
Xiang et al. Cybersecurity (2023) 6:16
https://doi.org/10.1186/s42400-023-00151-2

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

AppChainer: investigating the chainability
among payloads in android applications
Xiaobo Xiang1,2, Yue Jiang1,2, Qingli Guo1,2*, Xiu Zhang1,2, Xiaorui Gong1,2 and Baoxu Liu1,2

Abstract

Statistics show that more than 80 applications are installed on each android smartphone. Vulnerability research on
Android applications is of critical importance. Recently, academic researchers mainly focus on single bug patterns,
while few of them investigate the relations between multiple bugs. Industrial researchers proposed a series of logic
exploit chains leveraging multiple logic bugs. However, there is no general model to evaluate the chaining abilities
between bugs. This paper presents a formal model to elucidate the relations between multiple bugs in Android appli-
cations. To prove the effectiveness of the model, we design and implement a prototype system named AppChainer.
AppChainer automatically identifies attack surfaces of Android applications and investigates whether the payloads
entering these attack surfaces are “chainable”. Experimental results on 2138 popular Android applications show that
AppChainer is effective in identifying and chaining attacker-controllable payloads. It identifies 14467 chainable pay-
loads and constructs 5458 chains both inside a single application and among various applications. The time cost and
resource consumption of AppChainer are also acceptable. For each application, the average analysis time is 317 s, and
the average memory consumed is 2368 MB. Compared with the most relevant work Jandroid, the experiment results
on our custom DroidChainBench show that AppChainer outperforms Jandroid at the precision rate and performs
equally with Jandroid at the recall rate.

Keywords Android security, Vulnerability exploit, Payload chain

Introduction
The variety and quantity of Android applications are fast
growing nowadays. Statistics (buildfile 2022) show that
more than 80 applications are installed on each smart-
phone on average, exposing numerous attack surfaces to
malicious attackers. If application vulnerabilities are suc-
cessfully exploited by an attacker, both the user privacy
and system resources would be seriously threatened.

Existing academic research related to Android vul-
nerability mainly focuses on single bug patterns or the
methodology for discovering and exploiting bugs. The

well-researched bug patterns include permission-related
bugs (Au et al. 2012; Bagheri et al. 2018, 2015; Demis-
sie et al. 2020), attack families related to Intents (Groß
et al. 2018; El-Zawawy et al. 2021; Gao et al. 2018a) or
other IPC mechanisms (Elgharabawy et al. 2022), inse-
cure deep links (Aldoseri and Oswald 2022), and danger-
ous file operations (Zhang et al. 2019). Methods such as
fuzz testing (Yang et al. 2014; Ye et al. 2013; Choi et al.
2018), symbolic execution (Gao et al. 2018b; Luo et al.
2019), taint analysis (Min et al. 2019; Arzt et al. 2014),
and machine learning (Garg and Baliyan 2020) are con-
ducted for both vulnerability discovery and exploitation.
However, few works investigate the relationship between
bugs.

Recently, security researchers from the industry pro-
posed a series of attacks that chain multiple logic bugs
together. Such attacks are able to execute arbitrary code
(Plaskett and Loureiro 2018; Geshev and Miller 2018),

*Correspondence:
Qingli Guo
guoqingli@iie.ac.cn
1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China
2 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00151-2&domain=pdf

Page 2 of 19Xiang et al. Cybersecurity (2023) 6:16

steal private files (f-secure Lab 2019), and break the
application sandbox (Dawn Security Lab 2022). Despite
the existence of effective exploit chains, experienced
researchers widely regard the exploit chain building pro-
cedures as “case-by-case” tasks (Plaskett and Loureiro
2018). A formal model for explaining whether and why
two bugs can be chained together is missing. To our
best knowledge, Jandroid (f-secure Lab 2019) is the only
tool developed for building the logic bug exploit chain
towards the Android platform. Jandroid searches specific
code patterns defined in a template and chains the identi-
fied code snippets together. However, the definition of its
templates depends on expert experience and lacks uni-
versality. In addition, the data controllability of the iden-
tified code snippets is unknown because it does not track
the information flow of the attacker-controllable inputs.

Motivated by these existing logic bug exploit chains and
bug patterns, this paper proposes an exploit chain model
to elucidate the “chainability” of multiple functionalities
from the angle of payloads. The term Payload represents
the attacker-controllable input entering an attack surface
in Android applications. The term Gadget denotes a set
of functional code snippets that can be triggered or con-
trolled by a Payload. We model the input requirements
and output abilities of each triggered gadget to measure
the IO property of a payload. For two payloads ready
to be received and processed by corresponding attack
surfaces, if the output of one payload fits the input of
another payload, then the two payloads can be chained
together.

Practically, we design and implement a prototype sys-
tem named AppChainer based on the chain model.
AppChainer can automatically identify an application’s
potential attack surfaces, gather the gadgets triggerable
by payloads entering these attack surfaces, and investi-
gate the chainability among the identified payloads.

The effectiveness of the model and performance of
AppChainer are evaluated on 2138 popular applications
downloaded from Google Play. Each popular application
in our test suite has more than one million installations.
AppChainer identifies 14467 payloads composing 5458
chains both inside a single application and among vari-
ous applications. The chained payloads can trigger more
functionalities than single payloads and thus increase the
attacker’s attack abilities. The average analysis time and
consumed memory for these applications are 317 s and
2368MB, respectively.

The precision and recall rates are evaluated on the
DroidChainBench. Compared with the most relevant
work Jandroid, the experiment results on our custom
DroidChainBench show that AppChainer outperforms
Jandroid at the precision rate (100%> 77.78%) and

performs equally with Jandroid at the recall rate (87.5%
= 87.5%).

To sum up, the contributions include:

(1) This paper proposes a model to formally explain the
logic bug exploit chain from the angle of payloads
and their IO properties.

(2) Based on the model, we design and implement a
prototype system named AppChainer. It automati-
cally identifies chainable payloads inside one or
among various applications.

(3) Experimental results on a number of popular
Android applications show that AppChainer is
effective in finding chainable payloads and con-
structing exploit chains. The cost of time and mem-
ory are also acceptable.

Motivation
This work is initially inspired by the exploit chain
(Geshev and Miller 2018) proposed in a mobile pwn2own
competition. The chain glued 11 bugs or features across
six applications together to launch remote code execu-
tion attack on a Samsung S8 device. In this section, we
briefly introduct the workflow and key bugs involed
in the motivating chain, then we summarize three key
observations to prove the feasibility of conducting exploit
chain research on the Android platform.

Motivating example
In the following text, we briefly retrospect the two
“intent-proxy” bugs leveraged in the exploit chain
(Geshev and Miller 2018).

Intent-proxy bugs, also named second order permis-
sion re-delegation attacks in Demissie’s research (Demis-
sie and Ceccato (2020)), are able to delegate part of the
attacker’s inputs to other components via the applica-
tion’s internal Intent. The two bugs are the main clue
of the whole chain and glue all other bugs or features
together.

We illustrate the exploit chain’s workflow in Fig. 1. The
two key intent-proxy bugs are highlighted in red. For
simplicity, we tag the payloads in the chain so that we can
better explain their relationships in later sections.

The first intent-proxy bug lies in the Samsung Vend-
ing application. The application implements a browsable
activity that declares a Browsable category intent-filter
element, allowing an attacker sends a malicious web URI
intent to it. Once Samsung Vending’s browsable activity
receives the web Intent, it extracts two parameters named
id and url from the input URI and then constructs a new
Intent leveraging the two parameters. The id parameter
is used to set the destination of the Intent via Intent.

Page 3 of 19Xiang et al. Cybersecurity (2023) 6:16

setPackage(id) method. The url is used as the argument
of the Intent.setData(url) method. In the exploitation,
the constructed intent is sent to a specified application
to handle the attacker-controllable data URI. We hereby
symbolize the attacker-controllable payloads involved in
this stage. We name the web URI requested from the web
browser as puri1 , the extracted id parameter as pid , and
the url parameter as purlz.

The second intent-proxy bug lies in the Samsung Mem-
bers application. This application’s browsable activity
extracts both the packageName and className from the
web URI. The controllable package name and class name
allow an attacker to launch any components under the
context of Samsung Members. Similarly, we name the
URI payload from the browser as puri2 , the packageName
parameter as ppkg , and the className as pclz.

The two intent-proxy bugs chains all the bugs and fea-
tures in the whole chain. The first one was used to help
trigger an unsafe unzipping bug in the Samsung Note
application. A malformed zip file pzip referenced by purlz
was downloaded to the external storage beforehand.

Using pcfg extracted from pzip , a configuration file stored
in the SDCard was overwritten. The configuration file
would be loaded by a snippet of leftover debug code
and perform further code execution attacks. However,
the leftover debug code is executed only after the device
reboots. This condition is met by the second intent-proxy
bug, which triggers a null object exception in the Android
Telecom application and reboots the device.

Key observations
From the motivating example and some other exploit
chains (Plaskett and Loureiro 2018; f-secure Lab 2019;
Dawn Security Lab 2022), we summarize three key
observations. Based on these observations, we found
Android is a proper platform on which we conduct the
exploit chain research.

Multiple attack surfaces on android devices
From the adversary’s perspective, applications and their
functionalities that receive attacker-controllable inputs
are all attack surfaces (Sherman 2014). An android

download
malformed
zip file

send ,
containing
 and

extract and
intent.setData()
intent.setPackage()
send intent to trigger
Intent proxy bug#1

send Intent with
referencing the

trigger unsafe
unzipping,
extract the
 from

overwrite the config file
in SDCard via

send , containing and

extract and
send intent to trigger
Intent proxy bug#2

trigger device reboot
via exception

 will be
loaded after
rebooting

load

Browser SDCard Samsung
Vending

Samsung
Note

Android
Telecom

Samsung
Members

Fig. 1 The workflow of the exploit chain targeting Samsung S8

Page 4 of 19Xiang et al. Cybersecurity (2023) 6:16

device has various attack entrances due to a large num-
ber of installed applications and functionalities pro-
vided by them. These attack entrances include both the
local attack surfaces such as local IPC mechanisms, and
remote attack surfaces such as deep links sent from the
browser.

The exploit chain introduced in section Motivating
Example involves both remote and local attack surfaces.
The chain was developed intentionally for a pwn2own
competition, which requires compromising a target
device remotely with very few user interactions (Initia-
tive 2022). Thus the researchers launch an attack from
a remote direction. Remote attack surfaces receive pay-
loads in the form of web URIs and remote files. For
example, researchers prepare puri1 and puri2 in their web
server, waiting to be accessed from the target device’s
browser. In addition, the well-constructed pzip was also
downloaded in advance from their remote server. As for
local attack surfaces, various inter-process, inter-compo-
nent, and inter-application communication mechanisms
are used in the chain, involving up to six unique applica-
tions and their exported components.

The diversity and quantity of attack surfaces allow an
attacker to send various payloads to exploit the system
from different directions and provide abundant raw
materials for building a chain.

Measurable capabilities during exploiting
Exploiting an Android application written in memory-
safe languages such as Java or Kotlin is less flexible than
exploiting a memory-unsafe C/C++ program. On the
Android platform, the attackers’ ability relies more on the
target application’s internal functionalities and the con-
trollability of their inputs. There are fewer chances for an
attacker to behave beyond the application’s invoked APIs,
compared to the control flow hijacking and memory
manipulation attacks in memory-unsafe programs writ-
ten in C/C++.

In the motivating example, the attacker’s ability
depends completely on the inner behavior of the tar-
get applications. The exploit chains the functionalities
that can be triggered or controlled. Although there are
“arbitrary” component launching attacks involved in the
chain, the limited flexibility also depends on the func-
tionality of invoked API sequence, the controllability of
each phase, and finite target components available on
the device. In addition, the amount and category of APIs
invoked by an application are finite, thus the capabili-
ties that can be gained by an attacker are also finite and
measurable.

The inflexibility for exploiting a memory-safe Android
application leads to a finite and measurable set of an

attacker’s capabilities, making it feasible to measure a
payload’s behavior and capability set.

Dependencies between payloads
There are both data and control dependencies between
two payloads from different directions.

An example of data dependency is the load-after-store
operations in an application. Once the program receives
the payload, part of the attacker-controllable data
extracted from the payload may be stored in a temporary
or persistent data entity, and later be loaded by function-
alities triggered by another payload. In the motivating
example, pzip is downloaded in the SDCard beforehand,
but it won’t be loaded to assist the exploit until a proper
puriz referencing pzip was sent to trigger the unsafe unzip-
ping functionality in the program.

The control dependency is revealed in “pending attack
surfaces”. A pending attack surface cannot receive the
attacker’s payload directly unless another payload drives
the program’s control flow and triggers certain events to
turn the pending attack surface into a ready state. In the
motivating example, the leftover debug code is in a pend-
ing state, it does not proactively load pcfg , until payload
puri2 produces an event to reboot the system and trans-
forms the leftover debug code into a ready state. There-
fore, the puri2 has control dependency with pcfg.

Two payloads with data or control dependencies can
be chained together to trigger more functionalities or
enlarge the ready attack surfaces in the target program.

Logic exploit chain model
Based on the three key observations, we propose a gen-
eral model of the Android application exploit chain.

The model involves three important roles—payload,
gadget, and shared data entity.

The relations among these roles are shown in Fig. 2. In
a scenario where multiple inputs can be sent to the tar-
get in different directions, an attacker carefully prepares
and sends the payloads to an application’s attack surfaces
either simultaneously or in proper order. The payloads
flow into the system from different directions, and trigger
functional code snippets—gadgets in applications. These
gadgets take input from and send output to the shared
data entity. The entities chain multiple payloads together.
As shown in the figure, the shared data entity are mod-
eled inside one application as the internal data entity, or
among multiple applications in the form of external data
entity.

In the rest of this section, we introduce the threat
model of our research, describe the concept of Gadget,
define the IO properties of each gadget, and finally,
explain the chaining rules for the payloads.

Page 5 of 19Xiang et al. Cybersecurity (2023) 6:16

Threat model
Research scope
This work aims to find chainable payloads in Android
applications, including third-party user applications,
platform applications, and system applications. All
types of applications share the same attack entrances
and vulnerability patterns. In this paper, we only use
popular applications in Google Play as a test suite to
evaluate our model.

This work focuses on the applications implemented in
Java or Kotlin, because the APIs of these languages are
officially documented and are adopted by most Appli-
cation developers. Functionalities implemented with C/
C++ or hybrid applications based on HTML5 are not
involved in this work, because describing the behaviors
of C/C++ or hybrid applications is another challenge.

We do not detect specific bug patterns. Instead, we
put more emphasis on the relationship of function-
alities. We blur the boundary between an application’s
bug and feature, as essentially they are all considered
sequences of APIs calls. According to several empiri-
cal studies (Linares-Vásquez et al. 2017) on Android
application bugs and the OWASP mobile top ten risks
(Owasp 2022), most bugs are brought by insecure usage
of APIs.

Attack assumptions
The threat model assumes that an adversary can launch
attacks both locally and remotely.

In a locally launched attack, it is assumed that a mali-
cious application has been installed on the target device
by the attacker. The malicious application can interact
with other applications via various IPC mechanisms. In
addition, the malicious application is granted with nec-
essary permissions, including external storage access
permission for allowing attackers to read and write files
in the SDCard. Specifically, we assume the device user
may interact with the application’s operable UI widgets,
such as clicking a button, inputting text in an edit box,
etc. These user interactions facilitate producing neces-
sary events and the execution of more pending func-
tions in the application.

In a remotely launched attack, it is assumed that the
user can be guided to click a malicious URL embed-
ded in SMS, email, or instant message applications, so
that unprotected browsable activities can be triggered
by an attacker. We also assume an attacker can perform
a “man-in-the-middle” attack and hijack plain HTTP
streams to tamper requests or responses.

G1 G2

G3

G4 G5 G7

G6

G8

Payload3

App2 App3App1

Payload4

G Gadget

Attacker

Payload2Payload1

App4

out out out

in in in in

Attack
Surface

Attack
Surface

Attack
Surface

Attack
Surface

Attack
Surface

Attack
Surface

External Data Entity
out

Internal Data Entity

Fig. 2 Relations of multiple roles in the model

Page 6 of 19Xiang et al. Cybersecurity (2023) 6:16

Attack aims
The aim of the threat model is to compromise user pri-
vacy and access system sources via chained payloads.
Specifically, the adversary tries to trigger more func-
tionalities with less privileges requested and less user
interactions.

Gadgets definition
In this paper, a gadget is a snippet of code in an
Android application that can be triggered by a payload
or handles the data input of a payload. The term Gadget
is borrowed from the Return Oriented Programming
technique (Buchanan et al. 2008) in memory corruption
exploits, where gadgets are snippets of code invoked for
manipulating memory and registers.

According to whether the input parameters can be
controlled by an attacker, we divide gadgets into two
categories: weak gadgets and strong gadgets.

The input parameters of a Weak gadget have no asso-
ciation with the payload, the payload only triggers the
execution of these gadgets. Weak gadgets are often lev-
eraged to produce events or set intermediate states in a
chain. The form of a weak gadget is a cluster of invoked
APIs in the same class.

In comparison, part of a Strong gadget’s input param-
eter is extracted from the payload. Leveraging strong
gadgets, the attacker can conduct more flexible manip-
ulation of the applications’ behaviors by assigning var-
ied values as the input. The form of a strong gadget is a
cluster of invoked APIs belonging to an object, rather
than just of the same class.

The scope of APIs in gadgets includes but is not
limited to Android development APIs, Java language
APIs and other third-party library APIs. The invoking
sequences of these APIs are carefully sliced from the
whole program so that the functionality of a gadget is
explicable.

Figure 3 presents a code snippet to illustrate the form
of both strong and weak gadgets, and how the code
is sliced. The ExportedActivity in line 1, as the name
implies, is exported and allows another application to
send Intents to it and launch it. In line 6, the applica-
tion extracts data from the intent payload and uses it as
the parameter of the File.$init method. Thus File.$init
and the API of the same object File.delete can be trig-
gered by the intent payload. In addition, at least one of
their parameters is attacker-controllable. Therefore, the
group of two APIs belonging to the file object is marked
as a strong gadget. In comparison, some API calls in the
onCreate method are just triggerable but have no data
relations with the intent payload. After classifying these
APIs according to their class name, we get three weak
gadgets. The getIntent (line 5), getExternalFilesDir (line
6), startActivity (line 11), onCreate(line 13), setContent-
View (line 14) of the Activity class; the $init (line 9),
getStringExtra (line 6), setComponent (line 11) of Intent
class; the $init (line 10) of ComponentName class.

Formally, we use G(p) to denote the set of gadgets
triggered by payload p. The Gw(p) and Gs(p) are used to
denote the set of weak gadgets and strong gadgets sepa-
rately. G(p) is the union of weak gadget set and strong
gadget set:

StrongGadget of the file object

1 public class ExportedActivity extends Activity {
2
3 @Override
4 protected void onCreate(Bundle bundle){
5 Intent intent = getIntent();
6 File f = new File (getExternalFilesDir(null), intent.getStringExtra
7 f.delete() ;
8
9 Intent outIntent = new Intent();
10 outIntent.setComponent(new ComponentName
11 startActivity(outIntent);
12
13 super.onCreate(bundle);
14 setContentView(R.layout.activity_main);
15 }
16 }

WeakGadget of the Activity class

WeakGadget of the Intent class

WeakGadget of the ComponentName class

Fig. 3 An example of strong gadget and weak gadget

Page 7 of 19Xiang et al. Cybersecurity (2023) 6:16

Gadgets IO property
We model the input and output (I/O) properties for a
gadget to help explain the dependencies between pay-
loads. We divide the I/O properties of a gadget into three
categories—DataIO, ControlIO, and DataControlIO.
These properties respectively reveal the DataDepend-
ency, ControlDependency, and both dependencies for two
payloads.

DataIO indicates that the gadget takes data input from
or outputs its results to an intermediate data entity—
probably a persistent or temporary place for storing data.
DataIO only involves strong gadgets due to the attacker-
controllable data input requirements. A strong gadget’s
DataIn propagates the attacker-controllable data input to
the gadget’s parameters or member variables. After the
DataIn is manipulated or propagated inside the gadget,
attacker-controllable data are outputted to another data
entity. In our model, there are four kinds of functional
gadgets with DataOut ability. (1) the static value assign-
ment statements outputting data to a temporary data
entity. (2) the file writing operations, including both writ-
ing data into external storage and an application’s private
directories. (3) the shared preference editing operations
writing key-value style information into configuration
files. (4) the database operations writing structured data
into a persistent database.

ControlIO of a gadget reflects the control requirements
to be met for triggering its execution, and the abilities
to awaken other code snippets that are not executed. As
Android applications are event-driven, there are multiple
execution entries in the form of callback methods instead
of the sole main method. In our model, ControlIn is a set
of user interaction events and some component lifecycle
events for triggering these callback methods. The Con-
trolOut abilities are revealed in the gadget’s specific APIs
used to trigger the execution of other components, e.g.,
the startActivity() API used to awaken another Activity
component, and the sendBroadcast() API used to send
a broadcast to another Broadcast Receiver component.
The model takes all of the four kinds of basic components
into consideration, thus their corresponding Inter-Com-
ponent Communication (ICC) methods’ ControlOut
abilities are modeled.

DataControlIO is the combination of DataIO and
ControlIO. A gadget with a nonempty DataControl-
Out property extracts data from the payload, and then
sends the extracted data to other components to trigger
it. e.g., a gadget extracts a value from the payload, uses it
as the parameter of Intent.setData() or Intent.putExtra()

G(p) = Gw(p) ∪ Gs(p)
methods, and then sends the Intent to awaken other
components.

Payload dependency
Two payloads p1 and p2 are chainable if at least one
gadget triggered by payload p1 is data or control depend-
ent on the gadgets of payload p2.

Data dependencies are uncovered from the DataIO
properties of multiple gadgets. We use Ind(g) and
Outd(g) to denote the DataIn and DataOut set of a gadget
g. Payload p1 and payload p2 have data dependency if the
DataOut in one payload fits the DataIn of another pay-
load. The fitness means that the two values are originated
from the same taint source. For example, in a situation
where a gadget g1 in p1 outputs data Outd(g1) to a data
entity, and then another gadget g2 triggered by payload p2
takes input from the same data entity, p1 and p2 are data
dependent. Formally, the requirements for data depend-
ency between p1 and p2 are shown in the following con-
ditional expressions. Note that the ts(v) is the taint source
of value v.

Control dependencies are associated with the ControlIO
properties of multiple gadgets. The dependency exists
among both strong strong gadgets and weak gadgets.
Formally, we define p1 and p2 have control dependency
if p1 can trigger the execution of gadget g2 in p2 . This
requires there are gadgets with ControlOut ability in p1 ,
and the ability matches the event requirements for awak-
ening the execution of gadget g2 . We express the depend-
ency as follows.

It is possible that both data and control dependencies
exist between two payloads. This requires the above
conditions are satisfied simultaneously. Two dependent
payloads can be chained together by attackers to either
gather deeper controllability of the target program or
enlarge the attack surfaces.

Design
Based on the exploit chain model, we design a prototype
system named AppChainer to automatically chain the
payloads towards various applications.

In this section, we first give an overview of AppChainer
to introduce its key modules and overall workflow, then

∃g1 ∈ Gs(p1), g2 ∈ Gs(p2)

∃v1 ∈ Outd(g1), v2 ∈ Ind(g2)

p1 �= p2, ts(v1) = ts(v2)

∃g1 ∈ G(p1), g2 ∈ G(p2)

Outc(g1) = Inc(g2)

p1 �= p2

Ind(g2) �= ∅

Page 8 of 19Xiang et al. Cybersecurity (2023) 6:16

explain the details of each module in the latter part of the
section.

System overview
AppChainer takes APK files and several configuration
files as input, and outputs possible chainable payloads in
an application or among multiple applications.

As shown in Fig. 4, AppChainer is composed of four
modules: Attack Surface Extractor, Control Flow Graph
(CFG) Analyzer, Data Flow Graph (DFG) Analyzer, and
Payload Chainer. The modules are denoted in the figure
with grey boxes.

The workflow of AppChainer is divided into four
steps. Attack Surface Extractor identifies attack surfaces
under our threat model, i.e., both the local and remote
entrances for receiving payloads in an application. CFG
Analyzer gathers weak gadgets for each payload, and
DFG Analyzer gathers strong gadgets, respectively. Pay-
load Chainer searches the data and control dependen-
cies between gadgets of various payloads, calculates
the chainability of the payloads, and finally outputs the
results.

Attack surface extractor
Attack Surface Extractor takes APK files as inputs, and
extracts two sets of attack surfaces as outputs. In this sec-
tion, we first analyze our observations on the state of an
attack surface, then divide the attack surfaces into two
categories according to whether or not an attack surface
is directly reachable. In line with the attack surface clas-
sification, the concepts of two payload categories are also
derived. At last, we introduce the attack surface identifi-
cation methods.

Despite the large number of attack surfaces, an
attacker can only proactively reach a part of them, such

as sending his payload to Browsable activities or unpro-
tected exported components. While other part of attack
surfaces are not in a ready state unless their correspond-
ing code snippets are executed and enabled, e.g., the
external file-loading attack surfaces. One cannot directly
put a file in the external storage and let the application
load it immediately unless the program is told to do, or
the file observer service (Google 2022a) is executing in
the background.

Based on the above observation, we divide the attack
surface into two categories: directly reachable attack
surfaces and pending attack surfaces. Directly reach-
able attack surfaces, including browsable activities and
unprotected exported components, start executing and
handling the attack controllable inputs once receiving the
payload. While pending attack surfaces are in a pending
state unless certain events are sent, triggering the execu-
tion of its code snippets.

Corresponding to the classification of attack surfaces,
payloads are classified into two categories. We name the
payloads entering these directly reachable attack surfaces
as immediate payloads because they can take effect in an
immediate way. Relatively, we name the payloads enter-
ing the pending attack surfaces as pending payloads.

To extract directly reachable attack surfaces, the
Attack Surface Extractor first decompiles the APK file to
obtain the Android manifest file, from which the brows-
able activities and exported components are identified.
Among the exported components, AppChainer pays spe-
cial attention to the intent-filter attribute that changes
the default value of the android::exported attribute (Chen
et al. 2016). In addition, AppChainer resolves the per-
mission requirements of a component to exclude the
protected components. If a component is protected by
a self-defined system or signature-level permission, then

Fig. 4 Architecture of the prototype system AppChainer

Page 9 of 19Xiang et al. Cybersecurity (2023) 6:16

we ignore it because our threat model does not assume
that an attacker has the ability to break through the sand-
box restriction.

To identify pending attack surfaces, we provide a
default potential attack surface list containing behav-
iors such as file operations, shared preference and data-
base operations, etc. We also provide a flexible way for
researchers to extend APIs that can be marked as attack
entries. The payloads entering these components are
pending until they meet another payload or event capable
of arousing them, i.e., has control dependency with them.

The Attack Surface Extractor outputs the list of directly
reachable attack surfaces and the list of pending attack
surfaces.

CFG analyzer
The CFG Analyzer takes the two identified attack surface
sets as its inputs, builds an interprocedural control flow
graph (iCFG), performs analysis on the graph to iden-
tify gadgets, and eventually outputs the weak gadget set
Gw(p) of each payload p.

The starting points of constructing iCFGs vary accord-
ing to the types of attack surfaces. Directly reachable
attack surfaces have explicit entries, thus the CFG Ana-
lyzer constructs iCFGs on their entry methods. Specifi-
cally, each component has an enumerable set of entry
methods, e.g., the lifecycle methods (onCreate, onRe-
sume, etc.) in an activity, the onStartCommand and
onBind methods in a service, onReceive method in a
broadcast receiver, and database operating methods in
a content provider. In addition, callback functions han-
dling the user interaction events are also marked as entry
points, e.g., the onClick method of a button.

Pending attack surfaces may be located in the middle
of a call graph. Thus the CFG Analyzer performs back-
ward analysis besides the forward analysis for construct-
ing a complete control flow graph. The backward analysis
process terminates when it reaches the lifecycle methods
of a component or user interaction callback methods
of a widget. Different from the directly reachable com-
ponents, the result component may not be an exported
component and relies on other payloads to start it.

Weak gadgets are identified via static CFG analysis.
The recognizer follows the iCFG to collect invoked API
methods and then sort them into clusters sliced by dis-
tinct classes. For each invoked API method, the analyzer
checks every parameter of it. Backward constant analysis
is performed to record the deterministic parameters of
each API method. The method names and their constant
parameters are leveraged to reason the IO properties for
later chaining. The sliced weak gadgets are then stored in
a database file, associated with a unique payload id. The

detail of its algorithm will be described in section Weak
Gadget Identification.

DFG analyzer
DFG Analyzer also takes the two attack surface lists as its
input. It uses taint analysis to identify the strong gadget
set Gs(p) of a given payload p.

DFG Analyzer reuses the iCFG constructed in the CFG
Analyzer stage. It marks the payload receiving methods
as taint sources and then propagates the taints through
the iCFG. Once the invoked API’s parameters are
attacker-controllable data or tainted by the payload, then
we slice the cluster of APIs as a strong gadget according
to its object. During slicing, we use alias analysis on the
same object to guarantee that the invoked APIs are com-
pletely sliced in the strong gadget. Similar to weak gadget
identification, constant analysis of each parameter is also
performed. Finally, the sliced strong gadgets and their
parameter information that reveals which parameter is
attacker-controllable are stored in another table of the
database.

We made modifications to traditional taint analysis
techniques to better fit the strong gadget identification
scenario. In traditional taint analysis, taint sources and
taint sinks are predefined. The aim of a traditional taint
solver is to confirm whether there are reachable paths
between the sources and sinks. However, in the proce-
dure of identifying strong gadgets, we care more about
the set of tainted intermediate nodes in the data flow
graph, rather than the results indicating whether a source
can reach a sink. Thus we do not define a specific taint
sink and instead focus on how to handle the taint propa-
gation procedure. The modified taint analysis techniques
will be shown in section FlowDroid Integration, the
detail of the algorithm will be described in section Strong
Gadget Identification.

Payloads chainer
With the iCFGs and two databases generated by the two
analyzers, the Payloads Chainer then investigates the
data and control dependencies within these payloads and
picks out the payload combinations that can be chained
together to trigger new functionalities.

The payload chainer uses an iterative strategy to chain
as many payloads as possible. It starts with all the imme-
diate payloads, analyzing the DataOut and ControlOut
properties of each gadget. Then searches proper code
points that consume the data or control output event.
Once one or more consumers are matched, the analyzer
invokes the CFG or DFG analyzers to propagate its data
or enlarge its control impact. After all the immediate
payloads are analyzed, the chainer chains the payloads

Page 10 of 19Xiang et al. Cybersecurity (2023) 6:16

that have data or control convergence. The chaining algo-
rithm will be explained in Sect. Chaining Rules.

The number of chainable payloads is not limited to two.
In some large applications, the dependencies may exist
in more than two payloads and constitute a graph. Even-
tually, the payload chainer outputs the set of potentially
chainable payloads both in the form of payload pairs and
payload graphs.

Implementation
AppChainer is built based on FlowDroid, a well-known
static analysis tool for Android applications. In this sec-
tion, we first introduce the modifications we made in
FlowDroid and how we use FlowDroid in AppChainer,
then explain the algorithms of the analyzers and chainer.

FlowDroid integration
FlowDroid is a precise context, flow, field, and object-
sensitive taint analysis framework for Android applica-
tions. It receives an input file defining the taint sources
and sinks, implements an IFDS Solver by describing the
taint analysis problems, and eventually confirms whether
there are paths between sources and sinks by solving the
described reachability problem.

We integrate AppChainer with FlowDroid to conduct
basic tasks such as iCFG generation, taint propagation,
alias analysis, etc. Despite the popularity and mighti-
ness of FlowDroid, it cannot be applied directly to strong
gadget identification. The reasons are as follows: (1) In
the gadgets identification process, the taint sources are
not fixed and sinks are not finite, making it infeasible to
prepare an explicit set of sources and sinks. (2) Static val-
ues, which are important data load and store points for
chaining various payloads, cannot be marked as inde-
pendent sources or sinks. In the rest of this section, we
describe these problems in detail and give our solutions
for them.

Handling taint source and sink
Taint analysis is capable of solving integrity or confiden-
tiality problems (Lerch et al. 2014). FlowDroid is more
often used to solve confidentiality problems such as
information leakage, where sources are the generation
points of sensitive information, and sinks are the exit
points that transfer data out of the system. To implement
AppChainer, we are facing a non-standard integrity prob-
lem and confronted with two challenges: (1) Dynamic
sources. (2) Infinite Sinks.

In the integrity problem, taint sources are attack
entries that receive attacker-controllable data, and sinks
are the strong gadgets we need to gather. There are two
reasons the taint sources are not fixed in AppChainer.
Firstly, not all occurrences of an API can be marked as

attack entrances. For example, when solving an informa-
tion leakage problem, researchers can mark the Location.
getLatitude() and Location.getLongitude() as sources to
identify whether the location information is leaked, while
in gadgets extraction, one cannot simply mark a specific
API such as Intent.getStringExtra() as a source, because
not all Intents are controllable by an attacker. Secondly,
As shown in the Payload Chainer’s algorithm, the Data-
Out property of a strong gadget would be marked as a
new source and added to DFG Analyzer’s working queue,
thus we should handle a dynamic set of sources.

Taint sinks are also not enumerable in AppChainer.
Before the analyzer executes, we do not know what kinds
of APIs a payload will flow through. Thus it is not appli-
cable to define a set of APIs as the sink. Extra solutions
should be conducted for solving the infinite sink set
problem.

To solve the dynamic source problem, we provide
both a statically predefined source template and an on-
demand source injection interface. In the statically pre-
defined source template, we collect both local and remote
APIs that are possible for receiving a payload, including
operations on files, shared preferences, databases, and
network streams. The template file is in the form of an
XML file and is extensible for researchers to add third-
party potential attack surface APIs into it. These items
will be loaded by the attack surface extractor to exclude
the not controllable entries. The on-demand source
injection is performed in the gadgets chaining stage.
Whenever a new taint is propagated to a temporary or
permanent data entity, new sources will be added as a
source seed, then the DFG analyzer will be invoked to
perform further propagation analysis.

To deal with the infinite sink set problem, we first
patch the FlowDroid to make the empty sink be allowed.
Then we implement a Taint Propagation Handler to get
the taint flow paths in FlowDroid’s solving procedure.
FlowDroid’s IFDS implementation involves four types
of flow functions. Among them, the call flow functions
are responsible for processing a call site, If an incoming
taint abstraction shows as the parameter of the invoked
method, the customized handler gets informed and
stores the gadget in the database’s corresponding table,
according to the type of the payload.

Handling static value
In FlowDroid, the declaration of taint sources should be
in the form of an API method. While in AppChainer, the
DataOut of a gadget may be stored in a static field. The
static field will be treated as a new taint source, but this is
not supported by a vanilla FlowDroid.

As a solution, we implement the on-demand taint
analysis feature for FlowDroid and add specific logic for

Page 11 of 19Xiang et al. Cybersecurity (2023) 6:16

handling the static values. Once a tainted value is propa-
gated to a static field, we perform a backward analysis to
find the definition of the static value. For each load point
of that static value, we analyze whether it is reachable
based on the immediate payloads’ iCFGs. For the trigger-
able load points, the chainer invokes the DFG Analyzer
to propagate the tainted value further, and marks the
involved payloads as chainable. For the pending ones, we
just record them and do not conduct immediate analy-
sis on them until these load points are awakened by other
payloads, i.e., their ControlIn requirements are satisfied.

Weak gadget identification
CFG Analyzer follows the constructed iCFG to col-
lect invoked API methods and then sort them into clus-
ters reasoned by distinct classes. The algorithm of weak
gadget identification is shown in Alg. 1.

In line 3, the analyzer traverses the iCFG to get every
statement in the intermediate representations. The get-
Stmts() method handles the loop of the iCFG and uses a
visited tag for each procedure. It returns a set of interpro-
cedural unique statements. In line 4, the analyzer deter-
mines whether the statement is an invoke expression. In
lines 5-12, the class name and method name are extracted
from the invoke expression and temporarily stored in the
res data structure. In lines 13-15, for each invoked meth-
ods, the analyzer checks every parameter of it. Backward
constant analysis is performed to record the determinis-
tic parameters of each API method. For efficiency, we do
not perform alias analysis here, as the data dependencies
are transparent in the CFG analysis stage.

Strong gadget identification
The algorithm for strong gadget identification is more
complex than weak gadget identification. It uses taint
propagation techniques as its core, aided by constant
analysis and alias analysis to extract strong gadgets
along the iCFG.

The input of this algorithm is an attack entry corre-
sponding to a payload. In this work, attack entries are
in the form of the return value of an API call or a static
value. The output is the result of identified strong gadgets.

In line 2, we initialize a ResultSaver utility class to
save the identified strong gadgets and their correspond-
ing extra information in a database. The ResultSaver
sorts each identified strong gadget into clusters by dis-
tinct objects, or distinct classes if the target API call is
static. There are two member functions in the Result-
Saver, as shown in line 9 and line 12. The saveGadget()
get the class name and method name from the stmt,
and add the invoked API into a proper map structure,
while the saveExtraInfo() saves the results of const anal-
ysis of each parameter in the invoked API method. For
simplicity, the implementation detail of the ResultSaver
is not expanded in the algorithm.

In lines 3-4, we gather all the tainted nodes of a given
payload and then process each taint abstraction. In
lines 5-6, the algorithm gets the statement of the taint
abstraction, and determines whether it is a invoke
statement for APIs. In lines 7-9, the ResultSaver put the
current API call into the proper position in the data-
base. In lines 10-13, each operand of an API call site is
processed. Const analysis is performed on each oper-
and to trace the data flow backward to check whether
the operand or part of the operand is a constant value.
The const analysis result is also saved into a database
as extra information of the API call, and will be used in
the latter gadgets chaining phase.

Page 12 of 19Xiang et al. Cybersecurity (2023) 6:16

Chaining rules
With the gadgets database outputted by the gadget ana-
lyzer, the payload chainer leverages the chaining algo-
rithm to identify the set of potentially chainable payloads.

The algorithm of the payload chainer is shown in Alg. 3.
It first reasons the DataOut and ControlOut properties
of every collected gadget (lines 4 and 15). As illustrated
in section Gadgets IO Property, four kinds of DataOut
related to different data entities and four kinds of Con-
trolOut related to ICC are modeled.

The load points of the corresponding outputs are
inferred (lines 5 and 16), determined by a matching strat-
egy including both fuzzy searching and exact searching.
If the load points are not empty, CFG and DFG analyzers
are performed on these inferred points, as shown in lines
7 and 18.

The chainer chains p′ with p if there are data or con-
trol dependencies between them, as shown in lines 10
and 21. In lines 11 and 22, the chainer iteratively adds
the dependent payload p′ into the work queue for future
processing tasks. The iteration allows the system to dig as
many payloads as possible in a chain.

Evaluation
In this section, we will introduce the environment of our
experiments, explain how we collect the APK test suite
and construct the benchmark, and give the evaluations
of (1) the effectiveness of the ability to discover attack

surfaces, (2) the effectiveness of identifying payloads
in real-world applications, (3) the precision and recall
rates compared with Jandroid, (4) the performance of
AppChainer.

Environment setup
We execute the AppChainer in a machine running
Ubuntu 20.04 system with an Intel Core i7-6700 3.40GHz
processor and 40 G RAM.

We use popular applications downloaded from Google
Play as the test suite. A total of 2138 applications with
more than one million installations are analyzed by the
system without reporting errors. As the FlowDroid
engine fails to analyze some large applications under our
hardware facilities, the application sizes are on the lower
side. The average size of the 2138 applications is 37.20
MB. There are only 27 applications larger than 100MB.

We set the memory warning limit to 32GB to provide
sufficient memory for analysis. The timeout limit for the
data flow analyzer (the most time-consuming phase) is
set to 10 min. Applications that cannot be analyzed suc-
cessfully under the current execution configuration and
computation environment will be discarded.

Test set collection
We evaluate the AppChainer on two test sets. The effec-
tiveness and performance of AppChainer are evaluated
over a large number of applications from the Google
Play Store. The precision and recall rates are evalu-
ated on our custom benchmark applications named
DroidChainBench.

Popular application collection
We randomly collect popular applications from Google
Play Store. The metadata of an applications is gathered
based on the google-play-scraper (JoMingYu 2022) pro-
ject on GitHub. The project provides a searching API,
returning at most 30 recommended results according to
a given keyword. With the returned appId field, we con-
struct a deep link referencing the application and send it
to the gms (Google Mobile Service) application. The gms
handles the link and displays a page showing the detail
of the application. The application will be installed on
the device after clicking the install button. We eventually
collect the APK files via the ADB command. All of the
actions are performed automatically via a python script
based on uiautomator.

We generate random words or phrases as the keywords
for searching, so that the categories, developers and func-
tionalities of applications are random. From the metadata
of an application, the “installs” field reveals its popularity,
we exclude the less popular applications with less than
one million installs.

Page 13 of 19Xiang et al. Cybersecurity (2023) 6:16

DroidChainBench
As there is no suitable benchmark to evaluate the pre-
cision and recall rates of exploit chains in Android, we
design the DroidChainBench specifically for the Android
exploit chain model.1 The benchmark, now in its ver-
sion 1.0, consists of 10 hand-crafted test cases that per-
form reading and writing operations on data entities
such as files, static values, intents, shared preferences and
databases.

DroidChainBench implements a handful of exported
components, which meets the attack assumption that
an adversary has multiple attack entrances to send their
payloads to the components in these applications. The
benchmark implements all kinds of data entities in our
model, revealing both data and control dependencies
among various payloads. We also add two false chains
to test the precision of AppChainer, two external shared
data entity operations to test payload chaining among
multiple applications, and the permission definition and
request test case that exposes the deficiency of App-
Chainer. As the payload chainer inspects and chains pay-
loads two by two at a time, thus the identification result
on two applications also covers the scenario across more
than two applications.

Besides, we do not apply functional tests such as the
callback, jni, or lifecycle mechanisms that influence the

precision of taint analysis, because these aspects are
tested by the FlowDroid engine already. We only focus on
whether the payloads can be successfully identified and
chained under the taint analysis technique in the present.

Attack surface evaluation
The number of extracted attack surfaces reflects whether
there are abundant material payloads available for
chaining.

For an application, we identify both the immediate pay-
loads that can be received by directly reachable attack
surfaces, and pending payloads waiting to be accepted
by pending attack surfaces. For the pending payloads, we
calculate four kinds of payload form, including file read-
ing, shared preference getting, database querying, and
intent receiving operations.

We rank the applications by the number of total poten-
tial attack surfaces, the excerpt results of identified attack
surfaces are shown in Table 1.

Chainable payloads evaluation
We investigate the control and data dependencies
between payloads both inside one sole application and
among various applications. The dependencies between
payloads determine whether the available payloads are
capable of being chained together, and how many pay-
loads can be involved in each chain.

Table 1 The excerpt results of applications identified payloads entering identified attack surfaces, sorted by the number of total
payloads

For ethical reasons, package names are blurred with the symbol "*"

id Package name Version Immediate
payload

Pending payloads Total

File sp db Intent

1 com.***.***.**ad 1.46.10 35 368 393 178 147 1121

2 com.***.***.**id 5.54.0 54 248 153 61 431 947

3 com.****.***.**ok 4.2224.2 34 237 204 94 163 732

4 com.***.**le 8.61.0.100(1.3.262439.0) 13 281 161 89 82 626

5 com.***.**ms 1416/1.0.0.2022314401 15 218 66 58 133 490

6 com.***go 5.63.3 7 152 174 78 43 454

7 com.***.**ip 17.8.0.0 7 146 67 44 173 437

8 tv.***.***.**pp 13.3.1 8 130 80 119 22 359

9 com.***.**er 4.9.20 15 136 116 45 34 346

10 com.**.**op 3.22.06 8 167 61 23 37 296

11 cn.**er 12.1.2.Prime 12 147 28 57 13 257

12 com.**do 5.15.4.2 36 62 53 23 35 209

13 com.***.**sh 1.7.3 7 58 35 49 58 207

14 com.**ze 4.84.0.2 14 49 59 6 78 206

15 com.**tv 4.25.1 6 106 68 8 15 203

1 The source code of the DroidChainBench will be uploaded to https:// github.
com/ xiang xiaobo/ Droid Chain Bench.

https://github.com/xiangxiaobo/DroidChainBench
https://github.com/xiangxiaobo/DroidChainBench

Page 14 of 19Xiang et al. Cybersecurity (2023) 6:16

AppChainer effectively identifies 5458 chains consist-
ing of 14467 payloads. Table. 2 shows the number of
chains corresponding to the number of payloads. The
most complex chain identified by AppChainer contains
up to seven various payloads, and 21 such chains are
identified. The long chain is the result of the iterative
analysis strategy in the payloads chainer algorithm.

To answer the question about how two payloads are
chained together, we investigate the type of disjoint
points in the identified payload chains. According to
the type of dependencies, we classify each chain’s joint
points into 9 categories. Among the 5458 chains, there
are a total of 9009 joint points. Figure 5 shows the num-
ber of joint points for each dependency category. As in
the figure, there are no joint points generated according
to the control dependency between Providers, because
we found few exported providers in the test APKs. Only
a few joint points are generated based on both data and
control dependencies.

Specifically, we calculate the number of payloads in
the form of web Intents that can be chained with other
payloads. Web Intent, which is the only IPC mechanism
that can be triggered remotely, is security-essential (Liu
et al. 2017) for an Android application. Among the 14467
identified payloads, 532 of them are web Intents that can
be sent to exported Browsable activities via the browser,
revealing the possibilities for remote attackers.

We also calculate the number of triggered gadgets in
each chain. Compared with a single entry payload, in the

chain, the number of strong gadgets increases by 87%,
weak gadgets increases by 162% respectively.

Precision and recall
We compare the precision and recall rates of AppChainer
with Jandroid on the DroidChainBench. The test result is
shown in Table 3. Experimental results show that App-
Chainer and Jandroid can both detect the chains involv-
ing files, databases, shared preferences, and intents.

Table 2 The number of involved payloads in the 5458 chains

#Involved payloads 2 3 4 5 6 7

#Chain 3036 1730 409 150 112 21

Fig. 5 The distribution of dependency types

Table 3 DroidChainBench test result

⊞ = detected (precisely)

⊟ = not detected (precisely)

⊠ = not supported

⊖ = false negative

⊕ = false positive

No. AppName AppChainer Jandroid

1 FileEntityChain ⊞ ⊞

2 SpEntityChain ⊞ ⊞

3 StaticValueEntityChain ⊞ ⊠

4 DbEntityChain ⊞ ⊞

5 IntentChain ⊞ ⊞

6 IntentSetDataChain ⊞ ⊞

7 FalseFileChain ⊟ ⊕

8 FalseIntentChain ⊟ ⊕

9 PermDef & PermUse ⊖ ⊞

10 ExtFileUse & ExtFileWrite ⊞ ⊞

Page 15 of 19Xiang et al. Cybersecurity (2023) 6:16

The precision rate of AppChainer is 100%. The identi-
fied chains are all correct. In comparison, the precision
rate of Jandroid is 77.78%. It identifies nine results, two
of which are false postives due to the lack of a dataflow
track.

The recall rate of AppChainer is 87.5%. It detects seven
results out of eight. In the PermDef application, we
define a signature-level permission. The PermUse appli-
cation has the same signature as the PermDef. It applies
the application and is able to access the protected com-
ponent in PermDef. AppChainer fails to chain payloads
in the permission-related test case, because currently
we do not model the Android Application permission
and SELinux rules. In contrast, Jandroid can detect the
chain with a template that simply does not check permis-
sions or with a sophisticated template that finely mod-
els the permission rules during manifest searching. The
recall rate of Jandroid is also 87.5%. It fails to analyze the
static value entity test case because it does not support
identifying operations on static values, because its code-
searching rules are designed for APIs.

During the comparison experiment, we find it is com-
plicated to construct the searching rules in “.template”
and “.link” files in Jandroid. In total, we write 1406 lines
of template code for Jandroid in the benchmark. While in
AppChainer, we do not need to write extra code for each
of the chains in our model, the gadgets are output to the
database and chained by the chainer automatically.

Performance evaluation
By default, FlowDroid uses the most precise configu-
rations to identify as many data flows as possible. The
higher precision brings higher performance overhead.
To lower the overhead, we compromise the precision
by limiting the length of the access path to 2 and using
the flow-insensitive alias analysis option instead of the
default flow-sensitive way. Meanwhile, we turn off the
static value analyzer because we already handled the
static value propagation problem, as explained in sec-
tion FlowDroid Integration. We also turned off the call-
back analysis because we regard message transmission or
thread creation callback methods as functional gadgets.
Their functionalities are shown in their corresponding
ControlOut or DataOut properties and will be used as a
rule in the gadget chainer module.

With these configurations, we evaluate the execution
time of every single stage and the maximum memory
consumption of the whole task. For the 2138 applications
in our test suite, the average execution time is 317.73 s,
the average memory consumption is 2368MB. Figure 6
shows the average execution time of every stage of the
whole task. As the chainer invokes the strong and weak

gadget identification module during its execution, we
strip the consumed identification time in the chaining
stage, adding it to the strong or weak gadget identifica-
tion stage separately.

In general, the memory and runtime overhead increase
with the size of APK files, as shown in Fig. 7.

Related work
As there are no existing chain building methodologies to
our best knowledge, we introduce the relevant works of
AppChainer in two aspects: the recent logic bug exploit
chains, and single bug patterns proposed by researchers.

Logic bug exploit chains
Except for the Samsung exploit chain explained in sec-
tion Motivation, we also investigate other industrial logic
exploit chains in Android platforms.

Mystique exploit chain (Dawn Security Lab 2022) lev-
erages a SEPolicy misconfiguration bug in recent Android
versions, which allows a system app to overwrite another
application’s original private files and break the Android
application sandbox. By Chaining with other bugs, this

Fig. 6 The average execution time of each stage

Fig. 7 The growing trends of memory and runtime overhead with
the application sizes increase

Page 16 of 19Xiang et al. Cybersecurity (2023) 6:16

exploit chain can eventually trojanize third-party applica-
tions on the target device.

Huawei Mate 9 Pro was pwned by Plaskett and
Loureiro Plaskett and Loureiro (2018) via chaining two
bugs in HiApp and four bugs or features in the Huawei
Reader application. They eventually managed to create a
bind shell of the target device.

Xiaomi Mi9 (f-secure Lab 2019) was pwned at mobile
Pwn2Own 2019 using two different exploit chains,
launching the attacks from the web browser and NFC
tag, respectively. Researchers eventually achieved remote
file theft on the victim’s device.

Android application bug patterns
Academic research in Android vulnerability discovery
and exploitation proposed several harmful vulnerability
patterns.

CHEX (Lu et al. 2012) is a static analysis tool to find
component hijack vulnerabilities in Android applications.
The component hijacks they generalized include permis-
sion leakage, unauthorized data access, intent spoofing,
etc.

Permission re-delegations are investigated in Android
applications (Demissie et al. 2020), the Android frame-
work (Felt et al. 2011), and system services (Gorski III
and Enck 2019; key 2022). Researchers find potential
deputies that bypass permission checks.

The Next Intent Vulnerability, where an Intent is
embedded in another Intent and is delegated to another
component, allows an attacker to invoke and send data to
a private component of the victim app. It is first used to
build an attack in Wang et al. (2013) and is well modeled
and scrutinized by researchers in El-Zawawy et al. (2021).

Similar to the Next Intent Vulnerability, a second order
permission re-delegation (Demissie and Ceccato 2020)
pattern extracts data from the received Intent, creates a
new Intent containing the extracted data, and sends it to
other components under its privilege context.

The security threats brought by insecure usage of Pend-
ingIntents (Google 2022b) are researched by PIAnalyzer
(Groß et al. 2018) and PITracker (Zhang et al. 2022). In
the worst case, an attacker may gain SYSTEM privileges
to perform the most sensitive operations, e.g., deleting a
user’s data on the device.

Choi and Kim (2018) investigate general remote code
injection attacks. In this research, several file-overwrit-
ing vulnerabilities are listed, e.g., unsafe zip extraction,
unsafe Content-Disposition Implementation, etc. In our
model, the file overwrite is an important DataOut prop-
erty of a gadget.

Dynamic code loading problem and its security impli-
cations are researched in StaDyna (Zhauniarovich et al.
2015), Dydroid (Qu et al. 2017), StaDART (Ahmad et al.

2020), and so on. A dynamic code loading functionality is
regarded as a strong gadget under our model if the loaded
code is controllable by the attacker. This bug pattern can
be potentially leveraged to execute arbitrary code by an
attacker in the context of the affected application.

Future research plans
AppChainer is only a small step towards modeling the
chain building and breaking the “case by case” preju-
dice. There are lots of challenges left for us and the whole
community to solve. We hereby give some directions for
future works.

Firstly, during measuring a gadget in this work, we only
modeled a limited range of IO behaviors to chain vari-
ous payloads, including static values, files, shared prefer-
ences, databases, and Intent IPC. There are a lot of other
input and output behaviours of a gadget beyond our
endeavors, e.g., a finer-grained local variable load-store
operation. The model can be adequately improved in the
future.

Secondly, a dynamic tool is necessary for generating
reproducible chains both inside and between applica-
tions. Fuzzing and symbolic execution techniques are
proven to be effective in generating inputs dynamically.
Currently, the AppChainer prototype system proposed
by us is a pure static tool for finding potentially chainable
payloads. The confirmation of chained payloads requires
experienced manual work. Automatic confirmation of
the identified chains will help a lot in the acceleration of
exploit chain building for security researchers and the
identification of hidden attack surfaces beneath applica-
tions for developers.

Thirdly, AppChainer does not model the permission
and privilege mechanisms in Android. Android has mul-
tiple permission levels and privilege domains. A sophisti-
cated attack may go across multiple domains and gather
the privileges step by step via various payloads. There-
fore, an exploit chain model that considers permission
and privilege will be complete.

Conclusion
With stricter mitigation measures and isolated privilege
models applied to modern Android operating system, a
single bug exerts a limited influence on the whole device.
Despite the amount of works on bug patterns, few of the
researchers manage to generalize a model for exploit
chains involving multiple bugs or features.

This paper proposes a model for building exploit
chains on the Android platform. A prototype system
named AppChainer is designed and implemented to
detect chainable payloads. Experimental results on a
large number of popular Android applications show
that AppChainer is able to chain payloads either inside

Page 17 of 19Xiang et al. Cybersecurity (2023) 6:16

one application or among multiple applications to trig-
ger more functionalities than an attacker can originally
achieve.

This work is one step towards breaking the prejudice
that logic bug exploit chains are built in a case-by-case
way. However, future research are ought to be conducted
to continuously gain a finer-grained model.

Appendix
In this section, we explain one identified chain with 7
payloads across two applications. The workflow of the
exploit is shown in Fig. 8.

In the chain, an attacker sends two web Intents to
AppA to trigger two file-download functionalities. The
first web intent triggers downloading a fixed-name icon
file, while the second one can be leveraged to download
a file with an arbitrary file name. The application uses
unsafe HTTP connections to download the two files.
Thus an attacker can perform MITM and tamper with
the file content. Besides, the file name in the second web
intent is not sanitized, allowing the attacker to perform
a path traversal attack and write arbitrary file under the
context of AppA. As shown in the figure, p1 triggers
downloading a fixed-name file, p3 triggers downloading
a file with a controllable file path, p2 and p4 are the cor-
responding malformed files.

There is another arbitrary file-overwrite bug leveraging
the File.renameTo() API in AppB. AppB implements a Lat-
est Recently Used (LRU) cache mechanism for loading and
storing its Bitmap images. The LRU cache reads a Journal
file line by line from the external storage, and parses each

line as a command to perform corresponding behaviors.
When the application parses the “CLEAN cleankey” and
“DIRTY dirtykey” commands, the application constructs
two file names with the two keys, and moves the clean file
to the dirty file. As the journal file is stored in the SDCard,
attackers can put a malformed journal file with “CLEAN”
and “DIRTY” commands to move a file to a destination. In
addition, when the application contructs the file path, no
path sanitization is performed on the cleankey and dirt-
ykey. If an attacker adds “../” string at the beginning of the
two keys, path traversal occurs, which eventually allows an
attacker to overwrite arbitrary files under the context of
AppB. In this chain, p4 is the malformed journal file that
points the cleankey to the malformed icon file.

The File.renameTo() API won’t be executed directly until
the attacker sends the p5 intent to AppB. The p5 starts the
exported MainActivity and triggers the file overwriting
operation.

AppChainer detects multiple candidate file-reading
operations in AppB. We take a shared preference file as an
example due to its longer attack paths. The loading of the
shared preference file is conducted in a broadcast receiver
of AppB, but the receiver is not launched by default. The
attacker should first trigger the registration of the receiver
with p6, and then trigger the file-loading operation with p7.
Unfortunately, we are not able to perform a further power-
ful attack with the chain after modifying the files in AppB
after manually analyzing it.

Acknowledgements
I would like to express my gratitude to all mates who support ideas and advice
during the writing of this paper, and thank the anonymous reviewers for their
valuable comments.

Fig. 8 The exploit chain in two real world applicatons found by AppChainer

Page 18 of 19Xiang et al. Cybersecurity (2023) 6:16

Author Contributions
XX proposed the model, implemented the prototype system, and wrote
the manuscript. YJ helped to develop the prototype system and conducted
careful experiments. QG, XZ, XG and BL reviewed the manuscript and gave
suggestions on the revision of the details of the article. All authors read and
approved the final manuscript.

Funding
This work was supported by the Strategic Priority Research Program of Chi-
nese Academy of Sciences (No. XDC02040100).

Availability of data and materials
Not applicable.

Declarations

 Competing interest
The authors declare that they have no competing interests.

Received: 14 December 2022 Accepted: 9 March 2023

References
Aldoseri A, Oswald D (2022) insecure://vulnerability analysis of URI scheme

handling in android mobile browsers. In: Proceedings of the workshop
on measurements, attacks, and defenses for the web (MADWeb)

Au KWY, Zhou YF, Huang Z, Lie D (2012) Pscout: analyzing the android permis-
sion specification. In: Proceedings of the 2012 ACM conference on
Computer and communications security, pp. 217–228

Bagheri H, Kang E, Malek S, Jackson D (2018) A formal approach for detection
of security flaws in the android permission system. Form Asp Comput
30:525–544

Bagheri H, Kang E, Malek S, Jackson D (2015) Detection of design flaws in the
android permission protocol through bounded verification. In: Interna-
tional symposium on formal methods. Springer (Veranst.), pp. 73–89

Buchanan E, Roemer R, Savage S, Shacham H (2008) Return-oriented program-
ming: exploitation without code injection. Black Hat 8

Buildfile (2022) Mobile app download statistics & usage statistics (2022)
https:// build fire. com/ app- stati stic. – Zugriffsdatum. Accessed 16 June

Chen L, Liu X, Ma T, Shi CC, Li NG (2016) Research on static analysis technology
of android application security defects. In: Proceedings of the interna-
tional conference on electrical engineering and automation, pp. 113–119

Choi K, Ko M, Chang B-M (2018) A practical intent fuzzing tool for robustness
of inter-component communication in android apps. KSII Trans Internet
Inf Syst TIIS 12(9):4248–4270

Dawn Security Lab (2022) Mystique in the house: the droid vulnerability chain
that owns all your applications. https:// dawns lab. jd. com/ mysti que-
paper/ mysti que- paper. pdf. – Zugriffsdatum: Accessed 16 June 2022

Demissie BF, Mariano C, Shar LK (2020) Security analysis of permission re-del-
egation vulnerabilities in Android apps. Empir Softw Eng 25(6):5084–5136

Demissie Biniam F, Ceccato M (2020) Security testing of second order permis-
sion re-delegation vulnerabilities in android apps. In: Proceedings of the
IEEE/ACM 7th international conference on mobile software engineering
and systems. Association for Computing Machinery (MOBILESoft ’20),
New York, pp. 1–11. https:// doi. org/ 10. 1145/ 33879 05. 33885 92. ISBN
9781450379595

El-Zawawy MA, Eleonora L, Mauro C (2021) Do not let Next-Intent Vulnerability
be your next nightmare: type system-based approach to detect it in
Android apps. Int J Inf Secur 20(1):39–58

Elgharabawy M, Kojusner B, Mannan M, Butler KB, Williams B, Youssef A
(2022) SAUSAGE: security analysis of unix domain socket usage in
android. In: 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P). p 572–586

Felt AP, Wang HJ, Moshchuk A, Hanna S, Chin E (2011) Permission re-delega-
tion: attacks and defenses. In: USENIX security symposium, vol. 30, pp. 88

f-secure Lab (2022) Xiaomi Mi9 (Pwn2Own 2019). 2019. https:// labs.f- secure.
com/ advis ories/ xiaomi- mi9/. Zugriffsdatum: Accessed 16 June 2022

Gao J, Li L, Kong P, Bissyandé TF, Klein J (2018) Poster: on vulnerability evolu-
tion in android apps. In: 2018 IEEE/ACM 40th international conference on
software engineering: companion (ICSE-Companion) IEEE (Veranst.), pp.
276–277

Gao X, Tan SH, Dong Z, Roychoudhury A (2018) Android testing via synthetic
symbolic execution. In: 2018 33rd IEEE/ACM international conference on
automated software engineering (ASE) IEEE (Veranst.), pp. 419–429

Garg S, Baliyan N (2020) Machine learning based android vulnerability detec-
tion: a roadmap. In: International conference on information systems
security. Springer (Veranst.), pp. 87–93

Geshev G, Miller R (2018) Chainspotting: building exploit chains with logic
bugs. https:// labs.f- secure. com/ archi ve/ chain spott ing- build ing- explo it-
chains- with- logic- bugs/. Zugriffsdatum: Accessed 16 June 2022

Google (2022) File observer - android developers. https:// devel oper. andro id.
com/ refer ence/ andro id/ os/ FileO bserv er. Zugriffsdatum: Accessed 16
June 2022

Google (2022) PendingIntent | Android Developers. https:// devel oper. andro
id. com/ refer ence/ andro id/ app/ Pendi ngInt ent. Zugriffsdatum: Accessed
16 June 2022

Gorski III Sigmund A, Enck W (2019) Arf: identifying re-delegation vulnerabili-
ties in android system services. In: Proceedings of the 12th conference on
security and privacy in wireless and mobile networks, pp. 151–161

Groß S, Tiwari A, Hammer C (2018) Pianalyzer: a precise approach for pend-
ingintent vulnerability analysis. In: European symposium on research in
computer security. Springer (Veranst.), pp. 41–59

Hyunwoo C, Yongdae K (2018) Large-scale analysis of remote code injection
attacks in android apps. Secur Commun Netw. https:// doi. org/ 10. 1155/
2018/ 24892 14

III Sigmund Albert G., Thorn S, Enck W, Chen H (2022) FReD: identifying file
re-delegation in android system services. In: 31st USENIX security sym-
posium (USENIX Security 22).USENIX Association, Boston, pp. 1525–1542.
https:// www. usenix. org/ confe rence/ useni xsecu rity22/ prese ntati on/
gorski. ISBN 978-1-939133-31-1

Initiative Zero D (2022) Pwn2Own Miami 2022 Rules. https:// www. zerod ayini
tiati ve. com/ Pwn2O wnMia mi202 2Rules. html. Zugriffsdatum: Accessed 16
June 2022

JoMing Y (2022) Google Play Scraper. https:// github. com/ JoMin gyu/ google-
play- scrap er. Zugriffsdatum: Accessed 16 June 2022

Lab f-secure (2019) Automating Pwn2Own with Jandroid. https:// labs.f-
secure. com/ blog/ autom ating- pwn2o wn- with- jandr oid. Zugriffsdatum:
Accessed 16 June 2022

Lerch J, Hermann B, Bodden E, Mezini M (2014) FlowTwist: efficient context-
sensitive inside-out taint analysis for large codebases. In: Proceedings
of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering, pp. 98–108

Linares-Vásquez M, Bavota G, Escobar-Velásquez C (2017) An empirical study
on android-related vulnerabilities. In: 2017 IEEE/ACM 14th international
conference on mining software repositories (MSR), pp. 2–13

Liu F, Wang C, Pico A, Yao D, Wang G (2017) Measuring the insecurity of mobile
deep links of android. In: 26th USENIX security symposium (USENIX
Security 17), pp. 953–969

Lu L, Li Z, Wu Z, Lee W, Jiang G (2012) Chex: statically vetting android apps for
component hijacking vulnerabilities. In: Proceedings of the 2012 ACM
conference on Computer and communications security, pp. 229–240

Luo L, Zeng Q, Cao C, Chen K, Liu J, Liu L, Gao N, Yang M, Xing X, Liu P (2019)
Tainting-assisted and context-migrated symbolic execution of android
framework for vulnerability discovery and exploit generation. IEEE Trans
Mob Comput 19(12):2946–2964

Maqsood A, Valerio C, Bruno C, Francesco B, Yury Z (2020) StaDART: addressing
the problem of dynamic code updates in the security analysis of android
applications. J Syst Softw 159:110386

Min Z, Haimin Y, Ping C, Zhengxing Y (2019) Android software vulnerability
mining framework based on dynamic taint analysis technology. In: 2019
IEEE 3rd information technology, networking, electronic and automation
control conference (ITNEC) IEEE (Veranst.), pp. 2112–2115

Owasp (2022) OWASP mobile top 10. https:// owasp. org/ www- proje ct- mobile-
top- 10/. Zugriffsdatum: Accessed 16 June 2022

Plaskett A, Loureiro J (2018) The mate escape. https:// labs.f- secure. com/ archi
ve/ the- mate- escape- huawei- pwn2o wning/. Zugriffsdatum: Accessed 16
June 2022

https://buildfire.com/app-statistic
https://dawnslab.jd.com/mystique-paper/mystique-paper.pdf
https://dawnslab.jd.com/mystique-paper/mystique-paper.pdf
https://doi.org/10.1145/3387905.3388592
https://labs.f-secure.com/advisories/xiaomi-mi9/
https://labs.f-secure.com/advisories/xiaomi-mi9/
https://labs.f-secure.com/archive/chainspotting-building-exploit-chains-with-logic-bugs/
https://labs.f-secure.com/archive/chainspotting-building-exploit-chains-with-logic-bugs/
https://developer.android.com/reference/android/os/FileObserver
https://developer.android.com/reference/android/os/FileObserver
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/app/PendingIntent
https://doi.org/10.1155/2018/2489214
https://doi.org/10.1155/2018/2489214
https://www.usenix.org/conference/usenixsecurity22/presentation/gorski
https://www.usenix.org/conference/usenixsecurity22/presentation/gorski
https://www.zerodayinitiative.com/Pwn2OwnMiami2022Rules.html
https://www.zerodayinitiative.com/Pwn2OwnMiami2022Rules.html
https://github.com/JoMingyu/google-play-scraper
https://github.com/JoMingyu/google-play-scraper
https://labs.f-secure.com/blog/automating-pwn2own-with-jandroid
https://labs.f-secure.com/blog/automating-pwn2own-with-jandroid
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://labs.f-secure.com/archive/the-mate-escape-huawei-pwn2owning/
https://labs.f-secure.com/archive/the-mate-escape-huawei-pwn2owning/

Page 19 of 19Xiang et al. Cybersecurity (2023) 6:16

Qu Z, Alam S, Chen Y, Zhou X, Hong W, Riley R (2017) Dydroid: measuring
dynamic code loading and its security implications in android applica-
tions. In: 2017 47th annual IEEE/IFIP international conference on depend-
able systems and networks (DSN). IEEE (Veranst.), pp. 415–426

Sherman M (2014) Attack surfaces for mobile devices. In: Proceedings of
the 2nd international workshop on software development lifecycle for
mobile, pp. 5–8

Steven A, Siegfried R, Christian F, Eric B, Alexandre B, Jacques K, Yves LT,
Damien O, Patrick MD (2014) Flowdroid: precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps. Acm
Sigplan Not 49:259–269

Wang R, Xing L, Wang XF, Chen S (2013) Unauthorized origin crossing on
mobile platforms: threats and mitigation. Association for Computing
Machinery, (CCS ’13), New York, pp. 635–646. https:// doi. org/ 10. 1145/
25088 59. 25167 27. ISBN 9781450324779

Yang K, Zhuge J, Wang Y, Zhou L, Duan H (2014) IntentFuzzer: detecting
capability leaks of android applications. In: Proceedings of the 9th ACM
symposium on Information, computer and communications security,pp.
531–536

Ye H, Cheng S, Zhang L, Jiang F (2013) Droidfuzzer: fuzzing the android apps
with intent-filter tag. In: Proceedings of international conference on
advances in mobile computing & multimedia, pp. 68–74

Zhang C, Li S, Diao W, Guo S (2022) PITracker: detecting android pendingin-
tent vulnerabilities through intent flow analysis. In: Proceedings of the
15th ACM conference on security and privacy in wireless and mobile
networks, pp. 20–25

Zhang H, Li Z, Shahriar H, Lo D, Wu F, Qian Y (2019) Protecting data in android
external data storage. In: 2019 IEEE 43rd annual computer software and
applications conference (COMPSAC), vol. 1, pp. 924–925

Zhauniarovich Y, Ahmad M, Gadyatskaya O, Crispo B, Massacci F (2015) Sta-
dyna: addressing the problem of dynamic code updates in the security
analysis of android applications. In: Proceedings of the 5th ACM confer-
ence on data and application security and privacy, pp. 37–48

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/2508859.2516727
https://doi.org/10.1145/2508859.2516727

	AppChainer: investigating the chainability among payloads in android applications
	Abstract
	Introduction
	Motivation
	Motivating example
	Key observations
	Multiple attack surfaces on android devices
	Measurable capabilities during exploiting
	Dependencies between payloads

	Logic exploit chain model
	Threat model
	Research scope
	Attack assumptions
	Attack aims

	Gadgets definition
	Gadgets IO property
	Payload dependency

	Design
	System overview
	Attack surface extractor
	CFG analyzer
	DFG analyzer
	Payloads chainer

	Implementation
	FlowDroid integration
	Handling taint source and sink
	Handling static value

	Weak gadget identification
	Strong gadget identification
	Chaining rules

	Evaluation
	Environment setup
	Test set collection
	Popular application collection
	DroidChainBench

	Attack surface evaluation
	Chainable payloads evaluation
	Precision and recall
	Performance evaluation

	Related work
	Logic bug exploit chains
	Android application bug patterns

	Future research plans
	Conclusion
	Appendix
	Acknowledgements
	References

