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Abstract 

Hiding secret data in digital multimedia has been essential to protect the data. Nevertheless, attackers with a stega-
nalysis technique may break them. Existing steganalysis methods have good results with conventional Machine 
Learning (ML) techniques; however, the introduction of Convolutional Neural Network (CNN), a deep learning para-
digm, achieved better performance over the previously proposed ML-based techniques. Though the existing CNN-
based approaches yield good results, they present performance issues in classification accuracy and stability in the 
network training phase. This research proposes a new method with a CNN architecture to improve the hidden data 
detection accuracy and the training phase stability in spatial domain images. The proposed method comprises three 
phases: pre-processing, feature extraction, and classification. Firstly, in the pre-processing phase, we use spatial rich 
model filters to enhance the noise within images altered by data hiding; secondly, in the feature extraction phase, we 
use two-dimensional depthwise separable convolutions to improve the signal-to-noise and regular convolutions to 
model local features; and finally, in the classification, we use multi-scale average pooling for local features aggregation 
and representability enhancement regardless of the input size variation, followed by three fully connected layers to 
form the final feature maps that we transform into class probabilities using the softmax function. The results identify 
an improvement in the accuracy of the considered recent scheme ranging between 4.6 and 10.2% with reduced 
training time up to 30.81%.

Keywords Information security, Spatial domain steganalysis, Deep learning, Convolutional neural network, 
Infrastructure

Introduction
In this cyber era, data transmission within various digi-
tal media through public networks plays a capital role in 
covert communication. With a public network, the com-
municating sides must ensure security to keep the data 
private and confidential (Ahmad and Fatman 2022). It 
is because when the data are accessed unwantedly by a 
third party, severe security problems may happen, hence 
research to conceal the secret data in various media 

types, such as images, audio, and videos, has been car-
ried out (de La Croix et  al. 2022b; Prayogi et  al. 2021). 
Concealing data in digital media, also known as steg-
anography, proved an outstanding contribution to cov-
ert data transmission in public networks (de La Croix 
et  al. 2022a; Nissar and Mir 2010). The success of steg-
anography served as a valuable enabler to malicious data 
transmission that can harm society through illegal plan 
accomplishment. To address the problem of possible cov-
ert transmission of harmful data, a counter-steganogra-
phy technique named steganalysis has been proposed to 
inspect the integrity of digital media and prevent illegal 
parties from misusing steganography (Ferreira et al. 2020; 
Hussain et  al. 2020; Tabares-Soto et  al. 2021). Figure  1 
illustrates the connection between steganography and 
steganalysis concepts using images.
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Various ML techniques have been proposed for stega-
nalysis have been proposed (Liu et al. 2020; Lopez-Her-
nandez et al. 2008; Płachta et al. 2022; Selvaraj et al. 2021; 
Shankara and Upadhyay 2019) to use two stages namely 
the feature extraction and classification without back-
ward communication between the stages. The feature 
extraction phase models the distortion in an image, and 
the classification phase tries to reveal the existence of a 
steganographic payload in a particular image and prob-
abilistically concludes whether it is a cover or a stego 
image (Alsabhany et al. 2020). However, the steganalysis 
techniques proposed based on ML algorithms did not 
achieve promising performance for the overall steganaly-
sis tasks due to the general logic of the ML techniques, 
as illustrated in Fig.  2, which demonstrates the distinc-
tion between the ML and deep learning (DL) schemes. 
Recently, to improve the steganalysis results in general, 
research works used DL models to design new schemes 
to perform steganalysis tasks in digital images. DL-based 
steganalysis schemes include deep neural networks 
(DNN) and convolutional neural networks (CNN), which 
unify the feature extraction and classification opera-
tions in a single phase (Hussain et  al. 2020). The CNN-
based methods demonstrated that the feature extraction 
phase improved the performance of models’ genera-
tion for image classification (Ikhlayel et al. 2019), which 
made a meaningful contribution to improving the stega-
nalysis results (Shehab and Alhaddad 2022). However, 
the previously proposed methods still have gaps in the 

classification accuracy and training phase stability to be 
addressed in further research (Rahman et al. 2020; Xiang 
et al. 2020).

In this paper, we propose a new CNN architecture 
enlightened by the existing research to improve the 
performance of the previously proposed steganaly-
sis schemes. Figure  3 illustrates the main phases of the 
method we propose. We use a pre-processing layer to 
apply the filters to slice through the pixels of an input 
image and then apply the traditional and depthwise con-
volutions with average pooling in the feature extraction 
phases. In the classification phase, we use multi-scale 
average pooling under the spatial pyramid pooling (SPP) 
paradigm, with a succession of three fully connected lay-
ers and a softargmax, a normalized exponential function 
known as the softmax function.

Our CNN achieves better performance in stegano-
graphic payload detection accuracy and training stability, 
and the following characteristics distinguish the pro-
posed CNN from the previously proposed CNNs:

(1) We use two-dimensional (2D) depthwise separable 
convolutions to prevent issues of kernels that can 
be skipped for residuals spatial and channel correla-
tion and signal-to-noise ratio (SNR) in the training 
stage with the main benefit of accuracy enhance-
ment. Moreover, we use this convolution type to 
prevent overfitting because they have fewer param-
eters than the traditional convolutional layers.

Fig. 1 Steganography and passive steganalysis

Fig. 2 ML-based versus DL-based steganalysis scheme in digital images
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(2) We use the leaky rectified linear unit (LReLu) for 
non-linearity. The LReLu avoids the vanishing gra-
dients by setting the negative values to small posi-
tive values that make backward communication 
possible by always keeping the model weights posi-
tive. Based on the fast convergence achieved with 
LReLu, the network converges fast and improves 
the training stability.

(3) We use multi-scale pooling to compact the feature 
maps regardless of the previous size. The advantage 
of using multi-scale pooling is to keep the spatial 
information of various sizes from the earlier layers 
and enhance feature expression, which contributes 
to the classification phase.

The following parts of this paper are arranged in sec-
tions as follows. “Related works” section discusses the 
general frameworks of image steganalysis and the related 
works in spatial domain image steganalysis. We describe 
our method in “Proposed method” section, and “Experi-
mental setup and results” section presents the experi-
mental setup, obtained results, and their discussion, 
followed by “Conclusion” section, which concludes our 
article.

Related works
In this paper, we primarily focus on studying steganaly-
sis in digital images. Generally, the problem of detecting 
the possible hidden massage in digital images was pre-
viously addressed using ML; however, the introduction 
of DL significantly improved the steganalysis results in 
digital images. The ML-based steganalysis approaches 
are known as two-phased approaches because of sepa-
rating the feature extraction and classification into two 
phases. Based on Fig.  2 in “Introduction” section, it is 
identified that the ML-based classification stage con-
sists of using a classifier such as SVM or ensemble clas-
sifiers to learn from the feature vector from the feature 

extraction stage. Though the ML-based steganalysis 
algorithms achieve promising results, these approaches 
have improved the detection accuracy by introducing 
the DL-based approaches.

The introduction of DL-based approaches, namely the 
DNNs and CNNs to steganalysis (Płachta et  al. 2022), 
tried to improve the performance of the ML-based algo-
rithms by learning the relevant features (Tabares-Soto 
et  al. 2020). Randomly training CNN does not achieve 
good network convergence and stability performance. 
Therefore, a steganalysis CNN should be customized 
to include the domain knowledge for the steganalyzer 
(Guttikonda & Sridevi 2019). The main design of a 
steganalysis CNN comprises three modules: the pre-
processing module, the feature extraction module, and 
the classification module (Tereshchenko et al. 2021).

The existing steganalysis CNNs have some features in 
common in terms of architecture. However, the meth-
ods to detect possible secret messages hidden in spatial 
images differ based on the architectures and the setting 
of the hyperparameters. This part describes the archi-
tectures of the four most recent CNNs for steganaly-
sis, namely the Ye-Net (Ye et  al. 2017), Yedroudj-Net 
(Yedroudj et al. 2018), Zhu-Net (Zhang et al. 2020), and 
GBRAS-Net (Reinel et al. 2021).

The Ye-Net (2017), enlightened by the previously 
proposed works, used Spatial Rich Models (SRM) fil-
ter banks to pre-process images, eight layers for a 
convolutional module, and applied Truncation Linear 
Unit (TLU) as an activation function. To identify the 
steganographic noise, this model does not implement 
the traditionally used HPF but implements the HPFs 
to calculate the SRM residual maps. The results from 
SRM help in the initialization of the filters. Channel 
selection knowledge is involved in improving the per-
formance, and an approach known as transfer learning 
got from training resulted in networks being used to 
train another network.

Fig. 3 General architecture of the network with the proposed method
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Referring to the work of Ye et  al., the network by 
Yedroudj et  al. (2018) was implemented by reusing 
some features of the existing CNNS, such as SRM-
based filter banks, TLU, and Batch Normalization 
(BN) activation functions, and convolutional layers. 
This model mainly implements the features of Ye-
Net and Xu-net by implementing HPF for SRM-based 
pre-processing. TLU is applied in two layers, and BN 
is used after all convolutional layers of the next stage 
after pre-processing, feature extraction. Average pool-
ing is also involved with some convolutional layers.

Inspired by Ye-Net and Yedroudj-Net, a network by 
Zhang et  al. (2020) was presented with the main fea-
ture of the reduced filter size for a convolutional layer 
that decreases the parameters and characteristics of 
the previous CNNs’ architectures. The residual chan-
nel and spatial data are correlated using two separa-
ble convolutions, image content is compressed, and 
the SNR is increased. The network availed by Zhu 
used SRM filter banks for the pre-processing stage. It 
implemented Spatial Pyramid Pooling (SPP) for fea-
ture rendering improvement, adding local features and 
admission of varied sizes images.

Moreover, with enlightenment from the previously 
proposed works, (Reinel et al. 2021) presented a CNN 
with a pre-processing stage of 30 non-trainable SRM 
filter banks. Using nine layers, CNN applied ELU as an 
activating function, proving it to be the best-perform-
ing network compared to the previous one. In addition, 
GBRAS-Net implemented two skip connections and 
four convolutional layers of average pooling of dimen-
sion two with stride two. This network introduced 
eight convolutions, four separable layers, and four 
depth-wise layers, contributing to the steganographic 
noise detection efficiency. To prevent the overfitting 
behaviour with GBRAS-Net, use a global average pool-
ing layer that precedes the use of Softmax. Before the 
binary classification stage, this network applied a layer 
for global average pooling.

In this work, we propose a CNN that aims to 
improve the existing CNNs in detecting the presence 
of hidden messages in spatial domain images. Our 
improvement focuses on the convolutional operations 
that result from the types of layers, non-linearity, and 
normalization functions to enhance the feature extrac-
tion. Moreover, the classification phase focuses on 
the features modelling and compilation efficiency to 
improve the classification phase.

Proposed method
Architecture
The proposed CNN focuses on classifying images into 
one of the two probabilistic classes (stego or cover). The 

input of our CNN is a digital image of size 256× 256, 
which is manipulated through several layers to be clas-
sified as a stego or cover. Referring to an illustration of 
our CNN in Fig. 4, we start by pre-processing the input 
image, followed by four depthwise separable convolu-
tional operations, which are performed through two 
distinct operations per each, namely the depthwise con-
volutions and pointwise convolutions, and seven regular 
convolutional layers operations in the feature extraction 
stage. In the classification stage, we use a multi-scale 
pooling module to moderate the features to an adaptable 
size and feed them to three fully connected layers, fol-
lowed by a softmax function for probability classification.

Pre‑processing phase
In the pre-processing phase, we use the small kernels 
to reduce the modelling regions and the parameters to 
reduce the calculations. Referring to the design of con-
volutional kernels in Reinel et  al. (2021), which shows 
that SQUARE5× 5 and EDGE5× 5 filters in the SRM 
filter banks require to be of kernel size 5× 5 , we adopt 
two kernel sizes, namely, 5× 5 , 3× 3 in this phase. We 
keep the kernel size to 5× 5 for the SQUARE5× 5 and 
EDGE5× 5 filters and set 3× 3 to other 25 SRM high 
pass filters to model the residual data in the local region. 
We multiply the residual elements by the filter banks to 
obtain the pre-processing output channels that serve as 
input to the feature extraction phase, and the filter slides 
one step, which is called stride (1, 1) . To keep the same 
size between the input and the output matrices of pix-
els, we use the padding by zero to fill in the gaps, set as 
padding the same. To expand the model’s possibilities, 
we apply tangent hyperbolic (3TanH) to serve as a non-
linear layer that improves the non-linearity to make our 
deep network efficient and increase the convergence 
of the network. The kernel values are not optimized or 
learned in this stage to target a reduced training time.

Feature extraction phase
In the feature extraction phase, we use the two-dimen-
sional (2D) depthwise separable convolutional com-
bined with regular convolution layers. Taking advantage 
of depthwise separable convolutions that enhance the 
model expressiveness by reducing the storage size and 
separating the correlation between channels, we use 
four depthwise separable convolutions grouped in two 
pairs. Based on the general paradigm of the depth-
wise separable convolutions, (1) is used to express the 
depthwise convolution set as 3× 3 and (2) to express 
the pointwise convolution set as 1× 1 . The depthwise 
convolution captures the channel correlations, and the 
pointwise convolutional operation captures the spatial 
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correlations in the image’s residuals. The output feature 
map F  of the depthwise convolution K  of size 3× 3 is 
obtained by applying K  to each input channel of the 
feature map I  . The final output feature maps of the 
depthwise separable convolution are equivalent to the 
output of the pointwise convolution that applies a 1× 1 
convolution K′ to generate a combined output F′ of the 
depthwise convolution.

(1)Fk ,l = Ki,j · Ik+i,l+j

Though the depthwise separable convolutions usu-
ally do not need non-linearity for implementation, 
we improve the learning efficiency by applying the 
LeakyReLu function as of (3) after the pointwise con-
volution to improve the non-linearity and a batch nor-
malization (BN) layer to normalize the feature maps 
distribution. LReLu prevents the vanishing gradients by 
turning the slopes m with negative values into small but 

(2)F ′
k ,l =

∑

Km,n · Fk−1,l−1

Fig. 4 Schema of the proposed CNN
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positive values by multiplying it by a coefficient α, and 
the BN.

The regular convolutional layers we use in our CNN 
apply the kernels of size 3× 3 with a slide step of size 
(1, 1) . To keep the same size between the input and out-
put feature maps, we pad the output with zeros by setting 
the layer as padding the same. To normalize the distribu-
tion of the mini batches to unit variance and zero mean 
in the training phase, we use BN that prevents the van-
ishing or exploding gradients that may result in overfit-
ting in the network. The BN contributes to increasing the 
learning rate that speeds up the network convergence.

In addition, as in the Depthwise separable convolu-
tional blocks, we use LReLu in the regular convolutional 
blocks for non-linearity improvement and to facilitate 
forward and back propagation. To address the problem 
of the sensitivity of the output feature maps to locate the 
features in the input, we use the average pooling opera-
tion to reduce the size of the feature maps, known as 
downsampling. The down-sampled feature maps present 
more robustness against the changes in the positions of 
the features, technically known as local translation invar-
iance (Hussain et al. 2020). Moreover, average pooling is 
preferred because it efficiently enhances the ability of the 
network to generalize the feature maps.

Classification phase
In the classification phase, we use multi-scale average 
pooling to model the feature maps to a standard scale 
from the feature extraction phase, which is crucial for a 
steganalysis network. To compile the feature maps from 
the SPP module used in modeling through average pool-
ing, we use three successive fully connected layers. The 
output of the last fully connected layer is supplied to the 
softmax function to transform the features yielded into 
the probabilistic classes.

The feature classification phase of our network uses 
multi-scale pooling, considered an improved approach 
of SPP to compute the full feature maps of an image and 
the features in a pool of arbitrary size to generate fixed-
length features to be input to the fully connected lay-
ers. Like (Zhang et  al. 2020), we split the feature maps 
into different bins, and in each bin, we used the average 
pooling paradigm to pool the results of feature maps. 
Our pool is of a type 3-scale pyramid pool of sizes (4, 4) , 
(2, 2) , and (1, 1), which makes a total of 21 bins got by 
4 × 4 + 2× 2+ 1× 1 for a single feature map. Based on 
the number n of feature maps generated from the last 
convolutional layer of the classification phase, we supply 
to the fully connected layer a vector of size 21× n . We 

(3)m =

{

mifm ≥ 0

αmOtherwise
.

connect the feature maps supplied to the fully connected 
layers to every activation unit of three successive layers to 
multiply them by a weight matrix and add a bias vector to 
form the vector output −→ai  Which is then converted into 
probabilistic classes (cover or stego) from the probabil-
istic distribution of value resulting from the normalized 
exponential function σ

(

�a
)

 as of (4), otherwise called soft-
max function.

Comparison of our method with the existing methods
To compare our method to the state-of-the-art, in this 
subsection, we consider the features of the networks 
proposed in Ye-Net, Zhu-Net, and GBRAS-Net. These 
three CNNs have been selected because they are among 
the recent ones and are the most highlighted in the cur-
rent literature based on their promising performances. 
The following list shows the similarities and differences 
between our CNN and the existing CNNs.

(1) The Ye-Net, Zhu-Net, and GBRAS-Net accept 
input images of the size 256× 256 . The net-
work we propose also uses input images of the 
size 256× 256 , which is the first similarity of our 
method to the existing ones. For the pre-process-
ing phase, two CNNs, Ye-Net and Zhu-Net, apply 
30SRM filter banks as trainable filters, and GBRAS-
Net uses SRM Filter banks but as non-trainable fil-
ters. The proposed CNN adopts the same fashion 
as GBAS-Net and uses non-trainable 30SRM fil-
ter banks. The particularity of our method in this 
phase is that we set the kernel size to 5× 5 for the 
SQUARE5× 5 and EDGE5× 5 filters and set 3× 3 
to other 25 SRM high-pass filters to model the 
residual data in the local region.

(2) For the feature extraction phase, Ye-Net uses eight 
convolutional layers, Zhu-Net uses five convolu-
tional layers, GBRAS-Net uses nine convolutional 
layers, and the proposed CNN uses seven convolu-
tional layers, and depthwise separable convolutions 
to prevent issues of kernels that can be skipped for 
residuals spatial and channel correlation, and sig-
nal-to-noise ratio (SNR) in the training stage with 
a primary benefit of accuracy enhancement. Depth-
wise separable convolutions enhance the model 
expressiveness by reducing the storage size and 
separating the correlation between channels, and 
we use four depthwise separable convolutions.

(3) For the non-linearity function, Ye-Net uses the TLU 
activation function, Zhu-Net uses ReLU activation, 

(4)σ
(

�a
)

i
=

eai
∑k

j=1 e
aj
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and GBRAS-Net uses the ELU activation func-
tion. The proposed CNN uses LeakyReLU, which 
outperforms the functions applied in the previous 
CNNs in two points, the vanishing gradients pre-
vention and permitting forward-backwards com-
munication in the feature extraction phase.

(4) For the classification phase, Ye-Net does not use 
any pooling operation before its one fully con-
nected layer that supplies its output to the softmax 
function for probabilistic classification; Zhu-net 
uses a multi-level average pooling operation and 
feeds the result to two fully connected layers that 
send their output to the softmax function for clas-
sification into probability classes. GBRAS-net only 
uses a global average pooling operation and sup-
plies the results to the softmax function for proba-
bilistic classification. In our CNN, we use multi-
scale average pooling to model the feature maps to 
a standard scale from the feature extraction phase, 
which is crucial for a steganalysis network. To com-
pile the feature maps from the SPP module used in 
modelling through average pooling, we use three 
successive fully connected layers. The output of the 
last fully connected layer is supplied to the softmax 
function to transform the features yielded into the 
probabilistic classes.

Experimental setup and results
The main components of this section are the experi-
mental setup, experimental results, discussion, results 
on comparing our model to the state-of-the-art models, 
results of the cross-dataset experiment, and the ablation 
study results. The experimental setup subsection includes 
the datasets selection, hardware, and software resources, 
hyperparameters setup, and evaluation metrics; the 
experimental results and discussion subsection discusses 
the obtained results on the fixed-size state in comparison 
with the significant existing methods’ results; the subsec-
tion for the results on the comparison of our model to the 
state-of-the-art models discusses a comparison between 
our results and the current methods’ results for both the 
fixed-size images and arbitrary-size images; the results 
of the cross-dataset experiment subsection discusses the 
general applicability of our model to verify training phase 
stability and robustness of our model against overfitting; 
the ablation study results subsection includes the results 
achieved by replacing each component of our model to 
demonstrate the contribution of each element to the per-
formance of our model.

To compare the performance of the proposed method 
summarized in Fig. 4 with the existing techniques by Rei-
nel et  al. (2021), Ye et  al. (2017), Yedroudj et  al. (2018), 

Zhang et al. (2020), we adopt their experimental setup for 
datasets software resources, hyperparameters, and evalu-
ation metrics as reported. Though the problem of stega-
nalysis in images of different sizes is beyond our scope, 
it is worth noting that our model proved the potential to 
work with multi-size images compared to state-of-the-art 
methods by Luo et al. (2022) and You et al. (2021).

Experimental setup
Datasets
We use two datasets, Break Our Steganographic System 
Base 1.01 (BOSSbase 1.01) (Bas et  al. 2011) and Break 
Our Watermarking System 2 (BOWS 2) (Mazurczyk and 
Wendzel 2018) to experiment with the proposed CNN. 
BOSSbase 1.01 and BOWS have 10, 000 Portable Gray 
Map (PGM) photos of size 512× 512 pixels each, and 
datasets have similarities in the features and the cap-
turing devices used to prevent cover- source mismatch 
effect (Giboulot et al. 2020). In experimentation, we first 
establish a baseline for images to use through the follow-
ing tasks:

(1) Change the size from 512× 512 pixels to 256× 256 
pixels for all images.

(2) Generate stego images from the covers using Spa-
tial UNIversal WAvelet Relative Distortion (S-UNI-
WARD), and Wavelet Obtained Weights (WOW) 
steganographic algorithms with 0.2 Bits Per Pixel 
( bpp ) and 0.4bpp.

(3) Group images into three groups; the first group for 
training images, the second for validation images, 
and the third for testing images.

(4) Arrange images into two databases based on which 
dataset they come from, one for images from 
BOSSBase 1.01 and another group for photos from 
a combined set of BOSSBase 1.01 and BOWS 2.

(5) Saving each group of images in the NumPy array 
improves the system’s reading time.

Our datasets are organized into two groups; the first 
group consists of 10,000 covers, and stego images of 
BOSSbase 1.01 are split into 4000 training pairs, 1000 
validation pairs, and 5000 testing pairs. The second data-
set combines images from BOSSBase 1.01 and BOWS 2 
to get 20, 000 cover/stego pairs. The pairs of the second 
dataset are split into 14, 000 training pairs made from 
10, 000 pairs of images from BOWS 2 and 4000 pairs of 
images from BOSSbase 1.01, 1000 validation pairs from 
BOSSbase 1.01, and 5000 testing pairs from BOSSbase 
1.01. For embedding data algorithms, we use Aletheia, an 
open-source software, to embed the secret data S-UNI-
WARD and WOW algorithms have been applied with 
both 0.2bpp and 0.4bpp.
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Moreover, for cross-dataset experiments to verify the 
training phase stability and the generalization capability 
of our method to be applicable to JPEG steganography, 
we also use ALASKA#2 as the third dataset. This experi-
ment is also intended to demonstrate the robustness of 
our method against overfitting. From the ALASKA#2 
dataset (Cogranne et al. 2019), available for steganalysis, 
we use 15,000 512 × 512-pixel color images, categorized 
into three groups: cover images, images with hidden 
messages using the JPEG version of the universal distor-
tion function (J-UNIWARD) steganographic algorithm, 
and images with confidential messages using Uniform 
Embedding Revisited for Difficult Images (UERD) steg-
anographic algorithm. While the cover images are unal-
tered, the steganographic images have hidden messages 
that require steganalysis techniques to uncover. Although 
it poses a challenge for steganalysis, the ALASKA#2 data-
set’s large and diverse photographic images overcome 
obstacles in transitioning from research labs to real-
world scenarios. To use the ALASKA#2 dataset, images 
are first converted to PGM format to match BOSSBase 
1.01 and BOWS 2, primarily used in our experiments. To 
verify the effectiveness of ALASKA#2 as a training data-
set on our method to predict the images from BOSSBase 
1.01, we use S-UNIWARD steganographic algorithm 
with 0.4 bpp. In our experiment, to identify the stability 
of the training phase and to prove the robustness of our 
method against overfitting, we use 80,000 cover-stego 

images from ALASKA#2 for training, 2000 pairs of 
cover-stego images from BOSSBase 1.01 for validation, 
and 5000 pairs of cover-stego images from BOSSBase 
1.01 for testing.

Hardware and software resources
We implement our method with Python 3.8.1 and Ten-
sorFlow 2. 2. 0 in the windows operating system. The 
computer features are GeForce RTX 1024 Ti, CUDA ver-
sion 11.1, AMD 9 3950X 8-Core Processor, and 32 GB of 
RAM. We also use Google Collaboratory with the envi-
ronment as Tesla P100 PCIe (16 GB) GPUs, CUDA Ver-
sion 10. 1, and 25.51 GB of RAM.

Hyper‑parameters selection
For this method, we use a batch size of 64 ; for the net-
work training on a specific payload, we use 100 epochs. 
The spatial dropout value is 0.1 , the momentum of BN 
momentum is 0.2 , the epsilon is set to 0.001 , and the 
norm momentum value is 0.4 . The weights for fully con-
nected layers and convolutional layers use a glorot nor-
mal initializer, and to regularize the kernels and bias, the 
L_2 is used. The momentum is set to 0.95 for the stochas-
tic gradient descent optimizer (SGDO), and the learning 
rate used is 0.001 . The slope of the LeakyReLU is set to 
– 0.1 (Tables 1 and 2).

Table 1 DAC, TPR, and FPR for the existing CNNs and the proposed CNN with dataset BOSSBase 1.01

Algorithm S‑UNIWARD WOW

Payload (bpp) 0.2 0.4 0.2 0.4

CNN DAC TPR FPR DAC TPR FPR DAC TPR FPR DAC TPR FPR

Ye-Net 60.1 – – 68.7 – – 66.9 – – 76.7 – –

Yedroudj-Net 63.5 – – 77.4 72.3 – – 81.1 – –

Zhu-Net 71.4 – – 80.5 – – 76.9 – – 84.1 – –

GBRAS-Net 73.6 87.7 29.2 87.1 91.5 17.9 80.3 89.6 19.0 89.8 91.8 14.4

Proposed-Net 79.3 90.5 21.6 93.1 95.5 12.1 90.2 92.1 16.7 94.4 92.5 12.6

Table 2 DAC, TPR, and FPR for the existing CNNs and the proposed CNN with dataset BOSSBase 1.01 combined with BOWS 2

Algorithm S‑UNIWARD WOW

Payload (bpp) 0.2 0.4 0.2 0.4

CNN DAC TPR FPR DAC TPR FPR DAC TPR FPR DAC TPR FPR

Ye-Net – – – – – – 73.6 – – – – –

Yedroudj-Net 65.6 – – – – – 75.7 – – – – –

Zhu-Net 75.7 – – 83.9 – – 82.0 – – 88.2 – –

GBRAS-Net 77.9 – – 90.7 – – 82.7 90.2 16.2 92.4 93.9 12.4

Proposed-Net 83.4 91.0 18.2 97.3 96.0 10.2 92.9 95.4 12.6 97.2 97.6 9.6
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Evaluation metrics
To evaluate our method, we mainly consider the Detec-
tion ACcuraccy (DAC) obtained by (5), which depends 
on four classes of the obtained classification results, 
namely true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN). In this experiment, TP 
represents a class of stego images predicted to be stego 
images, TN represents a class of cover images predicted 
to be cover images, and FP represents a class of cover 
images predicted to be stego images. FN represents a 
class of stego images predicted to be the cover images. 
Moreover, we consider the Testing ACcuracy (TAC) 
as presented in Tables 3 and 4, the Training Time (TT) 
shown in Table 5, False Positive Rate (FPR) got by (6), and 
the True Positive Rate (TPR) got by (7) are also recorded 
in Tables 1 and 2.

Experimental results and discussion
To compare the performance of our method to the exist-
ing methods, we report results in line with the metrics 
stated in “Results of a cross-dataset experiment” section 
to evaluate them comparatively and identify quantitative 
improvement. We report in Tables 1 and 2 the results in 
DAC, TPR, and FPR of the considered existing methods 
and the method we propose in this article. Generally, a 
significant improvement is identified with our approach 
in all sizes of payload capacities. However, looking at 
the results in both tables, it is identified that the higher 
payload capacities are detected with higher accuracy in 
all steganalysis methods considered in this article. It 

(5)DAC =

(

TP + TN

TP + TN + FP + FN
× 100

)

%

(6)FPR =

(

FP

FP + TN
× 100

)

%

(7)TPR =

(

TP

TP + FN
× 100

)

%

also identified that the steganographic payloads are effi-
ciently detected when the dataset is increased because 
the results achieved within a combination of BOSSBase, 
and BOWS are better than the ones obtained with only 
BOSSBase.

The results obtained by Ye et  al. (2017) have been 
improved with our method in a range from 17.7 to 26.3%, 
which is a significantly high difference. Based on this dif-
ference between the results of a technique proposed in 
Ye-Net, we can conclude that the constant values of the 
SRM used to calculate the residual maps and the Trun-
cated Linear Unit (TLU) used to enhance the SNR are 
less performing than the SRM filter banks and the LReLU 
that we adopt in our CNN.

Comparing our results to the results reported by 
Yedroudj et al. (2018), it is identified that our CNN out-
performs the Ye-Net with a significant superiority in 
results. Departing from our results and the results with 
Yedroudj, an improvement ranging between 13.3% and 
19.3% is identified. This improvement shows that the 30 
SRM filter banks with kernel size 5× 5 used in the pre-
processing phase, TLU functions used for non-linearity 
enhancement, BN used to normalize the features in the 
convolutional layers for feature extraction, and the aver-
age pooling are not good as the 30 SRM filter banks with 

Table 3 TAC for the existing CNNs and the proposed CNN with 
dataset BOSSBase

Algorithm S‑UNIWARD WOW

Payload (bpp) 0.2 0.4 0.2 0.4

CNN TAC TAC TAC TAC 

Ye-Net 60.0 68.8 64.9 76.2

Yedroudj-Net 63.3 77.2 72.1 84.1

Zhu-Net 65.7 80.1 76.2 84.4

GBRAS-Net 70.1 81.4 79.3 85.9

Proposed 76.7 86.3 82.1 91.9

Table 4 TAC for the existing CNNs and the proposed CNN with 
dataset BOSSBase combined with BOWS

Algorithm S‑UNIWARD WOW

Payload (bpp) 0.2 0.4 0.2 0.4

CNN TAC TAC TAC TAC 

Ye-Net – – 73.9 –

Yedroudj-Net 64.6 – 76.3 –

Zhu-Net 70.7 83.9 80.0 86.2

GBRAS-Net 74.9 83.5 82.6 87.1

Proposed 79.7 84.6 87.1 90.7

Table 5 Approximate training time in minutes for existing 
steganalysis CNNs and the proposed CNN system

Dataset BOSSBase1.01 BOSSBase1.01 + 
BOWS 2

Payload (bpp) 0.2 0.4 0.2 0.4

CNN

Ye-Net 80 180 140 280

Yedroudj-Net 100 220 350 400

Zhu-Net 90 195 320 390

GBRAS-Net 300 360 440 540

Proposed-Net 190 221 349 398
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sizes 5× 5 and 3× 3 used in the pre-processing phase, 
and a combination of depthwise separable convolutions 
with LReLu, and BN functions we used in our CNN.

Moreover, our CNN achieves better results than the 
CNN proposed Zhang et  al. (2020). Using BOSSBase 
images, the lowest result of the data reported with Zhu-
Net has been identified as 13.3% less than the results of 
our network. This result is yielded with WOW as a steg-
anographic algorithm with the low embedding capac-
ity of our experiment 0.2bpp . Considering a dataset 
obtained by combining BOSSbase and BOWS, which 
is bigger than the BOSSBase alone, the most significant 
outperformance percentage of detection accuracy is also 
identified with WOW as a steganographic algorithm, 
using a payload capacity of 0.2bpp . Our method is 17.2% 
greater than the Zhu-Net, which shows the efficiency of 
our approach over the Zhu-Net in detecting the stegano-
graphic payload, especially in the low payload capacities.

Additionally, the proposed method improves the detec-
tion accuracy in two datasets, notably the BOSSBase 1. 
01 and the BOSSBase 1 0.01 combined with BOWS 2. 
This method works on S-UNIWARD and WOW algo-
rithms with payload capacities 0.2bpp and 0.4bpp . Con-
sidering the results of GBRAS-Net on BOSSBase 1 0.01, 
the accuracy with the proposed method was improved by 
5.7% on S-UNIWARD with 0.2bpp , and 6.0% with 0.4bpp . 
Improvements of 9.9% and 4.6% are identified on WOW 
with 0.2bpp and 0.4bpp, respectively. The results of 
GBRAS-Net on BOSSBase 1. 01 combined with BOWS 
2, the proposed method improves the accuracy by 5.5% 
on S-UNIWARD with 0.2bpp and 6.69% with 0.4bpp . The 
proposed method also improves the accuracy by 10.2% on 
WOW with 0.2bpp and 4.8% with 0.4bpp . Therefore, we 
can conclude that the approach used to extract and learn 
the features in our method yields better results in detect-
ing the steganographically altered digital images.

Tables 3 and 4 include the results in the testing stage of 
the network referred to as TAC in this paper because the 
testing stage also expresses the behavioural efficiency of a 
CNN. With the BOSSBase dataset, for the S-UNIWARD 
algorithm with a payload capacity of 0.2bpp the existing 
methods’ TAC has been improved with our approach by 
16.7% , 13.4% , 11.0% , and 6.6% for Ye-Net, Yedroudj-Net, 
Zhu-Net, and GBRAS-net respectively.

With a payload capacity of 0.4bpp , our method’s 
TAC is 17.5% , 9.1% , 6.2% , and 4.9% superior to the TAC 
of Ye-Net, Yedroudj-Net, Zhu-Net, and GBRAS-Net 
respectively. With WOW steganographic algorithm, our 
method shows an improvement of the testing accuracy 
beating the one with S-UNIWARD steganographic algo-
rithm because with a payload capacity of 0.2bpp the exist-
ing methods’ TAC has been improved with our approach 
by 17.2% , 10.0% , 5.9% , and 2.8% for Ye-Net, Yedroudj-Net, 

Zhu-Net, and GBRAS-net respectively. With a payload 
capacity of 0.4bpp , our method’s TAC is 15.7% , 7.8% , 
7.5% , and 6.0% superior to the TAC of Ye-Net, Yedroudj-
Net, Zhu-Net, and GBRAS-Net respectively. Based on 
the improved outperformance of our method, it is identi-
fied that our CNN beats the existing CNN in the train-
ing stability, which influences the accuracy of the testing 
phase. However, it is remarked that the proposed method 
yields better results with the WOW algorithm when 
compared to S-UNIWARD.

Comparing the results recorded in both Tables 3 and 
4, we can also conclude that the proposed method, in 
the testing phase, performs better with big datasets 
because in Table  4, which presents the yielded results 
with a combination of BOSSBase and BOWS, the most 
remarkable improvement of our method over the exist-
ing is 16.7% while the results in Table  3 that show the 
yielded results with BOSSBase show 17.5% as the most 
considerable improvement of our method over the 
existing CNNs. Therefore, it is identified that our CNN 
achieves better results with more extensive datasets 
when it is implemented in the same conditions.

Table 5 presents a comparative view of training time 
for the previously proposed CNNs, and the CNN pro-
posed in our work. To have a valid comparison, we 
adopted during our experimental setup the hardware 
and resources used in the previous research (Reinel 
et  al. 2021; Ye et  al. 2017; Yedroudj et  al. 2018; Zhang 
et al. 2020). Though the training time cannot be consid-
ered an evaluation metric because it is being influenced 
by several factors, such as hardware-based factors, it is 
crucial to mention that the proposed steganalysis CNN 
training time varies between approximately 190  min 
to around 398  min. The training and validation accu-
racy curves of the proposed CNN are illustrated in 
Figs. 5 and 6, where the convergence of our model with 
the detection of a steganographic payload of 0.2bpp 
is higher than the detection of a steganographic pay-
load of 0 .4bpp . Figure  5 presents the accuracy curves 
for BOSSBase 1. 01, and Fig.  6 presents the accuracy 
curves for a combination of BOSSBase 1. 01 and BOWS 
2 data using the WOW algorithm.

The experimental results show that our method 
improves the detection accuracy in two datasets, nota-
bly BOSSBase 1. 01 and BOSSBase 1 0.01 combined 
with BOWS 2. This method works on S-UNIWARD 
and WOW algorithms with payload capacities 0.2bpp 
and 0.4bpp . Considering the results of recent CNNs on 
BOSSBase 1 0.01, the performance in detection accu-
racy was significantly improved for both S-UNIWARD 
and WOW, with WOW highly enhanced. Figure 7 gives 
a comparative graph between the existing CNNs and the 
proposed CNN regarding detection accuracies.
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Results comparison with the state‑of‑the‑art methods
To demonstrate the effectiveness of our method, some 
state-of-the-art techniques are compared to the results of 
our approach. The considered evaluation metrics for this 
benchmark are in line with the metrics stated in “Results 
of a cross-dataset experiment” section to evaluate them 

comparatively and identify quantitative improvement. 
We report in Tables  6 and 7 the results in DAC for the 
considered prior methods and the method we propose in 
this article.

Table  6 contains our method’s obtained results and 
the existing methods’ reported results considering the 

Fig. 5 Accuracy curves for BOSSBase 1. 01 with S-UNIWARD A 0.2bpp , B 0.4bpp , and WOW, C 0.2bpp , D 0.4bpp
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fixed-size benchmark datasets. With these results, we 
believe WOW, and S-UNIWARD as two experimented 
steganographic algorithms with payload capacities of 
0.2bpp and 0.4bpp under the BOSSBase 1.01 dataset. 
Based on the results, it is identified that our method 
achieves outperforming results in all steganographic 
algorithms and payload capacities. The reported results 

show that WOW is more accurately detected than 
S-UNIWARD. The average percentage raised for the 
detection accuracy is 7.6% , a significant improvement 
over the current method (Reinel et al. 2021), and 11.8%, 
which is also a promising improvement over the pro-
posed method (Zhang et al. 2020).

Fig. 6 Accuracy curves for BOSSBase 1.01 + BOWS 2 with S-UNIWARD A 0.2bpp , B 0.4bpp , and WOW C 0.2bpp , D 0.4bpp
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Though the problem of steganalysis in images of 
different sizes is beyond the scope of our work, it is 
worth noting that our model proved the potential 
to work with arbitrary-size images compared to the 
state-of-the-art methods in Luo et  al. (2022) and You 
et al. (2021). To show the potential of our approach in 
detecting steganography within images of arbitrary size 
compared to some of the existing works, though we do 
not deepen the arbitrary-size images treatment, which 
requires many discussions about the payload, the size, 
and resolution of images because it is out of the scope 
of this article, we experiment as of the following.

Departing from the method by You et  al. (2021), 
which proposed a convolutional vision transformer 

to detect the presence of a steganographic payload as 
CVT-CNN, and the method by Luo et al. (2022), which 
presented an end-to-end steganalysis model based 
on deep learning as S-CNN, we prepare and organ-
ize images from BOSS_512 to be used for evaluation 
of the applicability of our model for training and test-
ing the arbitrary-size images. We convert each image 
of size 512× 512 for the training set from BOSS_512 
to an image of arbitrary rectangular size. Consider-
ing h and w for the respective height and width of the 
randomly sized input, with h , w belonging to the range 
[3/4 × 512, 512] ; and the cartesian coordinates of the 
resulted image’s upper corner in the left as (x, y) , with x 
belonging to [1, 512− w] , and y belonging to [1, 512− h] 
is generated as well to make sure that host and cropped 
images fit. The obtained results are recorded in Table 7. 
Considering the model proposed by You et  al. (2021) 
as a benchmark, we identify an improvement rang-
ing from 0.4 to 0.8% for inquiry images of rectangu-
lar shapes with equal height and width. However, our 
method is inferior in performance compared to S-CNN 
for rectangular shapes with different sizes in height and 
width but superior to CVT-CNN in all cases. The out-
standing results obtained are highlighted in bold for the 
models considered in our experiment.
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Fig. 7 Comparison between the existing CNNs and the proposed CNN in detection accuracy

Table 6 DAC comparison between our method and the existing methods with fixed-size images

Steganographic algorithm Proposed GBRAS ZHU

0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp

WOW 90.2 94.4 80.3 89.8 76.9 84.1

S-UNIWARD 79.3 93.1 73.6 87.1 71.4 80.5

Table 7 DAC comparison between our method and the existing 
methods with arbitrary-size images under WOW with 0.2bpp

Arbitrary size for test Proposed 
method

S‑CNN CVT‑CNN

512 × 512 77.6 77.2 73.0

512 × 640 73.8 76.8 73.9

640 × 512 75.8 77.0 76.1

640 × 640 77.2 76.4 73.8
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Results of a cross‑dataset experiment
In our work, to test our method’s generalization capa-
bility, we conduct cross-dataset experiments. We use 
images from the ALASKA#2 dataset to verify the training 
phase’s stability and to assess our method’s robustness 
against overfitting.

Our CNN architecture uses the weights from the train-
ing with BOSSBase 1.01 consisting of 4000 cover-stego 
image pairs. While training our CNN with ALASKA#2, 
at the 44th epoch, an accuracy of 68% is achieved, 75.8% 
accuracy is achieved with the validation set of images and 
73.2% on the testing set of images. It is worth noting that 
different from the training set of data from ALASKA#2, 
the validation and testing data are from BOSSBase 1.01. 
With the best model obtained at the 4th epoch, our 
CNN correctly classifies 28,000 cover-stego image pairs 
from ALASKA#2. Next, we proceed with training our 
model with 4000 cover-stego image pairs from BOSS-
Base 1.01, combined with 10,000 cover-stego images 
pairs from BOWS 2 and 28,000 cover-stego image pairs 
from ALASKA#2, which make a training set of 42,000 
cover-stego images for 38 epochs, with re-initialization 
of the model’s weights departing from those from train-
ing the network with 4000 cover-stego image pairs from 
BOSSbase 1.01, and kept the same sets for validation 
and training as per the previous experiment. From this 
experiment, we achieved a training accuracy of 90.5% and 
a testing accuracy of 93.2% in testing, representing a 3.7% 
improvement compared to working with BOSSBase 1.01 
originated images alone.

Ablation study
To demonstrate the effectiveness of the components of 
the proposed CNN, Table  8 shows the model’s perfor-
mance comparison between different versions of our 
system with and without some of the proposed new 
components, namely the use of 2D depthwise separable 

convolution instead of traditional convolution as of the 
recently proposed CNN (Reinel et  al. 2021), the use of 
LeakyReLU as a non-linearity function instead of ReLU 
recently used in Zhang et al. (2020), and the use of multi-
scale pooling instead of global average pooling recently 
used in Reinel et al. (2021).

Depthwise separable convolution has become increas-
ingly popular in computer vision-based tasks, including 
Inception and Xception structures, with Xception con-
sidered a variant of an Inception module. In this work, 
the inception entirely separates the correlation between 
channels, which decreases storage space and enhances 
the model’s expressiveness. To better use the residual 
information of cover/stego, we create corresponding 2D 
depthwise separable convolutional blocks, each consist-
ing of a 1 × 1 convolution and a 3 × 3 convolution after 
layer pre-processing in Fig.  4 of the proposed CNN 
architecture.

This work assumes no dependency between the residu-
als channel correlation and spatial correlation. To evalu-
ate the efficiency of the used 2D depthwise separable 
convolutions over the traditional convolutions, we exper-
imented with the CNN architecture we propose in Fig. 4, 
considering two cases. The first involves training the 
model with conventional convolutions, and the second 
with the proposed 2D depthwise separable convolutions. 
In both cases, we consider WOW and S-UNIWARD 
steganographic algorithms with 0.2bpp and 0.4bpp pay-
load capacities. Based on the results yielded in Table  8, 
the model with 2D depthwise separable convolutions 
improves the results in a percentage ranging from 9.6 and 
4.2; even when the LReLU is not used but keeping the 
2D depthwise separable convolutional layers, the results 
obtained are always better than the results with the tradi-
tional convolutional layers.

LReLU function is used in all blocks to avoid vanishing 
gradients, permit backward communication, and keep 

Table 8 Detection accuracy comparison with and without some components to measure the impact of each component on the 
system performance

Architecture Detection accuracy

WOW S‑UNIWARD

0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp

Proposed method 90.2 94.4 79.3 93.1

Proposed without 2D depthwise 81.6 90.2 74.9 88.2

Proposed without LReLu 83.4 91.7 77.4 90.1

Proposed without Multi-scale pooling 79.2 87.9 74.1 86.2

Proposed without 2D depthwise and LReLu 79.8 88.3 75.5 87.4

Proposed without 2D depthwise and multi-scale pooling 77.1 85.6 73.2 84.7

Proposed without LReLu and Multi-scale pooling 78.2 87.0 72.4 86.3
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the model weights positive. Using the LReLu, neurons 
selectively react to crucial input signals; hence we achieve 
significant efficiency with features. To identify the con-
tribution of the proposed LReLU, we train our model 
in Fig.  4, first with ReLu, and second with LReLu in all 
blocks. In both cases, we train with WOW and S-UNI-
WARD with a steganographic payload of 0.2bpp and 
0.4bpp . Departing from the results reported in Table 8, it 
is proved that the proposed model with LReLU outper-
forms the model with ReLU with an average accuracy of 
3.6% which is significant in steganalysis experiments.

To identify the significance of the multi-scale pool-
ing operation to improve the results, we performed 
experiments in two scenarios by training our model with 
WOW and S-UNIWARD as steganographic algorithms 
with 0.2 bpp and 0.4 bpp as payload capacities. In the first 
scenario, we experimented with our CNN by replacing 
the multi-scaling pooling operation with the global aver-
age pooling operation. In the second scenario, we added 
the spatial pooling module for multi-scaling operation in 
the first layer for the classification block of the proposed 
CNN. As reported in Table  8, the experimental results 
proved the outperformance of the proposed multi-scale 
pooling in all tested cases. The average improvement of 
the detection accuracy is 7.4%, which shows a significant 
impact of using this type of pooling layer.

Conclusion
Research to improve the steganalysis performance has 
been carried out and proved that CNN achieves out-
standing results over the standard ML-based handcraft 
features. This article focuses on the CNN paradigm to 
design a new CNN for spatial domain image steganaly-
sis. Our method outperforms the existing techniques in 
detection accuracy and training stability based on the 
cross-dataset experiments results achieved. Our contri-
butions to the existing CNNs are: (1) using 2D depthwise 
separable convolutions to prevent kernels skipping for 
channel correlation and spatial correlation of the residu-
als to enhance the training phase and prevent the overfit-
ting issue. (2) using LReLu for non-linearity to avoid the 
vanishing gradients to make the backward communica-
tion possible and enhance the network’s convergence, 
and (3) using multi-scale pooling to compact the feature 
maps regardless of the previous feature maps sizes and 
keep the spatial information of various sizes. For experi-
ments, we use two datasets: BOSSBase 1.01 and a com-
bination of BOSSBase 1.01 with BOWS 2. We also apply 
S-UNIWARD and WOW as steganographic algorithms 
for random data embedding. We also use the ALASKA#2 
dataset with WOW and S-UNIWARD algorithms to ver-
ify the training phase stability. The experimental results 
demonstrate a significant outperformance of our method 

over the existing methods to accurately detect the steg-
anographic payload for both fixed-size and arbitrary-size 
images.

For future works, we aim to apply this proposed 
method with other datasets, such as agricultural and 
medical images, to study and analyze the behaviour of 
this CNN in other image classification problems. More-
over, by improving this same CNN, we aim to identify 
the exactly altered pixels of the stego image by combin-
ing some features of this work with the methods pro-
posed Chen et al. (2020), Sun et al. (2019), and Yang et al. 
(2019).

Acknowledgements
The authors would like to thank all the lab and research group members.

Author contributions
NJDLC: conceptualization, methodology, software, formal analysis, investiga-
tion, writing original draft, visualization. TA: conceptualization, methodology, 
writing review and editing, supervision, project administration, funding 
acquisition. All authors read and approved the final manuscript.

Funding
This research was supported by the Ministry of Education, Culture, Research 
and Technology, The Republic of Indonesia, and Institut Teknologi Sepuluh 
Nopember.

Availability of data and materials
https:// drive. google. com/ drive/ folde rs/ 1jkr0 1hjH3 YFQcQ Nocii Axnp1 Zgn6j YJX.

Declarations

Competing interests
All authors have no competing interests.

Received: 4 February 2023   Accepted: 29 March 2023

References
Ahmad T, Fatman AN (2022) Improving the performance of the histogram-

based data hiding method in the video environment. J King Saud Univ 
Comput Inf Sci 34(4):1362–1372. https:// doi. org/ 10. 1016/j. jksuci. 2020. 04. 
013

Alsabhany AA, Ali AH, Ridzuan F, Azni AH, Mokhtar MR (2020) Digital audio 
steganography: systematic review, classification, and analysis of the 
current state of the art. Comput Sci Rev. https:// doi. org/ 10. 1016/j. cosrev. 
2020. 100316

Bas P, Filler T, Pevný T (2011) “Break our steganographic system”: the ins and 
outs of organizing BOSS. In: LNCS (vol 6958). Springer-Verlag, Berlin

Chen Y, Tao J, Liu L, Xiong J, Xia R, Xie J, Zhang Q, Yang K (2020) Research of 
improving semantic image segmentation based on a feature fusion 
model. J Ambient Intell Humaniz Comput. https:// doi. org/ 10. 1007/ 
s12652- 020- 02066-z

Cogranne R, Giboulot Q, Bas P (2019) Documentation of alaskav2 dataset 
scripts: A hint moving towards steganography and steganalysis into the 
wild. Available from https:// alaska. utt. fr/

De La Croix NJ, Islamy CC, Ahmad T (2022a) Secret message protection using 
fuzzy logic and difference expansion in digital images. In: 2022a IEEE 
Nigeria 4th international conference on disruptive technologies for 
sustainable development (NIGERCON), pp 1–5. https:// doi. org/ 10. 1109/ 
NIGER CON54 645. 2022. 98031 51

De La Croix NJ, Islamy CC, Ahmad T (2022b) Reversible data hiding using 
pixel-value-ordering and difference expansion in digital images. In: 2022b 

https://drive.google.com/drive/folders/1jkr01hjH3YFQcQNociiAxnp1Zgn6jYJX
https://doi.org/10.1016/j.jksuci.2020.04.013
https://doi.org/10.1016/j.jksuci.2020.04.013
https://doi.org/10.1016/j.cosrev.2020.100316
https://doi.org/10.1016/j.cosrev.2020.100316
https://doi.org/10.1007/s12652-020-02066-z
https://doi.org/10.1007/s12652-020-02066-z
https://alaska.utt.fr/
https://doi.org/10.1109/NIGERCON54645.2022.9803151
https://doi.org/10.1109/NIGERCON54645.2022.9803151


Page 16 of 16Ntivuguruzwa and Ahmad  Cybersecurity            (2023) 6:23 

IEEE international conference on communication, networks, and satellite 
(COMNETSAT), pp 33–38. https:// doi. org/ 10. 1109/ COMNE TSAT5 6033. 
2022. 99945 16

Ferreira WD, Ferreira CBR, da Cruz Júnior G, Soares F (2020) A review of digital 
image forensics. Comput Electr Eng. https:// doi. org/ 10. 1016/j. compe 
leceng. 2020. 106685

Giboulot Q, Cogranne R, Borghys D, Bas P (2020) Signal processing: image 
communication effects and solutions of cover-source mismatch in image 
steganalysis. Signal Process Image Commun. https:// www. scien cedir ect. 
com/ scien ce/ artic le/ pii/ S0923 59652 03009 41

Guttikonda JB, Sridevi R (2019) A new steganalysis approach with efficient 
feature selection and classification algorithms for identifying the stego 
images. Multimed Tools Appl 78(15):21113–21131. https:// doi. org/ 10. 
1007/ s11042- 019- 7168-5

Hussain I, Zeng J, Qin X, Tan S (2020) A survey on deep convolutional neural 
networks for image steganography and steganalysis. KSII Trans Internet 
Inf Syst 14(3):1228–1248. https:// doi. org/ 10. 3837/ tiis. 2020. 03. 017

Ikhlayel M, Hariadi M, Ketut I, Pumama E (2019) Copy-move forgery detection 
based on modified multi-scale feature extraction and CMFD-SIFT. In: 
IJCSNS international journal of computer science and network security 
(vol 19, Issue 6).

Liu J, Lu W, Zhan Y, Chen J, Xu Z, Li R (2020) Efficient binary image steganalysis 
based on ensemble neural network of multi-module. J Real-Time Image 
Proc 17(1):137–147. https:// doi. org/ 10. 1007/ s11554- 019- 00885-8

Lopez-Hernandez J, Martinez-Noriega R, Nakano-Miyatake M, Yamaguchi K 
(2008) Detection of BPCS-steganography using SMWCF steganalysis and 
SVM. In: International Symposium on Information Theory and Its Applica-
tions, pp. 1–5. https:// doi. org/ 10. 1109/ ISITA. 2008. 48954 97

Luo G, Wei P, Zhu S, Zhang X, Qian Z, Li S (2022) Image steganalysis with 
convolutional vision transformer. In: ICASSP, IEEE international conference 
on acoustics, speech and signal processing—proceedings, 2022-May, pp 
3089–3093. https:// doi. org/ 10. 1109/ ICASS P43922. 2022. 97470 91

Mazurczyk W, Wendzel S (2018) Information hiding: challenges for forensic 
experts. In: Communications of the ACM (vol 61, Issue 1, pp 86–94). Asso-
ciation for computing machinery. https:// doi. org/ 10. 1145/ 31584 16

Nissar A, Mir AH (2010) Classification of steganalysis techniques: a study. Digit 
Signal Process Rev J 20(6):1758–1770. https:// doi. org/ 10. 1016/j. dsp. 2010. 
02. 003

Płachta M, Krzemień M, Szczypiorski K, Janicki A (2022) Detection of image 
steganography using deep learning and ensemble classifiers. Electronics. 
https:// doi. org/ 10. 3390/ elect ronic s1110 1565

Prayogi IB, Ahmad T, de La Croix NJ, Maniriho P (2021) Hiding messages in 
audio using modulus operation and simple partition. In: Proceedings of 
2021 13th international conference on information and communication 
technology and system, ICTS 2021, pp 51–55. https:// doi. org/ 10. 1109/ 
ICTS5 2701. 2021. 96090 28

Rahman CR, Arko PS, Ali ME, Iqbal Khan MA, Apon SH, Nowrin F, Wasif A (2020) 
Identification and recognition of rice diseases and pests using convolu-
tional neural networks. Biosys Eng 194:112–120. https:// doi. org/ 10. 1016/j. 
biosy stems eng. 2020. 03. 020

Reinel TS, Brayan AAH, Alejandro BOM, Alejandro MR, Daniel AG, Alejandro 
AGJ, Buenaventura BJA, Simon OA, Gustavo I, Raul RP (2021) GBRAS-Net: a 
convolutional neural network architecture for spatial image steganalysis. 
IEEE Access 9:14340–14350. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30524 
94

Selvaraj A, Ezhilarasan A, Wellington SLJ, Sam AR (2021) Digital image stega-
nalysis: a survey on the paradigm shift from machine learning to deep 
learning-based techniques. IET Image Proc 15(2):504–522. https:// doi. 
org/ 10. 1049/ ipr2. 12043

Shankara DD, Upadhyay PK (2019) Blind steganalysis for JPEG images using 
SVM and SVM-PSO classifiers. Int J Innov Technol Explor Eng 8(11):1239–
1246. https:// doi. org/ 10. 35940/ ijitee. K1250. 09811 S19

Shehab DA, Alhaddad MJ (2022) Comprehensive survey of multimedia stega-
nalysis: techniques, evaluations, and trends in future research. Symmetry. 
https:// doi. org/ 10. 3390/ sym14 010117

Sun Y, Zhang H, Zhang T, Wang R (2019) Deep neural networks for efficient 
steganographic payload location. J Real-Time Image Proc 16(3):635–647. 
https:// doi. org/ 10. 1007/ s11554- 019- 00849-y

Tabares-Soto R, Ramos-Pollán R, Isaza G, Orozco-Arias S, Ortíz MAB, Arteaga 
HBA, Rubio AM, Grisales JAA (2020) Digital media steganalysis. In: 
Digital media steganography: principles, algorithms, and advances 

(pp 259–293). Elsevier, Amsterdam. https:// doi. org/ 10. 1016/ B978-0- 12- 
819438- 6. 00020-7

Tabares-Soto R, Arteaga-Arteaga HB, Mora-Rubio A, Bravo-Ortíz MA, Arias-
Garzón D, Alzate Grisales JA, Burbano Jacome A, Orozco-Arias S, Isaza G, 
Ramos Pollan R (2021) Strategy to improve the accuracy of convolutional 
neural network architectures applied to digital image steganalysis in the 
spatial domain. PeerJ Comput Sci 7:e451. https:// doi. org/ 10. 7717/ peerj- 
cs. 451

Tereshchenko SN, Perov AA, Osipov AL (2021) Features of Applying Pretrained 
Convolutional Neural Networks to Graphic Image Steganalysis. Optoelec-
tron Instrum and Data Processing 57(4):419–425. https:// doi. org/ 10. 3103/ 
S8756 69902 10401 17

Xiang L, Guo G, Yu J, Sheng SV, Yang P (2020) A convolutional neural network-
based linguistic steganalysis for synonym substitution steganography. 
Math Biosci Eng 17(2):1041–1058. https:// doi. org/ 10. 3934/ mbe. 20200 55

Yang C, Liu F, Ge S, Lu J, Huang J (2019) Locating secret messages based on 
quantitative steganalysis. Math Biosci Eng 16(5):4908–4922. https:// doi. 
org/ 10. 3934/ mbe. 20192 47

Ye J, Ni J, Yi Y (2017) Deep learning hierarchical representations for image 
steganalysis. IEEE Trans Inf Forensics Secur 12(11):2545–2557. https:// doi. 
org/ 10. 1109/ TIFS. 2017. 27109 46

Yedroudj M, Comby F, Chaumont M (2018) Yedrouj-Net: An efficient CNN for 
spatial steganalysis. http:// arxiv. org/ abs/ 1803. 00407

You W, Zhang H, Zhao X (2021) A siamese CNN for image steganalysis. IEEE 
Trans Inf Forensics Secur 16:291–306. https:// doi. org/ 10. 1109/ TIFS. 2020. 
30132 04

Zhang R, Zhu F, Liu J, Liu G (2020) Depth-wise separable convolutions and 
multi-level pooling for an efficient spatial CNN-based steganalysis. IEEE 
Trans Inf Forensics Secur 15:1138–1150. https:// doi. org/ 10. 1109/ TIFS. 
2019. 29369 13

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/COMNETSAT56033.2022.9994516
https://doi.org/10.1109/COMNETSAT56033.2022.9994516
https://doi.org/10.1016/j.compeleceng.2020.106685
https://doi.org/10.1016/j.compeleceng.2020.106685
https://www.sciencedirect.com/science/article/pii/S0923596520300941
https://www.sciencedirect.com/science/article/pii/S0923596520300941
https://doi.org/10.1007/s11042-019-7168-5
https://doi.org/10.1007/s11042-019-7168-5
https://doi.org/10.3837/tiis.2020.03.017
https://doi.org/10.1007/s11554-019-00885-8
https://doi.org/10.1109/ISITA.2008.4895497
https://doi.org/10.1109/ICASSP43922.2022.9747091
https://doi.org/10.1145/3158416
https://doi.org/10.1016/j.dsp.2010.02.003
https://doi.org/10.1016/j.dsp.2010.02.003
https://doi.org/10.3390/electronics11101565
https://doi.org/10.1109/ICTS52701.2021.9609028
https://doi.org/10.1109/ICTS52701.2021.9609028
https://doi.org/10.1016/j.biosystemseng.2020.03.020
https://doi.org/10.1016/j.biosystemseng.2020.03.020
https://doi.org/10.1109/ACCESS.2021.3052494
https://doi.org/10.1109/ACCESS.2021.3052494
https://doi.org/10.1049/ipr2.12043
https://doi.org/10.1049/ipr2.12043
https://doi.org/10.35940/ijitee.K1250.09811S19
https://doi.org/10.3390/sym14010117
https://doi.org/10.1007/s11554-019-00849-y
https://doi.org/10.1016/B978-0-12-819438-6.00020-7
https://doi.org/10.1016/B978-0-12-819438-6.00020-7
https://doi.org/10.7717/peerj-cs.451
https://doi.org/10.7717/peerj-cs.451
https://doi.org/10.3103/S8756699021040117
https://doi.org/10.3103/S8756699021040117
https://doi.org/10.3934/mbe.2020055
https://doi.org/10.3934/mbe.2019247
https://doi.org/10.3934/mbe.2019247
https://doi.org/10.1109/TIFS.2017.2710946
https://doi.org/10.1109/TIFS.2017.2710946
http://arxiv.org/abs/1803.00407
https://doi.org/10.1109/TIFS.2020.3013204
https://doi.org/10.1109/TIFS.2020.3013204
https://doi.org/10.1109/TIFS.2019.2936913
https://doi.org/10.1109/TIFS.2019.2936913

	A convolutional neural network to detect possible hidden data in spatial domain images
	Abstract 
	Introduction
	Related works
	Proposed method
	Architecture
	Pre-processing phase
	Feature extraction phase
	Classification phase
	Comparison of our method with the existing methods

	Experimental setup and results
	Experimental setup
	Datasets
	Hardware and software resources
	Hyper-parameters selection
	Evaluation metrics

	Experimental results and discussion
	Results comparison with the state-of-the-art methods
	Results of a cross-dataset experiment
	Ablation study

	Conclusion
	Acknowledgements
	References


