
Kazeminajafabadi and Imani  Cybersecurity            (2023) 6:22  
https://doi.org/10.1186/s42400-023-00155-y

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

Optimal monitoring and attack detection 
of networks modeled by Bayesian attack graphs
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Abstract 

Early attack detection is essential to ensure the security of complex networks, especially those in critical infrastruc-
tures. This is particularly crucial in networks with multi-stage attacks, where multiple nodes are connected to external 
sources, through which attacks could enter and quickly spread to other network elements. Bayesian attack graphs 
(BAGs) are powerful models for security risk assessment and mitigation in complex networks, which provide the 
probabilistic model of attackers’ behavior and attack progression in the network. Most attack detection techniques 
developed for BAGs rely on the assumption that network compromises will be detected through routine monitor-
ing, which is unrealistic given the ever-growing complexity of threats. This paper derives the optimal minimum mean 
square error (MMSE) attack detection and monitoring policy for the most general form of BAGs. By exploiting the 
structure of BAGs and their partial and imperfect monitoring capacity, the proposed detection policy achieves the 
MMSE optimality possible only for linear-Gaussian state space models using Kalman filtering. An adaptive resource 
monitoring policy is also introduced for monitoring nodes if the expected predictive error exceeds a user-defined 
value. Exact and efficient matrix-form computations of the proposed policies are provided, and their high perfor-
mance is demonstrated in terms of the accuracy of attack detection and the most efficient use of available resources 
using synthetic Bayesian attack graphs with different topologies.
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Introduction
The increased connectivity of networks and smart 
devices allow for effective operations of complex net-
works while significantly weakening network secu-
rity  (Lallie et al. 2020; Ou et al. 2006; Wang et al. 2018; 
Al Ghazo et  al. 2019; Al-Araji et  al. 2022; Nguyen et  al. 
2017). In particular, the operation of critical infrastruc-
tures such as manufacturing, energy, communication, 
water, and transportation networks increasingly rely on 
networked devices, generating significant vulnerabilities 
in many areas of society.

Attack graphs are a useful model to characterize the 
interactions and dependencies between vulnerabilities 
across the network components  (Noel and Jajodia 2014; 
Singhal and Ou 2017; Stan et  al. 2020; Noel and Jajo-
dia 2017; Capobianco et  al. 2019; Agmon et  al. 2019; 
Malzahn et  al. 2020; Albanese et  al. 2012; Homer et  al. 
2013; Yu et  al. 2015; Munoz  Gonzalez and Lupu 2016). 
These graphs model how attackers can exploit combina-
tions of vulnerabilities to penetrate networks. Bayesian 
attack graphs (BAGs) are extensions of attack graphs, 
where the Bayesian network probabilistically models 
attackers’ behavior and progression of attacks across 
the network  (Poolsappasit et  al. 2011; Muñoz-González 
et al. 2017; Sembiring et al. 2015; Miehling et al. 2015; Hu 
et  al. 2017; Matthews et  al. 2020; Sahu and Davis 2021; 
Frigault et  al. 2017; Chen et  al. 2021; Chockalingam 
et  al. 2017; Sun et  al. 2018; Liu et  al. 2019). BAGs are 
directed graphs consisting of nodes that represent the 
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status of compromises at various network components 
and edges that represent exploit probabilities among the 
components.

Most existing attack detection techniques developed 
for BAGs rely on the simplified assumption that the net-
work’s compromises are certainly detectable through 
routine monitoring  (Li et  al. 2020; Chadza et  al. 2020; 
Holgado et al. 2017; Thanthrige et al. 2016; Ramaki et al. 
2015). However, given the ever-growing types of attacks 
and the intelligence of attackers to hide the exploit, 
this assumption is unrealistic and leads to the unreli-
ability of detection. Meanwhile, the existing detection 
methods often built upon heuristics  (Poolsappasit et  al. 
2011; Alhomidi and Reed 2013; Husák et  al. 2018) or 
approximations (Liu and Liu 2016; Wang et al. 2013; Ma 
et  al. 2022). These methods do not yield the optimality 
expected for these structured graphs, such as minimum 
mean square error (MMSE) or component-wise optimal-
ity. This paper derives the exact optimal MMSE attack 
detection method for a general form of BAGs with partial 
and imperfect monitoring and arbitrary network vulner-
abilities. The binary structure of the nodes on the graph 
(denoting the compromised status of network compo-
nents) is taken into account to achieve the same MMSE 
optimality as the Kalman filter for the linear Gaussian 
state space model (Liang et al. 2019; Bai et al. 2017). We 
demonstrate that the proposed detection method also 
holds the component-wise maximum aposteriori opti-
mality, which differs from the commonly used maximum 
aposteriori solution obtained for the entire nodes.

The second contribution of this paper is to derive an 
exact optimal policy to select a subset of monitoring 
nodes at any given time to enhance the performance of 
the detection process. In practice, a few nodes in the net-
work can be routinely monitored due to resource limi-
tations and reducing potential disruptions to network 
operations. Intelligent selection of these nodes plays a 
crucial role in accurately detecting attacks over the net-
work. For instance, monitoring a fixed set of nodes could 
significantly degrade detection performance at unob-
served components. Therefore, it is critical to sequen-
tially and strategically select nodes for monitoring and 
making the best use of available resources.

Several monitoring approaches have been developed 
for Bayesian attack graphs, including Monte Carlo and 
probabilistic methods. The Monte Carlo or tree-based 
approaches  (Noel and Jajodia 2008; Krisper et  al. 2019; 
Poolsappasit et  al. 2011) simulate the most likely attack 
paths and sequentially select monitoring nodes located 
on these paths. The probabilistic vulnerability assessment 
approaches  (Dantu et  al. 2004; Nipkow et  al. 2012; Frig-
ault and Wang 2008) measure the expected increase in 

the probability of compromise at various nodes and select 
those with the highest overall vulnerabilities. These meth-
ods mostly rely on heuristics for their selection or some 
simulated attack paths, which makes them inefficient in 
securing complex networks with uncertain monitoring and 
limited available resources. Meanwhile, existing techniques 
take into account the network vulnerability of nodes for 
selecting monitoring nodes rather than accurate detection 
and identifying invisible compromises in the network.

This paper presents an optimal monitoring policy 
that supports the optimal detection policy and ensures 
the selection of monitoring nodes that are most likely 
to be incorrectly detected. The proposed monitoring 
method selects the optimal subset of nodes for monitor-
ing sequentially based on the highest expected predictive 
mean squared error (MSE). Instead of selecting nodes 
that are already compromised or uncompromised, we 
have developed fixed-resource and adaptive-resource 
monitoring policies that select a subset of nodes sequen-
tially to ensure the best detectability of attacks across the 
entire network. Depending on the network’s vulnerabili-
ties or the sensitivity of its components, the appropriate 
monitoring policy can prioritize network detectability at 
specific parts of the network rather than all components. 
We introduce efficient and exact matrix-form solutions 
for attack detection and network monitoring policies and 
demonstrate the performance of the methods using sev-
eral synthetic Bayesian attack graphs.

The article is organized as follows. First, the Bayesian 
attack graph model is briefly described. Then, the opti-
mal attack detection and monitoring policies are derived, 
and their matrix-form implementations are introduced. 
Finally, the numerical examples and concluding remarks 
are provided.

Bayesian attack graphs (BAGs)
Bayesian attack graphs are a powerful class of models for 
the probabilistic representation of attackers’ behavior and 
the progression of attacks on networks. The attackers aim 
to take over the entire network by exploiting reachable 
vulnerabilities, while each exploit only succeeds with a 
certain probability. A BAG is a directed graph where the 
nodes of the graph represent the compromises’ status at 
each network component (i.e., 1 for compromised nodes 
and 0 for not compromised nodes), and edges represent 
the likelihood that a compromised node could success-
fully expose a neighboring component.

A BAG is defined as a tuple (Hu et al. 2020)

where N = {1, · · · , n} represents n elements (nodes) of 
the network, T  is the set of node types, E is the set of 

G = (N , T , E ,P)
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directed edges between the nodes, and P is the set of 
exploit probabilities. The nodes are random variables 
taking in {0, 1} , where 0 and 1 indicate that a given com-
ponent is not compromised and compromised, respec-
tively. For simplicity and without loss of generality, each 
node is assumed to be one of the following two types: 
Ti ∈ {AND,OR} , where Ti represents the type of the ith 
component. The edge (i, j) ∈ E represents if node j could 
be compromised through node i. P consists of the set of 
exploit probabilities associated with edges, where ρij ∈ P 
represents the probability that the node j can be compro-
mised through node i, given that node i is already com-
promised. These exploit probabilities are often computed 
according to the NIST’s Common Vulnerability Scor-
ing System (CVSS), which characterizes the severity of 
vulnerabilities through numerical scores  (Radack et  al. 
2007).

Node i is an in-neighbor of node j if (i, j) ∈ E . The 
in-neighbor set of node j can be formally defined as: 
Dj = {i ∈ N |(i, j) ∈ E} . The nodes connected to outside 
sources are susceptible to external attacks. The exter-
nal attack on node j can be expressed in terms of the 
exploit probability ρj . As mentioned before, there are 
two types of nodes; an AND node (e.g., admin serv-
ers) could get compromised only if all of its in-neighbor 
nodes are compromised, while an OR node (e.g., SQL 
servers) could get compromised through a single (or 
more) compromised in-neighbor(s).

An example of the Bayesian attack graph is 
shown in Fig.  1. The graph consists of 20 nodes; the 
nodes that are exposed to external attacks include 
{2, 5, 6, 8} . AND nodes illustrated as double encircled 
nodes are {2, 3, 6, 9, 10, 13, 18, 19} , and OR nodes are 
{1, 4, 5, 7, 8, 11, 12, 14, 15, 16, 17, 20} . Exploit probabilities 
are labeled only for node 1 for simplicity.

Optimal attack detection for BAGs
Hidden Markov model (HMM) representation of BAG
The BAG can be seen as a special case of a hidden 
Markov model with binary state variables. The state 
vector consists of the status of compromises at all 
n nodes in the graph. This vector is represented by 
xk = [xk(1), ..., xk(n)] , where xk(i) takes either 0 or 
1; xk(i) = 1 indicates that the ith component is com-
promised at time step k, and reverse for xk(i) = 0 . 
xk = [0, 0, · · · , 0]T represents a network without any 
compromise, whereas xk = [1, 1, · · · , 1]T represents 
network with all nodes being compromised. Therefore, 
the state vector can take 2n different possible values, 
denoted by {x1, · · · , x2n} . The HMM representation of 
BAG, consisting of the state and observation processes, is 
described below.

State process The state process represents the proba-
bilistic propagation of compromises at all nodes. This 
process can be expressed through the conditional proba-
bility distribution of states. The state process is governed 
by the probability of external attacks, exploit probabilities 
among nodes, and their types. For instance, the AND 
nodes are more robust against a single in-neighbor threat 
since the exploits at all in-neighbor nodes are required 
to give a chance for an AND node to be compromised. 
On the other hand, the OR nodes can be compromised 
if a single in-neighbor node is compromised. In the 
same way, large exploit and external attack probabilities 
increase the network’s vulnerability.

The conditional probability that the jth node is com-
promised at time step k, given the nodes’ state at time 
step k − 1 , i.e., xk−1 , can be expressed for AND and OR 
nodes as:

• AND nodes: 

• OR Nodes:

where 1b=1 returns 1 if b = 1 , and 0 otherwise. Note 
that the conditional probabilities in (1) and (2) con-
sider both the external (i.e., ρj ) and internal (i.e., ρij ) 
attacks. Meanwhile, using the binary nature of each state 

(1)

P(xk(j) = 1|xk−1) =

ρj + (1− ρj)
i∈Dj

1xk−1(i)=1 ρij if xk−1(j) = 0,

1 if xk−1(j) = 1,

(2)

P(xk(j) = 1|xk−1) =










ρj + (1− ρj)

�

1−
�

i∈Dj

(1− 1xk−1(i)=1ρij)

�

if xk−1(j) = 0,

1 if xk−1(j) = 1,

Fig. 1 An example of a Bayesian attack graph
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variable, the probability that the jth state variable is 0 can be  
computed as: P(xk(j) = 0|xk−1) = 1− P(xk(j) = 1|xk−1).

Observation process: This process represents the way 
network components are monitored for potential threats. 
In practice, routine network monitoring is key in assur-
ing network security and possibly detecting compromises 
in the network. The monitoring process is often labor-
intensive, time-consuming, and costly, which might also 
interrupt or delay the network operations. Hence, a small 
subset of nodes can be monitored at any given time. Most 
available detection techniques for BAGs assume that pos-
sible network compromise at any given node is certainly 
identified if the node is selected for routine monitoring. 
However, given the complexity of attacks/attackers, this 
assumption is likely to be violated, resulting in signifi-
cant security risks in detecting attacks. For instance, the 
monitoring might flag a node as not compromised while 
the node is compromised with an advanced difficult-to-
detect attack.

Let ak−1 = {i1, ..., im} be the indexes of m nodes to be 
monitored at time step k, where {i1, ..., im} ⊂ N  and 
m < n . As indicated in the subscripts, the nodes should 
be selected at time step k − 1 for monitoring at time step 
k. The observation resulting from ak−1 is denoted by yk , 
where yk(i) is the observation from node ak−1(i).

We consider the following model for the observation 
process: (1) if the selected node for monitoring is not 
compromised, the observation will flag not compro-
mised with a probability of 1; (2) if the selected node 
is compromised, the true compromised node will be 
detected with probability (1− q) and will be flagged as 
not compromised with probability q, where 0 ≤ q ≤ 1 . 
Therefore, if the observation from a node is 1 (i.e., 
flagged as ”compromised”), it is definitely intruded; 
however, observing 0 (i.e., flagged as ”not compro-
mised”) does not provide certain information about 
the status of compromises in the monitored node. This 
stochastic observation model can significantly enhance 
the reliability and performance of attack detection. The 
observation process described above can be expressed 
at time step k as:

for i = 1, ...,m . Small values of q model an advanced 
monitoring system where most threats can be identi-
fied, whereas larger values of q correspond to the less 
advanced monitoring systems or domains susceptible to 
more complex threats. It should be noted that the rest of 
the paper holds for any arbitrary observation process of 
form yk ∼ P(y|xk , ak−1) , other than (3).

(3)yk(i) =







1 if xk(ak−1(i)) = 1 w.p. 1− q
0 if xk(ak−1(i)) = 1 w.p. q
0 if xk(ak−1(i)) = 0 w.p. 1

,

Optimal MMSE attack detection for BAGs
Accurate attack detection is crucial for effectively iden-
tifying compromises in network components and taking 
necessary steps to secure the network against potential 
threats. Attack detection is often challenging due to the 
probabilistic nature of attack progression and partial and 
imperfect monitoring of network components. The existing 
attack detection methods do not fully account for imper-
fect monitoring of networks and are built upon commonly 
used criteria for finite-state HMMs, such as maximum 
aposteriori or maximum likelihood  (Liu and Liu 2016; 
Wang et al. 2013; Ma et al. 2022). Inspired by the Kalman 
filtering approach (Welch et al. 1995), which provides the 
exact optimal minimum mean square error (MMSE) state 
estimation solution for linear and additive-Gaussian state 
space models, this paper derives the exact optimal MMSE 
attack detection solution for the general form of BAGs with 
arbitrary distributions. It should be noted that the pro-
posed detectors, described below, are the only exact MMSE 
detection techniques for the entire non-linear and non-
Gaussian state space models (Särkkä 2013).

Let a0:k−1 = (a0, ..., ak−1) be the selected monitor-
ing nodes with associated observations y1:k = (y1, , ...yk) 
between time step 1 to k. The attack detection problem 
consists of estimating the state values of all nodes at time 
step r given {a0:k−1, y1:k} . Note that depending on the 
objective, the detection time r can be the current (i.e., 
r = k ), prior (i.e, r < k ), or future (i.e., r > k ) time step. 
A detected attack x̂r|k = [x̂r|k(1), ..., x̂r|k(n)]

T represents 
the estimated value of the true attacks (i.e., compromises) 
at all nodes xr = [xr(1), ..., xr(n)]

T at time step k. The 
optimal attack detector can be obtained by minimizing 
the following mean squared error (MSE):

where ‖.‖2 is the L2 norm vector and � := {0, 1}n is the 
set of all 2n possible compromise estimators.

Note that, for a Boolean vector |z| , the L1 and L2 norms 
are the same, i.e., �z�2 = �z�1 =

∑n
i=1 |z(i)| . Thus, the 

minimization in (4) can be written as:

where the last expression is obtained by exchang-
ing the summation and expectation. Each term con-
tains an independent estimator for a given node; thus, 
the optimal MMSE attack detector needs to minimize 

(4)x̂MS
r|k = argmin

x̂r|k∈�

E
[

�xr − x̂r|k�2|a0:k−1, y1:k
]

,

(5)

x̂MS
r|k = argmin

x̂r|k∈�

E
[

�xr − x̂r|k�1|a0:k−1, y1:k
]

= argmin
x̂r|k∈�

n
∑

i=1

E
[

|xr(i)− x̂r|k(i)||a0:k−1, y1:k
]

.
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E[|xr(i)− x̂r|k(i)||a0:k−1, y1:k ] , for all i = 1, . . . , n . Given 
the binary nature of each state variable, the minimizer 
can be computed as:

for i = 1, . . . , n , where v(i) = 1 if v(i) > 1/2 and 0 other-
wise, for any vector v ∈ [0, 1]n and i = 1, . . . , n.

Substituting (6) into (5) leads to the following optimal 
MMSE attack detector at time step r:

The expected error of the attack detector in terms of the 
MSE can be computed as:

The ith element in summation in the last line of equation 
(8) can be expressed as:

 Now, substituting (9) into (8) leads to

where the last expression in (10) is obtained by using 
min{a, 1− a} = 1/2− |a− 1/2| , for 0 ≤ a ≤ 1 . Note that 
the 0 ≤ CMS

r|k ≤ n/2 , where the values close to 0 corre-
spond to a small expected error of optimal attack detec-
tor, whereas large values correspond to a less confident 
detection process (i.e., larger expected error).

The following theorem summarizes the results of the 
optimal MMSE attack detector for the general form of 
BAGs.

Theorem 1 Let a0:k−1 be selected monitoring nodes with 
associated observation y1:k between time step 1 to k from 
a Bayesian attack graph. The exact optimal MMSE attack 
detector at time step r can be achieved as:

(6)
x̂MS
r|k (i) =

{

1, if E[xr(i)|a0:k−1, y1:k ] > 1/2,
0, otherwise,

= E[xr(i)|a0:k−1, y1:k ],

(7)x̂MS
r|k = E[xr |a0:k−1, y1:k ].

(8)

CMS
r|k =

n
∑

i=1

E

[

|xr(i)− x̂MS
r|k (i)||a0:k−1, y1:k

]

=

n
∑

i=1

P
(

xr(i) �= x̂MS
r|k (i)|a0:k−1, y1:k

)

.

(9)

P
(

x̂MS
r|k (i) �= xr(i)|a0:k−1, y1:k

)

=

{

1−E[xr(i)|a0:k−1, y1:k ] if E[xr(i)|a0:k−1, y1:k ] > 1/2,

E[xr(i)|a0:k−1, y1:k ] otherwise.

(10)CMS
r|k =

n

2
−

n
∑

i=1

∣

∣

∣

∣

E[xr(i)|a0:k−1, y1:k ] −
1

2

∣

∣

∣

∣

,

with the normalized optimal expected MSE

As noted before, the theorem provides the optimal detec-
tion for past, current, and future, depending on whether 
r < k , r = k , or r > k . In the next section, we will describe 
how the optimal attack prediction can help monitor vul-
nerable components of the network.

Exact matrix‑based computation of optimal MMSE attack 
detector
This section introduces an algorithm for the exact compu-
tation of the optimal MMSE attack detector for BAGs. We 
put all possible network compromises in a single n× 2n 
matrix as:

where x1 to x2n are arbitrary enumerations of possi-
ble network compromises, e.g., x1 = [0, 0, 0, ..., 0]T ,

x2
n

= [1, 1, 1, ..., 1]T . Consider the following state condi-
tional distribution vectors:

for i = 1, . . . , 2n and k = 1, 2, . . . . Let �0|0 be the initial 
attack distribution. This distribution depends on the 
last time the nodes in the network have been re-imaged 
or monitored; for instance, �0|0 = [1, 0, ..., 0]T can be 
used for networks with recently re-imaged nodes, and 
�0|0 = [1/2n, ..., 1/2n]T can be used if not enough infor-
mation about compromises at various nodes exists (i.e., 
each node with 0.5 probability being compromised). Note 
that more complex initial distributions can be used, such 
as larger compromise probabilities for nodes exposed to 
direct external attacks.

Let the transition matrix Mk of size 2n × 2n be the transi-
tion matrix of the Markov chain at time step k as:

for i, j = 1, . . . , 2n ; where

(11)x̂MS
r|k = E[xr |a0:k−1, y1:k ] ,

(12)CMS
r|k =

n

2
−

n
∑

i=1

∣

∣

∣

∣

E[xr(i)|a0:k−1, y1:k ]−
1

2

∣

∣

∣

∣

.

(13)A = [x1, . . . , x2
n
],

(14)
�k|k(i) = P

(

xk = xi|a0:k−1, y1:k

)

,

�k|k−1(i) = P
(

xk = xi|a0:k−2, y1:k−1

)

,

(15)

(Mk)ij = P(xk = xi|xk−1 = xj)

=

n
∏

l=1

(

η
ij
l 1xi(l)=1 + (1− η

ij
l ) 1xi(l)=0

)

,
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Note that 1Nl=AND is 1 if node l is an AND node, and 
the transition probabilities in (15) and (16) are obtained 
according to the conditional probabilities for AND and 
OR nodes in (1) and (2), respectively. Meanwhile, the 
subscript k in Mk denotes that the transition matrix in 
(15) can be time-dependent in general, such as domains 
with changing exploit probabilities or network struc-
ture. Additionally, given that yk is the observation vector 
obtained from nodes ak−1 at time k, we define the update 
vector, Tk(yk , ak−1) , as:

for i = 1, . . . , 2n , where the last expression in (17) is 
derived according to the observation process in (3).

The computation of the predictive posterior probability, 
�k|k−1 , can be achieved using the previous posterior prob-
ability �k−1|k−1 and the transition matrix Mk through:

The posterior distribution of states, �k|k , upon observ-
ing yk at nodes ak−1 can be achieved through the follow-
ing Bayesian recursion (Kumar and Varaiya 2015; Särkkä 
2013):

where ◦ is Hadamard product, and Tk(yk , ak−1) is defined 
in (17).

Using (13) and (14), one can write:

(16)

η
ij
l =1xj(l)=0



ρl + (1− ρl)
�

r∈Dl

1xj(r)=1ρrl



1Nl=AND

+ 1xj(l)=0



ρl + (1− ρl)



1−
�

r∈Dl

(1− 1xj(r)=1ρrl)







1Nl=OR

+ 1xj(l)=1.

(17)

(Tk(yk , ak−1))i = P
(

yk |xk = xi, ak−1

)

=

m
∏

l=1

P
(

yk(l)|xk = xi, ak−1

)

=

m
∏

l=1

P
(

yk(l)|xk
(

ak−1(l)
)

= xi
(

ak−1(l)
)

)

=

m
∏

l=1

∣

∣

∣

∣

(q − 1)xi
(

ak−1(l)
)

− yk(l)+ 1

∣

∣

∣

∣

,

(18)�k|k−1 = Mk �k−1|k−1.

(19)�k|k =
Tk(yk , ak−1) ◦ �k|k−1

�Tk(yk , ak−1) ◦ �k|k−1�1
,

The optimal MMSE attack detector in (11) for r = k can 
be computed as:

with the expected error of the optimal detection accord-
ing to (12) as:

Optimal monitoring policy for BAGs
The proposed attack detection policy in the previous sec-
tion provides the optimal MMSE solution for detecting 
network compromises. However, detection accuracy is 
highly dependent on the available information, i.e., the 
monitored nodes and the observations. Given the com-
plexity and partial observability of network compromises, 
accurate detection requires the best use of available moni-
toring resources. In fact, monitoring should provide the 
most valuable information about network compromises 
to enhance the accuracy of detection, especially in sensi-
tive domains where inaccurate attack detection could put 
the network at risk. It is worth mentioning that the selected 
monitoring nodes not only provide information about the 
compromised status at those nodes but also valuable infor-
mation about all neighboring nodes and the nodes with a 
feasible path to the currently selected nodes. Therefore, a 
holistic network-based approach for selecting monitoring 
nodes is essential. Toward this, the proposed monitoring 
policy, described below, is derived to optimally support the 
proposed attack detection policy’s performance.

This paper proposes a systematic and optimal solution to 
enhance the detection accuracy by sequentially monitoring 
the network components. Let {a0:k−1, yk} be the selected 
monitoring nodes and observations up to time step k. The 
goal is to select the best m nodes, i.e., ak ⊂ N  , that maxi-
mize the attack detection accuracy in the next step. This 
can be expressed using the prediction capability of the 
optimal MMSE attack detection discussed in Theorem  1. 
Let x̂MS

k+1|k be the optimal MMSE attack predictor at time 
step k + 1 given the observation up to time step k. Then, 
the optimal subset of nodes yielding the highest attack 

A�k|k =







E[xr(1)|a0:k−1, y1:k ]
...

E[xr(n)|a0:k−1, y1:k ]







x̂MS
k|k = A�k|k .

(20)CMS
k|k =

n

2
−

n
∑

i=1

∣

∣

∣

∣

(A�k|k)i −
1

2

∣

∣

∣

∣

.
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prediction error can be formulated through the following 
optimization problem:

where the expectation is with respect to unobserved state 
xk+1 . The solution to the optimization in (21) guaran-
tees to achieve the minimum expected MSE error (or the 
highest detection accuracy) in the next time step. Mean-
while, the policy in (21) can also be interpreted as moni-
toring a subset of nodes most likely to be miss-detected 
in the next step. This assures optimal use of available 
resources for monitoring the vulnerable parts of net-
works given the latest information. The optimal MMSE 
predictor x̂MS

k+1|k can be obtained according to Theorem 1 

as: x̂MS
k+1|k = E[xk+1(i)|a0:k−1, y1:k ] . Using Theorem 1, the 

expression in (21) can also be further simplified as:

 The last expression can be interpreted as selecting nodes 
with the expected predictive value closer to 1/2. The min-
imum value of 

∣

∣

∣
E[xk+1(i)|a0:k−1, y1:k ]−

1
2

∣

∣

∣
 is 0, which 

represents scenarios that the attack detection error is 
predicted to be the largest at node i in the next time step.

Using the current posterior distribution as �k|k , the exact 
vector-form computation of the last expression in (22) can 
be expressed as:

Regarding the computational complexity of the policy 
in (23), one should note that the search space in the 
argument of argmin does not demand searching over 
all m combinations of n nodes. In fact, one can com-
pute the expected predictive error for all nodes as: 
si = |(A�k+1|k)i −

1
2 | , for i = 1, .., n ; then, m nodes with 

the minimum si can be selected for monitoring purpose. 

(21)

ak= argmax
a={i1,..,im}⊂N

∑

i∈a

E

[

|xk+1(i)− x̂MS
k+1|k(i)||a0:k−1, y1:k

]

,

(22)

ak = argmax
a={i1,..,im}⊂N

∑

i∈a

E

[

|xk+1(i)− x̂MS
k+1|k(i)||a0:k−1, y1:k

]

= argmax
a={i1,..,im}⊂N

m

2
−

∑

i∈a

∣

∣

∣

∣

E[xk+1(i)|a0:k−1, y1:k ] −
1

2

∣

∣

∣

∣

=argmin
a={i1,..,im}⊂N

∑

i∈a

∣

∣

∣

∣

E[xk+1(i)|a0:k−1, y1:k ]−
1

2

∣

∣

∣

∣

.

(23)ak = argmin
a={i1,..,im}⊂N

∑

i∈a

∣

∣

∣

∣

(A�k+1|k)i −
1

2

∣

∣

∣

∣

.

Meanwhile, the predictive posterior probability �k+1|k 
can be simply computed through current posterior prob-
ability �k|k in real-time.

For domains with flexible available resources, the num-
ber of nodes for monitoring can be selected adaptively 
at any given time. In this scenario, the size of ak−1 could 
be set according to the extent of network vulnerabilities 
and the targeted detection accuracy. Assuming the objec-
tive is to keep the miss-detection rate for all nodes below 
100α %, where 0 ≤ α ≤ 0.5 . This can be achieved by mon-
itoring all nodes that their expected predictive errors 
exceed α as:

 If the expected predictive errors for all nodes fall below 
α , the monitoring can be skipped in the next step; how-
ever, if expected predictive errors for several nodes are 
higher than α , up to m of those nodes should be moni-
tored in the next time step. The expected predictive error 
for each node takes a value between 0 and 1/2; thus, a 
smaller value of α employs more extensive monitoring to 
assure accurate detectability of the entire network. Fur-
thermore, if accurate detection is necessary at certain 
parts of the network, a smaller α can be used for corre-
sponding nodes.

The detailed steps of the proposed optimal MMSE 
attack detection and monitoring policy for BAGs are 
provided in Algorithm  1. The algorithm progresses 
sequentially; a new monitoring set is selected, and the 
corresponding observations are used for detection in 
the next step. The algorithm’s computational com-
plexity is of order O(22n) due to the transition matrix 
involved in updating the attack posterior distribution. 
The size of the transition matrix grows exponentially 
with the number of components in the network. As a 
result, it is not possible to compute the attack poste-
rior distribution exactly, preventing the applicability 
of the proposed monitoring and detection policies in 
large BAGs. Therefore, our future work will focus on 
developing scalable particle filtering approaches capa-
ble of approximating these optimal monitoring and 
detection policies. The binary structure of the state 
variables in BAGs will be exploited to achieve approxi-
mate MMSE optimality while remaining computation-
ally efficient.

(24)

ak = argmax
a={i1,..,im}⊂N

∑

i∈a

(

1

2
−

∣

∣

∣

∣

(A�k+1|k)i −
1

2

∣

∣

∣

∣

)

>α.
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Numerical experiments
The numerical experiments in this section evaluate 
the performance of the proposed attack detection and 
monitoring policies. The five methods considered for 
our comparison are: (1) All nodes monitoring, (2) Pro-
posed Adaptive Resource Monitoring; (3) Proposed 
Fixed Resource Monitoring; (4) Random Monitoring, 
and (5) Fixed Nodes Monitoring. The first algorithm 
represents the baseline results, where all nodes are 
monitored at all time steps. The results obtained by 
this method specify the lower bound error and higher 
bound accuracy achievable by other methods with lim-
ited monitoring resources. For the third, fourth, and 
fifth methods, the number of monitoring nodes is m 
at any given time, whereas, for the second method, the 
maximum number of monitoring nodes is set to be m. 
In the fixed node monitoring policy, a fixed set of ran-
dom nodes are used for monitoring purposes through-
out the process. In the random policy, a random subset 
of m nodes is selected at each time step for monitoring 
purposes. All the results represented in the numerical 
experiments are averaged over 100 independent runs 
obtained for trajectories of length 10. Three important 
metrics used for performance assessments are aver-
age accuracy, error, and total error of attack detection, 
which can be expressed as:

where xtk and x̂tk are the true and detected compromises 
at time step k in the t-th trajectory respectively.

Average accuracy of attack detection at time k :

1

100

100
∑

t=1

1xtk=x̂tk
,

Average error of attack detection at time k :

1

100

100
∑

t=1

�xtk − x̂tk�1

Total average error of attack detection :

1

100

10
∑

t=1

10
∑

k=1

�xtk − x̂tk�1,

Fig. 2 The 10-node BAG used for the first set of experiments
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Experiment 1—10‑Nodes BAG
In this part of the experiments, we consider detect-
ing attacks in the network used in  Hu et  al. (2020) 
and shown in Fig.  2. The BAG consists of 10 nodes, 
resulting in 210 = 1,024 different possible states (i.e., 
network compromises). A uniform prior is con-
sidered for the initial network compromise, i.e., 
�1|0(i) = 1/210, i = 1, ..., 210 . The measurement noise 
is set as q = 0.2 , and the maximum desired detection 
error is set as α = 0.15 . The network vulnerabilities 
indicated by ρij can be represented by:

Three nodes are susceptible to external attacks, repre-
sented through the following parameters:
ρ1=0.6900, ρ2=0.6200, ρ3=0.5300 . In the first experi-

ment, the number of monitoring nodes m is set as 2. 
The average detection accuracy and error are shown in 
Fig. 3. As expected, the highest accuracy rate is obtained 
by the baseline method, where all nodes are monitored 
at all time steps. The accuracy of the proposed adaptive 
resource and the proposed fixed resource monitoring 
policies are closer to the baseline and empirically con-
verge to the baseline as time progresses. The results of 
the fixed nodes and random node monitoring policies 
are significantly lower than the proposed methods, which 
demonstrates the importance of intelligent node moni-
toring for enhancing attack detection accuracy. In par-
ticular, after 10 time-steps, the average accuracy of attack 

ρ14=0.5700, ρ24=0.5700, ρ34=0.5700, ρ35=0.4329, ρ46=0.8054,

ρ47=0.7722, ρ56=0.8054, ρ57=0.7722, ρ58=0.3549, ρ68=0.3549,

ρ69=0.3400, ρ6 10=0.3811, ρ78=0.3549, ρ7 10=0.3811.

detection by the proposed policies is above 86%, which is 
much higher than 72% obtained by the random, and 46% 
obtained by the fixed nodes monitoring policies. Similar 
results can be seen in Fig. 3b in terms of the average error 
of attack detection obtained by various methods.

The average number of monitored nodes under various 
policies is shown in Fig.  4. For the random monitoring 
policy, all nodes are almost monitored equally, whereas, 
under the proposed policies, nodes 8, 10, 9, and 5 have 
been monitored more often. These imbalanced moni-
toring of nodes come with better accuracy of detection, 
represented in Fig.  3. One can see a significantly less 
number of monitored nodes under the proposed adap-
tive resource monitoring policy compared to the fixed 

Fig. 3 The average attack detection accuracy and error obtained for 10-node BAG by various policies

Fig. 4 The average number of monitoring each node obtained for 
10-node BAG by various policies
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resource monitoring policy. In particular, nodes 1, 2, 3, 4, 
6, and 7 are selected significantly less under the proposed 
adaptive resource policy. Despite much lower monitoring 
under this policy, similar performance is obtained by the 
proposed adaptive resource monitoring policy compared 
to the fixed resource monitoring policy (see Fig. 3). The 
results imply that the proposed monitoring policies can 
monitor nodes that enhance the detection of the entire 
network’s compromises.

In this part of the experiment, we analyze the impact 
of the number of monitoring nodes on the performance 
of the proposed policies. Figure  5a represents the aver-
age total error obtained by various methods with respect 
to the available number of monitoring resources, i.e., m. 
The minimum average error is obtained by the proposed 
policies in all conditions. The total error decreases for all 
methods as more monitoring resources are available; in 
particular, for m = 10 , the error of all methods becomes 

Fig. 5 The average attack detection error and the total monitored nodes with respect to available resource m obtained for 10-node BAG by various 
policies

Fig. 6 The average attack detection error and the number of monitoring nodes for m = 1, 4 and 9 with respect to the time obtained by the 
proposed monitoring policies
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the same, as all nodes can be monitored given the avail-
able resource (except for the adaptive resource monitor-
ing that might use fewer monitoring nodes). Figure  5b 
represents the used resources (i.e., the total number of 
monitored nodes) by all policies. As more resources 
become available, the average number of monitoring 
nodes increases for all methods. However, the proposed 
adaptive resource monitoring policy uses significantly 
fewer monitoring resources while yielding the same 
average error as the proposed fixed resource monitor-
ing policy and a much lower average error than the other 
two policies. This comes from the capability of the pro-
posed adaptive resource monitoring policy to properly 
use available resources if the expected detection error 
exceeds the desired detection error α = 0.15 . Therefore, 
considering average error and used resources, the best 
results are obtained for the proposed adaptive resource 
monitoring policy.

To better analyze the proposed method’s efficiency in 
using available resources, we represent the average accu-
racy and monitored nodes with respect to the time step. 
Fig 6 contains the results of proposed adaptive resource 
and fixed resource monitoring policies for m = 1, 4 , and 
9. As shown in Fig  6(a), the average detection accuracy 
is similar for both policies for any given m and increases 
as more information becomes available. When larger 
resources are available (i.e., larger m), the performance 
of both policies converges to the baseline approach (all 
nodes monitored). Figure 6b compares the average num-
ber of monitored nodes employed by both policies for 
various m values. The proposed fixed resource policy 

monitors a fixed number of m nodes at any given time, 
whereas the number of monitored nodes decreases sig-
nificantly as more information becomes available. A 
larger number of nodes monitored in the first step comes 
from the uniform prior distribution of compromises; 
however, as time progresses and more information is 
acquired, the monitored nodes significantly reduce and 
converge to an average of 1.2 in all conditions. Therefore, 
comparing the accuracy and the employed resources on 
the left and right side of Fig. 6, one can see that the adap-
tive resource policy reduces resource consumption with-
out significantly impacting detection quality.

The impact of the monitoring or measurement noise on 
the performance of the proposed policies is analyzed in 
this section. The measurement noise represents the like-
lihood of miss identifying compromises in the network. 
A larger measurement noise models a less-advanced 
monitoring process or the existence of new or difficult-
to-detect attacks. Figure 7a represents the average detec-
tion error obtained for 100 trajectories of length 10 with 
respect to measurement noise. As expected, the aver-
age error increases for all methods as the level of noise 
increases. This is due to the inaccuracy of identifying 
potential attacks during monitoring, which degrades 
detection accuracy. As expected, the minimum aver-
age error is obtained by the baseline policy. For a spe-
cific case of q = 1 , which represents the extreme case 
of miss-monitoring all compromises in the network, the 
maximum total error is achieved for all methods. How-
ever, for smaller values of measurement noise, the pro-
posed fixed resource and adaptive resource policies yield 

Fig. 7 The average error of attack detection and the number of monitored nodes with respect to the measurement noise q obtained by various 
policies
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significantly smaller average errors than other policies. 
This again demonstrates the capability of the proposed 
policies in effectively monitoring nodes under easy-to-
detect and difficult-to-detect attacks. Figure  7b demon-
strate the average total number of monitored nodes for 
the proposed methods. Similar to previous results, the 
average number of monitored nodes is much smaller by 
the proposed adaptive resource policy. The reduction 
becomes less visible for larger measurement noise since 
more monitoring is needed to achieve the desired detec-
tion accuracy.

In this part of the experiment, we compare the per-
formance of the proposed monitoring policy with that 
of the tree-based monitoring approach  (Noel and Jajo-
dia 2008) and the probabilistic vulnerability assessment 
approach  (Dantu et  al. 2004). The tree-based approach 
simulates the most probable attack path and selects moni-
toring nodes with the highest vulnerabilities on the path. 

The probabilistic vulnerability assessment approach selects 
nodes with the highest expected increase in the compro-
mise probability, which represents the most vulnerable 
nodes in the network. Figure  8 shows the performance 
of attack detection under various monitoring policies for 
m = 2 and q = 0.2 . The proposed monitoring policy out-
performs the other methods and achieves the highest 
detection accuracy and minimum detection error. Both 
the tree-based and probabilistic monitoring policies can-
not fully detect the system even under larger data. This is 
due to the fact that these methods aim to select nodes with 
the highest vulnerability, whereas the proposed monitoring 

Fig. 8 The average attack detection accuracy and error obtained for 10-node BAG by proposed monitoring policy and two other monitoring 
policies

Fig. 9 The 13-node BAG used for the second set of experiments

Fig. 10 The average attack detection accuracy with respect to the 
time step obtained by various policies
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policy can optimally allocate resources by monitoring 
nodes that are most likely to be miss-detected in the next 
time step.

Experiment 2—13‑Nodes BAG
For the second part of our experiments, we analyze the 
attack detection and monitoring for a network depicted 
in Fig.  9. This network consists of 13 nodes, leading to 
213 = 8,192 possible compromise states. A uniform prior 
state distribution is considered for our experiments with 
q = 0.2 , α = 0.15 , and m = 1 . The network consists 
of five external attacks with the following parameters: 
ρ1=0.60, ρ2=0.50, ρ3=0.40, ρ4=0.70, ρ6=0.30 . The 
network internal vulnerabilities ρij can be represented by:

The average detection accuracy with respect to the 
time step obtained by various policies is shown in Fig. 10. 
The highest accuracy is obtained by the proposed poli-
cies, which ultimately converges to the baseline method 
as more data becomes available. It should be noted that 
the maximum number of monitoring nodes is set to be 
m = 1 in this network with 13 nodes. Therefore, the con-
vergence of the proposed policies’ average accuracy to 
the baseline policy (with all nodes monitored) represents 
the capability of the proposed policies in the intelligent 

ρ15=0.50, ρ21=0.60, ρ25=0.50, ρ26=0.30, ρ36=0.30,

ρ37=0.20, ρ3 10=0.10, ρ43=0.40, ρ4 12=0.40, ρ56=0.30,

ρ58=0.30, ρ59=0.20, ρ68=0.30, ρ7 12=0.40, ρ87=0.20

ρ89=0.20, ρ8 12=0.40, ρ10 12=0.40, ρ11 9=0.20, ρ11 12=0.40,

ρ12 13=0.80, ρ13 4=0.70, ρ13 11=0.60.

node selection. Finally, by comparing the results for fixed 
nodes and random monitoring policies, one can under-
stand that non-systematic monitoring does not reveal 
network vulnerabilities and can lead to a huge error in 
attack detection.

The impact of the maximum desired detection error 
in the adaptive resource monitoring policy is analyzed 
here. The parameter α indicates the maximum accept-
able detection error for any given node. The proposed 
policy monitors up to m nodes with the expected predic-
tive error exceeding the α value. The average result for 
m = 1 and α ranging between 0 and 0.5 is presented in 
Fig 11. As shown in Fig 11a, the average detection error 
increases as the value of α increases. The reason is that 
a larger α value represents a more acceptable detection 
error, which consequently appears in terms of a larger 
detection error. The results of all monitoring policies 
(except adaptive resource monitoring) are shown as hori-
zontal lines in Fig. 11a. These policies do not rely on α.

Figure 11b compares the average number of monitored 
nodes obtained by both policies. The proposed adap-
tive resource monitoring uses smaller resources than the 
fixed resource monitoring policy. For very small values of 
α , the average number of monitored nodes by both poli-
cies are similar, but as the value of α increases, the aver-
age number of monitored nodes decreases significantly 
for the proposed adaptive monitoring policy. Finally, as 
shown in the results obtained over the 10-node BAG, 
selecting a reasonable value for α according to the sen-
sitivity of the miss-detection (e.g., α = 0.15 ) often leads 
to a good balance between the accuracy and the use of 

Fig. 11 The average attack detection error and the average number of monitored nodes with respect to the maximum desired detection error α
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available resources. Finally, one could choose α specific 
for any given nodes in domains where detecting attack at 
specific nodes has higher priority over other nodes.

Conclusion
In this paper, we developed optimal monitoring and 
attack detection methods for the general form of Bayes-
ian attack graphs (BAGs). Our approach takes into 
account sparse and imperfect monitoring techniques, 
which differ from most existing attack detection tech-
niques. The proposed policies yield the exact minimum 
mean square error (MMSE) optimality by exploiting 
the binary structure of nodes in the graph. Optimal 
sequential monitoring is achieved by selecting a subset 
of nodes that lead to the highest detectability of net-
work compromises or, equivalently, the least network 
vulnerability. The exact matrix-form algorithms for 
the proposed monitoring and detection policies were 
introduced in this paper. The performance of the pro-
posed methods was demonstrated using comprehen-
sive numerical experiments. Our future work will focus 
on scaling the proposed attack detection and network 
monitoring policies to large networks and deriving 
policies for intelligently defending the network against 
potential attacks.

Abbreviations
BAG  Bayesian attack graph
MSE  Mean squared error
MMSE  Minimum mean square error
HMM  Hidden Markov model
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