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Abstract 

Virtual personal assistants (VPAs), such as Amazon Alexa and Google Assistant, are software agents designed to 
perform tasks or provide services to individuals in response to user commands. VPAs extend their functions through 
third-party voice apps, thereby attracting more users to use VPA-equipped products. Previous studies demonstrate 
vulnerabilities in the certification, installation, and usage of these third-party voice apps. However, these studies focus 
on individual apps. To the best of our knowledge, there is no prior research that explores the correlations among 
voice apps.Voice apps represent a new type of applications that interact with users mainly through a voice user inter-
face instead of a graphical user interface, requiring a distinct approach to analysis. In this study, we present a novel 
voice app similarity analysis approach to analyze voice apps in the market from a new perspective. Our approach, 
called SkillSim, detects similarities among voice apps (i.e. skills) based on two dimensions: text similarity and structure 
similarity. SkillSim measures 30,000 voice apps in the Amazon skill market and reveals that more than 25.9% have at 
least one other skill with a text similarity greater than 70%. Our analysis identifies several factors that contribute to a 
high number of similar skills, including the assistant development platforms and their limited templates. Addition-
ally, we observe interesting phenomena, such as developers or platforms creating multiple similar skills with different 
accounts for purposes such as advertising. Furthermore, we also find that some assistant development platforms 
develop multiple similar but non-compliant skills, such as requesting user privacy in a non-compliance way, which 
poses a security risk. Based on the similarity analysis results, we have a deeper understanding of voice apps in the 
mainstream market.
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Introduction
Virtual Personal Assistants (VPAs), such as Ama-
zon Alexa, Google Assistant and Xiaomi Xiao AI, are 
equipped on different smart devices, like smart speakers, 
to assist users with tasks like getting weather informa-
tion and turning on the radio. In addition to the built-in 
functions, VPA platforms also allow third-party develop-
ers to submit their voice apps (called skills by Amazon or 

actions by Google1) to VPA app stores to provide a wider 
range of functions.

The ecosystem centered on VPA services is constantly 
growing and expanding. Most researches focus on ana-
lyzing VPAs’ security, such as the security of speech rec-
ognition (Yuan et  al. 2018; Chen et  al. 2020). With the 
rapid increase of third-party skills (over 100,000 Amazon 
(2019)), the security of skills raises concerns. The emer-
gence of skills expands the attack surface of VPAs, as 
malicious developers may develop harmful or unwanted 
skills (Guo et  al. 2020; Kumar et  al. 2018; Zhang et  al. 
2019a; SRLabs 2022). To mitigate such risks, VPA plat-
forms establish a series of policies for third-party devel-
opers to follow, and they certify these skills through 
manual or automated processes. If a skill violates these 
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policies, it will not be published in the voice app store. 
However, previous studies prove that there are vulner-
abilities in the certification process, and some skills that 
violate policies still appear in VPA app stores (Cheng 
et al. 2020; Wang et al. 2021).

Some VPA platforms, like Amazon, have low barri-
ers for creating developer accounts and do not limit the 
number of accounts. As a result, developers can cre-
ate multiple accounts to develop similar unwanted skills 
without drawing reviewers’ attention. Reviewers for VPA 
platforms can identify skills under the same developer 
account. However, they cannot correlate skills published 
by different accounts belonging to the same person or 
team, even if these skills are very similar (Cheng et  al. 
2020; Wang et  al. 2021). Therefore, it is significant to 
detect the similarity among skills. Firstly, it can correlate 
similar skills and offers a new perspective on the voice 
app market. Secondly, it can associate different accounts 
belonging to the same developer to enhance the detec-
tion of suspicious or malicious behavior.

Challenge. To the best of our knowledge, no prior 
research explores skill similarity analysis, mainly due to 
the following challenges. First, the skill’s code is unavail-
able. It is maintained on the developer’s server and is not 
even available to platform reviewers. Most skills also have 
no graphical user interface (GUI). All that is available is 
the natural-language-based interaction content between 
users and skills, making it impossible to detect similar 
skills in the same manner as traditional software. Sec-
ond, defining skill similarity is challenging. For instance, 
should skills with cross-content be considered similar, or 
should those with the same topic be considered similar? 
Skills are essentially software and have structural features 
that are specific to code, requiring more than just detect-
ing text similarities.

Our approach. Skills have two characteristics: one is 
that developers implement functionality through code, 
and the other is that skills interact with users in the form 
of a natural-language-based conversation. Considering 
the two characteristics of skills, we design SkillSim to 
detect similarities among skills by comparing both texts 
and structures of skills’ interaction content. In particular, 
SkillSim extracts different features from multiple dimen-
sions. For example, to detect text similarity, SkillSim 
extracts both overall text features and key text features 
separately based on different purposes. In terms of struc-
ture similarity, SkillSim abstracts skill interaction content 
as tree structures, where each node contains an input and 
an output. Structure similarity is then determined based 
on node features. Through these dimensions, we are able 
to assess skill similarities from different viewpoints.

SkillSim evaluates 30,000 skills and finds that 25.9% 
of the skills have at least one skill with more than 70% 

text similarity to them. In addition, we identify three 
main factors contributing to the large number of similar 
skills in the market, such as the assistant development 
platforms and their limited templates. Further analysis 
reveals that one developer or development platform may 
develop multiple similar skills using the same or different 
accounts for certain purposes such as advertising. Addi-
tionally, some assistant development platforms develop a 
large number of similar and non-compliant skills, putting 
users’ privacy at risk.

Contribution. The contributions of the paper are as 
follows:

• A skill similarity detection method and a large-
scale analysis. This paper presents the first skill simi-
larity analysis. SkillSim calculates similarities among 
skills based on their text and structure character-
istics. The study involves a comprehensive analysis 
of 30,000 skills in the mainstream market, and the 
results are representative.

• Interesting findings and a new perspective. The 
similarity analysis results indicate that a significant 
portion (accounting for 25.9%) of skills have at least 
one other skill with more than 70% text similarity to 
them. We summarize three reasons behind that and 
propose suggestions. Our analysis reveals that some 
developers or platforms create multiple similar skills 
with different accounts for purposes such as adver-
tising. In addition, some assistant development plat-
forms create multiple similar but non-compliant 
skills, thus posing a risk to user privacy. These results 
offer a novel perspective on the current voice app 
market.

Background
VPAs and skills
VPAs, such as Amazon Alexa and Google Assistant, 
provide services to users through voice-based interac-
tions. The functionality of these services can be greatly 
expanded through third-party skills. As with traditional 
apps, third-party skills are developed by third-party 
developers and uploaded to the VPA app stores for vet-
ting. If a skill passes the vetting process, it can be pub-
lished on the voice app stores. The code of the skill is 
maintained on the developer’s server. Like users, VPA 
platform reviewers can only review a skill by interact-
ing with it through the natural- language-based interface 
with sample utterances provided by the developer.

Figure  1 shows a process flow of user interaction 
with skills. The user first speaks a wake-up word (e.g., 
“Alexa”) to wake up the VPA-equipped device (e.g., smart 
speaker). After the VPA is awakened, the user continues 
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to send voice commands combining keywords (e.g., 
“open”, “enable”) with skill invocation name (e.g., “open 
clever real estate”). This command is transmitted to the 
VPA server via the smart speaker for analysis. The VPA 
server identifies the corresponding skill based on the skill 
invocation name (e.g., “clever real estate”) and sends the 
instruction to the server where the developer can process 
the command. The third-party skill returns the processed 
results to the user layer by layer to achieve the interaction 
goal. Figure 2 shows an interaction content example that 
a user interacts with a third-party skill called “Clever Real 
Estate”.

If third-party skills want to be published on VPA app 
stores, they must adhere to a set of policies established 
by VPA platforms and undergo review (Amazon 2022a). 
The VPA platform assesses these skills either manually or 
automatically to determine if they comply with the poli-
cies (Wang et  al. 2021). For example, if a skill requests 
users’ personal information such as name, phone num-
ber, and email, Amazon requires the skill to include a 
privacy policy link and configure corresponding permis-
sions  (Amazon 2022b). Despite these measures, some 
studies discover that the review process is vulnerable, 

Users VPA Devices VPA Server

Native Skills

Third-Party Skills
Fig. 1 User-skill interaction process flow

open clever real estate

Ok, Here's Clever Real Estate. …… For a complete list of 
commands, please say help. But to get started say, List with 
Clever! Now, what can I do for you?

yes

Starting with the area code, please tell me your phone number.

……

……

help

I have a few things I want you to know about Clever. You 
can say things like, Tell me about Clever, How does it work, 
Give me some testimonials, or contact Clever. What can I 
do for you?

Fig. 2 An interaction path sample with the skill “Clever Real Estate”
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and some skills that do not meet the policy requirements 
still make it to the app stores (Guo et  al. 2020; Cheng 
et al. 2020). In addition, the VPA platform can only iden-
tify multiple skills under the same developer account, but 
cannot detect similar skills among different accounts, 
which makes it feasible for developers to create similar 
skills using multiple accounts (Cheng et  al. 2020). As a 
result, it becomes critical to detect similarities among 
skills.

Skill interaction
To use a skill, a user installs it using sample instructions 
provided by the developer. The user then analyzes the 
content returned by the skill to generate new input. The 
interaction path will end when the skill ends the interac-
tion or the user actively terminates the interaction. Fig-
ure 2 shows an example of an interaction path. Here, we 
briefly introduce the frequently used terms.

• Input. The user’scommand for skills.
• Output. The content returned by the skill after 

accepting the user’s input.
• Interaction path. A path from the first input of the 

user to the final output of the skill.
• Interaction record. All interaction paths of a skill.
• Question. For the output returned by a skill, if users 

can parse the content and generate new inputs, the 
output will be a question. There are different types 
of questions. We refer to the classification and defi-
nition of question types in SkillExplorer (Guo et  al. 
2020), which is shown in Table 1.

Software clone detection
Traditional software clone detection is mainly to detect 
code, graphical user interface, etc. Among them, code 

clone detection can be roughly categorized into four 
types: identical code, renamed code, almost identical 
code, and semantically similar code (Bellon et al. 2007). 
Based on different representation forms of code (such as 
token, control flow graph and data flow graph), different 
detection methods are used to detect software clone (Ain 
et al. 2019; Meng et al. 2016).

However, skills lack graphical user interfaces and their 
code is not accessible. Only interaction content based on 
natural language text is available, thus making traditional 
software clone detection methods inapplicable to skills. 
This paper presents a novel method for identifying skill 
similarity based on the text and structure of skill interac-
tion content.

Our approach
Overview
As mentioned above, when computing skill similarity, 
both the text and structure dimensions of skills must be 
considered. Figure  3 illustrates the framework of Skill-
Sim, which inputs the interaction records of two skills 
and extracts their features to calculate skill similarities.

For text features, SkillSim extracts the overall text and 
the key text to calculate the text similarity separately. For 
structural features, SkillSim extracts the tree structures 
from skill interaction records and employs node features, 
such as the question type, for the calculation of structure 
similarity.

Text similarity
An interaction record contains all interaction paths of a 
skill, and each interaction path encompasses all inputs 
and outputs from the start to the end of a complete inter-
action. In this study, we focus on the skill content. The 
automated analysis of SkillExplorer (Guo et al., 2020) and 
VITAS (Li et al., 2022) generates inputs of skills from the 
output of the previous round. Therefore we can extract 
only skills’ response content, i.e., the outputs in interac-
tions, and ignore the inputs.

For text similarity, two cases are considered. Case 1 
involves a situation where the content is similar, but the 
topics may vary. For instance, the same advertisement 
template may be utilized for different themes. Case 2 
involves a situation where the themes are identical, but 

Table 1 Question types in skills

Question Type Description

Yes/No questions A Yes/No question is an interrogative 
construction and expects answers like “yes” 
or “no”.

Instruction questions An instruction question gives users direct 
guidance on how to answer it. Instruction 
questions often contain key keywords like 
“say”, “ask”.

Selection questions A selection question contains multiple 
parallel options for users to choose from.

Wh questions A Wh question begins with WH-tag.

Mix questions A mix question contains more than one of 
the previous four question types.

Skill interaction records

Overall text

Interaction trees

Text 
similarity

Structure 
similarity

Key text

Fig. 3 The framework of SkillSim
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the content is distinct, as in the case of different adver-
tisement templates being utilized for the same theme.

Therefore, we calculate the overall text similarity and 
key text similarity separately.

Overall text similarity. SkillSim extracts all outputs 
from a skill’s interaction record as its overall text.2 Next, 
it calculates the overall text similarity among skills. Since 
we are concerned with content duplication, we choose 
n-shingles as the granularity and use Jaccard to calculate 
the similarity. If the overall text between two skills is very 
similar, it can determine that the two skills are clones.

• Jaccard similarity. Jaccard index  Jaccard (1912), 
also known as Jaccard similarity coefficient, is used 
to compare the similarities and differences between 
sets. Given two sets A and B, Jaccard coefficient is 
defined as the ratio of the intersection of A and B to 
the union of A and B. The larger the Jaccard coeffi-
cient value, the higher the similarity of the skills. As 
shown in Eq. 1, na is the n-shingles elements in set A, 
and nb is the n-shingles elements in set B. 

 However, performing pairwise comparisons in a 
document corpus is time-consuming because the 
number of comparisons grows geometrically with the 
size of the documents. Most of those comparisons 
are unnecessary because they are not similar. There-
fore, before calculating the true Jaccard similarity, we 
perform a pre-filter.

• Minhash and locality-sensitive hashing. The gen-
eral idea of Minhash algorithm (Broder 1997) is to 
use hash functions to disrupt the positions of ele-
ments uniformly, and then take the first element of 
each set in the new order as the features of the set. 
Under the condition that the hash function is uni-
formly distributed, the probability that the Minhash 
value of set S1 and set S2 are equal will be equal to 
the Jaccard similarity of the two sets. MinHash is 
essentially a Jaccard approximation. As shown in 
Fig. 4, MinHash can produce an n-dimensional vec-
tor from skill interaction records signature where n is 
much smaller than m (the total number of words in 
interaction records).

The basic idea of locality-sensitive hashing (LSH) Indyk 
and Motwani (1998) is to gather similar sets together 

(1)

Simoverall(A,B) =
|na ∩ nb|

|na ∪ nb|
=

|na ∩ nb|

|na| + |nb| − |na ∩ nb|

and avoid more different sets. It divides a signature from 
Minhash into multiple lower-dimensional vectors, called 
bands. LSH uses a hash function to assign identical bands 
to the same hash bucket to obtain candidates of similar 
skills. With this approach, we can filter irrelevant skill 
pairs and thus focus on candidate skill pairs that are likely 
to be similar.

Key text similarity. Unlike the overall text, key text 
highlights specific themes or elements of a skill, thus 
distinguishing it from other skills. Key text can help 
SkillSim to find skills with the same topic or the same 
key elements. Here we choose IDF to calculate key text 
similarity.
• Inverse document frequency. Inverse Document 

Frequency (IDF) (Wu et al. 2008) is often used to evalu-
ate the importance of a word to a document set. The 
main idea of IDF is that the fewer documents that con-
tain a term, the better ability it will have to distinguish 
between categories. Therefore, IDF can help to filter out 
common words and keep important words. This is con-
sistent with what we want to achieve.

The formula of IDF is as follows. The subscript i means 
the sequence number of the word w and j means the 
sequence number of the document d. A document is the 
overall text of a skill (i.e. outputs in an interactive record). 
M is the number of documents (i.e. the number of skills), 
and | j : wi ∈ dj | is the number of documents in which 
the word wi appears.

We use the overall text of all skills as a corpus. Based on 
the corpus, we calculate the IDF value of each word. The 
higher the IDF value, the more representative the word 
is. Next, we calculate key text similarity between skills. 
We use A and B to denote two documents, and na and nb 
are the words in the two documents respectively. The cal-
culation formulas are as follows. We obtain the common 
words in na and nb and add up their IDF values, then we 
calculate the sum of IDF value of the words in the union 
set of na and nb . Finally, the key text similarity is obtained 
by calculating the ratio of the two sums.

Structure similarity
As mentioned above, a skill is essentially software, with 
its functional logic being realized through code stored 
on a developer server, thus possessing application-spe-
cific structural information. In this section, we abstract 

(2)idfi = log
M

1+ |
{

j : wi ∈ dj
}

|

(3)

Simkey(A,B) =

∑

log M
1+|{j:wi∈dj}|

∑

log M
1+|{k:wu∈dk}|

,wi ∈ |na ∩ nb|,wu ∈ |na ∪ nb|

2 Skill descriptions reflect skill functions, so we also add skill descriptions to 
the overall text.
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the natural language content in the skill interaction 
record into tree structures to realize structure similarity 
calculation.

Tree structure similarity. A skill interaction record 
contains multiple interaction paths, similar to execution 
paths in a program. As shown in Fig.  5, the root node 
N1 contains the user’s wake-up statement and output 
returned by the skill for the first time. Each child node 
contains the new input generated based on the skill out-
put in the parent node, and the output returned by the 
skill in response to this new input. For example, node 
N2_2 contains an input generated from the output of 
node N1, and an output returned from the skill after the 
user sends the input in N2_2 . 

When the first nodes of several paths are consistent, 
these paths can be integrated, and the same child nodes 
can also be merged. Finally, the interaction records 
can be abstracted into trees. At this time, the struc-
ture of a skill can be reflected in a tree structure, and 
the skill structure similarity can be calculated through 
tree structure similarity. It is important to note that 
the order of tree nodes in the same layer is ignored 

when calculating similarities. It depends on the order 
in which users generate their answers and the order 
in which they select them. Therefore, the order is not 
controllable.

SkillSim disregards the order of interaction trees, i.e. 
does not care about the order of sibling nodes. SkillSim 
mainly focuses on the hierarchical structure, extracting 
four features of each node in a tree. The feature d rep-
resents the depth of the current node. The feature h rep-
resents the distance from this node to the longest path 
leaf node, that is, the height of the current node. And 
the feature o represents the node’s out degree, that is, the 
number of answers that can be generated by the output 
in this node. To compare the similarity of tree structures 
more accurately, we assign a value to each node, which is 
the question type of the output in that node. We use the 
feature c to represent it. As shown in Table 1, the ques-
tion types are divided into 5 types. If the output does not 
belong to any of these categories, we will assign the node 
a value of “none”.

As a result, SkillSim extracts a 4-tuple (d, h, o, c) from 
each node as its feature. In particular, SkillSim eliminates 

Skills
(interaction records)

……
Profiles & features

(1, 0, 0, 0, 1, 0……1, 0, 1)
(1, 0, 1, 1, 1, 0……0, 0, 1)

(1, 1, 0, 0, 1, 0……1, 1, 1)
…

m

Signatures

(5, 3, 2, 1, 1, 2……6, 5, 1)
(7, 4, 8, 3, 1, 1……6, 5, 1)

(5, 6, 7, 9, 1, 3……1, 4, 1)

…

n (n<<m)

Minhash

LSH

(5, 3, 2, 1, 1, 2……6, 5, 1)
(7, 4, 8, 3, 1, 1……6, 5, 1)

(5, 6, 7, 9, 1, 3……1, 4, 1)

…
n (n<<m)

…

bandband band

Candidates of 
similar skills

……

Mapping 
by hash 
function

Signatures Buckets

Hash tables

(6, 5, 1)

(1, 4, 1)

Fig. 4 The framework of Minhash and LSH
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the distraction of the different ways that the user uses 
the wake-up sentence. For example, one way is to ena-
ble the skill and input the desired function after the skill 
response, while the other way is to start the skill with the 
desired function (such as “Alexa, play the album from 
Barbie De Facto Insider”). SkillSim eliminates this inter-
ference by comparing the similarity of subtrees. Through 
the above methods, SkillSim abstracts a skill to a set of 
tuples. It then calculates the Jaccard similarity of the two 
skills.

Implementation
Dataset. SkillSim aims to detect skill similarity, and 
interaction with skills is not the focus of this paper. 
Therefore, we request a part of the experimental data 
from SkillExplorer (Guo et al. 2020) as our dataset. The 
dataset includes interaction records of 30,000 skills, and 
basic information of 68,066 skills crawled from the Ama-
zon skill store, as shown in Table 2.

Text similarity. SkillSim first pre-processes interaction 
content. For the overall text, SkillSim only performs sim-
ple processing, such as converting words to lowercase, 
deleting punctuation marks, etc. Then, SkillSim splits the 
content with 3-shingles as granularity. Minhash and LSH 
algorithms are implemented using  datasketch (2022) so 
that the overall text can be pre-filtered. Here we set the 
number of random permutation functions in Minhash to 
the default value 128. We get the candidate similar skill 
pairs with approximate Jaccard similarity greater than 
10% based on LSH. SkillSim performs pairwise Jaccard 
similarity calculation based on pre-filtering results. Then, 
SkillSim extracts the key text of skills from the overall 
text. It uses NLTK  (2022) and spaCy  (2022) to perform 
more detailed preprocessing on the overall text, includ-
ing removing stopwords, and recovering word stems, 
etc. Finally, SkillSim calculates IDF value and key text 

similarity with these words.  The settings are shown in 
Table 3.

SkillSim employs the response content of skills as the 
text comparison object. This is because the input of the 
skills generated by SkillExplorer is already reflected in 
the comparison object, as it originates from the output of 
the previous round. To confirm this, we randomly choose 
1,000 skill pairs and recompute their overall text simi-
larity and key text similarity by incorporating the inputs 

Fig. 5 The interaction tree of the skill “Clever Real Estate”

Table 2 The number of skills in different categories

Skill type Total With records

Business and finance 3,336 1,420

Connected car 115 74

Education and reference 6,422 3,296

Enterprise 4 2

Food and drink 1,336 1,008

Games and trivia 11,413 7,182

Kids 2,684 423

Lifestyle 10,405 3,816

Local 1,223 324

Movies and tv 869 427

Music and audio 8,743 3,194

News 6,394 854

Novelty and humor 3,360 2,154

Productivity 3,737 2,019

Shopping 283 214

Smart Home 2204 626

Social 1,224 549

Sports 1,516 292

Travel and transportation 1,161 880

Utilities 803 570

Weather 834 676

Total 68,066 30,000
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of the skills. The average difference in similarity values, 
when comparing the results with and without including 
the inputs, is 0.46%. Thus, not including the inputs does 
not have a significant impact on the results.

Structure similarity. SkillSim analysis interaction 
records to build trees. According to the method of clas-
sifying question types described in SkillExplorer  (Guo 
et al. 2020), SkillSim uses spaCy to obtain question types 
and constructs 4-tuple for each node. In addition, Skill-
Sim extracts subtrees (height > 2) of the tree and changes 
the corresponding depth. Each interaction tree is stored 
as a sequence of tuples. It should be mentioned that Skill-
Sim only focuses on the presence or absence of nodes but 
not on the order of the nodes when calculating the simi-
larity. Also, SkillSim uses pre-filtering method to exclude 
skill pairs that are completely irrelevant or have little sim-
ilarity ( < 10% ), and calculates the true similarity based 
on the filtering results.

Evaluation
In this section, we aim to answer the following research 
questions.

• RQ1: What characteristics do the skills exhibit at a 
large scale?

• RQ2: What can be concluded from similarity analy-
sis?

• RQ3: How effective is SkillSim in detecting similar 
skills?

Landscape
To answer RQ1, we evaluate 68,066 skills. Out of these 
skills, we obtain 23,352 developer names, with an average 
of 2.9 skills per developer. Among them, 42.65% of devel-
opers have at least two skills.3 We construct a Cumulative 
Distribution Function (CDF) graph to show the number 
of skills each developer possesses. As shown in Fig. 6, the 
X-axis represents the number of skills for a given devel-
oper name. 57.35% of developers possess one skill, and 

less than 0.4% of developers have more than 54 skills. 49 
developers have over 100 skills. 

Three developers possess over 1,000 skills, they are 
InfoByVoice (with more than 2,500 skills), Rhall (with 
more than 1,400 skills) and Patch.com (with more than 
1,000 skills). We analyze these three developers fur-
ther. InfoByVoice and Rhall both refer to voiceapps.
com, a platformwhich helps non-technical individuals 
to develop their skills. Its homepage claims “Building 
complex skills is easy with Voice Apps.....”. Although both 
developers come from the same platform, the skills 
developed by InfoByVoice are mainly in the Lifestyle 
category, while the skills developed by Rhall are mainly 
in the Games & Trivia category, with very few in Nov-
elty and Humor and Education & Reference. Moreover, 
Patch.com points to the website Patch.com, an adver-
tising promotion site that helps companies place ads. 
Most of the skills developed by this developer belong 
to the News category. All three developers belong to 
advertising or assistant development platforms.

Answer to RQ1: Many developers are associated with 
multiple skills, with 42.65% of them having more than 
one skill. Some developers or development platforms 
even have thousands of skills.

Similarity analysis
To answer RQ2, we analyze the results of the similarity 
calculation. This section presents an in-depth analysis 
from two different perspectives: the similarities among 
skills and the developers associated with those skills. 
Based on the pre-filtering results, we obtain skill pairs 
with similarity greater than 10%.

Similar skills. We analyze the similarity results 
from various perspectives. Figure  7 depicts the CDF 
of similarities distribution, where the X-axis repre-
sents the similarity values and the Y-axis displays 

Table 3 Similarity calculation configuration

Similarity Granularity Feature expressions

Overall text 3-shingles 3-shingles

Key text Word IDF

Tree structure Node Tree feature tuples

Fig. 6 The number of skills owned by a developer

3 Note that the developer names are not unique, so the same name does not 
represent the same developer. Here is just an analysis of the basic information, 
and we will analyze further later based on the skill interaction content.
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the percentage of values that are less than the given 
similarity.

For the overall text similarity, the percentage of 
skill pairs with similarity greater than 10% is 2.3%, 
and we perform analysis based on these skill pairs. 
Of these data, as shown by the red line, 11.9% of the 
skill pairs are more than 50% similar, while 7.5% of the 
skill pairs are more than 70% similar. 0.1% of the skill 
pairs have a similarity greater than 90%. We carry out 
manual analysis on a total of 900 skill pairs by select-
ing 100 skill pairs for each varying degree of similar-
ity (i.e. from 10% to 90%). Skill pairs with a similarity 
greater than 70% typically have almost identical con-
tent. This is consistent with previous works (Manaa and 

Abdulameer, 2018). These skill pairs may only differ in 
the name or have slight modifications to their content. 
The first four rows of Table  4 are two skill pairs. The 
skill “SingleStone” and the skill “SolitaryStone” are both 
advertising “singlestone” although they come from dif-
ferent developers “SingleStone Consulting” and “Pepper 
Industries”. Except for the different skill names in the 
first sentence, the rest content is exactly the same. The 
skills in the second pair come from the same developer, 
and they have roughly the same content except for the 
skill names. Most of the skills with a similarity greater 
than 50% use identical templates with only minor 
modifications in content. For example, a skill named 
“Harvest Christian Fellowship” is developed by “InfoBy-
Voice”, and the skill “Wave Church Seaboard, Virginia 
Beach, VA” developed by “SkillSet” have an overall text 
similarity of 58.1%. Although they present information 
about two different churches, they use the same ques-
tioning phrase and the same contact information. The 
skill pairs with more than 30% overall text similarity are 
some based on the same template but with significant 
differences in content, and others due to the common 
phrases in short conversations, such as “for help please 
visit help pages on amazon web site”.

For key text similarity, 4.1% of the skill pairs have a sim-
ilarity greater than 10%. In these data, as shown by the 
green line, 12.4% of skill pairs are more than 50% similar 
and the percentage of skill pairs that are more than 70% 
similar is 7.8%. In addition, Furthermore, 0.05% of skill 

Fig. 7 Similarity probability distribution

Table 4 Examples of similar skill pairs

Skill name Developer Contents Osim Ksim

SingleStone SingleStone Consulting “Ok here is singlestone. singlestone is a consulting firm that focuses on reduc-
ing friction and removing barriers in business. it has expertise in customer 
experience product development and internal collaboration. singlestone is 
located at 4101 cox road suite 350 glen allen virginia 23060 ......”

95.0% 91.1%

SolitaryStone Pepper Industries “Ok here is solitarystone. singlestone is a consulting firm that focuses on reduc-
ing friction and removing barriers in business. it has expertise in customer 
experience product development and internal collaboration. singlestone is 
located at 4101 cox road suite 350 glen allen virginia 23060 .......”

Find Seafood Specials Black Point Lobster “Ok here is find seafood specials. are you cooking whole live lobsters or lobster 
tails. would you like to grill boil bake or steam your lobster tails ...... remove 
from freezer making sure it is no longer moving. push the tip of a skewer or 
large sharp heavy knife into the center of the cross on its head”

73.9% 81.1%

How to Eat Lobster Tail Black Point Lobster “Ok here is how to eat lobster tail. are you cooking whole live lobsters or lob-
ster tails. would you like to grill boil bake or steam your lobster tails ...... remove 
from freezer making sure it is no longer moving. push the tip of a skewer or 
large sharp heavy knife into the center of the cross on its head”

Fire Fact Number One Card Rhall “......card with fact is being sent to your alexa app. this app sends a card to your 
alexa app. this card will give you a fact about fire. this skill was built with love 
by voiceappscom ......”

40.0% 71.83%

Wolf Facts SJ “......card with link is being sent to your alexa app. this app gives facts about 
wolves. open it and it will randomly give you a fact about wolves. this skill was 
built with love by voiceappscom ......”
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pairs have a similarity greater than 90%. Here we focus 
on the difference between key text similarity and overall 
text similarity. As shown in the last two rows of Table 4, 
the skills Fire Fact Number One Card and Wolf Facts have 
different developer names, and the overall text similar-
ity is 40%. It is difficult to distinguish whether they are 
related just from the overall text similarity. However, key 
text similarity captures important information voiceapp.
com, with a similarity of 71.83%. Thus, by combining the 
key text similarity with overall text similarity, we can 
effectively identify skills on the same topic or important 
key items.

For the tree structure, we filter out skills with less 
than 2 responses (about 1/3), most of which are sim-
ple ad skills or skills related to news. We then calculate 
the tree structure similarity. The percentage of skills 
with more than 10% similarity in the skill pairs is 1.33%. 
Among these skill pairs, as shown in the blue line of the 
figure, 18.4% of the skill pairs have more than 50% simi-
larity, 16.7% have more than 70% similarity, and 15.1% 
have more than 90% similarity. We further combine the 
tree structure similarity with the overall text similarity 
for an in-depth analysis. The results show that for skill 
pairs with overall text similarity greater than 90%, 71.3% 
of the tree structure similarity is greater than 70%. For 
skill pairs with overall text similarity over 70%, 48% of 
skill pairs display a tree structure similarity of more than 
70%. We find that the order in which the skill commands 
are used in the interaction affects the skill response con-
tent (e.g. different responses for the first and second 
time when opening skill). Besides, the mechanisms of 
SkillExplorer  (Guo et  al. 2020) for answering questions 
(e.g. ending the path if a response is visited) also affect 
the tree structure similarity. These two reasons decrease 
the tree structure similarity value. We randomly select 
500 skill pairs with overall text similarity over 70%. After 
manually and completely traversing the skills in a certain 
order, SkillSim automatically draws the tree structure 
and calculates the similarity. We find that the percent-
age of skill pairs with tree structure similarity over 90% 
is 93.5%, and the percentage of skill pairs with more than 
70% similarity is 89.2%. This indicates that the tree struc-
ture similarity can be used to detect templates.

In summary, the three similarity measures evaluate 
skill similarity from distinct perspectives, and they can be 
utilized in combination as required.

We also analyze the number of similar skills. We cal-
culate the percentage of skills with skill similarity greater 
than 90%, 80%, and 70% based on overall text similarity, 
key text similarity, and tree structure similarity, as shown 
in Table 5. As many as 25.9% of the skills have skill pairs 
with an overall text similarity greater than 70%. 16.4% of 
the skills have skill pairs with a key text similarity greater 

than 70%. And for the tree structure, 36% of the skills 
have other skills with similarity greater than 90%. Then 
we combine the overall text similarity and key text simi-
larity for a more rigorous analysis. The result shows that 
11.1% of the skills have both similarities greater than 70%. 
This percentage is surprising because, as analyzed above, 
a 70% similarity largely means that the template and con-
tent of these skills are basically the same.

In order to know how many similar skills there are for 
each skill, we count the data based on different similar-
ity perspectives under different similarity values (70% 
and 50%). As shown in Fig.  8, the two sub-figures have 
roughly the same trend, mainly distributed in 1− 2 and 
> 50 . Among the skills with similarity greater than 70%, 
nearly 50% of them have more than 50 other skills with 
similar overall text, and the tree structure has a tendency 
to be consistent with the overall text. This phenomenon 
indicates that many similar skills use the same develop-
ment template.

Developers. In landscape, we count developer names 
based on the skill’s basic information. Here, we combine 
developers and skill similarity for further analysis. We 
get 14,211 developer names in the 30,000 skills. Then we 
analyze similar skills under the same developer name and 
similar skills among different developer names.

For the same developer name, we count a total of 3,516 
developer names corresponding to more than 1 skill. We 
group the skills corresponding to each developer name. 
If the number of categories after clustering is fewer than 
the number of skills, we consider it to be changed. Table 6 
shows that the more skills a developer name possesses, 
the more likely it is to be changed. When clustering based 
on a text similarity greater than 70%, 27.2% of developer 
names with 5 or more skills changed. This value reaches 
44.5% when based on an overall similarity of greater than 
50%. This makes sense because when developers need 
to develop multiple skills, using the original template or 
content can reduce the workload.

Among these developer names, “InfoByVoice” has 2,412 
skills, the largest number, followed by developer “Rhall” 
with 1,232, which is consistent with the result obtained 
from the previous basic information. We further analyze 
the content of skills corresponding to the same developer 

Table 5 Proportion of similar skills

Similarity perspectives ≥ 90% ≥ 80% ≥ 70%

Overall text 9.6% 21.0% 25.9%

Key text 5.5% 11.2% 16.4%

Tree text 36.0% 37.9% 40.1%

Overall text + Key text 4.6% 8.6% 11.1%
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name. We perform similarity clustering for skills with 
“InfoByVoice” developer name. The 2,412 skills are clus-
tered into 2,089 categories based on an overall text simi-
larity of 90%. In addition, these skills are clustered into 79 
categories based on an 80% similarity and are clustered 
into 19 categories based on a 70% similarity. This sug-
gests that “InfoByVoice” uses very similar templates and 
contents to advertise different topics, which is confirmed 
manually. Therefore, there are indeed cases in which 
the same developer or development platform develops a 
large number of skills with similar content.

For different developers, we obtain skill pairs with over-
all text similarity and key text similarity both greater than 
50%, and cluster 30,000 skills into 21,754 categories. The 
largest category encompasses more than 2,500 skills. 
After conducting manual analysis, three main cases are 
identified. In the first case, these similar skills are devel-
oped with the skill assistant development platforms. They 

include official assistant platforms such as “Blueprints”, 
and third-party assistant development platforms such 
as “VoiceApps”. Among the 30,000 skills, there are more 
than 900 skills from “Blueprints” that have obvious hints. 
For the third-party platforms, we analyze the categories 
with more than 50 skills and get a total of 16 third-party 
platforms. Using these third-party platforms, skills can be 
published either through the platform account or devel-
opers’ own accounts. There are some identical elements in 
these skills, such as the same statements (e.g. “ok here is... 
get standings and records for the...”) or information about 
the platform (e.g. email and phone number). These 16 
third-party platforms can associate more than 9,000 skills 
and more than 200 developer names. The number of skills 
is more than 30% of the total number of skills we analyze. 
In the second case, the developer is an organization that 
develops multiple similar skills either by itself or through 
third-party platforms. For example, “SnoCountry” devel-
ops more than 400 similar skills for broadcasting detailed 
ski and snow condition reports and resort information. 
The last case is skills that are suspected to be developed 
by the same developer using different accounts, such as 
skills “SingleStone” and “Pepper Industries” in Table 4.

Non-compliant behaviors. During the analysis, we 
find some non-compliant behaviors. For example, Ama-
zon requires developers cannot explicitly request that 
users leave a positive rating of the skill (Amazon 2022c). 
However, up to 2,090 skills in several cluster categories 
from third-party developer platforms like “getstoryline”, 
“VoiceSkillsInc”, “Appbly.com” all explicitly mention 
“please leave a 5 star review” or “give us a 5 star rating” 
, etc. We further analyze the issues related to user pri-
vacy. Amazon requires developers to include a privacy 
policy link and configure permissions when they need 

Fig. 8 Similar skill numbers

Table 6 Skill clustering changed based on the same developer 
name

# of 
developer’s 
skills

Similarity 
value

Overall text 
(%)

Key text (%) Tree 
structure 
(%)

≥ 2 0.9 2.6 2.8 10.1

≥ 3 4.4 4.7 17.1

≥ 5 8.7 8.6 28.1

≥ 2 0.7 9.4 7.3 11.0

≥ 3 15.6 12.1 18.5

≥ 5 27.2 23.1 30.4

≥ 2 0.5 17.1 13.2 12.8

≥ 3 27.4 21.0 21.2

≥ 5 44.5 35.4 34.3
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user privacy to enhance services. However, Witlingo, a 
third-party assistant development platform with over 
100 skills (in 30,000), develops 51 similar skills related 
to news and asks users for their cell phone numbers 
through conversations without configuring the permis-
sions. This behavior facilitates the skill to bypass plat-
form control and access user privacy. The platform is 
even recommended by Amazon in the third-party tools 
list (Amazon 2022d). “Voiceter Pro Inc”, also a third-
party development platform, develops 36 similar skills 
related to real estate, asking users for zip codes and 
addresses without configuring permissions. In addition, 
in the same cluster category as ‘Voiceter Pro Inc’, there 
is also a developer named ‘Voiceter Pro LLC’ who devel-
ops similar skills that asks for user address and does not 
configure permissions.

Findings. Through analysis, we find that although 
Amazon claims 100,000 skills, a very large number 
of skills are similar in content (25.9% of the 30,000 
skills have an overall text similarity of more than 
70%). Moreover, the existence of multiple skill assis-
tant development platforms lowers the threshold of 
skill development and limits the richness of skill con-
tent. Many low-quality skills are present in the market. 
Nearly 1/3 of the skills have a tree structure depth of 
less than 3, and most of the skills are advertisements. 
15.1% of the tree structures are more than 90% similar. 
More importantly, many skills are developed with the 
assistance of third-party development platforms, some 
of which do not fully comply with Amazon’s certifica-
tion policies, even though some are recommended by 
Amazon itself. Similarity analysis assists in identifying 
other non-compliant skills that are similar and in estab-
lishing correlations among different accounts.

Answer to RQ2: There are many similar skills in the 
skill market and development platforms dominate a 
large number of similar skills. Through similarity analy-
sis, we discover that some platforms develop multiple 
similar non-compliant skills. Additionally, even plat-
forms that are recommended by Amazon develop skills 
that request users’ private information in a non-compli-
ant manner. Furthermore, there are instances of devel-
opers creating non-compliant skills across accounts.

Effectiveness
To answer RQ3, we evaluate the effectiveness of pre-fil-
tering methods and similarity calculation methods.

Pre-filtering methods. We try a pairwise compari-
son. It takes approximately 35 min to perform one mil-
lion overall text similarity comparisons. For 30,000 
skills, pairwise comparisons will require roughly 20 
days. Using Minhash and LSH algorithms, it only takes 

less than 10  min to obtain all skill pairs with similarity 
greater than 10%. The pre-filtering method can filter out 
more than 90% of irrelevant results, thus significantly 
reducing time consumption.

In addition to time performance, we are also con-
cerned with the accuracy of the pre-filtering method. We 
get the skill pairs with overall text approximate similar-
ity from similarity greater than 10% to similarity greater 
than 90% based on Minhash and LSH algorithms. Then 
we calculate the true similarity based on the pre-filtering 
results. The results are shown in Fig. 9. The X-axis is the 
pre-filtered threshold and the Y-axis is the true similar-
ity. These rectangles show the true similarity based on 
the pre-filtered thresholds. The top and bottom of the 
rectangle represent 75% and 25% of the data distribution. 
The black line below the bottom of the rectangle is the 
data starting point. The red line is the median, the green 
triangle is the mean, and the violin plot on the right indi-
cates the data density distribution. As we can see from 
the figure, more than 85% of the data is accurate, and 
false similarity results (around 10%) are tolerable because 
we will further calculate the true similarity based on pre-
filtering data and false positives will be filtered. We are 
more concerned with false negatives than accuracy, as 
this will cause us to miss them in the final results. Here 
we adopt two methods to test the false negatives. For the 
first method, we randomly select 50,000 pairs that are not 
in the pre-filtered results and then compare them with 
pre-filtered pairs based on a threshold of 0.1. The result 
shows that the false negative rate is less than 0.3%. For 
the second method, we check false negatives based on 
the pre-filtered result. Pairs with true similarity greater 
than 90% in threshold 0.1 and threshold 0.9 are compared 
to see if there are any false negatives. The logic behind 
this method is that all pairs with similarity greater than 
90% have a high probability of existing in threshold 0.1, 
but some may be missed in threshold 0.9. Therefore, by 
comparing the results of pairs in these two thresholds, 
we can check the false negatives. We compare with each 
threshold in turn and the false negative rate is lower than 
0.07%.

Similarity calculation methods. In the above analy-
sis, we demonstrate the effectiveness of SkillSim through 
manual analysis and case studies. In this part, we try to 
use learning-based methods like Word2vec  (Mikolov 
et al. 2013) and Doc2vec (Le and Mikolov 2014) to calcu-
late skill similarity and analyze their performance.

Word2vec, a word embedding methodology, that 
enables similar words to have similar dimensions. We 
use   (Gensim 2022) to train word vectors with 10,000 
wiki news and 5000 skill contents. Then we average 
each word vector in a document to represent the docu-
ment vector. Finally, we calculate the cosine similarity 
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between skills in the testing datasets. Due to the lack 
of ground truth, we validate the model accuracy by 
checking whether the highest similar text is the docu-
ment itself. In the wiki news test set, the model gets 
an accuracy of 91.44%. However, in skill’s documents, 
only 2.6% are correctly matched, and the incorrectly 
matched documents are even less than 20% similar in 
the overall text similarity with Jaccard (Table 7).

Considering that word vectors do not work well for 
document comparison, we try to use Doc2vec, which 
can represent each document as a Vector. We train 
the model using text8 documents provided by Gensim 
and 5000 skill documents in our dataset. In the test set 
of text8 documents, 100% of the documents with the 
highest similarity are matched with themselves. For the 
skills in the test set, 62.2% of the original documents 

are successfully matched. Due to sensitivity to seman-
tics, Doc2vec considers many similar functional skills 
to be similar.

We randomly select 100 skill pairs with overall text 
similarity and key text similarity ranging between 10% 
and 30% and then calculate their doc2vec similarity. Of 
the pairs, 58% have semantic similarity higher than 50%, 
and 18% have similarity higher than 70%. We manually 
analyze 18 similar pairs and find that 83.3% of the skill 
pairs come from skills with similar behaviors that are 
developed by different developers. Based on the available 
information, we are unable to determine their connec-
tion. The other 16.7% have some common phrases. An 
example is shown in Table 8.

The reason for this outcome is that the majority of 
the functions in the skill market are centered around 

Fig. 9 Effectiveness of pre-filtering method based on overall-text

Table 7 Other Similarity Method

Feature expressions Training dataset Test dataset Accuracy (%)

word2vec wiki news + skill contents wiki news 91.44

skill contents 2.6

doc2vec text8 + skill contents text8 100

skill contents 62.2
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functions such as news, games, life tips, advertising, 
music, and smart homes. Furthermore, the interaction 
mode based on the question-answering system results 
in skills having similar phrases. As a result, the seman-
tics among these skills are largely indistinguishable. 
Models based on semantic similar detection are effec-
tive for traditional datasets, however, they do not fulfill 
our purpose in the detection of skill similarity.

Skills based on semantic similarity will bring more 
confusion when analyzing associations among skills. 
However, they offer an additional perspective for 
observing skills. Thus, we show the analysis of seman-
tic similarity. The percentage of skill pairs with similar-
ity greater than 10% is lower than 5% of the total skill 
pairs in overall text, key text, and tree structure. But the 
percentage of skill pairs with semantic similarity greater 
than 10% is as high as 55%. Considering the basis of 
30,000 skills, this has nearly 500 million skill pairs. 
Among them, 11% of skill pairs have semantic similarity 
greater than 50%, and 3% have similarity greater than 
70%. Additionally, we separately count the distribution 
of semantically similar skills under different function 
categories. Semantically similar skill pairs account for 
a higher percentage of the same category. For example, 
more than 16% of skill pairs have semantic similarity 
greater than 70% in Weather category.

Answer to RQ3: The pre-filtering method based 
on Minhash and LSH greatly reduces time consump-
tion. Compared with semantic-based (e.g. Word2vec, 
Doc2vec) similarity calculation, duplication-based (i.e. 
SkillSim) similarity calculation is more suitable for find-
ing relationships among skills.

Discussion
In this paper, we perform a correlation analysis of skills 
in the market through similarity analysis. We find a 
large number of skills with similar content in the mar-
ket and summarize three reasons. One of the main rea-
sons is the assistance development platforms. On the 

one hand, these development platforms lower the thresh-
old for skill development, allowing individuals without a 
foundation to develop skills, consequently significantly 
increasing the number of skills. On the other hand, it also 
leads to the emergence of many skills with low quality 
and similar content.

In addition, there are some third-party assistant 
development platforms that do not fully comply with 
the market policies and develop similar non-compliant 
skills. In this way, third-party development platforms 
can collect a lot of private information from users with-
out attracting the attention of platform reviewers. We 
propose some suggestions for improvement. First, until 
there is a robust review mechanism, it is necessary to 
further optimize the official development tool so that 
developers tend to use it. Second, there needs to be a 
strict review of the recommended third-party develop-
ment tools to ensure that they have sufficient knowl-
edge of the certification requirements. Third, stricter 
restrictions on developer account creation are needed. 
Only email verification provides malicious developers 
with more opportunities to access users’ private infor-
mation. Finally, the similar skills of different accounts 
need to be further analyzed.

Limitations and future work. Due to the reason of 
the dataset, SkillExplorer does not select answers in 
a specific order when traversing the skill’s behavior. 
Meanwhile, if the same output appears during traversal, 
the current interaction path will be ended. These rea-
sons make it possible for skills with the same logical 
structure to have different structure trees. Although 
SkillSim mitigates these problems by ignoring the order 
of tree nodes and comparing subtree structures, there 
are still false negatives. In the future, we plan to design 
a question-answering system that generates answers 
to questions based on a certain sequence to solve this 
problem.

Moreover, if only the words of a skill change signifi-
cantly while the topic semantics remain similar, it will 
be difficult for methods based on n-shingles and IDF to 

Table 8 An example of false positives with Doc2vec

Skill name Developer Contents Osim Ksim Doc2vecsim

DogeCoin Sterian Associates “Ok here is dogecoin. the current price of doge coin 
is 18139999999999997 cents us per one thousand 
doge coin......get the spot price of dogecoin one of the 
top crypto currencies worldwidesimply ask alexa start 
dogecoin......”

14.1% 12.3% 89.1%

Monero Price Joseph Yi “Ok here is monero price. welcome to the monero price 
checker. to ask for the price of monero please say alexa 
what is the price of monero. the current price of monero 
in usd is 666......”
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capture the similarity. Using a large NLP model to cap-
ture the “key semantic” similarity among skills may be 
a solution. Considering the lack of the marked dataset, 
we will take it as future research work to detect the key 
semantic similarity.

Related work
Skill analysis. In recent years, with the rapid growth in 
the number of skills, there is a growing concern about 
the safety of skills. Kumar et  al.  (2018) discover skill 
squatting, a homo-phonic attack that exploits speech 
interpretation errors. It can divert user requests to 
malicious skills by creating skills with similar names 
to benign ones (like “Full Moon” vs. “Four Moon”). 
Zhang et al. (2019a) further discover a similar attack by 
exploiting the longest string match used by the VPA to 
invoke a skill. In addition, they discover voice masquer-
ading, i.e. malicious skills can mimic exit intent, trick-
ing users into believing the skill has terminated, while 
still collecting users’ voice inputs. LipFuzzer  (Zhang 
et  al. 2019b) exploits vulnerabilities in NLU’s intent 
classifier to generate voice commands that may lead to 
semantic inconsistencies, allowing the classifier to mis-
interpret the user’s request and route the request to a 
malicious skill. It systematically identifies voice com-
mands that are easily misinterpreted in existing VPA 
platforms. These three researches  (Kumar et  al. 2018; 
Zhang et  al. 2019a, b) mainly focus on issues in skills 
wake-up and exit processes.

Cheng et  al.  (2020) conduct a comprehensive meas-
urement of the trustworthiness of skill certifications in 
popular skill platforms. They find that these platforms 
are unreliable by successfully obtaining 234 (100%) skill 
certifications for policy violations. Wang et  al.  (2021) 
investigate the vetting process of two VPA platforms 
with elaborate skills and identify weaknesses in the vet-
ting process. They propose three attacks that help mali-
cious skills successfully bypass the vetting process and 
design several defenses based on linguistic knowledge. 
These two works illustrate the flaws in the vetting pro-
cess of mainstream VPA platforms. SkillExplorer  (Guo 
et al. 2020) tests and analyzes the interactive content of 
skills, classifies the content of skills through NLP tech-
nology, and generates potential commands. It performs 
DFS-based exploration of skills to detect skills that do 
not comply with privacy rules. SkillVet (Edu et al. 2021) 
analyzes the traceability of permissions and finds that 
many skills do not fully disclose their data usage. It 
reveals how skills can bypass Alexa’s permission system 
by requesting personal information without using its 
API. SkillBot  (Le et  al. 2022) focuses on kid skills and 
identifies kid skills with inappropriate content or per-
sonal data requirements. It describes a confounding 

utterance threat that can accidentally shift invoke for 
children’s skills to non-child-directed skills. Many stud-
ies  (Guo et  al. 2020; Lentzsch et  al. 2021; Liao et  al. 
2020) find that skills do not provide a valid privacy pol-
icy. In contrast to these efforts to study separate skills, 
our work focuses on discovering associations among 
skills through similarity analysis.

Software clone detection Software clone detection is 
a well-developed research topic, and the main branch is 
code clone detection. Researchers perform clone detec-
tion based on the code’s different representations. Text-
based clone detection techniques  (Ragkhitwetsagul and 
Krinke 2017; Yu et  al. 2017; Nakamura et  al. 2016; Xue 
et al. 2018) can achieve high accuracy with few false posi-
tive rates. However, it ignores information such as the 
code’s syntax, which can lead to a large number of false 
negatives. Token-based detection techniques  (Tekchan-
dani et  al. 2017; Wang et  al. 2018; Yuki et  al. 2017; Saj-
nani et  al. 2016) divide the code into token sequences, 
which can match code-specific information. However, 
this approach has a low tolerance for code changes and 
does not make use of code structure information. A sim-
ilar problem occurs if only text or token information is 
considered in skill similarity detection. This is because 
skills are programs and possess structural information. 
Structure-based clone detection  (Yang et  al. 2018; Pati 
et al. 2017; Chen et al. 2014) takes into account the struc-
tural features of the code. It is less sensitive to changes in 
the order of the code, so it can also detect slightly modi-
fied code clones. However, it does not recognize tokens 
and text values and has more false positives. Hybrid clone 
detection techniques  (Misu and Sakib 2017; Sheneamer 
et al. 2016; Vislavski et al. 2018; Misu et al. 2017; Akram 
et al. 2018; Sheneamer et al. 2018; Meng et al. 2018a, b) 
can complement each other to achieve a better result for 
clone detection. Unlike the above works, skill similar-
ity detection is not based on code, but on the content of 
interactions in natural language. Therefore, previous sim-
ilarity detection work is not applicable.

Conclusion
In this paper, we develop a method called SkillSim to 
detect skill similarity from two dimensions of text simi-
larity and structure similarity, and further analyze the 
association of skills in the market.

We find that more than 25.9% of skills have at least one 
skill with overall text similarity greater than 70%. This 
phenomenon is mainly caused by skill assistant develop-
ment platforms, while some platforms even have security 
risks. Based on the above phenomena, we propose some 
suggestions.
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