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Abstract 

Non-malleable code is an encoding scheme that is useful in situations where traditional error correction or detection 
is impossible to achieve. It ensures with high probability that decoded message is either completely unrelated or the 
original one, when tampering has no effect. Usually, standard version of non-malleable codes provide security against 
one time tampering attack. Block ciphers are successfully employed in the construction of non-malleable codes. 
Such construction fails to provide security when an adversary tampers the codeword more than once. Continuously 
non-malleable codes further allow an attacker to tamper the message for polynomial number of times. In this work, 
we propose continuous version of non-malleable codes from block ciphers in split-state model. Our construction 
provides security against polynomial number of tampering attacks and it preserves non-malleability. When the tam-
pering experiment triggers self-destruct, the security of continuously non-malleable code reduces to security of the 
underlying leakage resilient storage.
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Introduction
Physical attacks on the implementation of various cryp-
tographic schemes are the most threatening aspects for 
the crypto designer. In theoretical cryptography, the algo-
rithm under consideration is modeled as a blackbox with 
which an adversary can interact via the input–output 
interface of the system. Such blackbox security notions 
do not incorporate an adversary that can change the 
secret message into some related value through tamper-
ing attack, and analyse the outcomes. The adversary can 
perform tampering attack by heating up the devices, fault 
injections (Sergei and Ross 2002) etc. In software mod-
ule, viruses or malwares can also carry out the attack on 
storage device by corrupting some regions of the mem-
ory. Boneh et al. (2001) show that a single bit flip of the 
signing key is enough to extract the secret information of 

RSA signature completely. This is one of the most dev-
astating attack where an adversary makes minor modi-
fication in the cryptographic device and the sensitive 
information can be recovered. A line of research have 
focused on how to secure any cryptographic implemen-
tation from such tampering attacks (Bellare and Kohno 
2003; Bellare et  al. 2011; Kalai et  al. 2011; Bellare et  al. 
2012; Damgård et al. 2013; Chen et al. 2019; Ghosal et al. 
2022).

Non-malleable codes, introduced by Dziembowski 
et al. (2010, 2018), are used as one of the applications of 
tamper resilient cryptography. It is required when correc-
tion of the message is not the main concern but privacy 
and integrity are more important. Further, the guaran-
tee is that if an adversary tampers any message encoded 
by non-malleable codes, output is either completely 
unrelated or the original one. Let k be the secret mes-
sage (e.g., key of any cryptographic algorithm) and f be 
the tampering function. An adversary encodes the secret 
message k as Enc(k). It uses the tampering function f on 
the encoded message Enc(k) and performs decoding, i.e., 
Dec(f(Enc(k))). Non-malleability property guarantees that 
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Dec(f(Enc(k))) = k, for every k with probability 1, when 
tampering has no effect or Dec(f(Enc(k))) = k ′ , in case 
of tampering, where k and k ′ are computationally inde-
pendent. Generally, non-malleability cannot be achieved 
for arbitrary classes of tampering functions. Let fincrement 
be the tampering function. An adversary uses this func-
tion on the encoded message as fincrement(Enc(k)+ 1) 
and tries to decode it as Dec(fincrement(Enc(k)+ 1)) . After 
decoding, the adversary gets output as k + 1 . It is highly 
related to the original secret message, i.e., k. Hence, non-
malleable codes can be constructed for some classes of 
tampering functions only. In literature, most widely used 
model is split-state, where the codeword is divided into 
two different parts M0 , M1 , and it is stored into memory 
ML , MR respectively (Liu and Lysyanskaya 2012; Dziem-
bowski et  al. 2013; Jafargholi and Wichs 2015; Aggar-
wal et al. 2015; Kiayias et al. 2016; Aggarwal et al. 2016; 
Fehr et al. 2018). Two different tampering functions f = 
(f0(M0), f1(M1)) modifies the codeword in an arbitrary 
and independent way. One important functionality is 
that both tampering functions cannot run the decod-
ing procedure because two shares are needed in order 
to decode a codeword whereas each of the functions 
f0(M0) , f1(M1) can access only one share. Standard 
notion of non-malleability protects message for one time 
tampering attack only. Such codeword is called one-shot 
non-malleable code. It cannot handle the situation when 
an adversary tampers the codeword more than once. A 
stronger version of non-malleability, called continu-
ously non-malleable codes (CNMC) is proposed in Faust 
et  al. (2014a), where the following attack f = (fi(M0), 
fi+1(M1)) ( i ∈ q ∧ q ∈ poly(n) ) is performed polynomial 
number of times for each fi ∈ F  , and still non-malleabil-
ity is preserved.

Continuous non-malleability has various flavours. Let 
m be the original message and m′ be the decoded tam-
pered message. Moreover, c denotes the codeword and 
c
′ denotes the tampered codeword in a continuous tam-

pering experiment. Standard version of continuous 
non-malleability or default version refers to the situation 
where decoded tampered message m′ and original mes-
sage m are completely independent but it is possible for 
an attacker to create an encoding such that c′ is not equal 
to c but c′ decodes to m as discussed in Dziembowski 
et al. (2010). In case of strong continuous non-malleabil-
ity, when c′ is not equal to c, it is guaranteed that both m′ 
and m completely are independent. Another stronger fla-
vour is super-strong continuous non-malleability, where 
c
′ is not equal to c implies that c′ and c are independent 

(Faust et  al. 2014a, b; Jafargholi and Wichs 2015). Our 
construction considers stronger version of continu-
ous non-malleability. Again, based on the situation that 
how tampering functions are applied to the codeword, 

tampering experiment of continuous non-malleabil-
ity has two versions as shown in Jafargholi and Wichs 
(2015). When tampering functions are applied always to 
initial encoding of the codeword, it is called non-persis-
tent tampering. Here, an auxiliary memory is required 
beyond n bits of active-memory to store the codeword. 
An attacker can make a copy of the original codeword to 
the auxiliary memory. Further, the attacker can tamper 
the original version of the codeword from the auxiliary 
memory and place it to the active-memory. In persistent 
version, tampering functions are applied to the previous 
version of tampered codeword rather than initial encod-
ing. So, the extra memory requirement is not present 
here. An adversary can tamper two different parts of the 
memory until decoding error is triggered. Additional fea-
ture of continuous non-malleability is to handle leakage 
attacks while tampering attacks are being performed. The 
adversary can gain leakage values as a partial informa-
tion. Earlier constructions of continuously non-malleable 
codes are built on top of some leakage resilient primitives 
which can handle some bounded amount of leakages 
(Faust et al. 2014a; Aggarwal et al. 2014, 2015) indepen-
dently from two different parts of the memory. Con-
tinuously non-malleable code constructions are broadly 
categorized into two domains as information-theoretic 
(Aggarwal et  al. 2019) and computational (Faust et  al. 
2014a; Faonio et al. 2018; Ostrovsky et al. 2018). In Faust 
et al. (2014a), it is shown that information-theoretic con-
tinuous non-malleability is not possible to achieve in 
split-state model due to the generic attack. Later, Aggar-
wal et al. (2017) show that in case of persistent tampering 
in split-state model, information-theoretic continuous 
non-malleability can be achieved. Further research work 
shows a more relaxed version of CNMC from computa-
tional assumption in the plain model (i.e., without com-
mon reference string based setup) but it provides weaker 
security guarantee (Ostrovsky et al. 2018). In Dachman-
Soled and Kulkarni (2019), authors describe that it is 
necessary to rely on setup assumptions, i.e., common ref-
erence string (CRS) to achieve stronger security. Hence, 
the proposed construction relies on block cipher and 
robust non interactive zero knowledge (NIZK) (De Santis 
et  al. 2001) proof in CRS based trusted setup environ-
ment. In Table   1, we describe various constructions of 
continuously non-malleable codes in split-state model as 
available in the literature.

Limitations of the Existing Work and Our Motiva-
tion. Usually, non-malleable codes are keyless encoding 
scheme in nature. The first construction of a continu-
ously non-malleable code is proposed in Faust et  al. 
(2014a). Their work is based on collision resistant hash 
function with robust non interactive zero knowledge 
(NIZK) proof. Later, Fehr et al. (2018) show that one-shot 
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non-malleable codes can be constructed from related-key 
secure block ciphers. Such construction does not satisfy 
security against continuous attacks. An attacker can cre-
ate two valid codewords (M0,M1) and (M0,M

′

1) such that 
their decoding does not return ⊥ , i.e., ⊥ �= Deck(α, (M0, 
M1))  = Deck(α, (M0,M

′

1 ))  = ⊥ , where M1  = M
′

1 . It pro-
duces two valid messages m, m′ . Moreover, assuming the 
tampering function is non-persistent, an adversary can 
leak all the bits of M1 without activating the self-destruct 
feature. In general, for any continuously non-malleable 
codes, it should be hard to find two valid codewords 
(M0,M1) and (M0,M

′

1) such that Deck(α, ( M0, M1)) 
 = Deck(α, ( M0,M

′

1)) . This property is called mess age 
uniqueness as described in Faust et al. (2014a). Our goal 
is to design non-malleable codes from any kind of block 
cipher such as AES (Joan and Vincent 2002), SHACAL 
(Handschuh and Naccache 2002), Midori (Banik et  al. 
2015) etc. that is secure against polynomial number of 
tampering attempts. The block ciphers used in our con-
struction should satisfy the following properties: 

a)	 The output produced by the underlying block cipher 
should be strong pseudorandom permutation (sprp).

b)	 If decryption of a ciphertext c with a key k succeeds, 
it should return ⊥ if it is decrypted with a different 
key k ′ (Subsection 2.5).

Our Contribution.  In this work, we propose the con-
struction of continuously non-malleable codes in split-
state model from any block cipher in computational 
domain with trusted setup, i.e., CRS. We remove the 
restriction of related-key secure block cipher as used in 
Fehr et  al. (2018). The codeword is capable of handling 
non-persistent tampering attempts until self-destruct 
occurs. Initially, the message is encoded into leakage 
resilient storage (lrs). Further, it is encoded with block 

cipher along with robust non interactive zero knowledge 
(NIZK) proof. The key k of the block cipher is divided 
into two shares k0 , k1 . Left part of a codeword M0 stores 
k0 whereas M1 stores k1 . During decoding, it is recon-
structed as k ← k0 ⊕ k1.

Organization. The paper is organized as follows. Sec-
tion  2 describes some preliminaries whereas Sect.  3 
provides a brief description about continuous non-
malleability. Code construction and basic proof ideas 
are illustrated in Sect.  4. Thereafter, proof of security 
is given in Sect.  5. Finally, we conclude the paper in 
Sect. 6.

Preliminaries
Notations and basic results
Let m be the original message. M0 and M1 are the left and 
right half of a codeword in split-state model, stored in 
memory ML and MR respectively. OT

cnmc(., .) represents the 
tampering oracle. Two tampering functions are f0 and f1 
working in M0 and M1 respectively. Moreover, f i0 (or f i1 ) 
denotes the tampering function used by an adversary at 
ith round. K is the usable key set after removing the weak 
and semi-weak keys of the block cipher. If K is the key set, 
|K| represents the number of key elements in K . When k 
is uniformly chosen at random from K , we write k $

←− K . 
n is the security parameter. Ol(s) denotes the leakage ora-
cle that takes string s as input and performs leakage func-
tion τb() on s, and it returns at most l bits. r ∈ {0, 1}n 
denotes the randomness. α represents an untamperable 
common reference string (CRS). A function ǫ(n) is called 
negligible in n if it vanishes faster than the inverse of any 
polynomial in n. P(x; r) is a randomized algorithm which 
takes x ∈ {0, 1}n , randomness r ∈ {0, 1}n as input and 
produces the output y ∈ {0, 1}n . An algorithm P is called 

Table 1  Comparison of various continuously non-malleable codes in the split-state model

In the table IT stands for information-theoretic, Comp. stands for computational

Reference Model Assumption Types of tampering Adversarial capability

Faust et al. (2014a, 2020) Comp.,  CRS Collision resistant hash, NIZK  Leak-
age resilient storage

Non-persistent with self-destruct Polynomial number of tampering 
attacks & bounded leakage attacks

Aggarwal et al. (2017) I.T. – Persistent with self-destruct Unbounded adversary with polyno-
mial number of tampering attacks & 
bounded leakage attacks

Faonio et al. (2018) Comp., CRS NIZK, Non-interactive commit-
ment  Leakage resilient public key 
encryption

Non-persistent with self-destruct Polynomial number of tampering 
attacks & bounded leakage attacks

Ostrovsky et al. (2018) Comp. One-to-one
One-way function

Non-persistent with self-destruct Unbounded adversary with polyno-
mial number of tampering attacks & 
bounded leakage attacks

Our work Comp.,  CRS NIZK, Strong PRP, Leakage resilient 
storage

Non-persistent with self-destruct Polynomial number of tampering 
attacks & bounded leakage attacks
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probabilistic polynomial-time (PPT) if P is allowed to 
make random choices, and the computation of P(x; r) ter-
minates in a polynomial number of steps (|x|) at most for 
x ∈ {0, 1}n , r ∈ {0, 1}n . Let E = {Ek}k∈N , F = {Fk}k∈N be 
two ensembles and E ≈

c
F represents the computational 

indistinguishability that for every PPT distinguisher D, 
|Pr[D(Ek) = 1] − Pr[D(Fk) = 1]| ≤ ǫ(n) . In similar way, 
E ≈

s
F denotes the statistical indistinguishability for 

computationally unbounded scenario. H∞(X) and 
H̃∞(X |Y ) denote the min-entropy and conditional aver-
age min-entropy of the random variable X. δ0[i] , δ1[i] are 
two arrays used to store the result of tampering queries 
whereas µ0[i] , µ1[i] are used to store leakage queries 
result at each invocation ( i ∈ q ∧ q ∈ poly(n) ) in Algo-
rithm 3 and Algorithm 4. In Table 2, we describe a sum-
mary of notations. We now define some definitions and 
lemmas related to the code construction.

Definition 2.1.1  (Split-State Model) Let M be a code-
word which consist of two shares M = (M0,M1 ), and 
they are stored into two different parts of the memory 
ML , MR respectively. Each tampering attempt f = (f0, f1) is 
described by two arbitrary chosen functions that can be 
applied to the codeword f = (f0(M0), f1(M1)) in an inde-
pendent way. The model which satisfies the above prop-
erty is said to be split-state model.

Definition 2.1.2  (Non-persistent Tampering) Let f = 
(f0, f1) be the tampering function and M be a codeword 
which is split into two shares M = (M0,M1 ). The tam-
pering experiment is said to be non-persistent if the 
tampering functions are applied to initial encoding of the 
codeword always. Moreover, such model considers the 
scenario when an adversary has access to an n-bit auxil-
iary memory beyond the active memory, and it can copy 
the original codeword to the auxiliary memory. Later, 
the subsequent attack can be performed on the auxiliary 
memory and the tampered codeword can be placed to 
the original memory.

Lemma 2.1.1  A random variable X has min-
entropy over the set X  , denoted as H∞(X) = −log 
maxx∈XPr[X = x] . It represents the probability of guess-
ing X by an unbounded adversary.

Lemma 2.1.2  A random variable X has condi-
tional average min-entropy given some information Y 
over the set X  , Y , denoted as H̃∞(X |Y ) = −logEy∈Y 
maxx∈XPr[X = x|Y = y] . It represents the probability of 
guessing X when some related information of X is avail-
able to the adversary through side channel leakage.

Lemma 2.1.3  For a random variable X and another 
random variable Y, H̃∞(X |Y ) ≥ H∞(X)− l , where Y 
takes 2l possible values (l ∈ {0, 1}n).

Lemma 2.1.4  For a random variable X and other two 
correlated random variables Y1,Y2 , we get H̃∞(X |Y1,Y2) 
≥ H̃∞(X |Y1)− l , where Y2 takes 2l possible values 
(l ∈ {0, 1}n).

Lemma 2.1.5  Let τ be the leakage function (possibly 
randomized) used by an adversary on variable X. Then, 

Table 2  Summary of notations

Notation Terminology

m Original message

M0 , M1 Left and right half of a codeword

ML , MR Left and right half of the memory

OT
cnmc(., .) Tampering oracle

δ0[] , δ1[] Stores tampering queries data

f0 , f1 Tampering functions

K Key set

poly(n) Polynomial function on input n

k
$
←− K

A key is selected

n Security parameter

Ol(s, .) Leakage oracle with s and τ as input

µ0[] , µ1[] Stores leakage queries data

α Common reference string

ǫ(n) A negligible function

P(x; r) A randomized algorithm

E ≈
s

F Statistical indistinguishability

H∞(X) Min-entropy

H̃∞(X |Y) Conditional average min-entropy

τ() Arbitrary leakage function

� Label

π Proof of a statement

S0 , S1 Two simulators

pk, sk Public and private key pair

r Randomness

R(m,w) Relation

Dk() Block cipher decryption algorithm

Ek() Block cipher encryption algorithm

Enck() CNMC encoding algorithm

Deck() CNMC decoding algorithm

Oprp() Pseudorandom permutation oracle

OR() Random permutation oracle

Enc
lrs , Dec

lrs lrs encoding and decoding algorithm
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H̃∞(X |τ (X)) ≥ H∞(X)− l , where τ (X) generates l bits of 
leakage through the side channel (l ∈ {0, 1}n).

Lemma 2.1.6  Let X,  Y be the correlated random vari-
ables and τ be the leakage function used by an adversary 
A. Then, H̃∞(X |τ (Y )) ≥ H̃∞(X |Y ).

Leakage resilient storage
Leakage Resilient Storage (lrs) scheme encodes mes-
sage in such a way that secures the underlying message 
against leakage attacks. It consists of a pair of algo-
rithms ( Enclrs , Dec

lrs ) with the following properties:

•	 Enc
lrs algorithm takes input a message m, random-

ness r and produces the output p0 , p1.
•	 Dec

lrs algorithm takes p0 , p1 as input and generates 
m as output.

Original idea of ( Enclrs , Dec
lrs ) algorithm is used in litera-

ture (Davì et al. 2010; Dziembowski and Faust 2011) for 
computationally unbounded adversary. In our construc-
tion, it is used for computationally bounded adversary 
(Faust et al. 2014a). Leakage experiment is defined below:

Initially, a counter ctr is set to 0. When strings are passed 
into Ol(p0, .) , Ol(p1, .) , along with leakage function τ (.) , 
leakage values are calculated through τ (p0) , τ (p1) , and it 
is added to ctr, until ctr ≤ l from each part. Oracle termi-
nates if ctr > l , and further query would return ⊥.

Storage scheme is said to be strong lrs if an adversary 
should not be able to distinguish between two arbitrarily 
chosen messages m and m′ except with negligible prob-
ability, i.e.,
Adv

strong

leak
β
A

(A) = [Pr[A(leak
β
A,m) = 1] - 

Pr[A(leak
β

A,m
′ ) = 1]] ≤ ǫ(n) , where m, m′ ∈ {0, 1}n and 

ǫ(n) denotes a negligible function.

Robust non‑interactive zero knowledge
Let R be a relation for the language L , denoted as 
L
R = { m : ∃ w such that R(m,w) = 1} and m ∈ M . 

Robust non-interactive zero knowledge (NIZK) 
proof system for LR consists of a set of algorithms 
(CRSGen,Prove,Vrfy, S = (S0, S1),Xtr) , defined as fol-
lows. CRSGen takes input a security parameter 1n and 
generates α ∈ {0, 1}n as a common reference string (CRS). 
Prove takes α , a label � , (m,w) ∈ R as input and produces 
proof π = Prove�(α,m,w) as output. The deterministic 

leak
β
A,m = (p0, p1) ← Enc

lrs(m);L ← AOl(p0,.),O
l(p1,.)

output : (pβ ,LA),β ∈ {0, 1}

Vrfy algorithm outputs true when verification of state-
ment is successful, i.e., Vrfy�(α,m,Prove�(α,m,w)) = 1 . 
The algorithm S consists of two simulators, i.e., S0 and 
S1 . S0 generates a CRS and the trapdoor key whereas S1 
performs simulated game with an adversary A. Xtr out-
puts the hidden value of the relation R(m,w) . It satisfies 
all the below properties as mentioned in De Santis et al. 
(2001):

•	 Completeness. For every m ∈ L
R and all w such that 

R(m,w) = 1 , for all α ← CRSGen(1n) , we require 
that the following probability should be satisfied 
Pr[Vrfy(α,m,Prove(α,w,m)) = 1].

•	 Multi-theorem zero knowledge. It says that hon-
estly computed proof does not reveal anything 
beyond the validity of the statement. Mathemati-
cally, it is represented as follows. For every proba-
bilistic polynomial-time adversary A, real experi-
ment, i.e., Real(n) and simulated experiment, i.e., 
Simulated(n) are completely indistinguishable, i.e., 
Real(n) ≈ Simulated(n) . Real(n) and Simulated(n) 
are described below: 

•	 Extractability. For all PPT adversary A, there exists 
a PPT algorithm Xtr, a negligible function ǫ and a 
security parameter n such that Pr[GXtr = 1] ≤ ǫ(n) , 
where game GXtr is described below. 

Q is the query set of (m,π) pairs that an adversary A asks 
to S1.

In Liu and Lysyanskaya (2012); Faust et  al. (2014a), 
authors show that if the proof statement is modified, the 
verification algorithm should not proceed further. We use 
the same approach in our construction. Moreover, the 
proof algorithm supports public label � and such label is 
incorporated with the statement of the message m to cal-
culate the above algorithms, i.e., Prove�(., ., .) , Vrfy�(., ., .) , 
Xtr�(., ., .), S�1 (., ., .) etc.

Pseudorandom permutation
Let block cipher E : {0, 1}n × {0, 1}k → {0, 1}n be a map-
ping from message space M to ciphertext space C 
through a fixed k. An adversary A plays fixed pseudor-
andom security (prp) game with prp oracle Oprp() and 

Real(n) =

{

α ← CRSGen(1n);L ← AProve(α,.,.)(α)

output : L

}

Simulated(n) =

{

(α, pk) ← S0(1
n);L ← AS1(α,.,pk)(α)

output : L

}

GXtr =







(α, pk , sk) ← S0(1
n)

(m,π) ← AS1(α,.,pk)(α);w ← Xtr(α, (m,π), sk)
(m,π) /∈ Q ∧R(m,w) �= 1 ∧ Vrfy(α,m,π) = 1







,
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random permutation oracle OR() . The pseudorandom 
permutation security advantage is defined as follows: 
Adv

prp
E

(A ) = Pr[AOprp() = 1 ] - Pr[AOR() = 1].
Adv

prp
E

(q, t) = max
A

{Adv
prp
E

(A)}, where q is the maxi-
mum number of queries with time at most t.

An adversary A guesses the value of b, where b $
←− {0, 1} . 

If b = 0, A proceeds with Oprp() and if b = 1, A proceeds 
with OR() . Oprp() returns encryption Ek(m) and OR() 
returns random keyed permutations Ek(m) , k $

←− K.
K is the total key set whereas K is the usable key set 

after removing weak and semi-weak keys, i.e., K = K - 
{kweak ∪ ksemi−weak} . In a cipher, weak and semi-weak 
keys are such keys by which an encryption scheme can be 
broken more efficiently than usual keys.

Block cipher
A block cipher E : {0, 1}n × {0, 1}k → {0, 1}n is a keyed 
permutation which takes message m ∈ M , key k ∈ K and 
outputs c ∈ C , called encryption. Its inverse algorithm 
which takes c ∈ C , k ∈ K and generates m ∈ M , called 
decryption D . Classical security models for block ciphers 
are pseudoran dompermutation (prp) and strong pseu-
dorandom permutation (sprp). In prp security model, an 
adversary has only access to encryption oracle whereas in 
strong pseudorandom permutation model the adversary 
has access to both encryption and decryption oracle.

Moreover, the block cipher used in our construc-
tion has the following property: If key is modified then 
decryption algorithm should return ⊥ . To achieve such 
property in our non-malleable code construction, we 
check the key in Algorithm 3 and Algorithm 4. The origi-
nal key k of a cipher is stored into two parts of codeword 
M0 and M1 . Whenever original key k and tampered key 
k
′ are completely different, i.e., k ′

�= k , decryption algo-
rithm Dk() should not be called and we return ⊥ from 

the decoding algorithm of non-malleable code. Since the 
decryption algorithm of a block cipher with a different 
key k ′ returns some other message rather than original 
one, we need to restrict it in this way.

Continuously non‑malleable codes
Leakage Oracle. Leakage Oracle Ol(.) is a stateful oracle 
that calculates total leakage through some arbitrary leak-
age function τ() . Algorithm 1 shows the leakage experi-
ment. Initially, a counter ctr is set to 0. When strings are 
passed into it, leakage values are calculated and its length 
is added with the ctr, until ctr ≤ l . Otherwise, it returns 
⊥.

Tampering Oracle. Tampering Oracle OT
cnmc(., .) in 

split-state model is a stateful oracle that takes two code-
words M0,M1 and tampering function f = ( f0 , f1) ∈ F  
with initial state = alive and performs the below experi-
ment as defined in Algorithm 2.

Coding Scheme. Let CNMC = (CRSGen,  Enck ,Deck) be 
a split-state coding scheme in the CRS model.

•	 CRSGen algorithm takes security parameter 1n as 
input and generates output α ∈ {0, 1}n as CRS.

•	 Enck algorithm takes key k ∈ K , CRS α , message 
m ∈ M and produces the codeword (M0,M1).

•	 Deck algorithm takes the codeword (M0,M1) , key 
k ∈ K , CRS α and generates message m or special sym-
bol ⊥.

Continuous Non-malleability. The coding scheme CNMC is 
said to be l leakage resilient, q continuously non-malleable 
code in split-state model if for all messages m,m

′
∈ {0, 1}n 

and for all probabilistic polynomial-time adversaries A, 
TamperA,mcnmc and TamperA,m

′

cnmc are computationally indis-
tinguishable, i.e.,
Adv

Strong

TamperAcnmc
(A) = [Pr[A(TamperA,mcnmc) = 1] - Pr[A 

(TamperA,m
′

cnmc) = 1]] ≤ ǫ(n) , where m, m′ ∈ {0, 1}n and

TamperA,mcnmc =































α ← CRSGen(1n); i = 0; (M0,M1) ← Enck(α,m)

while i ≤ q

Li
A ← AOl(Mi

0
),Ol(Mi

1
),OT

cnmc(M
i
0
,Mi

1
)

i = i + 1

end while

output : Li
A.































,
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Li
A contains the view of an adversary with two param-

eters µ and δ , for i number of tampering queries 
( i ≤ q ∧ q ∈ poly(n) ). µ stores the result of leakage que-
ries (µ ≤ 2 l) and δ stores the result of tampering queries 
(δ ≤ q) from OT

cnmc() . When i = 1, our code behaves as 
one-shot non-malleable code and without any tamper-
ing query, i.e., i = 0, it acts as leakage resilient code (Davì 
et al. 2010).

Message Uniqueness.  Let CNMC = (CRSGen,Enck ,De 
ck) be a split-state (l, q) continuously non-malleable code. 
It is said to satisfy message uniqueness property if there 
does not exist a valid pair (M0,M1) , (M0,M

′

1) such that 
⊥ �= Deck(α, (M0,M1))  = Deck(α, (M0,M

′

1))  = ⊥ , where 
M1  = M

′

1 and it produces two valid messages m, m′ . A con-
tinuously non-malleable code should not violate unique-
ness property as mentioned in Faust et al. (2014a).

(s, .)

Code construction
We propose the construction of continuously non-
malleable codes from block cipher along with robust 
non interactive zero knowledge (NIZK) proof. Then, we 
analyse the uniqueness property of the codeword and 
proof of security. Let CNMC = (CRSGen,Enck ,Deck) be 
split-state (l,  q) continuously non-malleable code in the 
CRS model based on leakage resilient storage ( Enclrs , 
Dec

lrs ), on a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n 
with some properties incorporated and on a robust 
non-interactive zero knowledge (NIZK) proof system 
(CRSGen,  Prove,  Vrfy) with label support for language 
L
Ek0 = { ckey : ∃ k such that ckey = Ek0(k)} , where k ∈ K , 

k ← k0 ⊕ k1 . The construction of our codeword is illus-
trated below: 
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	 I.	 CRSGen(1n). The algorithm takes 1n as a security 
parameter and generates the common reference 
string α.

	II.	 Enck(α,m). Encoding algorithm takes key 
k ∈ K , CRS α and message m ∈ M as input. Ini-
tially, the message m with some randomness 
r ← {0, 1}n is fed into leakage resilient storage, 
i.e., (p0, p1) ← Enc

lrs(m||r) . Next, it encrypts p0 , 
p1 as c0 ← Ek(p0) , c1 ← Ek(p1) , where Ek() is an 
encryption algorithm of a block cipher. The key 
k is divided into two shares k0 , k1 and it is recon-
structed as k ← k0 ⊕ k1 . Further, the master key k 
is encrypted as ckey = Ek0(k) . Thereafter, proof of 
statements are calculated in the following way, i.e., 
π0 = Provec1(α, k0, (ckey, c0)) , π1 = Provec0(α, k1, 
(ckey, c1)) . Finally, it outputs the codeword 
(M0,M1) = (((k0, c0), p0, (ckey, c1),π0,π1) , ((k1, c1),
p1, (ckey, c0),π0,π1)) . The codeword (M0, M1) is 
stored into the memory (ML, MR) respectively.

	III.	 Deck(α, (M0,M1)). Decoding algorithm starts 
by parsing π0 and π1 . Then, it constructs the key 
k ← k0 ⊕ k1 and performs the below steps:

	IV.	 Left & Right verification. If the verification of state-
ment in the codeword (M0,M1) are not success-
ful, i.e., either Vrfyc1(α, (ckey, c0)) or Vrfyc0(α, (ckey 
, c1),π1) returns 0, it outputs ⊥ . Otherwise, go to 
the next step.

	V.	 Uniqueness check. If k = Dk0(ckey) , go to the next 
step. Otherwise, it returns ⊥.

	VI.	 Cross check & Decode. If p0  = Dk(c0) , p1  = Dk(c1) 
and proofs π0 , π1 both are different, it returns ⊥ . 
Otherwise, check p0 , p1 , if both are equal in M0 
and M1 , call decode Dec

lrs(p0 , p1).

Lemma 1  CNMC = (CRSGen,Enck ,Deck) satisfies mes-
sage uniqueness property if implemented with the block 
cipher.

Proof
Message uniqueness is based on the property (b) (Sub-
section  2.5) of the underlying block cipher, i.e., ciph-
etext generated by the cipher with a key k returns ⊥ 
if it is decrypted with a different key k ′ . Hence, integ-
rity of the key has to be maintained. Suppose, an 
adversary A generates a pair (M0,M1) , (M0,M

′

1) 

such that both are valid and M1  = M
′

1 . It means 
⊥ �= Deck(α, (M0,M1)) �= Deck(α, (M0,M

′

1)) �= ⊥ . The 
equation is only possible if an adversary is able to pro-
duce a valid key pair (k0, k1) , (k0, k

′

1) such that for (k0, k1) , 
Dk0(ckey) = k0 ⊕ k1 (for M0,M1 ) which is equal to k0 ⊕ k

′

1 
= Dk0(ckey) for (k0, k

′

1) (for M0,M
′

1) , where k1  = k
′

1 . Unfor-
tunately, it violates the deterministic property of decryp-
tion algorithm as the decrypted key and newly formed 
key are same. So, Dk0(ckey) = (k0 ⊕ k1) (for M0,M1 ) 
 = (k0 ⊕ k

′

1) = Dk0(ckey) (for M0,M
′

1) . Therefore, the key is 
modified and decoding should return ⊥.

Security proof idea of CNMC
Our hunch is to develop the continuous version of non-
malleable codes from block ciphers with some additional 
properties incorporated on the cipher. As mentioned 
by Gennaro et  al. (2004), certain strong cryptographic 
assumptions are necessary when an adversary tampers a 
portion of the memory. To prove that codeword is con-
tinuously non-malleable, a simulator for the TamperA,mcnmc 
experiment is developed. In TamperA,mcnmc experiment, an 
adversary A performs all leakage and tampering oracle 
queries in real environment on the codeword (M0,M1) , 
stored in memory ML and MR respectively, whereas simu-
lated experiment SimTamperA,0

n

cnmc simulates the adver-
saries view of the tampering experiment in an ideal 
scenario. We need to show that both experiments are 
indistinguishable except with negligible probability, i.e., 
|Pr[TamperA,mcnmc = 1] - Pr[SimTamperA,0

n

cnmc = 1]| ≤ ǫ(n) . 
Simulated tampering experiment takes r ← {0, 1}n and 
proceeds with encryption of message 0n||r . But the origi-
nal tampering experiment proceeds with encryption 
of message m||r. Initially, m||r is encoded using leakage 
resilient storage which splits the message into two halves, 
and it keeps the message secure as long as l bits are leaked 
at most from each parts of the memory. Given the code-
word M = (M0 , M1) , oracle continues until simulated out-
put from left (Algorithm 3) and right (Algorithm 4) sides 
of ( T0,T1 ) are equal. The experiment stops when decod-
ing error is triggered, i.e., outputs are not equal. From that 
point further query would return ⊥ , and self-destruct state 
is invoked. Since non-persistent tampering is considered, 
a separate memory M of polynomial length is used to 
store tampered versions of the codeword at each round 
along with leakage and tampering data.
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The main difficulty of our experiment is to find self-
destruct index, i.e., from the point experiment would 
return ⊥ for further query. Let τ (M) be the leakage func-
tion on the codeword M. H∞(M|τ (M)) denotes the con-
ditional average entropy of the codeword M when some 
information is available through side-channel, i.e., the 
best chance of guessing message m from the codeword M 
with some side-channel information by an adversary A. 
Leakage functions are applied in the interleaved way by 
an adversary A on (M0,M1) as τ 00 (M0) , τ 01 (M1) , τ 10 (M0) , 
τ 11 (M1),... τ i−1

0 (M0) , τ i−1
1 (M1) . The SimTamperA,0

n

cnmc 
experiment proceeds until output produced by two 
algorithms T0 and T1 are equal. From information-the-
oretic observation, it can be viewed as H̃∞(M0|τ

i
0(M0)) 

= H̃∞(M1|τ
i
1(M1)) , i.e., best chance of guessing mes-

sage m from the codeword M = (M0 , M1) is same when 
some information is available through side-channel 
leakage to the adversary A. At each query invocation, 
simulated experiment proceeds by checking tampered 
output from both halves of the memory. If it matches, 
leak the entire part so that total amount of leakage is 
upper bounded by O(n) , where n represents the security 
parameter. The experiment triggers self-destruct when 
outputs are unequal. Simulated tampering experiment 
consists of S = (S0, S1) and it works in the following 
way. The simulator S0 generates an untamperable CRS 

and the key ( α, pk , sk) . Further, the key is passed to S1 
which takes r ← {0, 1}n , encoding of message 0n||r , and 
invokes (T0,T1) to simulate the tampering experiment 
until outputs are equal. The simulator S1 makes simu-
lated proof of statement π0 = Sc11 (α, (ckey, c0), pk) and 
π1 = Sc01 (α, (ckey, c1), pk) . Then, it calls the algorithm T0 
and T1 in an interleaved manner. Algorithm T0 simulates 
left part of a codeword (simulated) M0 and algorithm T1 
simulates right part of a codeword M1 . Both the algo-
rithm proceeds by parsing M0 and M1 . It calculates leak-
age through (τ i0, τ

i
1) and stores the value into µb[i] . Then, 

it applies tampering function f i0 on M0 and f i1 on M1 , 
and it compares tampered codeword M ′ with the origi-
nal codeword M. If both are same, δb[i] is set to same∗ . 
Next, it verifies the proof of the statement and if it is suc-
cessful, Tb proceeds further. Otherwise, δb[i] is set to ⊥ . 
Further, the original and tampered proof of statement are 
compared, and the corresponding values are stored into 
δb[i] . The extractor Xtr algorithm retrieves the key k ′

0 in 
algorithm T1 , k

′

1 in algorithm T0 and the key k ′ is formed, 
i.e., k ′

← k
′

0 ⊕ k
′

1 . Next, uniqueness condition of the key 
k
′ is checked with k, and if they are same, decoding is per-

formed to retrieve the message m′.
Now, we discuss why the known attacks are not pos-

sible to perform in the proposed construction. Firstly, 
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if an adversary tampers c0 and changes it some related 
value c′0 in M0 , NIZK proof π0 should be changed to π ′

0 . 
Hence, both values π0 , π

′

0 should be different and by the 
property of robust NIZK, experiment should return 
⊥ . Also the adversary has to make same changes in 
M1 , this should be hard without knowing a witness by 
robustness of the proof. Apart from that if an adversary 
tampers the key k, and make it to k ′ , NIZK proof should 
be different and decryption with k ′ should return ⊥ as 
per cipher property (b). Hence, the codeword is secure 
against continuous tampering attacks. In the next sec-
tion, we discuss the security of the construction in 
detail.

Proof of security

Theorem  1  Let E : {0, 1}n × {0, 1}k → {0, 1}n be the 
block cipher with message space M , key space K and 
ciphertext space C , (Enclrs,Dec

lrs) be l′ leakage resilient 
storage, (CRSGen, Prove, Vrfy) is a robust NIZK proof for 
language LR chosen from message space M . Then CNMC  
= (CRSGen,Enck ,Deck) is ((l + γ + η), q) continuously 
non-malleable and l leakage resilient code under non-
persistent tampering when instantiated with all the above 

primitives, where q = poly(n) , γ = log(M) , η = log(K) , 
l
′
≥ (2 l + n) and n denotes the security parameter.

Proof
The proof of our theorem is quite involved. We develop a 
simulator that simulates the tampering experiment in an 
ideal scenario. It is shown that an adversary cannot distin-
guish between the real and simulated experiment except 
with negligible probability, i.e., |Pr[TamperA,mcnmc = 1] -  
Pr[SimTamperA,0

n

cnmc = 1]| ≤ ǫ(n) . In TamperA,mcnmc experi-
ment, an adversary A proceeds with q number of leakage 

and tampering queries in real environment until the 
self-destruct state is invoked. SimTamperA,0

n

cnmc experi-
ment simulates the adversaries view in an ideal environ-
ment. Here, the simulator S = (S0, S1) is constructed to 
execute the SimTamperA,0

n

cnmc experiment. The simulator 
S0 generates a triplet (α, pk , sk) and passes it to S1 . α is 
an untamperable CRS and (pk,  sk) pair is used to make 
the simulated proof of statement in Xtr algorithm. The 
goal of S1 is to simulate the actual tampering experiment. 
It consists of two algorithms (T0,T1) with tampering 
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functions f i0 and f i1 ( i ≤ q ∧ q ∈ poly(n) ). Algorithm T0 
works on the codeword M0 with tampering function f i0 
and T1 works on the codeword M1 with tampering func-
tion f i1 . Simulated experiment proceeds with encoding 
of message 0n||r whereas real experiment proceeds with 
message m||r ( r ← {0, 1}n ). To show that simulation 
works in a proper way, distribution of simulated experi-
ment is changed incrementally until we reach to the real 
tampering experiment TamperA,mcnmc . At each step, a neg-
ligible amount of error is introduced. Such change is not 
noticeable due to the security of lrs scheme. In this way, 
encryption of 0n switches to the codeword M, i.e., encod-
ing of message m. S1 calls (T0,T1) in the interleaved man-
ner and experiment stops when outputs from both algo-
rithms are unequal, i.e., T0(M0, f

i
0 , r, i)  = T1(M1, f

i
1 , r, i) . 

Any further query would return ⊥ and experiment 
leads to self-destruct in SimTamperA,0

n

cnmc . Whenever the 
experiment triggers self-destruct, security of continuous 
non-malleability reduces to the security of underlying lrs 
scheme. Alternatively, we can say that if an adversary A 
breaks the security of continuous non-malleability then 
there exists an efficient reduction that breaks the security 
of lrs which contradicts the fact that lrs scheme is secure. 
S1 simulates the actual reduction with (T0,T1) in the fol-
lowing way.

Algorithm 3 illustrates the working strategy of the simu-
lated tampering experiment T0 . It parses the left part of a 
codeword first and applies the leakage function τ i0() . The 
maximum leakage bound tolerated by T0 is l. All leakage 
values are stored in µ0[i] array. Then, tampered code-
word M ′

0 is obtained after applying f i0 on M0 , i.e., M ′

0 = 
f i0 (M0) = ((k ′

0, c
′

0), p
′

0, (c
′

key, c
′

1), π
′

0,π
′

1) . If M0 and M ′

0 are 
equal, δ0[i] array is set to same∗ . Next, the verification of 
statement is checked and in case, it is unsuccessful, δ0[i] 
array is set to ⊥ and the experiment stops. If the original 
proof of statement π and the tampered one π ′ are  
same, δ0[i] array is set to ⊥ and it returns ⊥ . Extractor 
algorithm Xtr is run to extract k ′

1 from the simulated 
proof of statement with the extractor key sk, i.e., 
k
′

1 ← Xtrc
′

0(α, ((c
′

key, c
′

1),π
′

1), sk) . Further, the key k ′

1 in 

conjunction with k ′

0 is XORed to form the original key k ′ 
which is checked against Dk0(ckey) . If both are same, 
p
′

1 ← Dk
′ (c

′

1) is called. Next, the Dec
lrs(p

′

0 , p
′

1) algorithm 
is invoked to retrieve the message m′

. Since tampering 
experiment is non-persistent, a separate memory M 
stores all the tampered codeword along with leakage and 
tampering data, i.e., δ0[i] and µ0[i].

Algorithm 4 describes the simulated tampering experi-
ment T1 . It starts by parsing right part of a codeword 
M1 and calculates leakage through τ i1() . The maximum 
leakage tolerated by T1 is upper bounded to l. µ1[i] 
array stores the leakage data and δ1[i] stores all the 
tampering information. At each query invocation, 
tampering function f i1 is applied on M1 . Next, if verifi-
cation of the statement with label c′0 is successful, proof 
of statement is compared with the tampered one.  
In case of successful comparison, Xtr algorithm 
retrieves k ′

0 from the simulated proof of statement, i.e., 

k
′

0 ← Xtrc
′

1(α, ((c
′

key, c
′

0),π
′

0), sk) . The original key k ′ is 
formed and compared with Dk0(ckey) . Finally, p′

0 is 
recovered from lrs and Dec

lrs(p
′

0, p
′

1) is invoked. The 
Dec

lrs(p
′

0, p
′

1) algorithm returns m′.

The simulator S1 runs algorithm T0 and T1 alternatively as 
long as their outputs are same. Let H̃∞(M0|τ

i
0(M0)) be 

the average conditional entropy. It captures the scenario 
that best chance of guessing M0 when some informa-
tion is available through side channel leakages τ i0(M0) to 
the adversary A. Information theoretically, we can write 
H̃∞(M0|τ

i
0(M0)) = H̃∞(M1|τ

i
1(M1)) from the working 

strategy of the simulator S1 . H̃∞(M0|τ
i
0(M0)) can be writ-

ten as follows (Lemma 2.1.3).

Similarly,

Here, τ i0(M0) or τ i1(M1) can leak at most l bits as per secu-
rity of the lrs scheme. The simulator S1 runs until self-
destruct is invoked or returns ⊥ . Let q be the maximum 
number of queries that are made by A in TamperA,mcnmc . It is 
assumed that the experiment stops at qth query. In case of 
SimTamperA,0

n

cnmc , same number of queries are performed 
and the experiment returns ⊥ whenever outputs from T0 
and T1 are different. The algorithm T0(M0, f

q
0 , r, q) and 

T1(M1, f
q
1 , r, q) are l leaky. For 1 to (q − 1)th query, we get 

the below equation with the assumption that function out-
put cannot be more informative than its own input and last 
inequality comes from Lemma 2.1.4. Apart from that M1 , 
T0(M0, f

q
0 , r, q)) do not give much useful information about 

M0 to guess the message m and it decreases the min-entropy 
of M0 by O(n) , i.e., its size. Hence, the security of codeword 
reduces to the security of leakage resilient storage.

H̃∞(M0|τ
i
0(M0)) = H∞(M0)− l

H̃∞(M1|τ
i
1(M1)) = H∞(M1)− l
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At each query invocation, tampered output from both 
sides of ( M0,M1 ) are compared and if it matches, leak the 
entire codeword. At last query invocation when output 
from both sides are not same (also τ q0 (M0)  = τ

q
1 (M1) ), 

leak the entire tampered codeword so that total leakage 
is upper bounded by O(n) . Apart from that lrs in both 
parts of the codeword can tolerate leakages upto 2 l (l bits 
from each side) bits. Combining the parameters, we need 
l
′ at least greater than (2l + n) to work the simulator S1 

properly.

Conclusion
In this work, we propose a generic method to construct 
continuously non-malleable codes from any kind of 
block cipher in split-state model. The length of code-
word depends on the block size of underlying cipher. A 
non-persistent version of tampering with self-destruct 
capability is considered here. Further research work can 
be pursued to construct super-strong continuously non-
malleable codes with self-destruct or without self-destruct 
capability, and non-persistent tampering attempts from 
block ciphers in split-state model.
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