100,000 skills, a very large number
of skills are similar in content (25.9% of the 30,000
skills have an overall text similarity of more than
70%). Moreover, the existence of multiple skill assis-
tant development platforms lowers the threshold of
skill development and limits the richness of skill con-
tent. Many low-quality skills are present in the market.
Nearly 1/3 of the skills have a tree structure depth of
less than 3, and most of the skills are advertisements.
15.1% of the tree structures are more than 90% similar.
More importantly, many skills are developed with the
assistance of third-party development platforms, some
of which do not fully comply with Amazon’s certifica-
tion policies, even though some are recommended by
Amazon itself. Similarity analysis assists in identifying
other non-compliant skills that are similar and in estab-
lishing correlations among different accounts.

Answer to RQ2: There are many similar skills in the
skill market and development platforms dominate a
large number of similar skills. Through similarity analy-
sis, we discover that some platforms develop multiple
similar non-compliant skills. Additionally, even plat-
forms that are recommended by Amazon develop skills
that request users’ private information in a non-compli-
ant manner. Furthermore, there are instances of devel-
opers creating non-compliant skills across accounts.

Effectiveness
To answer RQ3, we evaluate the effectiveness of pre-fil-
tering methods and similarity calculation methods.

Pre-filtering methods. We try a pairwise compari-
son. It takes approximately 35 min to perform one mil-
lion overall text similarity comparisons. For 30,000
skills, pairwise comparisons will require roughly 20
days. Using Minhash and LSH algorithms, it only takes

less than 10 min to obtain all skill pairs with similarity
greater than 10%. The pre-filtering method can filter out
more than 90% of irrelevant results, thus significantly
reducing time consumption.

In addition to time performance, we are also con-
cerned with the accuracy of the pre-filtering method. We
get the skill pairs with overall text approximate similar-
ity from similarity greater than 10% to similarity greater
than 90% based on Minhash and LSH algorithms. Then
we calculate the true similarity based on the pre-filtering
results. The results are shown in Fig. 9. The X-axis is the
pre-filtered threshold and the Y-axis is the true similar-
ity. These rectangles show the true similarity based on
the pre-filtered thresholds. The top and bottom of the
rectangle represent 75% and 25% of the data distribution.
The black line below the bottom of the rectangle is the
data starting point. The red line is the median, the green
triangle is the mean, and the violin plot on the right indi-
cates the data density distribution. As we can see from
the figure, more than 85% of the data is accurate, and
false similarity results (around 10%) are tolerable because
we will further calculate the true similarity based on pre-
filtering data and false positives will be filtered. We are
more concerned with false negatives than accuracy, as
this will cause us to miss them in the final results. Here
we adopt two methods to test the false negatives. For the
first method, we randomly select 50,000 pairs that are not
in the pre-filtered results and then compare them with
pre-filtered pairs based on a threshold of 0.1. The result
shows that the false negative rate is less than 0.3%. For
the second method, we check false negatives based on
the pre-filtered result. Pairs with true similarity greater
than 90% in threshold 0.1 and threshold 0.9 are compared
to see if there are any false negatives. The logic behind
this method is that all pairs with similarity greater than
90% have a high probability of existing in threshold 0.1,
but some may be missed in threshold 0.9. Therefore, by
comparing the results of pairs in these two thresholds,
we can check the false negatives. We compare with each
threshold in turn and the false negative rate is lower than
0.07%.

Similarity calculation methods. In the above analy-
sis, we demonstrate the effectiveness of SkillSim through
manual analysis and case studies. In this part, we try to
use learning-based methods like Word2vec (Mikolov
et al. 2013) and Doc2vec (Le and Mikolov 2014) to calcu-
late skill similarity and analyze their performance.

Word2vec, a word embedding methodology, that
enables similar words to have similar dimensions. We
use (Gensim 2022) to train word vectors with 10,000
wiki news and 5000 skill contents. Then we average
each word vector in a document to represent the docu-
ment vector. Finally, we calculate the cosine similarity

Page 13 of 17Guo et al. Cybersecurity (2023) 6:13

between skills in the testing datasets. Due to the lack
of ground truth, we validate the model accuracy by
checking whether the highest similar text is the docu-
ment itself. In the wiki news test set, the model gets
an accuracy of 91.44%. However, in skill’s documents,
only 2.6% are correctly matched, and the incorrectly
matched documents are even less than 20% similar in
the overall text similarity with Jaccard (Table 7).

Considering that word vectors do not work well for
document comparison, we try to use Doc2vec, which
can represent each document as a Vector. We train
the model using text8 documents provided by Gensim
and 5000 skill documents in our dataset. In the test set
of text8 documents, 100% of the documents with the
highest similarity are matched with themselves. For the
skills in the test set, 62.2% of the original documents

are successfully matched. Due to sensitivity to seman-
tics, Doc2vec considers many similar functional skills
to be similar.

We randomly select 100 skill pairs with overall text
similarity and key text similarity ranging between 10%
and 30% and then calculate their doc2vec similarity. Of
the pairs, 58% have semantic similarity higher than 50%,
and 18% have similarity higher than 70%. We manually
analyze 18 similar pairs and find that 83.3% of the skill
pairs come from skills with similar behaviors that are
developed by different developers. Based on the available
information, we are unable to determine their connec-
tion. The other 16.7% have some common phrases. An
example is shown in Table 8.

The reason for this outcome is that the majority of
the functions in the skill market are centered around

Fig. 9 Effectiveness of pre-filtering method based on overall-text

Table 7 Other Similarity Method

Feature expressions Training dataset Test dataset Accuracy (%)

word2vec wiki news + skill contents wiki news 91.44

skill contents 2.6

doc2vec text8 + skill contents text8 100

skill contents 62.2

Page 14 of 17Guo et al. Cybersecurity (2023) 6:13

functions such as news, games, life tips, advertising,
music, and smart homes. Furthermore, the interaction
mode based on the question-answering system results
in skills having similar phrases. As a result, the seman-
tics among these skills are largely indistinguishable.
Models based on semantic similar detection are effec-
tive for traditional datasets, however, they do not fulfill
our purpose in the detection of skill similarity.

Skills based on semantic similarity will bring more
confusion when analyzing associations among skills.
However, they offer an additional perspective for
observing skills. Thus, we show the analysis of seman-
tic similarity. The percentage of skill pairs with similar-
ity greater than 10% is lower than 5% of the total skill
pairs in overall text, key text, and tree structure. But the
percentage of skill pairs with semantic similarity greater
than 10% is as high as 55%. Considering the basis of
30,000 skills, this has nearly 500 million skill pairs.
Among them, 11% of skill pairs have semantic similarity
greater than 50%, and 3% have similarity greater than
70%. Additionally, we separately count the distribution
of semantically similar skills under different function
categories. Semantically similar skill pairs account for
a higher percentage of the same category. For example,
more than 16% of skill pairs have semantic similarity
greater than 70% in Weather category.

Answer to RQ3: The pre-filtering method based
on Minhash and LSH greatly reduces time consump-
tion. Compared with semantic-based (e.g. Word2vec,
Doc2vec) similarity calculation, duplication-based (i.e.
SkillSim) similarity calculation is more suitable for find-
ing relationships among skills.

Discussion
In this paper, we perform a correlation analysis of skills
in the market through similarity analysis. We find a
large number of skills with similar content in the mar-
ket and summarize three reasons. One of the main rea-
sons is the assistance development platforms. On the

one hand, these development platforms lower the thresh-
old for skill development, allowing individuals without a
foundation to develop skills, consequently significantly
increasing the number of skills. On the other hand, it also
leads to the emergence of many skills with low quality
and similar content.

In addition, there are some third-party assistant
development platforms that do not fully comply with
the market policies and develop similar non-compliant
skills. In this way, third-party development platforms
can collect a lot of private information from users with-
out attracting the attention of platform reviewers. We
propose some suggestions for improvement. First, until
there is a robust review mechanism, it is necessary to
further optimize the official development tool so that
developers tend to use it. Second, there needs to be a
strict review of the recommended third-party develop-
ment tools to ensure that they have sufficient knowl-
edge of the certification requirements. Third, stricter
restrictions on developer account creation are needed.
Only email verification provides malicious developers
with more opportunities to access users’ private infor-
mation. Finally, the similar skills of different accounts
need to be further analyzed.

Limitations and future work. Due to the reason of
the dataset, SkillExplorer does not select answers in
a specific order when traversing the skill’s behavior.
Meanwhile, if the same output appears during traversal,
the current interaction path will be ended. These rea-
sons make it possible for skills with the same logical
structure to have different structure trees. Although
SkillSim mitigates these problems by ignoring the order
of tree nodes and comparing subtree structures, there
are still false negatives. In the future, we plan to design
a question-answering system that generates answers
to questions based on a certain sequence to solve this
problem.

Moreover, if only the words of a skill change signifi-
cantly while the topic semantics remain similar, it will
be difficult for methods based on n-shingles and IDF to

Table 8 An example of false positives with Doc2vec

Skill name Developer Contents Osim Ksim Doc2vecsim

DogeCoin Sterian Associates “Ok here is dogecoin. the current price of doge coin
is 18139999999999997 cents us per one thousand
doge coin......get the spot price of dogecoin one of the
top crypto currencies worldwidesimply ask alexa start
dogecoin......”

14.1% 12.3% 89.1%

Monero Price Joseph Yi “Ok here is monero price. welcome to the monero price
checker. to ask for the price of monero please say alexa
what is the price of monero. the current price of monero
in usd is 666......”

Page 15 of 17Guo et al. Cybersecurity (2023) 6:13

capture the similarity. Using a large NLP model to cap-
ture the “key semantic” similarity among skills may be
a solution. Considering the lack of the marked dataset,
we will take it as future research work to detect the key
semantic similarity.

Related work
Skill analysis. In recent years, with the rapid growth in
the number of skills, there is a growing concern about
the safety of skills. Kumar et al. (2018) discover skill
squatting, a homo-phonic attack that exploits speech
interpretation errors. It can divert user requests to
malicious skills by creating skills with similar names
to benign ones (like “Full Moon” vs. “Four Moon”).
Zhang et al. (2019a) further discover a similar attack by
exploiting the longest string match used by the VPA to
invoke a skill. In addition, they discover voice masquer-
ading, i.e. malicious skills can mimic exit intent, trick-
ing users into believing the skill has terminated, while
still collecting users’ voice inputs. LipFuzzer (Zhang
et al. 2019b) exploits vulnerabilities in NLU’s intent
classifier to generate voice commands that may lead to
semantic inconsistencies, allowing the classifier to mis-
interpret the user’s request and route the request to a
malicious skill. It systematically identifies voice com-
mands that are easily misinterpreted in existing VPA
platforms. These three researches (Kumar et al. 2018;
Zhang et al. 2019a, b) mainly focus on issues in skills
wake-up and exit processes.

Cheng et al. (2020) conduct a comprehensive meas-
urement of the trustworthiness of skill certifications in
popular skill platforms. They find that these platforms
are unreliable by successfully obtaining 234 (100%) skill
certifications for policy violations. Wang et al. (2021)
investigate the vetting process of two VPA platforms
with elaborate skills and identify weaknesses in the vet-
ting process. They propose three attacks that help mali-
cious skills successfully bypass the vetting process and
design several defenses based on linguistic knowledge.
These two works illustrate the flaws in the vetting pro-
cess of mainstream VPA platforms. SkillExplorer (Guo
et al. 2020) tests and analyzes the interactive content of
skills, classifies the content of skills through NLP tech-
nology, and generates potential commands. It performs
DFS-based exploration of skills to detect skills that do
not comply with privacy rules. SkillVet (Edu et al. 2021)
analyzes the traceability of permissions and finds that
many skills do not fully disclose their data usage. It
reveals how skills can bypass Alexa’s permission system
by requesting personal information without using its
API. SkillBot (Le et al. 2022) focuses on kid skills and
identifies kid skills with inappropriate content or per-
sonal data requirements. It describes a confounding

utterance threat that can accidentally shift invoke for
children’s skills to non-child-directed skills. Many stud-
ies (Guo et al. 2020; Lentzsch et al. 2021; Liao et al.
2020) find that skills do not provide a valid privacy pol-
icy. In contrast to these efforts to study separate skills,
our work focuses on discovering associations among
skills through similarity analysis.

Software clone detection Software clone detection is
a well-developed research topic, and the main branch is
code clone detection. Researchers perform clone detec-
tion based on the code’s different representations. Text-
based clone detection techniques (Ragkhitwetsagul and
Krinke 2017; Yu et al. 2017; Nakamura et al. 2016; Xue
et al. 2018) can achieve high accuracy with few false posi-
tive rates. However, it ignores information such as the
code’s syntax, which can lead to a large number of false
negatives. Token-based detection techniques (Tekchan-
dani et al. 2017; Wang et al. 2018; Yuki et al. 2017; Saj-
nani et al. 2016) divide the code into token sequences,
which can match code-specific information. However,
this approach has a low tolerance for code changes and
does not make use of code structure information. A sim-
ilar problem occurs if only text or token information is
considered in skill similarity detection. This is because
skills are programs and possess structural information.
Structure-based clone detection (Yang et al. 2018; Pati
et al. 2017; Chen et al. 2014) takes into account the struc-
tural features of the code. It is less sensitive to changes in
the order of the code, so it can also detect slightly modi-
fied code clones. However, it does not recognize tokens
and text values and has more false positives. Hybrid clone
detection techniques (Misu and Sakib 2017; Sheneamer
et al. 2016; Vislavski et al. 2018; Misu et al. 2017; Akram
et al. 2018; Sheneamer et al. 2018; Meng et al. 2018a, b)
can complement each other to achieve a better result for
clone detection. Unlike the above works, skill similar-
ity detection is not based on code, but on the content of
interactions in natural language. Therefore, previous sim-
ilarity detection work is not applicable.

Conclusion
In this paper, we develop a method called SkillSim to
detect skill similarity from two dimensions of text simi-
larity and structure similarity, and further analyze the
association of skills in the market.

We find that more than 25.9% of skills have at least one
skill with overall text similarity greater than 70%. This
phenomenon is mainly caused by skill assistant develop-
ment platforms, while some platforms even have security
risks. Based on the above phenomena, we propose some
suggestions.

Page 16 of 17Guo et al. Cybersecurity (2023) 6:13

Acknowledgements
We would like to thank the anonymous reviewers for their detailed comments
and useful feedback.

Author Contributions
ZG: investigation, conceptualization, methodology, materials, writing, editing,
experiment, validation, review, resources. RL: resources, discussion, experi-
ment, review. GM: resources, discussion, experiment, review. KC: resources, dis-
cussion, experiment, review. All authors have contributed to this manuscript
and approve of this submission.

Funding
NSFC (92270204), Beijing Natural Science Foundation (No.M22004), Beijing
Nova program.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 27 December 2022 Accepted: 28 February 2023

References
Ain QU, Butt WH, Anwar MW, Azam F, Maqbool B (2019) A systematic review

on code clone detection. IEEE Access 7:86121–86144. https:// doi. org/ 10.
1109/ ACCESS. 2019. 29182 02

Akram J, Shi Z, Mumtaz M, Luo P (2018) Droidcc: A scalable clone detection
approach for android applications to detect similarity at source code
level. In: Reisman S, Ahamed SI, Demartini C, Conte TM, Liu L, Claycomb
WR, Nakamura M, Tovar E, Cimato S, Lung C, Takakura H, Yang J, Akiyama
T, Zhang Z, Hasan K (eds.) 2018 IEEE 42nd Annual Computer Software and
Applications Conference, COMPSAC 2018, Tokyo, Japan, 23-27 July 2018,
Volume 1, pp. 100–105. https:// doi. org/ 10. 1109/ COMPS AC. 2018. 00021

Amazon Skill Numbers (2019). https:// voice bot. ai/ 2019/ 10/ 01/ amazon- alexa-
has- 100k- skills- but- momen tum- slows- globa lly- here- is- the- break down-
by- count ry

Amazon: Amazon Certification Requirements (2022a). https:// devel oper.
amazon. com/ docs/ custom- skills/ certi ficat ion- requi remen ts- for- custom-
skills. html

Amazon: Amazon Certification Requirements (2022b). https:// devel oper.
amazon. com/ zh/ docs/ custom- skills/ reque st- custo mer- conta ct- infor
mation- for- use- in- your- skill. html

Amazon: Amazon Certification Requirements (2022c). https:// devel oper. ama-
zon. com/ en- US/ docs/ alexa/ devco nsole/ about- skill- metri cs. html

Amazon: Third-party tools list recommended by Amazon (2022d). https://
devel oper. amazon. com/ en- US/ alexa/ alexa- skills- kit/ get- deeper/ dev-
tools- skill- manag ement- api/ tools- design

Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E (2007) Comparison and
evaluation of clone detection tools. IEEE Trans. Softw. Eng. 33(9):577–591.
https:// doi. org/ 10. 1109/ TSE. 2007. 70725

Broder A.Z (1997) On the resemblance and containment of documents. In:
Carpentieri B, Santis AD, Vaccaro U, Storer JA (eds.) Compression and
Complexity of SEQUENCES 1997, Positano, Amalfitan Coast, Salerno,
Italy, June 11-13, 1997, Proceedings, pp 21–29. https:// doi. org/ 10. 1109/
SEQUEN. 1997. 666900

Cheng L, Wilson C, Liao S, Young J, Dong D, Hu H (2020) Dangerous skills got
certified: measuring the trustworthiness of skill certification in voice
personal assistant platforms. In: Ligatti J, Ou X, Katz J, Vigna G (eds.) CCS
’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, pp. 1699–1716. https://
doi. org/ 10. 1145/ 33722 97. 34233 39

Chen K, Liu P, Zhang Y (2014) Achieving accuracy and scalability simultane-
ously in detecting application clones on android markets. In: Jalote

P, Briand LC, van der Hoek A (eds.) 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
pp. 175–186. https:// doi. org/ 10. 1145/ 25682 25. 25682 86

Chen Y, Yuan X, Zhang J, Zhao Y, Zhang S, Chen K, Wang X (2020) Devil’s
whisper: a general approach for physical adversarial attacks against com-
mercial black-box speech recognition devices. In: Capkun, S., Roesner, F.
(eds.) 29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020, pp. 2667–2684 . https:// www. usenix. org/ confe rence/ useni
xsecu rity20/ prese ntati on/ chen- yuxuan

Datasketch (2022). https:// github. com/ ekzhu/ datas ketch
Edu J, Ferrer Aran X, Such J, Suarez-Tangil G (2021) Skillvet: automated trace-

ability analysis of amazon alexa skills. IEEE Trans Dependable Secure
Comput. https:// doi. org/ 10. 1109/ TDSC. 2021. 31291 16

Gensim (2022). https:// radim rehur ek. com/ gensim
Guo Z, Lin Z, Li P, Chen K (2020) Skillexplorer: Understanding the behavior of

skills in large scale. In: Capkun, S., Roesner, F. (eds.) 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020, pp. 2649–2666

Guo Z, Lin Z, Li P, Chen K (2020) Skillexplorer: understanding the behavior of
skills in large scale. In: USENIX Security Symposium

Indyk P, Motwani R (1998) Approximate nearest neighbors: Towards removing
the curse of dimensionality. In: Vitter JS (ed.) Proceedings of the Thirtieth
Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA,
May 23-26, 1998, pp 604–613. https:// doi. org/ 10. 1145/ 276698. 276876

Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol
11(2):37–50

Kumar D, Paccagnella R, Murley P, Hennenfent E, Mason J, Bates A, Bailey M
(2018) Skill squatting attacks on amazon alexa. In: Enck, W., Felt, A.P. (eds.)
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018, pp. 33–47. https:// www. usenix. org/ confe rence/
useni xsecu rity18/ prese ntati on/ kumar

Le T, Huang DY, Apthorpe N, Tian Y (2022) Skillbot: identifying risky content
for children in alexa skills. ACM Trans Internet Technol. https:// doi. org/ 10.
1145/ 35396 09

Le Q.V, Mikolov T (2014) Distributed representations of sentences and docu-
ments. In: Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June 2014. JMLR Workshop
and Conference Proceedings, vol. 32, pp. 1188–119. http:// proce edings.
mlr. press/ v32/ le14. html

Lentzsch C, Shah S.J, Andow B, Degeling M, Das A, Enck W (2021) Hey alexa,
is this skill safe?: Taking a closer look at the alexa skill ecosystem. In: 28th
Annual Network and Distributed System Security Symposium, NDSS
2021, Virtually, February 21-25, 2021. https:// www. ndss- sympo sium. org/
ndss- paper/ hey- alexa- is- this- skill- safe- taking- a- closer- look- at- the- alexa-
skill- ecosy stem/

Liao S, Wilson C, Cheng L, Hu H, Deng H (2020) Measuring the effectiveness
of privacy policies for voice assistant applications. In: ACSAC ’20: Annual
Computer Security Applications Conference, Virtual Event / Austin, TX,
USA, 7-11 December, 2020, pp. 856–869. https:// doi. org/ 10. 1145/ 34272
28. 34272 50

Li S, Bu L, Bai G, Guo Z, Chen K, Wei H (2022) Vitas: Guided model-based vui
testing of vpa apps. In: 37th IEEE/ACM international conference on auto-
mated software engineering, pp 1–12

Manaa ME, Abdulameer G (2018) Web documents similarity using k-shingle
tokens and minhash technique. J Eng Appl Sci 13(6):1499–1505

Meng G, Xue Y, Xu Z, Liu Y, Zhang J, Narayanan A (2016) Semantic modelling
of android malware for effective malware comprehension, detection, and
classification. In: Proceedings of the 25th International Symposium on
Software Testing and Analysis, pp. 306–317

Meng G, Patrick M, Xue Y, Liu Y, Zhang J (2018) Securing android app markets
via modeling and predicting malware spread between markets. IEEE
Trans Inf Forensics Secur 14(7):1944–1959

Meng G, Feng R, Bai G, Chen K, Liu Y (2018) DroidEcho: an in-depth dissection
of malicious behaviors in Android applications. Cybersecurity 1:4. https://
doi. org/ 10. 1186/ s42400- 018- 0006-7

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word rep-
resentations in vector space. In: Bengio Y, LeCun Y (eds.) 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona,
USA, May 2-4, 2013, Workshop Track Proceedings. arXiv: 1301. 3781

Misu M.R.H, Sakib K (2017) Interface driven code clone detection. In: Lv J,
Zhang HJ, Hinchey M, Liu X (eds.) 24th Asia-Pacific Software Engineering

https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1109/COMPSAC.2018.00021
https://voicebot.ai/2019/10/01/amazon-alexa-has-100k-skills-but-momentum-slows-globally-here-is-the-breakdown-by-country
https://voicebot.ai/2019/10/01/amazon-alexa-has-100k-skills-but-momentum-slows-globally-here-is-the-breakdown-by-country
https://voicebot.ai/2019/10/01/amazon-alexa-has-100k-skills-but-momentum-slows-globally-here-is-the-breakdown-by-country
https://developer.amazon.com/docs/custom-skills/certification-requirements-for-custom-skills.html
https://developer.amazon.com/docs/custom-skills/certification-requirements-for-custom-skills.html
https://developer.amazon.com/docs/custom-skills/certification-requirements-for-custom-skills.html
https://developer.amazon.com/zh/docs/custom-skills/request-customer-contact-information-for-use-in-your-skill.html
https://developer.amazon.com/zh/docs/custom-skills/request-customer-contact-information-for-use-in-your-skill.html
https://developer.amazon.com/zh/docs/custom-skills/request-customer-contact-information-for-use-in-your-skill.html
https://developer.amazon.com/en-US/docs/alexa/devconsole/about-skill-metrics.html
https://developer.amazon.com/en-US/docs/alexa/devconsole/about-skill-metrics.html
https://developer.amazon.com/en-US/alexa/alexa-skills-kit/get-deeper/dev-tools-skill-management-api/tools-design
https://developer.amazon.com/en-US/alexa/alexa-skills-kit/get-deeper/dev-tools-skill-management-api/tools-design
https://developer.amazon.com/en-US/alexa/alexa-skills-kit/get-deeper/dev-tools-skill-management-api/tools-design
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1145/3372297.3423339
https://doi.org/10.1145/3372297.3423339
https://doi.org/10.1145/2568225.2568286
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yuxuan
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yuxuan
https://github.com/ekzhu/datasketch
https://doi.org/10.1109/TDSC.2021.3129116
https://radimrehurek.com/gensim
https://doi.org/10.1145/276698.276876
https://www.usenix.org/conference/usenixsecurity18/presentation/kumar
https://www.usenix.org/conference/usenixsecurity18/presentation/kumar
https://doi.org/10.1145/3539609
https://doi.org/10.1145/3539609
http://proceedings.mlr.press/v32/le14.html
http://proceedings.mlr.press/v32/le14.html
https://www.ndss-symposium.org/ndss-paper/hey-alexa-is-this-skill-safe-taking-a-closer-look-at-the-alexa-skill-ecosystem/
https://www.ndss-symposium.org/ndss-paper/hey-alexa-is-this-skill-safe-taking-a-closer-look-at-the-alexa-skill-ecosystem/
https://www.ndss-symposium.org/ndss-paper/hey-alexa-is-this-skill-safe-taking-a-closer-look-at-the-alexa-skill-ecosystem/
https://doi.org/10.1145/3427228.3427250
https://doi.org/10.1145/3427228.3427250
https://doi.org/10.1186/s42400-018-0006-7
https://doi.org/10.1186/s42400-018-0006-7
http://arxiv.org/abs/1301.3781

Page 17 of 17Guo et al. Cybersecurity (2023) 6:13

Conference, APSEC 2017, Nanjing, China, December 4-8, 2017, pp.
747–748. https:// doi. org/ 10. 1109/ APSEC. 2017. 97

Misu M.R.H, Satter A, Sakib K (2017) An exploratory study on interface similari-
ties in code clones. In: 24th Asia-Pacific Software Engineering Conference
Workshops, APSEC Workshops 2017, Nanjing, China, December 4-8, 2017,
pp. 126–133. https:// doi. org/ 10. 1109/ APSECW. 2017. 24

Nakamura Y, Choi E, Yoshida N, Haruna S, Inoue K (2016) Towards detection
and analysis of interlanguage clones for multilingual web applications.
In: 10th International Workshop on Software Clones, IWSC@SANER 2016,
Osaka, Japan, March 15, 2016, pp. 17–18. https:// doi. org/ 10. 1109/ SANER.
2016. 55

NLTK (2022). https:// www. nltk. org
Pati J, Kumar B, Manjhi D, Shukla KK (2017) A comparison among arima, bp-nn,

and MOGA-NN for software clone evolution prediction. IEEE Access
5:11841–11851. https:// doi. org/ 10. 1109/ ACCESS. 2017. 27075 39

Ragkhitwetsagul C, Krinke J (2017) Using compilation/decompilation to
enhance clone detection. In: Kraft NA, Godfrey MW, Sajnani H (eds.) 11th
IEEE International Workshop on Software Clones, IWSC 2017, Klagenfurt,
Austria, February 21, 2017, pp. 8–14. https:// doi. org/ 10. 1109/ IWSC. 2017.
78805 02

Sajnani H, Saini V, Svajlenko J, Roy C.K, Lopes C.V (2016) Sourcerercc: scaling
code clone detection to big-code. In: Dillon LK, Visser W, Williams LA
(eds.) Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pp. 1157–1168.
https:// doi. org/ 10. 1145/ 28847 81. 28848 77

Sheneamer A, Roy S, Kalita J (2018) A detection framework for semantic code
clones and obfuscated code. Expert Syst Appl 97:405–420. https:// doi.
org/ 10. 1016/j. eswa. 2017. 12. 040

Sheneamer A, Kalita J (2016) Semantic clone detection using machine learn-
ing. In: 15th IEEE International Conference on Machine Learning and
Applications, ICMLA 2016, Anaheim, CA, USA, December 18-20, 2016, pp.
1024–1028. https:// doi. org/ 10. 1109/ ICMLA. 2016. 0185

spaCy (2022). https:// spacy. io
SRLabs: Smart Spies (2022). https:// srlabs. de/ bites/ smart- spies
Tekchandani R, Bhatia RK, Singh M (2017) Code clone genealogy detection on

e-health system using hadoop. Comput. Electr. Eng. 61:15–30. https:// doi.
org/ 10. 1016/j. compe leceng. 2017. 05. 011

Vislavski T, Rakic G, Cardozo N, Budimac Z (2018) LICCA: A tool for cross-lan-
guage clone detection. In: Oliveto R, Penta MD, Shepherd DC (eds.) 25th
International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2018, Campobasso, Italy, March 20-23, 2018, pp. 512–516.
https:// doi. org/ 10. 1109/ SANER. 2018. 83302 50

Wang D, Chen K, Wang W (2021) Demystifying the vetting process of voice-
controlled skills on markets. Proc. ACM Interact. Mob. Wearable Ubiqui-
tous Technol. 5(3):130–113028. https:// doi. org/ 10. 1145/ 34781 01

Wang P, Svajlenko J, Wu Y, Xu Y, Roy C.K (2018) Ccaligner: a token based large-
gap clone detector. In: Chaudron M, Crnkovic I, Chechik M, Harman M
(eds.) Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp.
1066–1077. https:// doi. org/ 10. 1145/ 31801 55. 31801 79

Wu HC, Luk RWP, Wong K, Kwok K (2008) Interpreting TF-IDF term weights as
making relevance decisions. ACM Trans. Inf. Syst. 26(3):13–11337. https://
doi. org/ 10. 1145/ 13616 84. 13616 86

Xue H, Venkataramani G, Lan T (2018) Clone-hunter: accelerated bound checks
elimination via binary code clone detection. In: Gottschlich J, Cheung
A (eds.) Proceedings of the 2nd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, MAPL@PLDI 2018,
Philadelphia, PA, USA, June 18-22, 2018, pp. 11–19. https:// doi. org/ 10.
1145/ 32113 46. 32113 47

Yang Y, Ren Z, Chen X, Jiang H (2018) Structural function based code clone
detection using a new hybrid technique. In: Reisman S, Ahamed SI,
Demartini C, Conte TM, Liu L, Claycomb WR, Nakamura M, Tovar E, Cimato
S, Lung C, Takakura H, Yang J, Akiyama T, Zhang Z, Hasan K (eds.) 2018
IEEE 42nd Annual Computer Software and Applications Conference,
COMPSAC 2018, Tokyo, Japan, 23-27 July 2018, Volume 1, pp. 286–291.
https:// doi. org/ 10. 1109/ COMPS AC. 2018. 00045

Yuan X, Chen Y, Zhao Y, Long Y, Liu X, Chen K, Zhang S, Huang H, Wang X,
Gunter C.A (2018) Commandersong: A systematic approach for practical
adversarial voice recognition. In: Enck, W., Felt, A.P. (eds.) 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August

15-17, 2018, pp. 49–64. https:// www. usenix. org/ confe rence/ useni xsecu
rity18/ prese ntati on/ yuan- xueji ng

Yuki Y, Higo Y, Kusumoto S (2017) A technique to detect multi-grained code
clones. In: Kraft, N.A., Godfrey, M.W., Sajnani, H. (eds.) 11th IEEE Interna-
tional Workshop on Software Clones, IWSC 2017, Klagenfurt, Austria,
February 21, 2017, pp. 54–60. https:// doi. org/ 10. 1109/ IWSC. 2017. 78805 10

Yu D, Wang J, Wu Q, Yang J, Wang J, Yang W, Yan W (2017) Detecting java
code clones with multi-granularities based on bytecode. In: Reisman S,
Ahamed SI, Demartini C, Conte TM, Liu L, Claycomb WR, Nakamura M,
Tovar E, Cimato S, Lung C, Takakura H, Yang J, Akiyama T, Zhang Z, Hasan
K (eds.) 41st IEEE Annual Computer Software and Applications Confer-
ence, COMPSAC 2017, Turin, Italy, July 4-8, 2017. Volume 1, pp. 317–326.
https:// doi. org/ 10. 1109/ COMPS AC. 2017. 104

Zhang N, Mi X, Feng X, Wang X, Tian Y, Qian F (2019a) Dangerous skills: understand-
ing and mitigating security risks of voice-controlled third-party functions on
virtual personal assistant systems. In: 2019 IEEE Symposium on Security and
Privacy (SP), pp. 1381–1396. https:// doi. org/ 10. 1109/ SP. 2019. 00016

Zhang Y, Xu L, Mendoza A, Yang G, Chinprutthiwong P, Gu G (2019b) Life
after speech recognition: Fuzzing semantic misinterpretation for voice
assistant applications. In: 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. https:// www. ndss- sympo sium. org/ ndss- paper/ life- after-
speech- recog nition- fuzzi ng- seman tic- misin terpr etati on- for- voice- assis
tant- appli catio ns/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/APSEC.2017.97
https://doi.org/10.1109/APSECW.2017.24
https://doi.org/10.1109/SANER.2016.55
https://doi.org/10.1109/SANER.2016.55
https://www.nltk.org
https://doi.org/10.1109/ACCESS.2017.2707539
https://doi.org/10.1109/IWSC.2017.7880502
https://doi.org/10.1109/IWSC.2017.7880502
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1016/j.eswa.2017.12.040
https://doi.org/10.1016/j.eswa.2017.12.040
https://doi.org/10.1109/ICMLA.2016.0185
https://spacy.io
https://srlabs.de/bites/smart-spies
https://doi.org/10.1016/j.compeleceng.2017.05.011
https://doi.org/10.1016/j.compeleceng.2017.05.011
https://doi.org/10.1109/SANER.2018.8330250
https://doi.org/10.1145/3478101
https://doi.org/10.1145/3180155.3180179
https://doi.org/10.1145/1361684.1361686
https://doi.org/10.1145/1361684.1361686
https://doi.org/10.1145/3211346.3211347
https://doi.org/10.1145/3211346.3211347
https://doi.org/10.1109/COMPSAC.2018.00045
https://www.usenix.org/conference/usenixsecurity18/presentation/yuan-xuejing
https://www.usenix.org/conference/usenixsecurity18/presentation/yuan-xuejing
https://doi.org/10.1109/IWSC.2017.7880510
https://doi.org/10.1109/COMPSAC.2017.104
https://doi.org/10.1109/SP.2019.00016
https://www.ndss-symposium.org/ndss-paper/life-after-speech-recognition-fuzzing-semantic-misinterpretation-for-voice-assistant-applications/
https://www.ndss-symposium.org/ndss-paper/life-after-speech-recognition-fuzzing-semantic-misinterpretation-for-voice-assistant-applications/
https://www.ndss-symposium.org/ndss-paper/life-after-speech-recognition-fuzzing-semantic-misinterpretation-for-voice-assistant-applications/

	SkillSim: voice apps similarity detection
	Abstract
	Introduction
	Background
	VPAs and skills
	Skill interaction
	Software clone detection

	Our approach
	Overview
	Text similarity
	Structure similarity
	Implementation

	Evaluation
	Landscape
	Similarity analysis
	Effectiveness

	Discussion
	Related work
	Conclusion
	Acknowledgements
	References

