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Abstract 

Recently, deep neural networks have been shown to be vulnerable to backdoor attacks. A backdoor is inserted into 
neural networks via this attack paradigm, thus compromising the integrity of the network. As soon as an attacker 
presents a trigger during the testing phase, the backdoor in the model is activated, allowing the network to make 
specific wrong predictions. It is extremely important to defend against backdoor attacks since they are very stealthy 
and dangerous. In this paper, we propose a novel defense mechanism, Neural Behavioral Alignment (NBA), for 
backdoor removal. NBA optimizes the distillation process in terms of knowledge form and distillation samples 
to improve defense performance according to the characteristics of backdoor defense. NBA builds high-level 
representations of neural behavior within networks in order to facilitate the transfer of knowledge. Additionally, NBA 
crafts pseudo samples to induce student models exhibit backdoor neural behavior. By aligning the backdoor neural 
behavior from the student network with the benign neural behavior from the teacher network, NBA enables the 
proactive removal of backdoors. Extensive experiments show that NBA can effectively defend against six different 
backdoor attacks and outperform five state-of-the-art defenses.
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Introduction
Recent years have seen the use of deep learning for a 
wide range of critical tasks, such as autonomous vehicle 
driving (Grigorescu et al. 2020; Muhammad et al. 2021), 
facial recognition (Hu et‘al. 2015; Wang and Guo 2021), 
machine translation (Costa-jussà 2018; Koehn 2020), 
etc. As deep learning expands its application scope, its 
security issues are also garnering increased attention 
(Berman et al. 2019; Liu et al. 2021; Guowen et al. 2019). 
Deep neural networks are regarded as key components 
of deep learning, and their security has always been 
emphasized in research. It is expensive and time 
consuming to train a deep neural network, so many users 

use Machine Learning as a Service (MLaaS) (Ribeiro 
et  al. 2015) or directly download post-trained networks 
from the Internet. In this case, a third party handles the 
training of the network. An honest third party will train 
normally and return a clean model, however, there is also 
the possibility for a malicious third party to manipulate 
the training process and return a tainted model. Due to 
the black-box nature of neural network (Rudin 2019), 
users cannot determine whether the model has been 
maliciously modified. Service features of MLaaS and the 
black-box nature of the models offer the possibility of 
backdoor attack.

The backdoor attack (Gao et  al. 2020) consists of two 
phases, namely the implanting phase and the activating 
phase. A backdoor is implanted during the training 
of the neural network, for example by tampering with 
the training data, and it is then activated during the 
testing of the network. Backdoor attacks have the 
main characteristic that the network will make specific 
incorrect predictions only when triggers are presented in 
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the input, otherwise it behaves normally. As is shown in 
Fig. 1, the “STOP” sign will be predicted as “LIMIT 50” 
when the image recognition system predicts an image 
stamped with a trigger. When the system is applied 
to auto driving, this kind of backdoor behavior could 
contribute to serious traffic accidents. As mentioned 
earlier, a malicious third party is well positioned to 
implant a backdoor and return the backdoored network 
to the user. Users are also provided with a partially clean 
data set when they receive the network in order to test 
whether the it performs as expected. Nevertheless, the 
backdoor in the network cannot be activated by clean 
data, i.e., a user cannot determine whether the network 
contains a backdoor.

The defense based on knowledge distillation is 
currently considered to be the most effective method for 
mitigating backdoor attacks. NAD [57] was the first to 
introduce knowledge distillation into backdoor defense. 
It utilizes attention features to represent the neural 
network’s internal neuron activation information and 
achieves backdoor defense by aligning the intermediate 
layer attention features of the student network and the 
teacher network.The limitation of NAD is that it only 
involves same-order attention features during knowledge 
distillation, while the correlation among attention 
features of different orders is ignored. On this basis, 
ARGD[58] proposes the attention relation graph, which 
fully considers and utilizes the relationship between 
attention features of different orders. As a result, the 
defense performance is further improved. They have a 
common limitation, that is, they only optimize knowledge 
representation, and this knowledge representation is too 
single. Knowledge distillation was originally proposed 
because of the need to quantify the network, so we argue 
that simply optimizing knowledge representation is far 
from enough to defend against backdoors.

In this work, we propose a new defense mechanism 
called NBA, which simultaneously optimizes knowledge 
representation and training samples according to 
the characteristics of backdoor defense. In terms of 
knowledge representation, NBA defines and extracts 
three types of neural behaviors from within the neural 
network to fully represent the knowledge of the network. 
By optimizing the corresponding loss function, the 
student network can be encouraged to align its neural 
behavior with that of the teacher network, resulting 
in better training results. In contrast, the knowledge 
representation used by NAD and ARDG can essentially 
be regarded as one kind of neural behavior used by the 
NBA. In terms of training samples, we construct pseudo 
poisoned samples and input them to the student network. 
After the backdoor neural behavior is exposed, NBA can 
remove the backdoor more thoroughly. Based on the 
above optimizations, NBA can achieve better defensive 
performance than NAD and ARGD.

In summary, we make the following contributions:

• We propose novel forms of knowledge and extract 
neural behavior as efficient representations of 
knowledge to be transferred. Based on the alignment 
of neural behavior between both teacher and student 
networks during defensive distillation, the latter can 
achieve better learning results than other distillation-
based defenses (Li et al. 2021; Xia et al. 2022).

• We optimize original training samples into pseudo 
samples that can induce student network to exhibit 
backdoor neural behavior. On this basis, the 
backdoor in the student network can be further 
removed actively when combined with a neural 
behavioral alignment mechanism.

• We conduct extensive experiments on a number 
of well-known backdoor attacks. The experimental 
results corroborate the effectiveness and generality of 
our approach.

Related work
Backdoor attack
We refer to a neural network that has been implanted 
with a backdoor as a backdoored network, and refer to a 
sample that has been injected with a trigger as a poisoned 
sample. The backdoored network exhibits backdoor 
behavior when it takes poisoned sample as input, namely 
make specific wrong prediction.

Existing backdoor attack can be divided into poison-
label attack and clean-label attack according to whether 
the label of the poisoned sample is modified. Poison-label 
attack require the attacker to modify both the samples 

Fig. 1 Example of a backdoor attack
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and the labels, so that the mapping between the trigger 
and the target label can be directly established. BadNets 
(Gu et  al. 2017) is the first and most representative 
poison-label attack. The subsequent poison-label 
attacks are intended to improve the BadNets from the 
perspective of trigger design (Liu et  al. 2018, 2020), 
trigger implanting (Chen et  al. 2017), and others. The 
clean-label attack (Turner et  al. 2019; Barni et  al. 2019) 
is designed to solve the phenomenon of inconsistent 
semantics of poisoned samples and labels, and these 
methods often need to add additional constraints on 
samples from target labels.

In this paper, we choose well-known methods from 
clean-label attack and poison-label attack for experiment, 
so as to fully illustrate the generality and effectiveness of 
NBA.

Backdoor defense
Existing defense schemes can be divided into certified 
defenses and empirical defenses. Certified defenses 
(Weber et al. 2020; Jia et al. 2022) can theoretically ensure 
a certain degree of robustness, but their assumptions 
tend to be strong, they are not as effective as empirical 
defenses in practical situations. According to purpose 
and object of defense, empirical defenses can be classified 
into four categories, including (1) poisoned sample 
detection (Zeng et al. 2021; Hayase et al. 2021), (2) trigger 
(injected into sample) invalidation (Qiu et al. 2021; Doan 
et al. 2020), (3) network detection (Xu et al. 2021; Zheng 
et   al. 2021), and (4) backdoor (implanted into network) 
removal (Liu et  al. 2018; Wu and Wang 2021). Since 
the purpose of the defense is to prevent the poisoned 
sample from activating the backdoor, the defense only 
needs to be implemented on either side of the input and 
the model. In the first two types of methods, the input 
side is protected by detecting the poisoned sample or 
by destroying triggers in the input. The latter two types 
of methods defend on the model side by detecting the 
backdoored network or removing backdoors in it.

We argue that a backdoor attack stems from the 
backdoor implanted in the model, thus a defense scheme 
that removes the backdoor can effectively solve the 
problem of backdoor attacks. In general, NBA aim at 
eliminating backdoor from the backdoored network. 
Based on our proposed neural behavior alignment and 
pseudo-poisoned sample, NBA can further remove 
backdoors while improving the benign performance of 
the backdoored network.

Knowledge distillation
As a classic deep learning technique, knowledge 
distillation is often used in the fields of neural network 
quantization and transfer learning. In knowledge 

distillation, a well-trained network is usually used as a 
teacher network, and a network that lacks training is 
called a student network. The teacher network guides 
the student network to learn, and study have shown that 
under this learning paradigm, the student network can 
achieve better results than learning by itself (Hinton et al. 
2015). In most scenarios where knowledge distillation is 
used, the structure of the teacher network will be more 
complex than that of the student network, but the study 
of Furlanello et al. (2018) shows that the student network 
can even achieve better performance than the teacher 
network when thet have the same architecture. Hinton 
et  al. (2015) first introduced knowledge distillation in 
deep learning, and they used soften predictions as the 
knowledge to be transferred. After that, there is a lot of 
work to improve the efficiency of knowledge distillation 
by designing new knowledge to be transferred. 
Representative improvement works include using 
intermediate feature (Romero et al. 2015; Zagoruyko and 
Komodakis 2017), using relationship feature (Yim et  al. 
2017; Park et al. 2019), using structure feature (Liu et al. 
2020; Xixia et al. 2020), etc.

Based on Furlanello et al. (2015), Hinton et al. (2018), 
we argue that knowledge distillation can be applied to 
backdoor removal. Existing work confirms this, and 
they have achieved good results in defensive distillation 
with attention maps (Li et  al. 2021) and corresponding 
improvements (Xia et  al. 2022). Accordingly, defensive 
distillation may provide a promising method of defending 
against backdoors. In addition, Ge et  al. (2021) have 
considered the backdoor failure problem that may be 
caused by knowledge distillation, and proposed targeted 
optimization. However, since its threat model and attack 
scenarios are not consistent with those discussed in this 
article, we will not analyze it.

Threat model
We consider a common scenario, where the training 
process of network is outsourced to a third party. It 
applies to the case where the user downloads the trained 
model directly from the Internet or customizes the 
trained network through MLaaS.

The attacker is free to implant backdoors into the 
network in any manner he chooses. Different trigger 
patterns can be designed, different labels can be set, and 
poisoning rates can be set arbitrarily. Here, we assume 
that the network was successfully implanted with a 
backdoor and returned to the user. The user is often 
provided with a partially clean dataset so that they can 
confirm the usability of the network once it has been 
returned (or released). The network is expected to 
perform well on this dataset.
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There are no details about the training process and 
attack methods available to the defender. He is only 
provided with a trained network and a small portion of 
clean dataset. Due to the fact that it is unknown whether a 
given network contains a backdoor, the proposed defense 
method should be network-agnostic. The defensive 
solution should remove the backdoor from a given 
network without significantly degrading the its normal 
performance if it is a backdoored network. Particularly if 
the network is clean, the defense mechanism should not 
significantly affect its performance.

Methodology
Overview
Figure  2 illustrates the pipeline of using NBA for 
backdoor defense. It consists of two steps: first, fine-
tuning the backdoor network in order to obtain the 
teacher network, and then, through defensive distillation, 
aligning the neural behavior of the student network to 
remove the backdoor.

As shown in Fig.  2a, the defender fine-tunes the 
given network using a local clean dataset in order 
to obtain the teacher network. Figure  2b illustrates 
the subsequent defensive distillation step. As it was 
originally proposed for the purpose of neural network 
compression, knowledge distillation will not provide 
good results when it is applied directly to the backdoor 
defense. To obtain satisfactory defense performance, we 
optimize knowledge representation and training samples 
in knowledge distillation in accordance with backdoor 
defense features.

The improvements we have made to defensive 
distillation have been inspired by real-life teaching 
experiences. As an analogy, we compare the behavior 
of the backdoor network in processing samples to 
that of students in solving problems. Consequently, 
knowledge distillation can be viewed as the process by 
which teachers instruct students in the proper method 
of resolving problems. Two lessons can be drawn from 
practical teaching experience.

Firstly, teachers should provide students with a 
complete understanding of problem solving, including 
intermediate steps, intermediate answers, and 
final solutions. The student will not be able to fully 
comprehend the ins and outs of the correct method of 
solving problems if any or all of these are missing. In order 
to simulate this process, NBA extracts and aligns three 
kinds of neural behavioral within student and teacher 
networks. Each of these three neural behaviors within 
neural network has its own focus, and the combination 
can facilitate comprehensive learning by the student 
network of the knowledge imparted by the teacher 
network. Secondly, teachers will provide concentrated 
problem-solving guidance for students’ error-prone 
problems and correct the students’ faulty problem-
solving methods. Inspired by this, we constructed pseudo 
samples to induce the student network to actively exhibit 
backdoor neural behaviors, aligning them with the 
benign neural behavior of the teacher network to remove 
the backdoor more effectively.

Based on this, we propose learning distillation loss and 
unlearning distillation loss, which are used to encourage 

Fig. 2 The overview of NBA. NBA consists of two main procedures to remove backdoor: (1) fine-tuning: fine-tuning based on local clean data to 
obtain the teacher network; (2) defensive distillation: extracting and aligning high-level representation of neural behavior from teacher network and 
student network. Backdoor will be eliminated from student network by optimizing the two kinds of distillation loss functions adopted in defensive 
distillation phase
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the student network to learn benign knowledge efficiently 
and to actively unlearn backdoor knowledge.

Neural behavior
Definition and extraction of the neural behavior of the 
neural network are the keys to NBA. We define two types 
of neural behaviors, namely, response neural behavior 
and learning neural behavior, respectively, for the inter-
mediate answers and intermediate steps in the problem-
solving process. Figure  3 shows the procedure of there 
two kinds of extracting neural behavior. In addition, we 
introduce the dark knowledge proposed by Hinton et al. 
(2015) as prediction neural behavior to represent the 
final answer of the problem.

Response neural behavior
Previous studies (Zagoruyko and Komodakis 2017; 
Li et  al. 2021; Xia et  al. 2022; Romero et  al. 2015) have 
shown that feature maps can represent the response 
of neurons inside the network to input samples. We 
extracted the feature maps of each intermediate layer of 
the network and regarded it as the original representation 
of the response neural behavior of the model. In order 
to capture the focus of the response neural behavior, 
inspired by Gatys et al. (2016), we use the gram matrices 
to capture the key features of the feature maps. In 
particular, the gram matrices that we get here are called 
response matrices, and they can be used as the high-level 
representation of the responsive neural behavior.

The feature maps of in the l-th layer of the teacher 
network and the student network are denoted by 

FTl ∈ R
Cl×Hl×Wl and FSl ∈ R

Cl×Hl×Wl , where Cl , Hl , Wl 
represent the the number, height and width of feature 
maps in l-th layer. Further, the response matrices in the 
l-th layer of the teacher network and the student network 
can be denoted as GFl ∈ R

c×c and GSl ∈ R
c×c . Response 

matrix Gl is the inner product of the feature maps of the 
corresponding neural network:

LRNB is defined by the mean squared error between the 
response matrices GFl and GSl , l = 1, 2, . . . , n:

where Ll
RNB is defined as

By optimizing the Eq. (2), student network is encouraged 
to align its own response neural behavior with these of 
the teacher network.

Learning neural behavior
Learning neural behavior is used to simulate the 
intermediate problem-solving steps in actual teaching. 
Learning neural behavior is defined as the transformation 
between response neural behavior from adjacent layers, 
which is defined as:

when Ml is learning matrix between l-th layer and l + 1

-th layer. MTl and MSl can be calculated by the above 
equation.

Once there exists n response matrices, there will be 
n− 1 learning matrices. By optimizing the cross entropy 
loss function as follows, we encourage the student 
network to aligning its own learning neural behavior with 
teacher’s:

Prediction neural behavior
We introduce the dark knowledge proposed by Hinton as 
the prediction neural behavior. Usually, the output of the 
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Fig. 3 The illustration of extracting response neural behavior and 
learning neural behavior
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model is obtained by processing the logits information 
through softmax. The neural behavior that can be 
represented in this output is limited. To this end, we 
follow the procedure of Hinton et al. (2015), introducing 
a temperature T to soften the result of the softmax as 
the prediction neural behavior. The prediction neural 
behavior for class i can be calculated by the follows:

where zi and zj are logits, k is the number of classes. Here 
we set T = 5.

Therefore, the alignment of prediction neural behavior 
can be implemented by optimizing the KL-divergence 
between the prediction neural behavior of the teacher 
network and the student network:

where u and z are the logits of teacher network and 
student network respectively.

By optimizing the LPNB , the student model is 
encouraged to align its own prediction neural behavior 
with that of the teacher.

Learning distillation loss
Based on the three losses defined in “Neural behavior” 
section, we define NBA learning distillation loss LLDL 
to encourage the student network to fully learn the 
knowledge transferred by the teacher network during 
defensive distillation:

where D is local dataset, T and S are teacher and student 
networks. Specifically, T (·) and S(·) represent different 
knowledge form in different loss. �i(i = 1, 2, 3) are 
hyperparameters controlling the weights of each loss 
item. They are set as 2.0, 2.0 and 0.1, respectively.

Unlearning distillation loss
Unlearning distillation loss is proposed to correct 
the backdoor behavior of the student network and 
improve its generalization. The core idea behind it is 
to construct pseudo samples, and input the original 
samples and pseudo samples into the teacher network 
and student network respectively. By optimizing this loss 
function, the student network will further eliminate the 

(6)pi(zi,T ) =
exp(zi/T )

∑k
j=0 exp(zj/T )

,

(7)

LPNB = LKD(p(u,T ), p(z,T ))

=

k
∑

i=0

−pi(ui,T )log(pi(zi,T )),

(8)
LLDL = E(x,y)∼D[�1LRNB(T (x), S(x))

+ �2LLNB(T (x), S(x))

+ �3LPNB(T (x), S(x))],

backdoor behavior, that is, actively unlearn the backdoor 
knowledge.

Student network typically only show backdoor behavior 
in the presence of poisoned samples, but defenders only 
have clean samples. We introduce adversarial attacks to 
address this challenge.

Typically, the backdoored network can be obtained by 
optimizing the following loss function during training:

where l(·) denotes the loss function such as cross-entropy 
loss, Dc and Dp are denote the subsets of training dataset. 
Particularly, △ denotes the trigger and yt denotes the tar-
get label. The function of the second item is to implant 
the backdoor. Optimizing this loss function actually cre-
ates a shortcut in the network for the decision-making 
process of recognizing the input as the target label com-
pared to training a clean neural network. Potential adver-
sarial attacks are thus affected.

We conduct non target attack on the student network to 
craft pseudo samples x′

= x + δ , where δ is adversarial per-
turbation, which can be obtained by optimizing:

The above equation can be solved by gradient-based 
adversarial methods, such as Madry et al. (2018). Accord-
ing to different predicted labels, pseudo samples can be 
divided into two categories. The samples that are pre-
dicted as target labels are pseudo-poisoned samples, and 
they will converge to the local extremum caused by the 
backdoor during the optimization. This means that δ and 
△ are strongly related. Figure  4 visually shows the fea-
ture maps generated by pseudo-poisoned samples and 
poisoned samples. They have strong similarities, which 
indicates that they are both able to activate the network 

(9)
L = E(x,y)∼Dc [l(fθ (x), y)] + E(x,y)∼Dp [l(fθ (x +△), yt)],

(10)max
δ

L(fθ , x, y), s.t.‖δ‖p < ǫ

Fig. 4 Visualization of feature maps extracted from backoored 
network
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to exhibit similar behavior. Another type of samples 
obtained by the above equation are called pseudo clean 
samples, and their predictions are inconsistent with the 
target label. Unlearning distillation loss is defined as 
follows:

It is important to note that during the optimization of the 
above equation, the two types of pseudo samples have 
varying roles, but both can contribute to the enhance-
ment of the defense performance. In particular, the 
pseudo-poisoned samples induce the student network to 
exhibit backdoor behavior, allowing backdoor knowledge 
to be removed more efficiently. While the pseudo-clean 
samples essentially provide a regularization function.

Total loss
Overall objective of defensive distillation has the form of:

where α controls the weight of distillation loss in total 
loss, and β controls the weight of unlearning distillation 
loss in distillation loss. We set α = 1.0 and β = 0.5 in this 
paper.

(11)
LUDL = E(x,y)∼D[�1LRNB(T (x), S(x + δ))

+ �2LLNB(T (x), S(x + δ))

+ �3LPNB(T (x), S(x + δ))],

(12)LTotal = α(LLDL + βLUDL)+ l(fθ (x), y),

Experiments
Experimental settings
Attack setups
We conduct experiments on 6 representative backdoor 
attacks, which have their own distinct characteristics 
in trigger design (BadNets (Gu et  al. 2017), TrojanNN 
(Liu et  al. 2018) and Refool (Liu et  al. 2020)), trigger 
injection (Blend (Chen et  al. 2017)), and label modi-
fying (CLA (Turner et  al. 2019) and SIG (Barni et  al. 
2019)). The poisoned samples constructed by there 
methods are shown in Fig.  5.We follow the settings 
given in the original paper, such as trigger patterns and 
target labels. We evaluate all attacks and defenses on 
CIFAR10 and GTSRB, with WideResNet (WRN-16-1) 
(Zagoruyko and Komodakis 2016). Other attack details 
are described in Table 1.

Defense setups
We compare our approach with the state-of-the-art 
defenses, including Fine-tuning (FT) (Papernot et  al. 
2016), Fine-pruning (FP) (Liu et al. 2018), Mode Connec-
tivity Repair (MCR) (Zhao et al. 2020), Neural Attention 
Distillation (NAD) (Li et al. 2021), and Attention Relation 
Graph Distillation (ARGD) (Xia et al. 2022). The defenses 
can be compared fairly since they are based on the same 
threat model. Consistent with previous work (Li et  al. 
2021; Xia et al. 2022), we assume that the defender has a 

Fig. 5 Examples of clean samples (top) and poisoned samples (bottom) used in our experiments

Table 1 Settings of 6 well-known backdoor attacks

Attack methods BadNets TrojanNN Blend CLA SIG Refool

Dataset CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 GTSRB

Poisoning rate 0.1 0.05 0.1 0.08 0.08 0.08

Trigger size Local pattern Local pattern Global pattern Local pattern Global pattern Global pattern

Target label 0 0 0 0 0 0
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5% clean training set. We set batch size 64, initial learn-
ing rate 0.1 and train network using the Stochastic Gradi-
ent Descent (SGD) optimizer with a momentum of 0.9.

Metrics
We use attack success rate (ASR) and benign Accuracy 
(BA) to evaluate the effectiveness of the defenses. In 
particular, the lower the ASR and the higher the BA, 
the better the defense method.

• Attack Success Rate (ASR) This metric measures the 
proportion of poisoned testing set predicted to the 
target class.

• Benign Accuracy (BA) This metric measures the 
proportion of clean testing set predicted the ground-
truth classes.

Experimental results
Effectiveness of NBA
We present the detailed results on the comparison of 
performance in Table 2.

Overall, our proposed method achieves good defensive 
performance. We further illustrate this from two aspects.

We first analyze the defensive effects of NBA against 
different attacking methods. It is noted that NBA is 
always effective on different attack methods, i.e., lower 
ASR and higher BA can be achieved. This demonstrates 
NBA’s impressive adaptability.

Second, we conducted a comparison between the 
defenses. FT and three methods based on knowledge dis-
tillation (NAD, ARGD, and NBA) achieve better results. 
The results of a further analysis revealed two important 
findings. (1) The scheme of knowledge distillation is bet-
ter than FT. It is due to the fact that the latter relies solely 
on loss functions such as cross-entropy loss for self-
learning, while the former introduces distillation loss and 

can benefit from the guidance of a teacher network. (2) 
In the internal comparison of distillation schemes, NBA 
achieves the best performance (average ASR is 1.52, and 
BA is 81.14). The reason for this is that NAD’s distillation 
loss is only based on attention maps extracted from fea-
ture maps, and ARGD’s distillation loss takes into account 
the order relationship between attention maps. Essen-
tially, they are equivalent to the response neural behavior. 
NBA, however, adopts two different types of distillation 
loss simultaneously. The first type of distillation loss is 
learning distillation loss, which utilizes three types of 
neural behavior, including response neural behavior, as 
the form of knowledge, and is capable of leading to better 
learning results. There is also the unlearning distillation 
loss, which is capable of actively reducing backdoor neu-
ral behaviors. As a result, NBA has a significant advan-
tage when it comes to reducing ASR and maintaining BA.

In addition, it is worth noting that although ARGD 
performs better than NAD on average, its BA value 
(80.35) is lower than NAD’s (80.47) when defending 
against attacks such as BadNets. This indicates that the 
improvement achieved by ARGD is limited. In contrast, 
NBA outperforms both ARGD and NAD in terms of 
defense performance, whether defending against specific 
attack methods or on average. In terms of the degree 
of improvement, NBA is able to consistently optimize 
the defense performance (including BA and ASR) by at 
least 1 percentage point at the margin, achieving the best 
defense performance.

Furthermore, we find that although FT, NAD, and 
ARGD do not adopt a loss function similar to NBA’s 
unlearning distillation loss, they can still reduce ASR to 
a certain extent. It is important, however, to stress that 
for these schemes, the reduction of BA relies on the 
“Catastrophic Forgetting” Effect (Goodfellow et al. 2014; 
Kirkpatrick et al. 2017) of the neural network, rather than 
actively removing backdoors.

Table 2 Performance (%) comparison of 6 backdoor defenses against 6 backdoor attacks

Attack Defense

No defense Fine-tuning Fine-pruning MCR NAD ARGD NBA

ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA

BadNets 99.83 80.02 6.46 79.91 82.54 77.65 2.74 78.29 3.55 80.47 1.81 80.35 1.16 81.59

TrojanNN 99.85 79.95 5.61 80.03 52.71 79.96 25.71 78.68 3.26 79.58 2.33 79.97 1.14 80.42

Blend 97.83 82.36 5.23 79.85 89.12 80.07 68.85 79.82 2.77 81.04 1.16 81.13 0.85 80.13

CLA 98.15 81.14 7.32 80.06 35.46 76.88 17.29 80.03 8.55 79.64 5.13 79.96 1.71 80.24

SIG 99.62 82.63 11.29 80.31 65.31 80.15 1.80 79.61 5.69 80.29 2.14 80.25 1.95 81.71

Refool 96.24 80.37 8.78 80.24 59.67 78.22 8.29 78.25 4.27 80.01 4.05 80.04 2.33 82.72

Average 98.57 81.08 7.45 80.07 64.14 78.82 20.78 79.11 4.68 80.17 2.77 80.28 1.52 81.14
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Effectiveness under different defender’s capacity
According to the threat model presented in this paper, 
defender capabilities are primarily determined by the size 
of the local dataset. Here we investigate the effect of local 
dataset size on defense performance.

Figures 6 and 7 illustrate that most defense schemes 
perform better as the size of the clean dataset increases. 
It should be noted, however, that FP is an exception. As 
can be seen from Fig. 6, its ASRs at 5% is similar to that 
at 20%. This suggests that the size of local dataset does 
not significantly affect the defense performance of FP. 
This is because more clean samples do not help FP to 
more accurately identify whether neurons are damaged.

With only a very small dataset (1%), NBA fails to 
perform as well as ARGD. However, as the dataset 
becomes larger, its advantages gradually become 
apparent. Specifically, with a dataset size of 5%, NBA 
achieves the best performance among all defenses.

Further observations show that the defense 
performance gap between these defenses except for 
FP narrows as the dataset size increases. This indicates 

that dataset size can indeed affect defense performance 
in a significant way. NBA, however, continues to have a 
significant advantage in this case. In the experimental 
data of 20% data set size, although NBA’s BA is similar 
to that of other schemes, its ASR is still very low 
compared to other schemes.

The dataset provided by the third party with the 
trained networks are usually not very large at any one 
time. We therefore argue that our assumption of the 
size of the local dataset (i.e. 5% of the training set) is 
reasonable.

Further understanding of NBA

The advantage of neural behavioral representations
Here, we investigate how different neural behavior 
representations affect defense performance. Feature 
maps are treated as low-level representations in this 
study, while gram matrices are treated as high-level 
representations.

The results are shown in Figs.  8 and 9. Generally 
speaking, Gram matrices-based NBA has outperformed 

Fig. 6 The ASRs of 6 defenses under different size of clean data

Fig. 7 The BAs of 6 defenses under different size of clean data

Fig. 8 The ASRs of NBA under different representations of neural 
behaviors

Fig. 9 The BAs of NBA under different representations of neural 
behaviors
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feature maps-based NBA. In spite of the fact that the 
feature maps represent the neural behaviors directly 
inside the model, there is too much redundant 
information within them. By contrast, Gram matrices 
can capture neural behavioral knowledge more effectively 
through inner products of feature maps, so they can be 
used to achieve better results of knowledge transferring.

Ablation study of distillation loss
NBA combines three kinds of neural behavior and two 
forms of loss function to effectively remove backdoor. 
Here we perform two ablation study to demonstrate 
that none of them can be omitted.

In Table 3, we show that applying each neural behavior 
can achieve a certain defensive effect. However, when 
only one or two kinds of neural behaviors are used, the 
defenase scheme cannot achieve the best performance.

For learning distillation loss and unlearning distillation 
loss, we provide Table  4, which shows the performance 
of different settings. The results in Table  4 demonstrate 
that a reasonable overall defense performance can be 
obtained when only learning distillation loss is used. The 
backdoor can be removed more efficiently by unlearning 

distillation loss (as indicated by the lower ASR), but at the 
cost of the lower BA. By reasonably adjusting coefficient 
β in Eq. (12), we can achieve a better trade-off between 
ASR and BA.

Possible settings for unlearning distillation loss
Crafting pseudo samples is the key for unlearning 
distillation loss. The rationale and necessity of the pseudo 
sample crafting approach are covered in this section.

The pseudo samples are replaced with poisoned 
samples to perform additional experiments. Table  5 
shows the experimental results. The first row presents 
the results of defensive distillation using only the learning 
distillation loss, and the corresponding ASR is reduced 
to 3.2. This indicates that the backdoor has been largely 
removed. The last two rows of the Table 5 display NBA’s 
results using poisoned samples and pseudo samples. 
Both methods can further reduce the ASR (1.38 and 1.52, 
respectively), indicating that introducing unlearning 
distillation loss can indeed effectively remove the 
backdoor. It should be noted that there exists diminishing 
marginal effect in terms of removing the backdoor. There 
is not much difference between using poisoned samples 
and using pseudo samples in unlearning distillation 
loss. Several defense methods are capable of accurately 
reversing engineering the approximate poisoned sample 
(Qiao et al. 2019; Wang et al. 2019; Tao et al. 2022), but 
this is unnecessary for our approach given that even 
poisoned samples cannot provide a significantly better 
performance). In addition, these schemes require high 
computational overhead or attack details such as trigger 
size (Wang et al. 2019) when crafting potential poisoned 
samples.

Conclusion
This paper presents NBA, a novel defensive distillation 
mechanism for backdoor removal. We optimize the 
knowledge distillation process from both the knowledge 
form and training samples to make it better suited to the 
defense scenario. In terms of knowledge form, we extract 
and align three kinds of neural behavior of networks 
to achieve efficient knowledge transfer. In terms of 
training samples, we construct pseudo samples to further 
eliminate backdoor from the backdoored network.

To the best of our knowledge, NBA is the first active 
defensive distillation mechanism and has competitive 
advantages in terms of backdoor removal. NBA’s highly 
effective defense performance and realistic threat model 
make it an attractive candidate for practical defensive 
scenarios.
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Table 3 Ablation results of neural behavior loss

LRNB LLNB LPNB ASR BA

� 3.41 83.38

� 3.08 82.99

� 3.40 79.37

� � 3.86 83.86

� � 4.32 82.09

� � 4.62 82.82

� � � 2.55 83.91

Table 4 Ablation results of distillation loss

LLDL LUDL ASR BA

� 2.55 83.91

� 0.53 77.24

� � 1.52 81.14

Table 5 Performance comparison of different samples

Settings ASR BA

NBA with only LRNB 2.55 83.91

NBA with poisoned samples 1.38 80.89

NBA with pseudo samples 1.52 81.14
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