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Abstract 

Statistics show that more than 80 applications are installed on each android smartphone. Vulnerability research on 
Android applications is of critical importance. Recently, academic researchers mainly focus on single bug patterns, 
while few of them investigate the relations between multiple bugs. Industrial researchers proposed a series of logic 
exploit chains leveraging multiple logic bugs. However, there is no general model to evaluate the chaining abilities 
between bugs. This paper presents a formal model to elucidate the relations between multiple bugs in Android appli-
cations. To prove the effectiveness of the model, we design and implement a prototype system named AppChainer. 
AppChainer automatically identifies attack surfaces of Android applications and investigates whether the payloads 
entering these attack surfaces are “chainable”. Experimental results on 2138 popular Android applications show that 
AppChainer is effective in identifying and chaining attacker-controllable payloads. It identifies 14467 chainable pay-
loads and constructs 5458 chains both inside a single application and among various applications. The time cost and 
resource consumption of AppChainer are also acceptable. For each application, the average analysis time is 317 s, and 
the average memory consumed is 2368 MB. Compared with the most relevant work Jandroid, the experiment results 
on our custom DroidChainBench show that AppChainer outperforms Jandroid at the precision rate and performs 
equally with Jandroid at the recall rate.

Keywords Android security, Vulnerability exploit, Payload chain

Introduction
The variety and quantity of Android applications are fast 
growing nowadays. Statistics (buildfile 2022) show that 
more than 80 applications are installed on each smart-
phone on average, exposing numerous attack surfaces to 
malicious attackers. If application vulnerabilities are suc-
cessfully exploited by an attacker, both the user privacy 
and system resources would be seriously threatened.

Existing academic research related to Android vul-
nerability mainly focuses on single bug patterns or the 
methodology for discovering and exploiting bugs. The 

well-researched bug patterns include permission-related 
bugs (Au et  al. 2012; Bagheri et  al. 2018, 2015; Demis-
sie et  al. 2020), attack families related to Intents (Groß 
et  al. 2018; El-Zawawy et  al. 2021; Gao et  al. 2018a) or 
other IPC mechanisms (Elgharabawy et  al. 2022), inse-
cure deep links (Aldoseri and Oswald 2022), and danger-
ous file operations (Zhang et al. 2019). Methods such as 
fuzz testing (Yang et al. 2014; Ye et al. 2013; Choi et al. 
2018), symbolic execution (Gao et  al. 2018b; Luo et  al. 
2019), taint analysis (Min et  al. 2019; Arzt et  al. 2014), 
and machine learning (Garg and Baliyan 2020) are con-
ducted for both vulnerability discovery and exploitation. 
However, few works investigate the relationship between 
bugs.

Recently, security researchers from the industry pro-
posed a series of attacks that chain multiple logic bugs 
together. Such attacks are able to execute arbitrary code 
(Plaskett and Loureiro 2018; Geshev and Miller 2018), 
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steal private files (f-secure Lab 2019), and break the 
application sandbox (Dawn Security Lab 2022). Despite 
the existence of effective exploit chains, experienced 
researchers widely regard the exploit chain building pro-
cedures as “case-by-case” tasks (Plaskett and Loureiro 
2018). A formal model for explaining whether and why 
two bugs can be chained together is missing. To our 
best knowledge, Jandroid (f-secure Lab 2019) is the only 
tool developed for building the logic bug exploit chain 
towards the Android platform. Jandroid searches specific 
code patterns defined in a template and chains the identi-
fied code snippets together. However, the definition of its 
templates depends on expert experience and lacks uni-
versality. In addition, the data controllability of the iden-
tified code snippets is unknown because it does not track 
the information flow of the attacker-controllable inputs.

Motivated by these existing logic bug exploit chains and 
bug patterns, this paper proposes an exploit chain model 
to elucidate the “chainability” of multiple functionalities 
from the angle of payloads. The term Payload represents 
the attacker-controllable input entering an attack surface 
in Android applications. The term Gadget denotes a set 
of functional code snippets that can be triggered or con-
trolled by a Payload. We model the input requirements 
and output abilities of each triggered gadget to measure 
the IO property of a payload. For two payloads ready 
to be received and processed by corresponding attack 
surfaces, if the output of one payload fits the input of 
another payload, then the two payloads can be chained 
together.

Practically, we design and implement a prototype sys-
tem named AppChainer based on the chain model. 
AppChainer can automatically identify an application’s 
potential attack surfaces, gather the gadgets triggerable 
by payloads entering these attack surfaces, and investi-
gate the chainability among the identified payloads.

The effectiveness of the model and performance of 
AppChainer are evaluated on 2138 popular applications 
downloaded from Google Play. Each popular application 
in our test suite has more than one million installations. 
AppChainer identifies 14467 payloads composing 5458 
chains both inside a single application and among vari-
ous applications. The chained payloads can trigger more 
functionalities than single payloads and thus increase the 
attacker’s attack abilities. The average analysis time and 
consumed memory for these applications are 317  s and 
2368MB, respectively.

The precision and recall rates are evaluated on the 
DroidChainBench. Compared with the most relevant 
work Jandroid, the experiment results on our custom 
DroidChainBench show that AppChainer outperforms 
Jandroid at the precision rate (100%> 77.78%) and 

performs equally with Jandroid at the recall rate (87.5% 
= 87.5%).

To sum up, the contributions include: 

(1) This paper proposes a model to formally explain the 
logic bug exploit chain from the angle of payloads 
and their IO properties.

(2) Based on the model, we design and implement a 
prototype system named AppChainer. It automati-
cally identifies chainable payloads inside one or 
among various applications.

(3) Experimental results on a number of popular 
Android applications show that AppChainer is 
effective in finding chainable payloads and con-
structing exploit chains. The cost of time and mem-
ory are also acceptable.

Motivation
This work is initially inspired by the exploit chain 
(Geshev and Miller 2018) proposed in a mobile pwn2own 
competition. The chain glued 11 bugs or features across 
six applications together to launch remote code execu-
tion attack on a Samsung S8 device. In this section, we 
briefly introduct the workflow and key bugs involed 
in the motivating chain, then we summarize three key 
observations to prove the feasibility of conducting exploit 
chain research on the Android platform.

Motivating example
In the following text, we briefly retrospect the two 
“intent-proxy” bugs leveraged in the exploit chain 
(Geshev and Miller 2018).

Intent-proxy bugs, also named second order permis-
sion re-delegation attacks in Demissie’s research (Demis-
sie and Ceccato (2020)), are able to delegate part of the 
attacker’s inputs to other components via the applica-
tion’s internal Intent. The two bugs are the main clue 
of the whole chain and glue all other bugs or features 
together.

We illustrate the exploit chain’s workflow in Fig. 1. The 
two key intent-proxy bugs are highlighted in red. For 
simplicity, we tag the payloads in the chain so that we can 
better explain their relationships in later sections.

The first intent-proxy bug lies in the Samsung Vend-
ing application. The application implements a browsable 
activity that declares a Browsable category intent-filter 
element, allowing an attacker sends a malicious web URI 
intent to it. Once Samsung Vending’s browsable activity 
receives the web Intent, it extracts two parameters named 
id and url from the input URI and then constructs a new 
Intent leveraging the two parameters. The id parameter 
is used to set the destination of the Intent via Intent.
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setPackage(id) method. The url is used as the argument 
of the Intent.setData(url) method. In the exploitation, 
the constructed intent is sent to a specified application 
to handle the attacker-controllable data URI. We hereby 
symbolize the attacker-controllable payloads involved in 
this stage. We name the web URI requested from the web 
browser as puri1 , the extracted id parameter as pid , and 
the url parameter as purlz.

The second intent-proxy bug lies in the Samsung Mem-
bers application. This application’s browsable activity 
extracts both the packageName and className from the 
web URI. The controllable package name and class name 
allow an attacker to launch any components under the 
context of Samsung Members. Similarly, we name the 
URI payload from the browser as puri2 , the packageName 
parameter as ppkg , and the className as pclz.

The two intent-proxy bugs chains all the bugs and fea-
tures in the whole chain. The first one was used to help 
trigger an unsafe unzipping bug in the Samsung Note 
application. A malformed zip file pzip referenced by purlz 
was downloaded to the external storage beforehand. 

Using pcfg extracted from pzip , a configuration file stored 
in the SDCard was overwritten. The configuration file 
would be loaded by a snippet of leftover debug code 
and perform further code execution attacks. However, 
the leftover debug code is executed only after the device 
reboots. This condition is met by the second intent-proxy 
bug, which triggers a null object exception in the Android 
Telecom application and reboots the device.

Key observations
From the motivating example and some other exploit 
chains (Plaskett and Loureiro 2018; f-secure Lab 2019; 
Dawn Security Lab 2022), we summarize three key 
observations. Based on these observations, we found 
Android is a proper platform on which we conduct the 
exploit chain research.

Multiple attack surfaces on android devices
From the adversary’s perspective, applications and their 
functionalities that receive attacker-controllable inputs 
are all attack surfaces (Sherman 2014). An android 
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device has various attack entrances due to a large num-
ber of installed applications and functionalities pro-
vided by them. These attack entrances include both the 
local attack surfaces such as local IPC mechanisms, and 
remote attack surfaces such as deep links sent from the 
browser.

The exploit chain introduced in section  Motivating 
Example involves both remote and local attack surfaces. 
The chain was developed intentionally for a pwn2own 
competition, which requires compromising a target 
device remotely with very few user interactions (Initia-
tive 2022). Thus the researchers launch an attack from 
a remote direction. Remote attack surfaces receive pay-
loads in the form of web URIs and remote files. For 
example, researchers prepare puri1 and puri2 in their web 
server, waiting to be accessed from the target device’s 
browser. In addition, the well-constructed pzip was also 
downloaded in advance from their remote server. As for 
local attack surfaces, various inter-process, inter-compo-
nent, and inter-application communication mechanisms 
are used in the chain, involving up to six unique applica-
tions and their exported components.

The diversity and quantity of attack surfaces allow an 
attacker to send various payloads to exploit the system 
from different directions and provide abundant raw 
materials for building a chain.

Measurable capabilities during exploiting
Exploiting an Android application written in memory-
safe languages such as Java or Kotlin is less flexible than 
exploiting a memory-unsafe C/C++ program. On the 
Android platform, the attackers’ ability relies more on the 
target application’s internal functionalities and the con-
trollability of their inputs. There are fewer chances for an 
attacker to behave beyond the application’s invoked APIs, 
compared to the control flow hijacking and memory 
manipulation attacks in memory-unsafe programs writ-
ten in C/C++.

In the motivating example, the attacker’s ability 
depends completely on the inner behavior of the tar-
get applications. The exploit chains the functionalities 
that can be triggered or controlled. Although there are 
“arbitrary” component launching attacks involved in the 
chain, the limited flexibility also depends on the func-
tionality of invoked API sequence, the controllability of 
each phase, and finite target components available on 
the device. In addition, the amount and category of APIs 
invoked by an application are finite, thus the capabili-
ties that can be gained by an attacker are also finite and 
measurable.

The inflexibility for exploiting a memory-safe Android 
application leads to a finite and measurable set of an 

attacker’s capabilities, making it feasible to measure a 
payload’s behavior and capability set.

Dependencies between payloads
There are both data and control dependencies between 
two payloads from different directions.

An example of data dependency is the load-after-store 
operations in an application. Once the program receives 
the payload, part of the attacker-controllable data 
extracted from the payload may be stored in a temporary 
or persistent data entity, and later be loaded by function-
alities triggered by another payload. In the motivating 
example, pzip is downloaded in the SDCard beforehand, 
but it won’t be loaded to assist the exploit until a proper 
puriz referencing pzip was sent to trigger the unsafe unzip-
ping functionality in the program.

The control dependency is revealed in “pending attack 
surfaces”. A pending attack surface cannot receive the 
attacker’s payload directly unless another payload drives 
the program’s control flow and triggers certain events to 
turn the pending attack surface into a ready state. In the 
motivating example, the leftover debug code is in a pend-
ing state, it does not proactively load pcfg , until payload 
puri2 produces an event to reboot the system and trans-
forms the leftover debug code into a ready state. There-
fore, the puri2 has control dependency with pcfg.

Two payloads with data or control dependencies can 
be chained together to trigger more functionalities or 
enlarge the ready attack surfaces in the target program.

Logic exploit chain model
Based on the three key observations, we propose a gen-
eral model of the Android application exploit chain.

The model involves three important roles—payload, 
gadget, and shared data entity.

The relations among these roles are shown in Fig. 2. In 
a scenario where multiple inputs can be sent to the tar-
get in different directions, an attacker carefully prepares 
and sends the payloads to an application’s attack surfaces 
either simultaneously or in proper order. The payloads 
flow into the system from different directions, and trigger 
functional code snippets—gadgets in applications. These 
gadgets take input from and send output to the shared 
data entity. The entities chain multiple payloads together. 
As shown in the figure, the shared data entity are mod-
eled inside one application as the internal data entity, or 
among multiple applications in the form of external data 
entity.

In the rest of this section, we introduce the threat 
model of our research, describe the concept of Gadget, 
define the IO properties of each gadget, and finally, 
explain the chaining rules for the payloads.
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Threat model
Research scope
This work aims to find chainable payloads in Android 
applications, including third-party user applications, 
platform applications, and system applications. All 
types of applications share the same attack entrances 
and vulnerability patterns. In this paper, we only use 
popular applications in Google Play as a test suite to 
evaluate our model.

This work focuses on the applications implemented in 
Java or Kotlin, because the APIs of these languages are 
officially documented and are adopted by most Appli-
cation developers. Functionalities implemented with C/
C++ or hybrid applications based on HTML5 are not 
involved in this work, because describing the behaviors 
of C/C++ or hybrid applications is another challenge.

We do not detect specific bug patterns. Instead, we 
put more emphasis on the relationship of function-
alities. We blur the boundary between an application’s 
bug and feature, as essentially they are all considered 
sequences of APIs calls. According to several empiri-
cal studies (Linares-Vásquez et  al. 2017) on Android 
application bugs and the OWASP mobile top ten risks 
(Owasp 2022), most bugs are brought by insecure usage 
of APIs.

Attack assumptions
The threat model assumes that an adversary can launch 
attacks both locally and remotely.

In a locally launched attack, it is assumed that a mali-
cious application has been installed on the target device 
by the attacker. The malicious application can interact 
with other applications via various IPC mechanisms. In 
addition, the malicious application is granted with nec-
essary permissions, including external storage access 
permission for allowing attackers to read and write files 
in the SDCard. Specifically, we assume the device user 
may interact with the application’s operable UI widgets, 
such as clicking a button, inputting text in an edit box, 
etc. These user interactions facilitate producing neces-
sary events and the execution of more pending func-
tions in the application.

In a remotely launched attack, it is assumed that the 
user can be guided to click a malicious URL embed-
ded in SMS, email, or instant message applications, so 
that unprotected browsable activities can be triggered 
by an attacker. We also assume an attacker can perform 
a “man-in-the-middle” attack and hijack plain HTTP 
streams to tamper requests or responses.
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Attack aims
The aim of the threat model is to compromise user pri-
vacy and access system sources via chained payloads. 
Specifically, the adversary tries to trigger more func-
tionalities with less privileges requested and less user 
interactions.

Gadgets definition
In this paper, a gadget is a snippet of code in an 
Android application that can be triggered by a payload 
or handles the data input of a payload. The term Gadget 
is borrowed from the Return Oriented Programming 
technique (Buchanan et al. 2008) in memory corruption 
exploits, where gadgets are snippets of code invoked for 
manipulating memory and registers.

According to whether the input parameters can be 
controlled by an attacker, we divide gadgets into two 
categories: weak gadgets and strong gadgets.

The input parameters of a Weak gadget have no asso-
ciation with the payload, the payload only triggers the 
execution of these gadgets. Weak gadgets are often lev-
eraged to produce events or set intermediate states in a 
chain. The form of a weak gadget is a cluster of invoked 
APIs in the same class.

In comparison, part of a Strong gadget’s input param-
eter is extracted from the payload. Leveraging strong 
gadgets, the attacker can conduct more flexible manip-
ulation of the applications’ behaviors by assigning var-
ied values as the input. The form of a strong gadget is a 
cluster of invoked APIs belonging to an object, rather 
than just of the same class.

The scope of APIs in gadgets includes but is not 
limited to Android development APIs, Java language 
APIs and other third-party library APIs. The invoking 
sequences of these APIs are carefully sliced from the 
whole program so that the functionality of a gadget is 
explicable.

Figure 3 presents a code snippet to illustrate the form 
of both strong and weak gadgets, and how the code 
is sliced. The ExportedActivity in line 1, as the name 
implies, is exported and allows another application to 
send Intents to it and launch it. In line 6, the applica-
tion extracts data from the intent payload and uses it as 
the parameter of the File.$init method. Thus File.$init 
and the API of the same object File.delete can be trig-
gered by the intent payload. In addition, at least one of 
their parameters is attacker-controllable. Therefore, the 
group of two APIs belonging to the file object is marked 
as a strong gadget. In comparison, some API calls in the 
onCreate method are just triggerable but have no data 
relations with the intent payload. After classifying these 
APIs according to their class name, we get three weak 
gadgets. The getIntent (line 5), getExternalFilesDir (line 
6), startActivity (line 11), onCreate(line 13), setContent-
View (line 14) of the Activity class; the $init (line 9), 
getStringExtra (line 6), setComponent (line 11) of Intent 
class; the $init (line 10) of ComponentName class.

Formally, we use G(p) to denote the set of gadgets 
triggered by payload p. The Gw(p) and Gs(p) are used to 
denote the set of weak gadgets and strong gadgets sepa-
rately. G(p) is the union of weak gadget set and strong 
gadget set:

StrongGadget of the file object

1   public class ExportedActivity extends Activity {
2
3       @Override
4       protected void onCreate(Bundle bundle){
5           Intent intent = getIntent();
6           File f = new File (getExternalFilesDir(null), intent.getStringExtra
7           f.delete() ;
8
9           Intent outIntent = new Intent();
10          outIntent.setComponent(new ComponentName
11          startActivity(outIntent);
12
13          super.onCreate(bundle);
14          setContentView(R.layout.activity_main);
15     }
16  }

WeakGadget of the Activity class

WeakGadget of the Intent class

WeakGadget of the ComponentName class

Fig. 3 An example of strong gadget and weak gadget
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Gadgets IO property
We model the input and output (I/O) properties for a 
gadget to help explain the dependencies between pay-
loads. We divide the I/O properties of a gadget into three 
categories—DataIO, ControlIO, and DataControlIO. 
These properties respectively reveal the DataDepend-
ency, ControlDependency, and both dependencies for two 
payloads.

DataIO indicates that the gadget takes data input from 
or outputs its results to an intermediate data entity—
probably a persistent or temporary place for storing data. 
DataIO only involves strong gadgets due to the attacker-
controllable data input requirements. A strong gadget’s 
DataIn propagates the attacker-controllable data input to 
the gadget’s parameters or member variables. After the 
DataIn is manipulated or propagated inside the gadget, 
attacker-controllable data are outputted to another data 
entity. In our model, there are four kinds of functional 
gadgets with DataOut ability. (1) the static value assign-
ment statements outputting data to a temporary data 
entity. (2) the file writing operations, including both writ-
ing data into external storage and an application’s private 
directories. (3) the shared preference editing operations 
writing key-value style information into configuration 
files. (4) the database operations writing structured data 
into a persistent database.

ControlIO of a gadget reflects the control requirements 
to be met for triggering its execution, and the abilities 
to awaken other code snippets that are not executed. As 
Android applications are event-driven, there are multiple 
execution entries in the form of callback methods instead 
of the sole main method. In our model, ControlIn is a set 
of user interaction events and some component lifecycle 
events for triggering these callback methods. The Con-
trolOut abilities are revealed in the gadget’s specific APIs 
used to trigger the execution of other components, e.g., 
the startActivity() API used to awaken another Activity 
component, and the sendBroadcast() API used to send 
a broadcast to another Broadcast Receiver component. 
The model takes all of the four kinds of basic components 
into consideration, thus their corresponding Inter-Com-
ponent Communication (ICC) methods’ ControlOut 
abilities are modeled.

DataControlIO is the combination of DataIO and 
ControlIO. A gadget with a nonempty DataControl-
Out property extracts data from the payload, and then 
sends the extracted data to other components to trigger 
it. e.g., a gadget extracts a value from the payload, uses it 
as the parameter of Intent.setData() or Intent.putExtra() 

G(p) = Gw(p) ∪ Gs(p)
methods, and then sends the Intent to awaken other 
components.

Payload dependency
Two payloads p1 and p2 are chainable if at least one 
gadget triggered by payload p1 is data or control depend-
ent on the gadgets of payload p2.

Data dependencies are uncovered from the DataIO 
properties of multiple gadgets. We use Ind(g) and 
Outd(g) to denote the DataIn and DataOut set of a gadget 
g. Payload p1 and payload p2 have data dependency if the 
DataOut in one payload fits the DataIn of another pay-
load. The fitness means that the two values are originated 
from the same taint source. For example, in a situation 
where a gadget g1 in p1 outputs data Outd(g1) to a data 
entity, and then another gadget g2 triggered by payload p2 
takes input from the same data entity, p1 and p2 are data 
dependent. Formally, the requirements for data depend-
ency between p1 and p2 are shown in the following con-
ditional expressions. Note that the ts(v) is the taint source 
of value v.

Control dependencies are associated with the ControlIO 
properties of multiple gadgets. The dependency exists 
among both strong strong gadgets and weak gadgets. 
Formally, we define p1 and p2 have control dependency 
if p1 can trigger the execution of gadget g2 in p2 . This 
requires there are gadgets with ControlOut ability in p1 , 
and the ability matches the event requirements for awak-
ening the execution of gadget g2 . We express the depend-
ency as follows.

It is possible that both data and control dependencies 
exist between two payloads. This requires the above 
conditions are satisfied simultaneously. Two dependent 
payloads can be chained together by attackers to either 
gather deeper controllability of the target program or 
enlarge the attack surfaces.

Design
Based on the exploit chain model, we design a prototype 
system named AppChainer to automatically chain the 
payloads towards various applications.

In this section, we first give an overview of AppChainer 
to introduce its key modules and overall workflow, then 

∃g1 ∈ Gs(p1), g2 ∈ Gs(p2)

∃v1 ∈ Outd(g1), v2 ∈ Ind(g2)

p1 �= p2, ts(v1) = ts(v2)

∃g1 ∈ G(p1), g2 ∈ G(p2)

Outc(g1) = Inc(g2)

p1 �= p2

Ind(g2) �= ∅
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explain the details of each module in the latter part of the 
section.

System overview
AppChainer takes APK files and several configuration 
files as input, and outputs possible chainable payloads in 
an application or among multiple applications.

As shown in Fig.  4, AppChainer is composed of four 
modules: Attack Surface Extractor, Control Flow Graph 
(CFG) Analyzer, Data Flow Graph (DFG) Analyzer, and 
Payload Chainer. The modules are denoted in the figure 
with grey boxes.

The workflow of AppChainer is divided into four 
steps. Attack Surface Extractor identifies attack surfaces 
under our threat model, i.e., both the local and remote 
entrances for receiving payloads in an application. CFG 
Analyzer gathers weak gadgets for each payload, and 
DFG Analyzer gathers strong gadgets, respectively. Pay-
load Chainer searches the data and control dependen-
cies between gadgets of various payloads, calculates 
the chainability of the payloads, and finally outputs the 
results.

Attack surface extractor
Attack Surface Extractor takes APK files as inputs, and 
extracts two sets of attack surfaces as outputs. In this sec-
tion, we first analyze our observations on the state of an 
attack surface, then divide the attack surfaces into two 
categories according to whether or not an attack surface 
is directly reachable. In line with the attack surface clas-
sification, the concepts of two payload categories are also 
derived. At last, we introduce the attack surface identifi-
cation methods.

Despite the large number of attack surfaces, an 
attacker can only proactively reach a part of them, such 

as sending his payload to Browsable activities or unpro-
tected exported components. While other part of attack 
surfaces are not in a ready state unless their correspond-
ing code snippets are executed and enabled, e.g., the 
external file-loading attack surfaces. One cannot directly 
put a file in the external storage and let the application 
load it immediately unless the program is told to do, or 
the file observer service (Google 2022a) is executing in 
the background.

Based on the above observation, we divide the attack 
surface into two categories: directly reachable attack 
surfaces and pending attack surfaces. Directly reach-
able attack surfaces, including browsable activities and 
unprotected exported components, start executing and 
handling the attack controllable inputs once receiving the 
payload. While pending attack surfaces are in a pending 
state unless certain events are sent, triggering the execu-
tion of its code snippets.

Corresponding to the classification of attack surfaces, 
payloads are classified into two categories. We name the 
payloads entering these directly reachable attack surfaces 
as immediate payloads because they can take effect in an 
immediate way. Relatively, we name the payloads enter-
ing the pending attack surfaces as pending payloads.

To extract directly reachable attack surfaces, the 
Attack Surface Extractor first decompiles the APK file to 
obtain the Android manifest file, from which the brows-
able activities and exported components are identified. 
Among the exported components, AppChainer pays spe-
cial attention to the intent-filter attribute that changes 
the default value of the android::exported attribute (Chen 
et  al. 2016). In addition, AppChainer resolves the per-
mission requirements of a component to exclude the 
protected components. If a component is protected by 
a self-defined system or signature-level permission, then 

Fig. 4 Architecture of the prototype system AppChainer
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we ignore it because our threat model does not assume 
that an attacker has the ability to break through the sand-
box restriction.

To identify pending attack surfaces, we provide a 
default potential attack surface list containing behav-
iors such as file operations, shared preference and data-
base operations, etc. We also provide a flexible way for 
researchers to extend APIs that can be marked as attack 
entries. The payloads entering these components are 
pending until they meet another payload or event capable 
of arousing them, i.e., has control dependency with them.

The Attack Surface Extractor outputs the list of directly 
reachable attack surfaces and the list of pending attack 
surfaces.

CFG analyzer
The CFG Analyzer takes the two identified attack surface 
sets as its inputs, builds an interprocedural control flow 
graph (iCFG), performs analysis on the graph to iden-
tify gadgets, and eventually outputs the weak gadget set 
Gw(p) of each payload p.

The starting points of constructing iCFGs vary accord-
ing to the types of attack surfaces. Directly reachable 
attack surfaces have explicit entries, thus the CFG Ana-
lyzer constructs iCFGs on their entry methods. Specifi-
cally, each component has an enumerable set of entry 
methods, e.g., the lifecycle methods (onCreate, onRe-
sume, etc.) in an activity, the onStartCommand and 
onBind methods in a service, onReceive method in a 
broadcast receiver, and database operating methods in 
a content provider. In addition, callback functions han-
dling the user interaction events are also marked as entry 
points, e.g., the onClick method of a button.

Pending attack surfaces may be located in the middle 
of a call graph. Thus the CFG Analyzer performs back-
ward analysis besides the forward analysis for construct-
ing a complete control flow graph. The backward analysis 
process terminates when it reaches the lifecycle methods 
of a component or user interaction callback methods 
of a widget. Different from the directly reachable com-
ponents, the result component may not be an exported 
component and relies on other payloads to start it.

Weak gadgets are identified via static CFG analysis. 
The recognizer follows the iCFG to collect invoked API 
methods and then sort them into clusters sliced by dis-
tinct classes. For each invoked API method, the analyzer 
checks every parameter of it. Backward constant analysis 
is performed to record the deterministic parameters of 
each API method. The method names and their constant 
parameters are leveraged to reason the IO properties for 
later chaining. The sliced weak gadgets are then stored in 
a database file, associated with a unique payload id. The 

detail of its algorithm will be described in section Weak 
Gadget Identification.

DFG analyzer
DFG Analyzer also takes the two attack surface lists as its 
input. It uses taint analysis to identify the strong gadget 
set Gs(p) of a given payload p.

DFG Analyzer reuses the iCFG constructed in the CFG 
Analyzer stage. It marks the payload receiving methods 
as taint sources and then propagates the taints through 
the iCFG. Once the invoked API’s parameters are 
attacker-controllable data or tainted by the payload, then 
we slice the cluster of APIs as a strong gadget according 
to its object. During slicing, we use alias analysis on the 
same object to guarantee that the invoked APIs are com-
pletely sliced in the strong gadget. Similar to weak gadget 
identification, constant analysis of each parameter is also 
performed. Finally, the sliced strong gadgets and their 
parameter information that reveals which parameter is 
attacker-controllable are stored in another table of the 
database.

We made modifications to traditional taint analysis 
techniques to better fit the strong gadget identification 
scenario. In traditional taint analysis, taint sources and 
taint sinks are predefined. The aim of a traditional taint 
solver is to confirm whether there are reachable paths 
between the sources and sinks. However, in the proce-
dure of identifying strong gadgets, we care more about 
the set of tainted intermediate nodes in the data flow 
graph, rather than the results indicating whether a source 
can reach a sink. Thus we do not define a specific taint 
sink and instead focus on how to handle the taint propa-
gation procedure. The modified taint analysis techniques 
will be shown in section  FlowDroid Integration, the 
detail of the algorithm will be described in section Strong 
Gadget Identification.

Payloads chainer
With the iCFGs and two databases generated by the two 
analyzers, the Payloads Chainer then investigates the 
data and control dependencies within these payloads and 
picks out the payload combinations that can be chained 
together to trigger new functionalities.

The payload chainer uses an iterative strategy to chain 
as many payloads as possible. It starts with all the imme-
diate payloads, analyzing the DataOut and ControlOut 
properties of each gadget. Then searches proper code 
points that consume the data or control output event. 
Once one or more consumers are matched, the analyzer 
invokes the CFG or DFG analyzers to propagate its data 
or enlarge its control impact. After all the immediate 
payloads are analyzed, the chainer chains the payloads 



Page 10 of 19Xiang et al. Cybersecurity            (2023) 6:16 

that have data or control convergence. The chaining algo-
rithm will be explained in Sect. Chaining Rules.

The number of chainable payloads is not limited to two. 
In some large applications, the dependencies may exist 
in more than two payloads and constitute a graph. Even-
tually, the payload chainer outputs the set of potentially 
chainable payloads both in the form of payload pairs and 
payload graphs.

Implementation
AppChainer is built based on FlowDroid, a well-known 
static analysis tool for Android applications. In this sec-
tion, we first introduce the modifications we made in 
FlowDroid and how we use FlowDroid in AppChainer, 
then explain the algorithms of the analyzers and chainer.

FlowDroid integration
FlowDroid is a precise context, flow, field, and object-
sensitive taint analysis framework for Android applica-
tions. It receives an input file defining the taint sources 
and sinks, implements an IFDS Solver by describing the 
taint analysis problems, and eventually confirms whether 
there are paths between sources and sinks by solving the 
described reachability problem.

We integrate AppChainer with FlowDroid to conduct 
basic tasks such as iCFG generation, taint propagation, 
alias analysis, etc. Despite the popularity and mighti-
ness of FlowDroid, it cannot be applied directly to strong 
gadget identification. The reasons are as follows: (1) In 
the gadgets identification process, the taint sources are 
not fixed and sinks are not finite, making it infeasible to 
prepare an explicit set of sources and sinks. (2) Static val-
ues, which are important data load and store points for 
chaining various payloads, cannot be marked as inde-
pendent sources or sinks. In the rest of this section, we 
describe these problems in detail and give our solutions 
for them.

Handling taint source and sink
Taint analysis is capable of solving integrity or confiden-
tiality problems (Lerch et  al. 2014). FlowDroid is more 
often used to solve confidentiality problems such as 
information leakage, where sources are the generation 
points of sensitive information, and sinks are the exit 
points that transfer data out of the system. To implement 
AppChainer, we are facing a non-standard integrity prob-
lem and confronted with two challenges: (1) Dynamic 
sources. (2) Infinite Sinks.

In the integrity problem, taint sources are attack 
entries that receive attacker-controllable data, and sinks 
are the strong gadgets we need to gather. There are two 
reasons the taint sources are not fixed in AppChainer. 
Firstly, not all occurrences of an API can be marked as 

attack entrances. For example, when solving an informa-
tion leakage problem, researchers can mark the Location.
getLatitude() and Location.getLongitude() as sources to 
identify whether the location information is leaked, while 
in gadgets extraction, one cannot simply mark a specific 
API such as Intent.getStringExtra() as a source, because 
not all Intents are controllable by an attacker. Secondly, 
As shown in the Payload Chainer’s algorithm, the Data-
Out property of a strong gadget would be marked as a 
new source and added to DFG Analyzer’s working queue, 
thus we should handle a dynamic set of sources.

Taint sinks are also not enumerable in AppChainer. 
Before the analyzer executes, we do not know what kinds 
of APIs a payload will flow through. Thus it is not appli-
cable to define a set of APIs as the sink. Extra solutions 
should be conducted for solving the infinite sink set 
problem.

To solve the dynamic source problem, we provide 
both a statically predefined source template and an on-
demand source injection interface. In the statically pre-
defined source template, we collect both local and remote 
APIs that are possible for receiving a payload, including 
operations on files, shared preferences, databases, and 
network streams. The template file is in the form of an 
XML file and is extensible for researchers to add third-
party potential attack surface APIs into it. These items 
will be loaded by the attack surface extractor to exclude 
the not controllable entries. The on-demand source 
injection is performed in the gadgets chaining stage. 
Whenever a new taint is propagated to a temporary or 
permanent data entity, new sources will be added as a 
source seed, then the DFG analyzer will be invoked to 
perform further propagation analysis.

To deal with the infinite sink set problem, we first 
patch the FlowDroid to make the empty sink be allowed. 
Then we implement a Taint Propagation Handler to get 
the taint flow paths in FlowDroid’s solving procedure. 
FlowDroid’s IFDS implementation involves four types 
of flow functions. Among them, the call flow functions 
are responsible for processing a call site, If an incoming 
taint abstraction shows as the parameter of the invoked 
method, the customized handler gets informed and 
stores the gadget in the database’s corresponding table, 
according to the type of the payload.

Handling static value
In FlowDroid, the declaration of taint sources should be 
in the form of an API method. While in AppChainer, the 
DataOut of a gadget may be stored in a static field. The 
static field will be treated as a new taint source, but this is 
not supported by a vanilla FlowDroid.

As a solution, we implement the on-demand taint 
analysis feature for FlowDroid and add specific logic for 
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handling the static values. Once a tainted value is propa-
gated to a static field, we perform a backward analysis to 
find the definition of the static value. For each load point 
of that static value, we analyze whether it is reachable 
based on the immediate payloads’ iCFGs. For the trigger-
able load points, the chainer invokes the DFG Analyzer 
to propagate the tainted value further, and marks the 
involved payloads as chainable. For the pending ones, we 
just record them and do not conduct immediate analy-
sis on them until these load points are awakened by other 
payloads, i.e., their ControlIn requirements are satisfied.

Weak gadget identification
CFG Analyzer follows the constructed iCFG to col-
lect invoked API methods and then sort them into clus-
ters reasoned by distinct classes. The algorithm of weak 
gadget identification is shown in Alg. 1.

In line 3, the analyzer traverses the iCFG to get every 
statement in the intermediate representations. The get-
Stmts() method handles the loop of the iCFG and uses a 
visited tag for each procedure. It returns a set of interpro-
cedural unique statements. In line 4, the analyzer deter-
mines whether the statement is an invoke expression. In 
lines 5-12, the class name and method name are extracted 
from the invoke expression and temporarily stored in the 
res data structure. In lines 13-15, for each invoked meth-
ods, the analyzer checks every parameter of it. Backward 
constant analysis is performed to record the determinis-
tic parameters of each API method. For efficiency, we do 
not perform alias analysis here, as the data dependencies 
are transparent in the CFG analysis stage.

Strong gadget identification
The algorithm for strong gadget identification is more 
complex than weak gadget identification. It uses taint 
propagation techniques as its core, aided by constant 
analysis and alias analysis to extract strong gadgets 
along the iCFG.

The input of this algorithm is an attack entry corre-
sponding to a payload. In this work, attack entries are 
in the form of the return value of an API call or a static 
value. The output is the result of identified strong gadgets.

In line 2, we initialize a ResultSaver utility class to 
save the identified strong gadgets and their correspond-
ing extra information in a database. The ResultSaver 
sorts each identified strong gadget into clusters by dis-
tinct objects, or distinct classes if the target API call is 
static. There are two member functions in the Result-
Saver, as shown in line 9 and line 12. The saveGadget() 
get the class name and method name from the stmt, 
and add the invoked API into a proper map structure, 
while the saveExtraInfo() saves the results of const anal-
ysis of each parameter in the invoked API method. For 
simplicity, the implementation detail of the ResultSaver 
is not expanded in the algorithm.

In lines 3-4, we gather all the tainted nodes of a given 
payload and then process each taint abstraction. In 
lines 5-6, the algorithm gets the statement of the taint 
abstraction, and determines whether it is a invoke 
statement for APIs. In lines 7-9, the ResultSaver put the 
current API call into the proper position in the data-
base. In lines 10-13, each operand of an API call site is 
processed. Const analysis is performed on each oper-
and to trace the data flow backward to check whether 
the operand or part of the operand is a constant value. 
The const analysis result is also saved into a database 
as extra information of the API call, and will be used in 
the latter gadgets chaining phase.
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Chaining rules
With the gadgets database outputted by the gadget ana-
lyzer, the payload chainer leverages the chaining algo-
rithm to identify the set of potentially chainable payloads.

The algorithm of the payload chainer is shown in Alg. 3. 
It first reasons the DataOut and ControlOut properties 
of every collected gadget (lines 4 and 15). As illustrated 
in section  Gadgets IO Property, four kinds of DataOut 
related to different data entities and four kinds of Con-
trolOut related to ICC are modeled.

The load points of the corresponding outputs are 
inferred (lines 5 and 16), determined by a matching strat-
egy including both fuzzy searching and exact searching. 
If the load points are not empty, CFG and DFG analyzers 
are performed on these inferred points, as shown in lines 
7 and 18.

The chainer chains p′ with p if there are data or con-
trol dependencies between them, as shown in lines 10 
and 21. In lines 11 and 22, the chainer iteratively adds 
the dependent payload p′ into the work queue for future 
processing tasks. The iteration allows the system to dig as 
many payloads as possible in a chain.

Evaluation
In this section, we will introduce the environment of our 
experiments, explain how we collect the APK test suite 
and construct the benchmark, and give the evaluations 
of (1) the effectiveness of the ability to discover attack 

surfaces, (2) the effectiveness of identifying payloads 
in real-world applications, (3) the precision and recall 
rates compared with Jandroid, (4) the performance of 
AppChainer.

Environment setup
We execute the AppChainer in a machine running 
Ubuntu 20.04 system with an Intel Core i7-6700 3.40GHz 
processor and 40 G RAM.

We use popular applications downloaded from Google 
Play as the test suite. A total of 2138 applications with 
more than one million installations are analyzed by the 
system without reporting errors. As the FlowDroid 
engine fails to analyze some large applications under our 
hardware facilities, the application sizes are on the lower 
side. The average size of the 2138 applications is 37.20 
MB. There are only 27 applications larger than 100MB.

We set the memory warning limit to 32GB to provide 
sufficient memory for analysis. The timeout limit for the 
data flow analyzer (the most time-consuming phase) is 
set to 10 min. Applications that cannot be analyzed suc-
cessfully under the current execution configuration and 
computation environment will be discarded.

Test set collection
We evaluate the AppChainer on two test sets. The effec-
tiveness and performance of AppChainer are evaluated 
over a large number of applications from the Google 
Play Store. The precision and recall rates are evalu-
ated on our custom benchmark applications named 
DroidChainBench.

Popular application collection
We randomly collect popular applications from Google 
Play Store. The metadata of an applications is gathered 
based on the google-play-scraper (JoMingYu 2022) pro-
ject on GitHub. The project provides a searching API, 
returning at most 30 recommended results according to 
a given keyword. With the returned appId field, we con-
struct a deep link referencing the application and send it 
to the gms (Google Mobile Service) application. The gms 
handles the link and displays a page showing the detail 
of the application. The application will be installed on 
the device after clicking the install button. We eventually 
collect the APK files via the ADB command. All of the 
actions are performed automatically via a python script 
based on uiautomator.

We generate random words or phrases as the keywords 
for searching, so that the categories, developers and func-
tionalities of applications are random. From the metadata 
of an application, the “installs” field reveals its popularity, 
we exclude the less popular applications with less than 
one million installs.
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DroidChainBench
As there is no suitable benchmark to evaluate the pre-
cision and recall rates of exploit chains in Android, we 
design the DroidChainBench specifically for the Android 
exploit chain model.1 The benchmark, now in its ver-
sion 1.0, consists of 10 hand-crafted test cases that per-
form reading and writing operations on data entities 
such as files, static values, intents, shared preferences and 
databases.

DroidChainBench implements a handful of exported 
components, which meets the attack assumption that 
an adversary has multiple attack entrances to send their 
payloads to the components in these applications. The 
benchmark implements all kinds of data entities in our 
model, revealing both data and control dependencies 
among various payloads. We also add two false chains 
to test the precision of AppChainer, two external shared 
data entity operations to test payload chaining among 
multiple applications, and the permission definition and 
request test case that exposes the deficiency of App-
Chainer. As the payload chainer inspects and chains pay-
loads two by two at a time, thus the identification result 
on two applications also covers the scenario across more 
than two applications.

Besides, we do not apply functional tests such as the 
callback, jni, or lifecycle mechanisms that influence the 

precision of taint analysis, because these aspects are 
tested by the FlowDroid engine already. We only focus on 
whether the payloads can be successfully identified and 
chained under the taint analysis technique in the present.

Attack surface evaluation
The number of extracted attack surfaces reflects whether 
there are abundant material payloads available for 
chaining.

For an application, we identify both the immediate pay-
loads that can be received by directly reachable attack 
surfaces, and pending payloads waiting to be accepted 
by pending attack surfaces. For the pending payloads, we 
calculate four kinds of payload form, including file read-
ing, shared preference getting, database querying, and 
intent receiving operations.

We rank the applications by the number of total poten-
tial attack surfaces, the excerpt results of identified attack 
surfaces are shown in Table 1.

Chainable payloads evaluation
We investigate the control and data dependencies 
between payloads both inside one sole application and 
among various applications. The dependencies between 
payloads determine whether the available payloads are 
capable of being chained together, and how many pay-
loads can be involved in each chain.

Table 1 The excerpt results of applications identified payloads entering identified attack surfaces, sorted by the number of total 
payloads

For ethical reasons, package names are blurred with the symbol "*"

id Package name Version Immediate 
payload

Pending payloads Total

File sp db Intent

1 com.***.***.**ad 1.46.10 35 368 393 178 147 1121

2 com.***.***.**id 5.54.0 54 248 153 61 431 947

3 com.****.***.**ok 4.2224.2 34 237 204 94 163 732

4 com.***.**le 8.61.0.100(1.3.262439.0) 13 281 161 89 82 626

5 com.***.**ms 1416/1.0.0.2022314401 15 218 66 58 133 490

6 com.***go 5.63.3 7 152 174 78 43 454

7 com.***.**ip 17.8.0.0 7 146 67 44 173 437

8 tv.***.***.**pp 13.3.1 8 130 80 119 22 359

9 com.***.**er 4.9.20 15 136 116 45 34 346

10 com.**.**op 3.22.06 8 167 61 23 37 296

11 cn.**er 12.1.2.Prime 12 147 28 57 13 257

12 com.**do 5.15.4.2 36 62 53 23 35 209

13 com.***.**sh 1.7.3 7 58 35 49 58 207

14 com.**ze 4.84.0.2 14 49 59 6 78 206

15 com.**tv 4.25.1 6 106 68 8 15 203

1 The source code of the DroidChainBench will be uploaded to https:// github. 
com/ xiang xiaobo/ Droid Chain Bench.

https://github.com/xiangxiaobo/DroidChainBench
https://github.com/xiangxiaobo/DroidChainBench
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AppChainer effectively identifies 5458 chains consist-
ing of 14467 payloads. Table.  2 shows the number of 
chains corresponding to the number of payloads. The 
most complex chain identified by AppChainer contains 
up to seven various payloads, and 21 such chains are 
identified. The long chain is the result of the iterative 
analysis strategy in the payloads chainer algorithm.

To answer the question about how two payloads are 
chained together, we investigate the type of disjoint 
points in the identified payload chains. According to 
the type of dependencies, we classify each chain’s joint 
points into 9 categories. Among the 5458 chains, there 
are a total of 9009 joint points. Figure 5 shows the num-
ber of joint points for each dependency category. As in 
the figure, there are no joint points generated according 
to the control dependency between Providers, because 
we found few exported providers in the test APKs. Only 
a few joint points are generated based on both data and 
control dependencies.

Specifically, we calculate the number of payloads in 
the form of web Intents that can be chained with other 
payloads. Web Intent, which is the only IPC mechanism 
that can be triggered remotely, is security-essential (Liu 
et al. 2017) for an Android application. Among the 14467 
identified payloads, 532 of them are web Intents that can 
be sent to exported Browsable activities via the browser, 
revealing the possibilities for remote attackers.

We also calculate the number of triggered gadgets in 
each chain. Compared with a single entry payload, in the 

chain, the number of strong gadgets increases by 87%, 
weak gadgets increases by 162% respectively.

Precision and recall
We compare the precision and recall rates of AppChainer 
with Jandroid on the DroidChainBench. The test result is 
shown in Table  3. Experimental results show that App-
Chainer and Jandroid can both detect the chains involv-
ing files, databases, shared preferences, and intents.

Table 2 The number of involved payloads in the 5458 chains

#Involved payloads 2 3 4 5 6 7

#Chain 3036 1730 409 150 112 21

Fig. 5 The distribution of dependency types

Table 3 DroidChainBench test result

⊞ = detected (precisely)

⊟ = not detected (precisely)

⊠ = not supported

⊖ = false negative

⊕ = false positive

No. AppName AppChainer Jandroid

1 FileEntityChain ⊞ ⊞

2 SpEntityChain ⊞ ⊞

3 StaticValueEntityChain ⊞ ⊠

4 DbEntityChain ⊞ ⊞

5 IntentChain ⊞ ⊞

6 IntentSetDataChain ⊞ ⊞

7 FalseFileChain ⊟ ⊕

8 FalseIntentChain ⊟ ⊕

9 PermDef & PermUse ⊖ ⊞

10 ExtFileUse & ExtFileWrite ⊞ ⊞
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The precision rate of AppChainer is 100%. The identi-
fied chains are all correct. In comparison, the precision 
rate of Jandroid is 77.78%. It identifies nine results, two 
of which are false postives due to the lack of a dataflow 
track.

The recall rate of AppChainer is 87.5%. It detects seven 
results out of eight. In the PermDef application, we 
define a signature-level permission. The PermUse appli-
cation has the same signature as the PermDef. It applies 
the application and is able to access the protected com-
ponent in PermDef. AppChainer fails to chain payloads 
in the permission-related test case, because currently 
we do not model the Android Application permission 
and SELinux rules. In contrast, Jandroid can detect the 
chain with a template that simply does not check permis-
sions or with a sophisticated template that finely mod-
els the permission rules during manifest searching. The 
recall rate of Jandroid is also 87.5%. It fails to analyze the 
static value entity test case because it does not support 
identifying operations on static values, because its code-
searching rules are designed for APIs.

During the comparison experiment, we find it is com-
plicated to construct the searching rules in “.template” 
and “.link” files in Jandroid. In total, we write 1406 lines 
of template code for Jandroid in the benchmark. While in 
AppChainer, we do not need to write extra code for each 
of the chains in our model, the gadgets are output to the 
database and chained by the chainer automatically.

Performance evaluation
By default, FlowDroid uses the most precise configu-
rations to identify as many data flows as possible. The 
higher precision brings higher performance overhead. 
To lower the overhead, we compromise the precision 
by limiting the length of the access path to 2 and using 
the flow-insensitive alias analysis option instead of the 
default flow-sensitive way. Meanwhile, we turn off the 
static value analyzer because we already handled the 
static value propagation problem, as explained in sec-
tion FlowDroid Integration. We also turned off the call-
back analysis because we regard message transmission or 
thread creation callback methods as functional gadgets. 
Their functionalities are shown in their corresponding 
ControlOut or DataOut properties and will be used as a 
rule in the gadget chainer module.

With these configurations, we evaluate the execution 
time of every single stage and the maximum memory 
consumption of the whole task. For the 2138 applications 
in our test suite, the average execution time is 317.73 s, 
the average memory consumption is 2368MB. Figure  6 
shows the average execution time of every stage of the 
whole task. As the chainer invokes the strong and weak 

gadget identification module during its execution, we 
strip the consumed identification time in the chaining 
stage, adding it to the strong or weak gadget identifica-
tion stage separately.

In general, the memory and runtime overhead increase 
with the size of APK files, as shown in Fig. 7.

Related work
As there are no existing chain building methodologies to 
our best knowledge, we introduce the relevant works of 
AppChainer in two aspects: the recent logic bug exploit 
chains, and single bug patterns proposed by researchers.

Logic bug exploit chains
Except for the Samsung exploit chain explained in sec-
tion Motivation, we also investigate other industrial logic 
exploit chains in Android platforms.

Mystique exploit chain (Dawn Security Lab 2022) lev-
erages a SEPolicy misconfiguration bug in recent Android 
versions, which allows a system app to overwrite another 
application’s original private files and break the Android 
application sandbox. By Chaining with other bugs, this 

Fig. 6 The average execution time of each stage

Fig. 7 The growing trends of memory and runtime overhead with 
the application sizes increase
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exploit chain can eventually trojanize third-party applica-
tions on the target device.

Huawei Mate 9 Pro was pwned by Plaskett and 
Loureiro Plaskett and Loureiro (2018) via chaining two 
bugs in HiApp and four bugs or features in the Huawei 
Reader application. They eventually managed to create a 
bind shell of the target device.

Xiaomi Mi9 (f-secure Lab 2019) was pwned at mobile 
Pwn2Own 2019 using two different exploit chains, 
launching the attacks from the web browser and NFC 
tag, respectively. Researchers eventually achieved remote 
file theft on the victim’s device.

Android application bug patterns
Academic research in Android vulnerability discovery 
and exploitation proposed several harmful vulnerability 
patterns.

CHEX (Lu et  al. 2012) is a static analysis tool to find 
component hijack vulnerabilities in Android applications. 
The component hijacks they generalized include permis-
sion leakage, unauthorized data access, intent spoofing, 
etc.

Permission re-delegations are investigated in Android 
applications (Demissie et  al. 2020), the Android frame-
work (Felt et  al. 2011), and system services (Gorski  III 
and Enck 2019; key 2022). Researchers find potential 
deputies that bypass permission checks.

The Next Intent Vulnerability, where an Intent is 
embedded in another Intent and is delegated to another 
component, allows an attacker to invoke and send data to 
a private component of the victim app. It is first used to 
build an attack in Wang et al. (2013) and is well modeled 
and scrutinized by researchers in El-Zawawy et al. (2021).

Similar to the Next Intent Vulnerability, a second order 
permission re-delegation (Demissie and Ceccato 2020) 
pattern extracts data from the received Intent, creates a 
new Intent containing the extracted data, and sends it to 
other components under its privilege context.

The security threats brought by insecure usage of Pend-
ingIntents (Google 2022b) are researched by PIAnalyzer 
(Groß et al. 2018) and PITracker (Zhang et al. 2022). In 
the worst case, an attacker may gain SYSTEM privileges 
to perform the most sensitive operations, e.g., deleting a 
user’s data on the device.

Choi and Kim (2018) investigate general remote code 
injection attacks. In this research, several file-overwrit-
ing vulnerabilities are listed, e.g., unsafe zip extraction, 
unsafe Content-Disposition Implementation, etc. In our 
model, the file overwrite is an important DataOut prop-
erty of a gadget.

Dynamic code loading problem and its security impli-
cations are researched in StaDyna (Zhauniarovich et  al. 
2015), Dydroid (Qu et al. 2017), StaDART (Ahmad et al. 

2020), and so on. A dynamic code loading functionality is 
regarded as a strong gadget under our model if the loaded 
code is controllable by the attacker. This bug pattern can 
be potentially leveraged to execute arbitrary code by an 
attacker in the context of the affected application.

Future research plans
AppChainer is only a small step towards modeling the 
chain building and breaking the “case by case” preju-
dice. There are lots of challenges left for us and the whole 
community to solve. We hereby give some directions for 
future works.

Firstly, during measuring a gadget in this work, we only 
modeled a limited range of IO behaviors to chain vari-
ous payloads, including static values, files, shared prefer-
ences, databases, and Intent IPC. There are a lot of other 
input and output behaviours of a gadget beyond our 
endeavors, e.g., a finer-grained local variable load-store 
operation. The model can be adequately improved in the 
future.

Secondly, a dynamic tool is necessary for generating 
reproducible chains both inside and between applica-
tions. Fuzzing and symbolic execution techniques are 
proven to be effective in generating inputs dynamically. 
Currently, the AppChainer prototype system proposed 
by us is a pure static tool for finding potentially chainable 
payloads. The confirmation of chained payloads requires 
experienced manual work. Automatic confirmation of 
the identified chains will help a lot in the acceleration of 
exploit chain building for security researchers and the 
identification of hidden attack surfaces beneath applica-
tions for developers.

Thirdly, AppChainer does not model the permission 
and privilege mechanisms in Android. Android has mul-
tiple permission levels and privilege domains. A sophisti-
cated attack may go across multiple domains and gather 
the privileges step by step via various payloads. There-
fore, an exploit chain model that considers permission 
and privilege will be complete.

Conclusion
With stricter mitigation measures and isolated privilege 
models applied to modern Android operating system, a 
single bug exerts a limited influence on the whole device. 
Despite the amount of works on bug patterns, few of the 
researchers manage to generalize a model for exploit 
chains involving multiple bugs or features.

This paper proposes a model for building exploit 
chains on the Android platform. A prototype system 
named AppChainer is designed and implemented to 
detect chainable payloads. Experimental results on a 
large number of popular Android applications show 
that AppChainer is able to chain payloads either inside 
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one application or among multiple applications to trig-
ger more functionalities than an attacker can originally 
achieve.

This work is one step towards breaking the prejudice 
that logic bug exploit chains are built in a case-by-case 
way. However, future research are ought to be conducted 
to continuously gain a finer-grained model.

Appendix
In this section, we explain one identified chain with 7 
payloads across two applications. The workflow of the 
exploit is shown in Fig. 8.

In the chain, an attacker sends two web Intents to 
AppA to trigger two file-download functionalities. The 
first web intent triggers downloading a fixed-name icon 
file, while the second one can be leveraged to download 
a file with an arbitrary file name. The application uses 
unsafe HTTP connections to download the two files. 
Thus an attacker can perform MITM and tamper with 
the file content. Besides, the file name in the second web 
intent is not sanitized, allowing the attacker to perform 
a path traversal attack and write arbitrary file under the 
context of AppA. As shown in the figure, p1 triggers 
downloading a fixed-name file, p3 triggers downloading 
a file with a controllable file path, p2 and p4 are the cor-
responding malformed files.

There is another arbitrary file-overwrite bug leveraging 
the File.renameTo() API in AppB. AppB implements a Lat-
est Recently Used (LRU) cache mechanism for loading and 
storing its Bitmap images. The LRU cache reads a Journal 
file line by line from the external storage, and parses each 

line as a command to perform corresponding behaviors. 
When the application parses the “CLEAN cleankey” and 
“DIRTY dirtykey” commands, the application constructs 
two file names with the two keys, and moves the clean file 
to the dirty file. As the journal file is stored in the SDCard, 
attackers can put a malformed journal file with “CLEAN” 
and “DIRTY” commands to move a file to a destination. In 
addition, when the application contructs the file path, no 
path sanitization is performed on the cleankey and dirt-
ykey. If an attacker adds “../” string at the beginning of the 
two keys, path traversal occurs, which eventually allows an 
attacker to overwrite arbitrary files under the context of 
AppB. In this chain, p4 is the malformed journal file that 
points the cleankey to the malformed icon file.

The File.renameTo() API won’t be executed directly until 
the attacker sends the p5 intent to AppB. The p5 starts the 
exported MainActivity and triggers the file overwriting 
operation.

AppChainer detects multiple candidate file-reading 
operations in AppB. We take a shared preference file as an 
example due to its longer attack paths. The loading of the 
shared preference file is conducted in a broadcast receiver 
of AppB, but the receiver is not launched by default. The 
attacker should first trigger the registration of the receiver 
with p6, and then trigger the file-loading operation with p7. 
Unfortunately, we are not able to perform a further power-
ful attack with the chain after modifying the files in AppB 
after manually analyzing it.
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