
Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25
https://doi.org/10.1186/s42400-023-00152-1

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Cybersecurity

Continuously non‑malleable codes
from block ciphers in split‑state model
Anit Kumar Ghosal1*    and Dipanwita Roychowdhury1 

Abstract 

Non-malleable code is an encoding scheme that is useful in situations where traditional error correction or detection
is impossible to achieve. It ensures with high probability that decoded message is either completely unrelated or the
original one, when tampering has no effect. Usually, standard version of non-malleable codes provide security against
one time tampering attack. Block ciphers are successfully employed in the construction of non-malleable codes.
Such construction fails to provide security when an adversary tampers the codeword more than once. Continuously
non-malleable codes further allow an attacker to tamper the message for polynomial number of times. In this work,
we propose continuous version of non-malleable codes from block ciphers in split-state model. Our construction
provides security against polynomial number of tampering attacks and it preserves non-malleability. When the tam-
pering experiment triggers self-destruct, the security of continuously non-malleable code reduces to security of the
underlying leakage resilient storage.

Keywords  Block cipher, Non-malleable code, Split-state model, Tamper-resilient cryptography

Introduction
Physical attacks on the implementation of various cryp-
tographic schemes are the most threatening aspects for
the crypto designer. In theoretical cryptography, the algo-
rithm under consideration is modeled as a blackbox with
which an adversary can interact via the input–output
interface of the system. Such blackbox security notions
do not incorporate an adversary that can change the
secret message into some related value through tamper-
ing attack, and analyse the outcomes. The adversary can
perform tampering attack by heating up the devices, fault
injections (Sergei and Ross 2002) etc. In software mod-
ule, viruses or malwares can also carry out the attack on
storage device by corrupting some regions of the mem-
ory. Boneh et al. (2001) show that a single bit flip of the
signing key is enough to extract the secret information of

RSA signature completely. This is one of the most dev-
astating attack where an adversary makes minor modi-
fication in the cryptographic device and the sensitive
information can be recovered. A line of research have
focused on how to secure any cryptographic implemen-
tation from such tampering attacks (Bellare and Kohno
2003; Bellare et al. 2011; Kalai et al. 2011; Bellare et al.
2012; Damgård et al. 2013; Chen et al. 2019; Ghosal et al.
2022).

Non-malleable codes, introduced by Dziembowski
et al. (2010, 2018), are used as one of the applications of
tamper resilient cryptography. It is required when correc-
tion of the message is not the main concern but privacy
and integrity are more important. Further, the guaran-
tee is that if an adversary tampers any message encoded
by non-malleable codes, output is either completely
unrelated or the original one. Let k be the secret mes-
sage (e.g., key of any cryptographic algorithm) and f be
the tampering function. An adversary encodes the secret
message k as Enc(k). It uses the tampering function f on
the encoded message Enc(k) and performs decoding, i.e.,
Dec(f(Enc(k))). Non-malleability property guarantees that

*Correspondence:
Anit Kumar Ghosal
anit.ghosal@gmail.com
1 Department of Computer Science and Engineering, IIT Kharagpur,
Kharagpur, West Bengal, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00152-1&domain=pdf
http://orcid.org/0000-0002-9328-3673

Page 2 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25

Dec(f(Enc(k))) = k, for every k with probability 1, when
tampering has no effect or Dec(f(Enc(k))) = k ′ , in case
of tampering, where k and k ′ are computationally inde-
pendent. Generally, non-malleability cannot be achieved
for arbitrary classes of tampering functions. Let fincrement
be the tampering function. An adversary uses this func-
tion on the encoded message as fincrement(Enc(k)+ 1)
and tries to decode it as Dec(fincrement(Enc(k)+ 1)) . After
decoding, the adversary gets output as k + 1 . It is highly
related to the original secret message, i.e., k. Hence, non-
malleable codes can be constructed for some classes of
tampering functions only. In literature, most widely used
model is split-state, where the codeword is divided into
two different parts M0 , M1 , and it is stored into memory
ML , MR respectively (Liu and Lysyanskaya 2012; Dziem-
bowski et al. 2013; Jafargholi and Wichs 2015; Aggar-
wal et al. 2015; Kiayias et al. 2016; Aggarwal et al. 2016;
Fehr et al. 2018). Two different tampering functions f =
(f0(M0), f1(M1)) modifies the codeword in an arbitrary
and independent way. One important functionality is
that both tampering functions cannot run the decod-
ing procedure because two shares are needed in order
to decode a codeword whereas each of the functions
f0(M0) , f1(M1) can access only one share. Standard
notion of non-malleability protects message for one time
tampering attack only. Such codeword is called one-shot
non-malleable code. It cannot handle the situation when
an adversary tampers the codeword more than once. A
stronger version of non-malleability, called continu-
ously non-malleable codes (CNMC) is proposed in Faust
et al. (2014a), where the following attack f = (fi(M0),
fi+1(M1)) ( i ∈ q ∧ q ∈ poly(n) ) is performed polynomial
number of times for each fi ∈ F  , and still non-malleabil-
ity is preserved.

Continuous non-malleability has various flavours. Let
m be the original message and m′ be the decoded tam-
pered message. Moreover, c denotes the codeword and
c
′ denotes the tampered codeword in a continuous tam-

pering experiment. Standard version of continuous
non-malleability or default version refers to the situation
where decoded tampered message m′ and original mes-
sage m are completely independent but it is possible for
an attacker to create an encoding such that c′ is not equal
to c but c′ decodes to m as discussed in Dziembowski
et al. (2010). In case of strong continuous non-malleabil-
ity, when c′ is not equal to c, it is guaranteed that both m′
and m completely are independent. Another stronger fla-
vour is super-strong continuous non-malleability, where
c
′ is not equal to c implies that c′ and c are independent

(Faust et al. 2014a, b; Jafargholi and Wichs 2015). Our
construction considers stronger version of continu-
ous non-malleability. Again, based on the situation that
how tampering functions are applied to the codeword,

tampering experiment of continuous non-malleabil-
ity has two versions as shown in Jafargholi and Wichs
(2015). When tampering functions are applied always to
initial encoding of the codeword, it is called non-persis-
tent tampering. Here, an auxiliary memory is required
beyond n bits of active-memory to store the codeword.
An attacker can make a copy of the original codeword to
the auxiliary memory. Further, the attacker can tamper
the original version of the codeword from the auxiliary
memory and place it to the active-memory. In persistent
version, tampering functions are applied to the previous
version of tampered codeword rather than initial encod-
ing. So, the extra memory requirement is not present
here. An adversary can tamper two different parts of the
memory until decoding error is triggered. Additional fea-
ture of continuous non-malleability is to handle leakage
attacks while tampering attacks are being performed. The
adversary can gain leakage values as a partial informa-
tion. Earlier constructions of continuously non-malleable
codes are built on top of some leakage resilient primitives
which can handle some bounded amount of leakages
(Faust et al. 2014a; Aggarwal et al. 2014, 2015) indepen-
dently from two different parts of the memory. Con-
tinuously non-malleable code constructions are broadly
categorized into two domains as information-theoretic
(Aggarwal et al. 2019) and computational (Faust et al.
2014a; Faonio et al. 2018; Ostrovsky et al. 2018). In Faust
et al. (2014a), it is shown that information-theoretic con-
tinuous non-malleability is not possible to achieve in
split-state model due to the generic attack. Later, Aggar-
wal et al. (2017) show that in case of persistent tampering
in split-state model, information-theoretic continuous
non-malleability can be achieved. Further research work
shows a more relaxed version of CNMC from computa-
tional assumption in the plain model (i.e., without com-
mon reference string based setup) but it provides weaker
security guarantee (Ostrovsky et al. 2018). In Dachman-
Soled and Kulkarni (2019), authors describe that it is
necessary to rely on setup assumptions, i.e., common ref-
erence string (CRS) to achieve stronger security. Hence,
the proposed construction relies on block cipher and
robust non interactive zero knowledge (NIZK) (De Santis
et al. 2001) proof in CRS based trusted setup environ-
ment. In Table 1, we describe various constructions of
continuously non-malleable codes in split-state model as
available in the literature.

Limitations of the Existing Work and Our Motiva-
tion. Usually, non-malleable codes are keyless encoding
scheme in nature. The first construction of a continu-
ously non-malleable code is proposed in Faust et al.
(2014a). Their work is based on collision resistant hash
function with robust non interactive zero knowledge
(NIZK) proof. Later, Fehr et al. (2018) show that one-shot

Page 3 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25 	

non-malleable codes can be constructed from related-key
secure block ciphers. Such construction does not satisfy
security against continuous attacks. An attacker can cre-
ate two valid codewords (M0,M1) and (M0,M

′

1) such that
their decoding does not return ⊥ , i.e., ⊥ �= Deck(α, (M0,
M1)) = Deck(α, (M0,M

′

1)) = ⊥ , where M1 = M
′

1 . It pro-
duces two valid messages m, m′ . Moreover, assuming the
tampering function is non-persistent, an adversary can
leak all the bits of M1 without activating the self-destruct
feature. In general, for any continuously non-malleable
codes, it should be hard to find two valid codewords
(M0,M1) and (M0,M

′

1) such that Deck(α, (M0, M1))
 = Deck(α, (M0,M

′

1)) . This property is called mess age
uniqueness as described in Faust et al. (2014a). Our goal
is to design non-malleable codes from any kind of block
cipher such as AES (Joan and Vincent 2002), SHACAL
(Handschuh and Naccache 2002), Midori (Banik et al.
2015) etc. that is secure against polynomial number of
tampering attempts. The block ciphers used in our con-
struction should satisfy the following properties:

a)	 The output produced by the underlying block cipher
should be strong pseudorandom permutation (sprp).

b)	 If decryption of a ciphertext c with a key k succeeds,
it should return ⊥ if it is decrypted with a different
key k ′ (Subsection 2.5).

Our Contribution. In this work, we propose the con-
struction of continuously non-malleable codes in split-
state model from any block cipher in computational
domain with trusted setup, i.e., CRS. We remove the
restriction of related-key secure block cipher as used in
Fehr et al. (2018). The codeword is capable of handling
non-persistent tampering attempts until self-destruct
occurs. Initially, the message is encoded into leakage
resilient storage (lrs). Further, it is encoded with block

cipher along with robust non interactive zero knowledge
(NIZK) proof. The key k of the block cipher is divided
into two shares k0 , k1 . Left part of a codeword M0 stores
k0 whereas M1 stores k1 . During decoding, it is recon-
structed as k ← k0 ⊕ k1.

Organization. The paper is organized as follows. Sec-
tion 2 describes some preliminaries whereas Sect. 3
provides a brief description about continuous non-
malleability. Code construction and basic proof ideas
are illustrated in Sect. 4. Thereafter, proof of security
is given in Sect. 5. Finally, we conclude the paper in
Sect. 6.

Preliminaries
Notations and basic results
Let m be the original message. M0 and M1 are the left and
right half of a codeword in split-state model, stored in
memory ML and MR respectively. OT

cnmc(., .) represents the
tampering oracle. Two tampering functions are f0 and f1
working in M0 and M1 respectively. Moreover, f i0 (or f i1 )
denotes the tampering function used by an adversary at
ith round. K is the usable key set after removing the weak
and semi-weak keys of the block cipher. If K is the key set,
|K| represents the number of key elements in K . When k
is uniformly chosen at random from K , we write k $

←− K .
n is the security parameter. Ol(s) denotes the leakage ora-
cle that takes string s as input and performs leakage func-
tion τb() on s, and it returns at most l bits. r ∈ {0, 1}n
denotes the randomness. α represents an untamperable
common reference string (CRS). A function ǫ(n) is called
negligible in n if it vanishes faster than the inverse of any
polynomial in n. P(x; r) is a randomized algorithm which
takes x ∈ {0, 1}n , randomness r ∈ {0, 1}n as input and
produces the output y ∈ {0, 1}n . An algorithm P is called

Table 1  Comparison of various continuously non-malleable codes in the split-state model

In the table IT stands for information-theoretic, Comp. stands for computational

Reference Model Assumption Types of tampering Adversarial capability

Faust et al. (2014a, 2020) Comp., CRS Collision resistant hash, NIZK Leak-
age resilient storage

Non-persistent with self-destruct Polynomial number of tampering
attacks & bounded leakage attacks

Aggarwal et al. (2017) I.T. – Persistent with self-destruct Unbounded adversary with polyno-
mial number of tampering attacks &
bounded leakage attacks

Faonio et al. (2018) Comp., CRS NIZK, Non-interactive commit-
ment Leakage resilient public key
encryption

Non-persistent with self-destruct Polynomial number of tampering
attacks & bounded leakage attacks

Ostrovsky et al. (2018) Comp. One-to-one
One-way function

Non-persistent with self-destruct Unbounded adversary with polyno-
mial number of tampering attacks &
bounded leakage attacks

Our work Comp., CRS NIZK, Strong PRP, Leakage resilient
storage

Non-persistent with self-destruct Polynomial number of tampering
attacks & bounded leakage attacks

Page 4 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25

probabilistic polynomial-time (PPT) if P is allowed to
make random choices, and the computation of P(x; r) ter-
minates in a polynomial number of steps (|x|) at most for
x ∈ {0, 1}n , r ∈ {0, 1}n . Let E = {Ek}k∈N , F = {Fk}k∈N be
two ensembles and E ≈

c
F represents the computational

indistinguishability that for every PPT distinguisher D,
|Pr[D(Ek) = 1] − Pr[D(Fk) = 1]| ≤ ǫ(n) . In similar way,
E ≈

s
F denotes the statistical indistinguishability for

computationally unbounded scenario. H∞(X) and
H̃∞(X |Y) denote the min-entropy and conditional aver-
age min-entropy of the random variable X. δ0[i] , δ1[i] are
two arrays used to store the result of tampering queries
whereas µ0[i] , µ1[i] are used to store leakage queries
result at each invocation ( i ∈ q ∧ q ∈ poly(n) ) in Algo-
rithm 3 and Algorithm 4. In Table 2, we describe a sum-
mary of notations. We now define some definitions and
lemmas related to the code construction.

Definition 2.1.1  (Split-State Model) Let M be a code-
word which consist of two shares M = (M0,M1 ), and
they are stored into two different parts of the memory
ML , MR respectively. Each tampering attempt f = (f0, f1) is
described by two arbitrary chosen functions that can be
applied to the codeword f = (f0(M0), f1(M1)) in an inde-
pendent way. The model which satisfies the above prop-
erty is said to be split-state model.

Definition 2.1.2  (Non-persistent Tampering) Let f =
(f0, f1) be the tampering function and M be a codeword
which is split into two shares M = (M0,M1 ). The tam-
pering experiment is said to be non-persistent if the
tampering functions are applied to initial encoding of the
codeword always. Moreover, such model considers the
scenario when an adversary has access to an n-bit auxil-
iary memory beyond the active memory, and it can copy
the original codeword to the auxiliary memory. Later,
the subsequent attack can be performed on the auxiliary
memory and the tampered codeword can be placed to
the original memory.

Lemma 2.1.1  A random variable X has min-
entropy over the set X  , denoted as H∞(X) = −log
maxx∈XPr[X = x] . It represents the probability of guess-
ing X by an unbounded adversary.

Lemma 2.1.2  A random variable X has condi-
tional average min-entropy given some information Y
over the set X  , Y , denoted as H̃∞(X |Y) = −logEy∈Y
maxx∈XPr[X = x|Y = y] . It represents the probability of
guessing X when some related information of X is avail-
able to the adversary through side channel leakage.

Lemma 2.1.3  For a random variable X and another
random variable Y, H̃∞(X |Y) ≥ H∞(X)− l , where Y
takes 2l possible values (l ∈ {0, 1}n).

Lemma 2.1.4  For a random variable X and other two
correlated random variables Y1,Y2 , we get H̃∞(X |Y1,Y2)
≥ H̃∞(X |Y1)− l , where Y2 takes 2l possible values
(l ∈ {0, 1}n).

Lemma 2.1.5  Let τ be the leakage function (possibly
randomized) used by an adversary on variable X. Then,

Table 2  Summary of notations

Notation Terminology

m Original message

M0 , M1 Left and right half of a codeword

ML , MR Left and right half of the memory

OT
cnmc(., .) Tampering oracle

δ0[] , δ1[] Stores tampering queries data

f0 , f1 Tampering functions

K Key set

poly(n) Polynomial function on input n

k
$
←− K

A key is selected

n Security parameter

Ol(s, .) Leakage oracle with s and τ as input

µ0[] , µ1[] Stores leakage queries data

α Common reference string

ǫ(n) A negligible function

P(x; r) A randomized algorithm

E ≈
s

F Statistical indistinguishability

H∞(X) Min-entropy

H̃∞(X |Y) Conditional average min-entropy

τ() Arbitrary leakage function

� Label

π Proof of a statement

S0 , S1 Two simulators

pk, sk Public and private key pair

r Randomness

R(m,w) Relation

Dk() Block cipher decryption algorithm

Ek() Block cipher encryption algorithm

Enck() CNMC encoding algorithm

Deck() CNMC decoding algorithm

Oprp() Pseudorandom permutation oracle

OR() Random permutation oracle

Enc
lrs , Dec

lrs lrs encoding and decoding algorithm

Page 5 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25 	

H̃∞(X |τ (X)) ≥ H∞(X)− l , where τ (X) generates l bits of
leakage through the side channel (l ∈ {0, 1}n).

Lemma 2.1.6  Let X, Y be the correlated random vari-
ables and τ be the leakage function used by an adversary
A. Then, H̃∞(X |τ (Y)) ≥ H̃∞(X |Y).

Leakage resilient storage
Leakage Resilient Storage (lrs) scheme encodes mes-
sage in such a way that secures the underlying message
against leakage attacks. It consists of a pair of algo-
rithms ( Enclrs , Dec

lrs ) with the following properties:

•	 Enc
lrs algorithm takes input a message m, random-

ness r and produces the output p0 , p1.
•	 Dec

lrs algorithm takes p0 , p1 as input and generates
m as output.

Original idea of ( Enclrs , Dec
lrs ) algorithm is used in litera-

ture (Davì et al. 2010; Dziembowski and Faust 2011) for
computationally unbounded adversary. In our construc-
tion, it is used for computationally bounded adversary
(Faust et al. 2014a). Leakage experiment is defined below:

Initially, a counter ctr is set to 0. When strings are passed
into Ol(p0, .) , Ol(p1, .) , along with leakage function τ (.) ,
leakage values are calculated through τ (p0) , τ (p1) , and it
is added to ctr, until ctr ≤ l from each part. Oracle termi-
nates if ctr > l , and further query would return ⊥.

Storage scheme is said to be strong lrs if an adversary
should not be able to distinguish between two arbitrarily
chosen messages m and m′ except with negligible prob-
ability, i.e.,
Adv

strong

leak
β
A

(A) = [Pr[A(leak
β
A,m) = 1] -

Pr[A(leak
β

A,m
′) = 1]] ≤ ǫ(n) , where m, m′ ∈ {0, 1}n and

ǫ(n) denotes a negligible function.

Robust non‑interactive zero knowledge
Let R be a relation for the language L , denoted as
L
R = { m : ∃ w such that R(m,w) = 1} and m ∈ M .

Robust non-interactive zero knowledge (NIZK)
proof system for LR consists of a set of algorithms
(CRSGen,Prove,Vrfy, S = (S0, S1),Xtr) , defined as fol-
lows. CRSGen takes input a security parameter 1n and
generates α ∈ {0, 1}n as a common reference string (CRS).
Prove takes α , a label � , (m,w) ∈ R as input and produces
proof π = Prove�(α,m,w) as output. The deterministic

leak
β
A,m = (p0, p1) ← Enc

lrs(m);L ← AOl(p0,.),O
l(p1,.)

output : (pβ ,LA),β ∈ {0, 1}

Vrfy algorithm outputs true when verification of state-
ment is successful, i.e., Vrfy�(α,m,Prove�(α,m,w)) = 1 .
The algorithm S consists of two simulators, i.e., S0 and
S1 . S0 generates a CRS and the trapdoor key whereas S1
performs simulated game with an adversary A. Xtr out-
puts the hidden value of the relation R(m,w) . It satisfies
all the below properties as mentioned in De Santis et al.
(2001):

•	 Completeness. For every m ∈ L
R and all w such that

R(m,w) = 1 , for all α ← CRSGen(1n) , we require
that the following probability should be satisfied
Pr[Vrfy(α,m,Prove(α,w,m)) = 1].

•	 Multi-theorem zero knowledge. It says that hon-
estly computed proof does not reveal anything
beyond the validity of the statement. Mathemati-
cally, it is represented as follows. For every proba-
bilistic polynomial-time adversary A, real experi-
ment, i.e., Real(n) and simulated experiment, i.e.,
Simulated(n) are completely indistinguishable, i.e.,
Real(n) ≈ Simulated(n) . Real(n) and Simulated(n)
are described below:

•	 Extractability. For all PPT adversary A, there exists
a PPT algorithm Xtr, a negligible function ǫ and a
security parameter n such that Pr[GXtr = 1] ≤ ǫ(n) ,
where game GXtr is described below.

Q is the query set of (m,π) pairs that an adversary A asks
to S1.

In Liu and Lysyanskaya (2012); Faust et al. (2014a),
authors show that if the proof statement is modified, the
verification algorithm should not proceed further. We use
the same approach in our construction. Moreover, the
proof algorithm supports public label � and such label is
incorporated with the statement of the message m to cal-
culate the above algorithms, i.e., Prove�(., ., .) , Vrfy�(., ., .) ,
Xtr�(., ., .), S�1 (., ., .) etc.

Pseudorandom permutation
Let block cipher E : {0, 1}n × {0, 1}k → {0, 1}n be a map-
ping from message space M to ciphertext space C
through a fixed k. An adversary A plays fixed pseudor-
andom security (prp) game with prp oracle Oprp() and

Real(n) =

{

α ← CRSGen(1n);L ← AProve(α,.,.)(α)

output : L

}

Simulated(n) =

{

(α, pk) ← S0(1
n);L ← AS1(α,.,pk)(α)

output : L

}

GXtr =







(α, pk , sk) ← S0(1
n)

(m,π) ← AS1(α,.,pk)(α);w ← Xtr(α, (m,π), sk)
(m,π) /∈ Q ∧R(m,w) �= 1 ∧ Vrfy(α,m,π) = 1







,

Page 6 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25

random permutation oracle OR() . The pseudorandom
permutation security advantage is defined as follows:
Adv

prp
E

(A ) = Pr[AOprp() = 1 ] - Pr[AOR() = 1].
Adv

prp
E

(q, t) = max
A

{Adv
prp
E

(A)}, where q is the maxi-
mum number of queries with time at most t.

An adversary A guesses the value of b, where b $
←− {0, 1} .

If b = 0, A proceeds with Oprp() and if b = 1, A proceeds
with OR() . Oprp() returns encryption Ek(m) and OR()
returns random keyed permutations Ek(m) , k $

←− K.
K is the total key set whereas K is the usable key set

after removing weak and semi-weak keys, i.e., K = K -
{kweak ∪ ksemi−weak} . In a cipher, weak and semi-weak
keys are such keys by which an encryption scheme can be
broken more efficiently than usual keys.

Block cipher
A block cipher E : {0, 1}n × {0, 1}k → {0, 1}n is a keyed
permutation which takes message m ∈ M , key k ∈ K and
outputs c ∈ C , called encryption. Its inverse algorithm
which takes c ∈ C , k ∈ K and generates m ∈ M , called
decryption D . Classical security models for block ciphers
are pseudoran dompermutation (prp) and strong pseu-
dorandom permutation (sprp). In prp security model, an
adversary has only access to encryption oracle whereas in
strong pseudorandom permutation model the adversary
has access to both encryption and decryption oracle.

Moreover, the block cipher used in our construc-
tion has the following property: If key is modified then
decryption algorithm should return ⊥ . To achieve such
property in our non-malleable code construction, we
check the key in Algorithm 3 and Algorithm 4. The origi-
nal key k of a cipher is stored into two parts of codeword
M0 and M1 . Whenever original key k and tampered key
k
′ are completely different, i.e., k ′

�= k , decryption algo-
rithm Dk() should not be called and we return ⊥ from

the decoding algorithm of non-malleable code. Since the
decryption algorithm of a block cipher with a different
key k ′ returns some other message rather than original
one, we need to restrict it in this way.

Continuously non‑malleable codes
Leakage Oracle. Leakage Oracle Ol(.) is a stateful oracle
that calculates total leakage through some arbitrary leak-
age function τ() . Algorithm 1 shows the leakage experi-
ment. Initially, a counter ctr is set to 0. When strings are
passed into it, leakage values are calculated and its length
is added with the ctr, until ctr ≤ l . Otherwise, it returns
⊥.

Tampering Oracle. Tampering Oracle OT
cnmc(., .) in

split-state model is a stateful oracle that takes two code-
words M0,M1 and tampering function f = ( f0 , f1) ∈ F
with initial state = alive and performs the below experi-
ment as defined in Algorithm 2.

Coding Scheme. Let CNMC = (CRSGen, Enck ,Deck) be
a split-state coding scheme in the CRS model.

•	 CRSGen algorithm takes security parameter 1n as
input and generates output α ∈ {0, 1}n as CRS.

•	 Enck algorithm takes key k ∈ K , CRS α , message
m ∈ M and produces the codeword (M0,M1).

•	 Deck algorithm takes the codeword (M0,M1) , key
k ∈ K , CRS α and generates message m or special sym-
bol ⊥.

Continuous Non-malleability. The coding scheme CNMC is
said to be l leakage resilient, q continuously non-malleable
code in split-state model if for all messages m,m

′
∈ {0, 1}n

and for all probabilistic polynomial-time adversaries A,
TamperA,mcnmc and TamperA,m

′

cnmc are computationally indis-
tinguishable, i.e.,
Adv

Strong

TamperAcnmc
(A) = [Pr[A(TamperA,mcnmc) = 1] - Pr[A

(TamperA,m
′

cnmc) = 1]] ≤ ǫ(n) , where m, m′ ∈ {0, 1}n and

TamperA,mcnmc =































α ← CRSGen(1n); i = 0; (M0,M1) ← Enck(α,m)

while i ≤ q

Li
A ← AOl(Mi

0
),Ol(Mi

1
),OT

cnmc(M
i
0
,Mi

1
)

i = i + 1

end while

output : Li
A.































,

Page 7 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25 	

Li
A contains the view of an adversary with two param-

eters µ and δ , for i number of tampering queries
( i ≤ q ∧ q ∈ poly(n) ). µ stores the result of leakage que-
ries (µ ≤ 2 l) and δ stores the result of tampering queries
(δ ≤ q) from OT

cnmc() . When i = 1, our code behaves as
one-shot non-malleable code and without any tamper-
ing query, i.e., i = 0, it acts as leakage resilient code (Davì
et al. 2010).

Message Uniqueness. Let CNMC = (CRSGen,Enck ,De
ck) be a split-state (l, q) continuously non-malleable code.
It is said to satisfy message uniqueness property if there
does not exist a valid pair (M0,M1) , (M0,M

′

1) such that
⊥ �= Deck(α, (M0,M1)) = Deck(α, (M0,M

′

1)) = ⊥ , where
M1 = M

′

1 and it produces two valid messages m, m′ . A con-
tinuously non-malleable code should not violate unique-
ness property as mentioned in Faust et al. (2014a).

(s, .)

Code construction
We propose the construction of continuously non-
malleable codes from block cipher along with robust
non interactive zero knowledge (NIZK) proof. Then, we
analyse the uniqueness property of the codeword and
proof of security. Let CNMC = (CRSGen,Enck ,Deck) be
split-state (l, q) continuously non-malleable code in the
CRS model based on leakage resilient storage ( Enclrs ,
Dec

lrs ), on a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n
with some properties incorporated and on a robust
non-interactive zero knowledge (NIZK) proof system
(CRSGen, Prove, Vrfy) with label support for language
L
Ek0 = { ckey : ∃ k such that ckey = Ek0(k)} , where k ∈ K ,

k ← k0 ⊕ k1 . The construction of our codeword is illus-
trated below:

Page 8 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25

	 I.	 CRSGen(1n). The algorithm takes 1n as a security
parameter and generates the common reference
string α.

	II.	 Enck(α,m). Encoding algorithm takes key
k ∈ K , CRS α and message m ∈ M as input. Ini-
tially, the message m with some randomness
r ← {0, 1}n is fed into leakage resilient storage,
i.e., (p0, p1) ← Enc

lrs(m||r) . Next, it encrypts p0 ,
p1 as c0 ← Ek(p0) , c1 ← Ek(p1) , where Ek() is an
encryption algorithm of a block cipher. The key
k is divided into two shares k0 , k1 and it is recon-
structed as k ← k0 ⊕ k1 . Further, the master key k
is encrypted as ckey = Ek0(k) . Thereafter, proof of
statements are calculated in the following way, i.e.,
π0 = Provec1(α, k0, (ckey, c0)) , π1 = Provec0(α, k1,
(ckey, c1)) . Finally, it outputs the codeword
(M0,M1) = (((k0, c0), p0, (ckey, c1),π0,π1) , ((k1, c1),
p1, (ckey, c0),π0,π1)) . The codeword (M0, M1) is
stored into the memory (ML, MR) respectively.

	III.	 Deck(α, (M0,M1)). Decoding algorithm starts
by parsing π0 and π1 . Then, it constructs the key
k ← k0 ⊕ k1 and performs the below steps:

	IV.	 Left & Right verification. If the verification of state-
ment in the codeword (M0,M1) are not success-
ful, i.e., either Vrfyc1(α, (ckey, c0)) or Vrfyc0(α, (ckey
, c1),π1) returns 0, it outputs ⊥ . Otherwise, go to
the next step.

	V.	 Uniqueness check. If k = Dk0(ckey) , go to the next
step. Otherwise, it returns ⊥.

	VI.	 Cross check & Decode. If p0 = Dk(c0) , p1 = Dk(c1)
and proofs π0 , π1 both are different, it returns ⊥ .
Otherwise, check p0 , p1 , if both are equal in M0
and M1 , call decode Dec

lrs(p0 , p1).

Lemma 1  CNMC = (CRSGen,Enck ,Deck) satisfies mes-
sage uniqueness property if implemented with the block
cipher.

Proof
Message uniqueness is based on the property (b) (Sub-
section 2.5) of the underlying block cipher, i.e., ciph-
etext generated by the cipher with a key k returns ⊥
if it is decrypted with a different key k ′ . Hence, integ-
rity of the key has to be maintained. Suppose, an
adversary A generates a pair (M0,M1) , (M0,M

′

1)

such that both are valid and M1 = M
′

1 . It means
⊥ �= Deck(α, (M0,M1)) �= Deck(α, (M0,M

′

1)) �= ⊥ . The
equation is only possible if an adversary is able to pro-
duce a valid key pair (k0, k1) , (k0, k

′

1) such that for (k0, k1) ,
Dk0(ckey) = k0 ⊕ k1 (for M0,M1 ) which is equal to k0 ⊕ k

′

1
= Dk0(ckey) for (k0, k

′

1) (for M0,M
′

1) , where k1 = k
′

1 . Unfor-
tunately, it violates the deterministic property of decryp-
tion algorithm as the decrypted key and newly formed
key are same. So, Dk0(ckey) = (k0 ⊕ k1) (for M0,M1 )
 = (k0 ⊕ k

′

1) = Dk0(ckey) (for M0,M
′

1) . Therefore, the key is
modified and decoding should return ⊥.

Security proof idea of CNMC
Our hunch is to develop the continuous version of non-
malleable codes from block ciphers with some additional
properties incorporated on the cipher. As mentioned
by Gennaro et al. (2004), certain strong cryptographic
assumptions are necessary when an adversary tampers a
portion of the memory. To prove that codeword is con-
tinuously non-malleable, a simulator for the TamperA,mcnmc
experiment is developed. In TamperA,mcnmc experiment, an
adversary A performs all leakage and tampering oracle
queries in real environment on the codeword (M0,M1) ,
stored in memory ML and MR respectively, whereas simu-
lated experiment SimTamperA,0

n

cnmc simulates the adver-
saries view of the tampering experiment in an ideal
scenario. We need to show that both experiments are
indistinguishable except with negligible probability, i.e.,
|Pr[TamperA,mcnmc = 1] - Pr[SimTamperA,0

n

cnmc = 1]| ≤ ǫ(n) .
Simulated tampering experiment takes r ← {0, 1}n and
proceeds with encryption of message 0n||r . But the origi-
nal tampering experiment proceeds with encryption
of message m||r. Initially, m||r is encoded using leakage
resilient storage which splits the message into two halves,
and it keeps the message secure as long as l bits are leaked
at most from each parts of the memory. Given the code-
word M = (M0 , M1) , oracle continues until simulated out-
put from left (Algorithm 3) and right (Algorithm 4) sides
of ( T0,T1 ) are equal. The experiment stops when decod-
ing error is triggered, i.e., outputs are not equal. From that
point further query would return ⊥ , and self-destruct state
is invoked. Since non-persistent tampering is considered,
a separate memory M of polynomial length is used to
store tampered versions of the codeword at each round
along with leakage and tampering data.

Page 9 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25 	

The main difficulty of our experiment is to find self-
destruct index, i.e., from the point experiment would
return ⊥ for further query. Let τ (M) be the leakage func-
tion on the codeword M. H∞(M|τ (M)) denotes the con-
ditional average entropy of the codeword M when some
information is available through side-channel, i.e., the
best chance of guessing message m from the codeword M
with some side-channel information by an adversary A.
Leakage functions are applied in the interleaved way by
an adversary A on (M0,M1) as τ 00 (M0) , τ 01 (M1) , τ 10 (M0) ,
τ 11 (M1),... τ i−1

0 (M0) , τ i−1
1 (M1) . The SimTamperA,0

n

cnmc
experiment proceeds until output produced by two
algorithms T0 and T1 are equal. From information-the-
oretic observation, it can be viewed as H̃∞(M0|τ

i
0(M0))

= H̃∞(M1|τ
i
1(M1)) , i.e., best chance of guessing mes-

sage m from the codeword M = (M0 , M1) is same when
some information is available through side-channel
leakage to the adversary A. At each query invocation,
simulated experiment proceeds by checking tampered
output from both halves of the memory. If it matches,
leak the entire part so that total amount of leakage is
upper bounded by O(n) , where n represents the security
parameter. The experiment triggers self-destruct when
outputs are unequal. Simulated tampering experiment
consists of S = (S0, S1) and it works in the following
way. The simulator S0 generates an untamperable CRS

and the key ( α, pk , sk) . Further, the key is passed to S1
which takes r ← {0, 1}n , encoding of message 0n||r , and
invokes (T0,T1) to simulate the tampering experiment
until outputs are equal. The simulator S1 makes simu-
lated proof of statement π0 = Sc11 (α, (ckey, c0), pk) and
π1 = Sc01 (α, (ckey, c1), pk) . Then, it calls the algorithm T0
and T1 in an interleaved manner. Algorithm T0 simulates
left part of a codeword (simulated) M0 and algorithm T1
simulates right part of a codeword M1 . Both the algo-
rithm proceeds by parsing M0 and M1 . It calculates leak-
age through (τ i0, τ

i
1) and stores the value into µb[i] . Then,

it applies tampering function f i0 on M0 and f i1 on M1 ,
and it compares tampered codeword M ′ with the origi-
nal codeword M. If both are same, δb[i] is set to same∗ .
Next, it verifies the proof of the statement and if it is suc-
cessful, Tb proceeds further. Otherwise, δb[i] is set to ⊥ .
Further, the original and tampered proof of statement are
compared, and the corresponding values are stored into
δb[i] . The extractor Xtr algorithm retrieves the key k ′

0 in
algorithm T1 , k

′

1 in algorithm T0 and the key k ′ is formed,
i.e., k ′

← k
′

0 ⊕ k
′

1 . Next, uniqueness condition of the key
k
′ is checked with k, and if they are same, decoding is per-

formed to retrieve the message m′.
Now, we discuss why the known attacks are not pos-

sible to perform in the proposed construction. Firstly,

Page 10 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25

if an adversary tampers c0 and changes it some related
value c′0 in M0 , NIZK proof π0 should be changed to π ′

0 .
Hence, both values π0 , π

′

0 should be different and by the
property of robust NIZK, experiment should return
⊥ . Also the adversary has to make same changes in
M1 , this should be hard without knowing a witness by
robustness of the proof. Apart from that if an adversary
tampers the key k, and make it to k ′ , NIZK proof should
be different and decryption with k ′ should return ⊥ as
per cipher property (b). Hence, the codeword is secure
against continuous tampering attacks. In the next sec-
tion, we discuss the security of the construction in
detail.

Proof of security

Theorem 1  Let E : {0, 1}n × {0, 1}k → {0, 1}n be the
block cipher with message space M , key space K and
ciphertext space C , (Enclrs,Dec

lrs) be l′ leakage resilient
storage, (CRSGen, Prove, Vrfy) is a robust NIZK proof for
language LR chosen from message space M . Then CNMC
= (CRSGen,Enck ,Deck) is ((l + γ + η), q) continuously
non-malleable and l leakage resilient code under non-
persistent tampering when instantiated with all the above

primitives, where q = poly(n) , γ = log(M) , η = log(K) ,
l
′
≥ (2 l + n) and n denotes the security parameter.

Proof
The proof of our theorem is quite involved. We develop a
simulator that simulates the tampering experiment in an
ideal scenario. It is shown that an adversary cannot distin-
guish between the real and simulated experiment except
with negligible probability, i.e., |Pr[TamperA,mcnmc = 1] -
Pr[SimTamperA,0

n

cnmc = 1]| ≤ ǫ(n) . In TamperA,mcnmc experi-
ment, an adversary A proceeds with q number of leakage

and tampering queries in real environment until the
self-destruct state is invoked. SimTamperA,0

n

cnmc experi-
ment simulates the adversaries view in an ideal environ-
ment. Here, the simulator S = (S0, S1) is constructed to
execute the SimTamperA,0

n

cnmc experiment. The simulator
S0 generates a triplet (α, pk , sk) and passes it to S1 . α is
an untamperable CRS and (pk, sk) pair is used to make
the simulated proof of statement in Xtr algorithm. The
goal of S1 is to simulate the actual tampering experiment.
It consists of two algorithms (T0,T1) with tampering

Page 11 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25 	

functions f i0 and f i1 ( i ≤ q ∧ q ∈ poly(n) ). Algorithm T0
works on the codeword M0 with tampering function f i0
and T1 works on the codeword M1 with tampering func-
tion f i1 . Simulated experiment proceeds with encoding
of message 0n||r whereas real experiment proceeds with
message m||r ( r ← {0, 1}n ). To show that simulation
works in a proper way, distribution of simulated experi-
ment is changed incrementally until we reach to the real
tampering experiment TamperA,mcnmc . At each step, a neg-
ligible amount of error is introduced. Such change is not
noticeable due to the security of lrs scheme. In this way,
encryption of 0n switches to the codeword M, i.e., encod-
ing of message m. S1 calls (T0,T1) in the interleaved man-
ner and experiment stops when outputs from both algo-
rithms are unequal, i.e., T0(M0, f

i
0 , r, i) = T1(M1, f

i
1 , r, i) .

Any further query would return ⊥ and experiment
leads to self-destruct in SimTamperA,0

n

cnmc . Whenever the
experiment triggers self-destruct, security of continuous
non-malleability reduces to the security of underlying lrs
scheme. Alternatively, we can say that if an adversary A
breaks the security of continuous non-malleability then
there exists an efficient reduction that breaks the security
of lrs which contradicts the fact that lrs scheme is secure.
S1 simulates the actual reduction with (T0,T1) in the fol-
lowing way.

Algorithm 3 illustrates the working strategy of the simu-
lated tampering experiment T0 . It parses the left part of a
codeword first and applies the leakage function τ i0() . The
maximum leakage bound tolerated by T0 is l. All leakage
values are stored in µ0[i] array. Then, tampered code-
word M ′

0 is obtained after applying f i0 on M0 , i.e., M ′

0 =
f i0 (M0) = ((k ′

0, c
′

0), p
′

0, (c
′

key, c
′

1), π
′

0,π
′

1) . If M0 and M ′

0 are
equal, δ0[i] array is set to same∗ . Next, the verification of
statement is checked and in case, it is unsuccessful, δ0[i]
array is set to ⊥ and the experiment stops. If the original
proof of statement π and the tampered one π ′ are
same, δ0[i] array is set to ⊥ and it returns ⊥ . Extractor
algorithm Xtr is run to extract k ′

1 from the simulated
proof of statement with the extractor key sk, i.e.,
k
′

1 ← Xtrc
′

0(α, ((c
′

key, c
′

1),π
′

1), sk) . Further, the key k ′

1 in

conjunction with k ′

0 is XORed to form the original key k ′
which is checked against Dk0(ckey) . If both are same,
p
′

1 ← Dk
′ (c

′

1) is called. Next, the Dec
lrs(p

′

0 , p
′

1) algorithm
is invoked to retrieve the message m′

. Since tampering
experiment is non-persistent, a separate memory M
stores all the tampered codeword along with leakage and
tampering data, i.e., δ0[i] and µ0[i].

Algorithm 4 describes the simulated tampering experi-
ment T1 . It starts by parsing right part of a codeword
M1 and calculates leakage through τ i1() . The maximum
leakage tolerated by T1 is upper bounded to l. µ1[i]
array stores the leakage data and δ1[i] stores all the
tampering information. At each query invocation,
tampering function f i1 is applied on M1 . Next, if verifi-
cation of the statement with label c′0 is successful, proof
of statement is compared with the tampered one.
In case of successful comparison, Xtr algorithm
retrieves k ′

0 from the simulated proof of statement, i.e.,

k
′

0 ← Xtrc
′

1(α, ((c
′

key, c
′

0),π
′

0), sk) . The original key k ′ is
formed and compared with Dk0(ckey) . Finally, p′

0 is
recovered from lrs and Dec

lrs(p
′

0, p
′

1) is invoked. The
Dec

lrs(p
′

0, p
′

1) algorithm returns m′.

The simulator S1 runs algorithm T0 and T1 alternatively as
long as their outputs are same. Let H̃∞(M0|τ

i
0(M0)) be

the average conditional entropy. It captures the scenario
that best chance of guessing M0 when some informa-
tion is available through side channel leakages τ i0(M0) to
the adversary A. Information theoretically, we can write
H̃∞(M0|τ

i
0(M0)) = H̃∞(M1|τ

i
1(M1)) from the working

strategy of the simulator S1 . H̃∞(M0|τ
i
0(M0)) can be writ-

ten as follows (Lemma 2.1.3).

Similarly,

Here, τ i0(M0) or τ i1(M1) can leak at most l bits as per secu-
rity of the lrs scheme. The simulator S1 runs until self-
destruct is invoked or returns ⊥ . Let q be the maximum
number of queries that are made by A in TamperA,mcnmc . It is
assumed that the experiment stops at qth query. In case of
SimTamperA,0

n

cnmc , same number of queries are performed
and the experiment returns ⊥ whenever outputs from T0
and T1 are different. The algorithm T0(M0, f

q
0 , r, q) and

T1(M1, f
q
1 , r, q) are l leaky. For 1 to (q − 1)th query, we get

the below equation with the assumption that function out-
put cannot be more informative than its own input and last
inequality comes from Lemma 2.1.4. Apart from that M1 ,
T0(M0, f

q
0 , r, q)) do not give much useful information about

M0 to guess the message m and it decreases the min-entropy
of M0 by O(n) , i.e., its size. Hence, the security of codeword
reduces to the security of leakage resilient storage.

H̃∞(M0|τ
i
0(M0)) = H∞(M0)− l

H̃∞(M1|τ
i
1(M1)) = H∞(M1)− l

Page 12 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25

At each query invocation, tampered output from both
sides of ( M0,M1 ) are compared and if it matches, leak the
entire codeword. At last query invocation when output
from both sides are not same (also τ q0 (M0) = τ

q
1 (M1) ),

leak the entire tampered codeword so that total leakage
is upper bounded by O(n) . Apart from that lrs in both
parts of the codeword can tolerate leakages upto 2 l (l bits
from each side) bits. Combining the parameters, we need
l
′ at least greater than (2l + n) to work the simulator S1

properly.

Conclusion
In this work, we propose a generic method to construct
continuously non-malleable codes from any kind of
block cipher in split-state model. The length of code-
word depends on the block size of underlying cipher. A
non-persistent version of tampering with self-destruct
capability is considered here. Further research work can
be pursued to construct super-strong continuously non-
malleable codes with self-destruct or without self-destruct
capability, and non-persistent tampering attempts from
block ciphers in split-state model.

Acknowledgements
The authors did not receive support from any organization for the submitted
work.

Authors’ contributions
All the authors read and approved the final manuscript.

Funding
No funding is received for conducting this study.

Availability of data and materials
No such data is used in this research work.

Declarations

Competing interests
The authors have no relevant financial or non-financial interests to disclose.
The authors have no financial or proprietary interests in any material discussed
in thisarticle.

Received: 3 January 2023 Accepted: 16 March 2023

References
Aggarwal D, Agrawal S, Gupta D, Maji HK, Pandey O, Prabhakaran M (2016)

Optimal computational split-state non-malleable codes. In: Kushilevitz

H̃∞(M0|T0(M0, f
1
0 , r, 1), ..,T0(M0, f

q
0 , r, q))

= H̃∞(M0|T1(M1, f
1
1 , r, 1), ..,T1(M1, f

q−1

1 , r, q − 1),T0(M0, f
q
0 , r, q)).

=⇒ H̃∞(M0|T1(M1, f
1
1 , r, 1), ..,T1(M1, f

q−1

1 , r, q − 1),T0(M0, f
q
0 , r, q))

≥ H̃∞(M0|M1, q,T0(M0, f
q
0 , r, q)).

E, Malkin T (eds) TCC 2016, vol 9563. LNCS. Springer, Heidelberg, pp
393–417

Aggarwal D, Kazana T, Obremski M (2017) Inception makes non-malleable
codes stronger. In: Kalai Y, Reyzin L (eds) TCC 2017, vol 10678. LNCS.
Springer, Cham, pp 319–343

Aggarwal D, Döttling N, Nielsen JB, Obremski M, Purwanto E (2019) Continu-
ous non-malleable codes in the 8-split-state model. In: Ishai Y, Rijmen
V (eds) EUROCRYPT 2019, Part I, vol 11476. LNCS. Springer, Cham, pp
531–561

Aggarwal D, Dodis Y, Kazana T, Obremski M (2015) Non-malleable reductions
and applications. In: Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, pp 459–468

Aggarwal D, Dodis Y, Lovett S (2014) Non-malleable codes from additive
combinatorics. In: STOC, pp 774–783

Banik S, Bogdanov A, Isobe T, Shibutani K, Hiwatari H, Akishita T, Regazzoni F
(2015) Midori: a block cipher for low energy. In: Iwata T et al (eds) ASIA-
CRYPT 2015, vol 9453. LNCS. Springer, Heidelberg, pp 411–436

Bellare M, Kohno T (2003) A theoretical treatment of related-key attacks: Rka-
prps, rka-prfs, and applications. In: Biham E (ed) EUROCRYPT 2003, vol
2656. LNCS. Springer, Heidelberg, pp 491–506

Bellare M, Cash D, Miller R (2011) Cryptography secure against related-key
attacks and tampering. In: Lee DH, Wang X (eds) ASIACRYPT 2011, vol
7073. LNCS. Springer, Heidelberg, pp 486–503

Bellare M, Paterson KG, Thomson S (2012) RKA security beyond the linear bar-
rier: IBE, encryption and signatures. In: Wang X, Sako K (eds) ASIACRYPT
2012, vol 7658. LNCS. Springer, Heidelberg, pp 331–348

Boneh D, DeMillo RA, Lipton RJ (2001) On the importance of eliminating errors
in cryptographic computations. J Cryptol 14(2):101–119

Chen B, Chen Y, Hostáková K, Mukherjee P (2019) Continuous space-bounded
non-malleable codes from stronger proofs-of-space. In: CRYPTO, pp
467–495

Dachman-Soled D, Kulkarni M (2019) Upper and lower bounds for continuous
non-malleable codes. In: PKC, pp 519–548

Damgård I, Faust S, Mukherjee P, Venturi D (2013) Bounded tamper resilience:
How to go beyond the algebraic barrier. In: Sako K, Sarkar P (eds) ASIA-
CRYPT 2013, Part II, vol 8270. LNCS. Springer, Heidelberg, pp 140–160

Davì F, Dziembowski S, Venturi D (2010) Leakage-resilient storage. In: Garay
JA, De Prisco R (eds) SCN 2010, vol 6280. LNCS. Springer, Heidelberg, pp
121–137

De Santis A, Di Crescenzo G, Ostrovsky R, Persiano G, Sahai A (2001) Robust
non-interactive zero knowledge. In: Kilian J (ed) CRYPTO 2001, vol 2139.
LNCS. Springer, Heidelberg, pp 566–598

Dziembowski S, Faust S (2011) Leakage-resilient cryptography from the inner-
product extractor. In: Lee DH, Wang X (eds) ASIACRYPT 2011, vol 7073.
LNCS. Springer, Heidelberg, pp 702–721

Dziembowski S, Kazana T, Obremski M (2013) Non-malleable codes from two-
source extractors. In: Canetti R, Garay JA (eds) CRYPTO 2013, vol 8043.
LNCS. Springer, Heidelberg, pp 239–257

Dziembowski S, Pietrzak K, Wichs D (2018) Non-malleable codes. J ACM
65(4):1–32

Dziembowski S, Pietrzak K, Wichs D (2010) Non-malleable codes. In: Yao AC-C
(ed) ICS 2010, Tsinghua University Press, Beijing, pp 434-452

Faonio A, Nielsen JB, Simkin M, Venturi D (2018) Continuously non-malleable
codes with split-state refresh. In: Preneel B, Vercauteren F (eds) ACNS
2018, vol 10892. LNCS. Springer, Cham, pp 1–19

Faust S, Mukherjee P, Nielsen JB, Venturi D (2014a) Continuous non-malleable
codes. In: Lindell Y (ed) TCC 2014, vol 8349. LNCS. Springer, Heidelberg,
pp 465–488

Faust S, Mukherjee P, Nielsen JB, Venturi D (2020) Continuously non-malleable
codes in the split-state model. J Cryptol 33(4):2034–77

Page 13 of 13Ghosal and Roychowdhury ﻿Cybersecurity (2023) 6:25 	

Faust S, Mukherjee P, Venturi D, Wichs D (2014b) Efficient non-malleable codes
and key-derivation for poly-size tampering circuits. In: EUROCRYPT. pp
111–128

Fehr S, Karpman P, Mennink B (2018) Short non-malleable codes from related-
key secure block ciphers. IACR Trans Symm Cryptol, 336–352

Gennaro R, Lysyanskaya A, Malkin T, Micali S, Rabin T (2004) Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against
hardware tampering. In: Naor M (ed) TCC 2004, vol 2951. LNCS. Springer,
Heidelberg, pp 258–277

Ghosal AK, Ghosh S, Roychowdhury D (2022) Practical non-malleable codes
from symmetric-key primitives in 2-split-state model. In: Ge C, Guo F (eds)
Provable and practical security

Goldreich O, Micali S, Wigderson A (1991) Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J
ACM 38(3):691–729

Handschuh H, Naccache D (2002) SHACAL: A Family of Block Ciphers. Submis-
sion to the NESSIE project

Jafargholi Z, Wichs D (2015) Tamper detection and continuous non-malleable
codes. In: Dodis Y, Nielsen JB (eds) TCC 2015, vol 9014. LNCS. Springer,
Heidelberg, pp 451–480

Joan D, Vincent R (2002) The Design of Rijndael. Springer-Verlag, New York Inc,
Secaucus

Kalai YT, Kanukurthi B, Sahai A (2011) Cryptography with Tamperable and
Leaky Memory. In: Rogaway P (ed) CRYPTO 2011, vol 6841. LNCS.
Springer, Heidelberg, pp 373–390

Kiayias A, Liu FH, Tselekounis Y (2016) Practical non-malleable codes from
l-more extractable hash functions. In: Weippl ER, Katzenbeisser S, Kruegel
C, Myers AC, Halevi S (eds) ACM CCS 2016, ACM Press, pp 1317–1328

Liu F-H, Lysyanskaya A (2012) Tamper and leakage resilience in the split-state
model. In: Safavi-Naini R, Canetti R (eds) CRYPTO 2012, vol 7417. LNCS.
Springer, Heidelberg, pp 517–532

Ostrovsky R, Persiano G, Venturi D, Visconti I (2018) Continuously non-
malleable codes in the split-state model from minimal assumptions. In:
Shacham H, Boldyreva A (eds) CRYPTO 2018, Part III, vol 10993. LNCS.
Springer, Cham, pp 608–639

Sergei P, Ross J (2002) Optical fault induction attacks. In: Revised Papers from
the 4th International Workshop on Cryptographic Hardware and Embed-
ded Systems, Springer, Heidelberg, pp 2-12

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Continuously non-malleable codes from block ciphers in split-state model
	Abstract
	Introduction
	Preliminaries
	Notations and basic results
	Leakage resilient storage
	Robust non-interactive zero knowledge
	Pseudorandom permutation
	Block cipher

	Continuously non-malleable codes
	Code construction
	Security proof idea of CNMC

	Proof of security
	Conclusion
	Acknowledgements
	References

