
Liu et al. Cybersecurity (2023) 6:21
https://doi.org/10.1186/s42400-023-00157-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

MRm-DLDet: a memory-resident malware
detection framework based on memory
forensics and deep neural network
Jiaxi Liu1,2, Yun Feng1, Xinyu Liu1,2, Jianjun Zhao1,2 and Qixu Liu1,2*

Abstract

Cyber attackers have constantly updated their attack techniques to evade antivirus software detection in recent years.
One popular evasion method is to execute malicious code and perform malicious actions only in memory. Mali-
cious programs that use this attack method are called memory-resident malware, with excellent evasion capability,
and have posed huge threats to cyber security. Traditional static and dynamic methods are not effective in detect-
ing memory-resident malware. In addition, existing memory forensics detection solutions perform unsatisfactorily
in detection rate and depend on massive expert knowledge in memory analysis. This paper proposes MRm-DLDet,
a state-of-the-art memory-resident malware detection framework, to overcome these drawbacks. MRm-DLDet first
builds a virtual machine environment and captures memory dumps, then creatively processes the memory dumps
into RGB images using a pre-processing technique that combines deduplication and ultra-high resolution image
cropping, followed by our neural network MRmNet in MRm-DLDet to fully extract high-dimensional features from
memory dump files and detect them. MRmNet receives the labeled sub-images of the cropped high-resolution RGB
images as input of ResNet-18, which extracts the features of the sub-images. Then trains a network of gated recurrent
units with an attention mechanism. Finally, it determines whether a program is memory-resident malware based on
the detection results of each sub-image through a specially designed voting layer. We created a high-quality dataset
consisting of 2,060 benign and memory-resident programs. In other words, the dataset contains 1,287,500 labeled
sub-images cut from the MRm-DLDet transformed ultra-high resolution RGB images. We implement MRm-DLDet for
Windows 10, and it performs better than the latest methods, with a detection accuracy of up to 98.34% . Moreover, we
measured the effects of mimicry and adversarial attacks on MRm-DLDet, and the experimental results demonstrated
the robustness of MRm-DLDet.

Keywords Memory-resident malware, Memory forensics, Malware detection, Deep learning, Ultra-high resolution
image

Introduction
Over the years, artificial intelligence (AI) techniques have
significantly promoted the efficiency and ability of file-
based malware detection engines. Yet, at the same time,
cyber-attackers also keep exploring advanced methods
to evade or compromise antivirus software. One such
method is In-memory Code Execution (ICE) (Fewer
2008; Team 2021; Paschen 2020; Malik 2019; odzhan
2019; Microsoft 2018; Kumar et al. 2020). ICE attacks
only execute malicious operations in memory and leave

*Correspondence:
Qixu Liu
liuqixu@iie.ac.cn
1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100085, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00157-w&domain=pdf

Page 2 of 22Liu et al. Cybersecurity (2023) 6:21

almost no evidence on the disk, making it challenging for
traditional static and dynamic analysis methods to detect
(Arefi et al. 2018; Alrawi et al. 2021). For instance, in
cyberattacks against the National Bank of Malawi (CERT
2018), attackers rewrote and recompiled the multiple
open-source codes embedding the encrypted DarkComet
(Lesueur 2020) remote access trojan (RAT) into relevant
codes. In the actual operational process, the encrypted
data will be loaded, decrypted, and expanded into a
complete DarkComet RAT portable executable (PE) file
in memory. In this way, the payload implements an ICE
attack to avoid killing and bypassing anti-virus solutions.
Advanced Persistent Threats (APT) groups and malware
families such as Lazarus Group (MITRE 2021), Poweliks
(O’Murchu and Gutierrez 2015), Zeus (Binsalleeh et al.
2010) all employed ICE attacks.

Kumar et al. (2020) briefly presents memory-resident
malware. In this work, we define memory-resident mal-
ware as malware that executes shellcodes and PE files in
memory using ICE technology.

With the spread of memory-resident malware, mem-
ory forensics has become more critical. Memory foren-
sics (MF), is a technique that captures volatile memory
data from computers’ memory dumps and analyzes
them. Memory dumps contain processes, network con-
nections, open files, and registry modifications created
during the malware’s runtime, significant traces for iden-
tifying memory-resident malware. There have been many
memory forensics studies incorporating machine learn-
ing (Barabosch et al. 2017; Bozkir et al. 2021; Wang et al.
2020; Sihwail et al. 2021). These works have significantly
improved the memory-resident malware detection accu-
racy and efficiency. Unfortunately, variants of ICE attacks
may inject different processes and use different methods
to load shellcodes or PE files. Moreover, attackers always
look for never-detected vulnerable processes or meth-
ods to construct advanced attacks. Thus, manual feature
engineering requires analysts to be familiar with and pos-
sess extensive domain knowledge to distinguish high and
low differentiation features.

Challenges
Based on the above discussions, existing memory-res-
ident malware detection methods face two challenges:
(1) The accuracy of detection frameworks relies on vari-
ous hand-crafted features of memory-resident malware,
which requires massive expert knowledge in the field of
memory analysis and it is somewhat subjective and not
generalizable. (2) Existing detection tools do not take full
advantage of memory data information.

In the malware detection field, many studies have
used computer vision to convert malware into images,
then classify malware programs by specific image

features (Nataraj et al. 2011; Ni et al. 2018; Bozkir et al.
2021; O’Shaughnessy and Sheridan 2022). These stud-
ies obtained great detection results. However, exist-
ing vision-based malware detection techniques usually
analyze PE files directly. They still face the drawbacks of
existing static and dynamic malware detection methods,
i.e., they cannot effectively detect malware only running
in memory. Moreover, a memory dump can be reshaped
into an RGB image, but the size of a memory dump file is
the same as the virtual machine’s memory, which is 2GB
or above. Therefore, the generated memory dump images
are of ultra-high resolution, and their minimum size is
about 6000× 6000 pixels after our processing method
(more details can be found in the “MRm-DLDet” sec-
tion). However, existing vision-based malware detection
methods only allow the input of regular-size pictures.
For example, Ni et al. (2018) used images of max 32× 32
pixels for their model; the detection model of Bozkir
et al. (2021) extracts features from images converted
from malware with 256× 256 pixels; O’Shaughnessy and
Sheridan (2022) proposed a hybrid malware classification
model that extracts visual features from the images with
a max size of 512× 512 pixels, none of which can handle
our ultra-high resolution images. Thus, it can be inferred
that existing vision-based detection methods can not effi-
ciently handle ultra-high resolution images.

Motivation
Therefore, we proposed a novel approach by combining
the information of the malware’s whole memory dumps,
such as memory pages, processes, and other related data
with deep neural network for detection to solve the diffi-
culties that traditional static and dynamic analysis meth-
ods to detect memory-resident malware. And solve the
two challenges in memory-resident malware detection.
Our work can better use the malware-specific execution
data to detect memory-resident malware by converting
memory dumps to pictures without extensive and com-
plex expert knowledge. A memory dump file can be con-
verted into an RGB image, every pixel of a memory dump
image is associated with memory data, and the difference
between images can help separate benign from malicious
memory dumps. Moreover, this paper designs a memory
dump file preprocessing method to relieve the storage
space pressure caused by the size of memory dump files
and solve the problem that existing vision-based malware
detection methods cannot handle ultra-high resolution
images.

In order to further discuss whether visualization can
help detect memory-resident malware, we analyzed
the memory dump of a Lazarus Group’s sample. An
MS-DOS header is found at address 0xB14D000 of this
memory dump, which is the start of a PE file. Lazarus

Page 3 of 22Liu et al. Cybersecurity (2023) 6:21

implements the ICE attack by decrypting the payload
and loading it into its own memory space, so the PE file
found at 0xB14D000 is the payload of the malware from
Lazarus Group. We analyzed a benign sample for com-
parison, Fig. 1 shows a motivating example. The two
images on top are data from the same location in the
two memory dump files. We converted the two memory
dumps to RGB images by our framework. The bottom
of Fig. 1 shows a part of the two RGB images that cor-
respond to the code fragments of two dumps at addresses
from 0xB14D000 to 0xB1589DF. These images have sig-
nificant differences between color, texture, and structure.
That leads us to a driving thesis of our work: The seman-
tic and structural differences between malicious
memory-resident actives and benign memory dumps
can be effectively identified by visually comparing
memory dump RGB images. Detailed description of the
memory dump files and its visualization can be found in
the “MRm-DLDet” section.

Our work
We propose a state-of-the-art memory forensic frame-
work based on deep learning called MRm-DLDet
(Memory-Resident malware Deep Learning Detector).
MRm-DLDet first captures memory dumps, and their
size will be reduced by memory duplicate page deletion.
Then MRm-DLDet converts memory dumps into ultra-
high resolution RGB images and uses a non-overlap-
ping sliding window to crop the images into sub-images
served as inputs to MRm-DLDet’s MRmNet neural
network. The MRmNet combined with ResNet-18 (He
et al. 2016), gated recurrent units (Cho et al. 2014), and
attention mechanism (Zhou et al. 2016). Our framework

overcomes the two challenges faced by existing memory-
resident malware detection methods and solves the prob-
lem that current image detection methods cannot handle
ultra-high resolution images. Experiments show that
MRm-DLDet has a high detection accuracy (98.34%).

To summarize, in this paper, we make the following
contributions:

• We comb through the latest ICE methods from mal-
ware families and APT groups and first define mal-
ware that uses ICE methods to execute shellcode or
malicious PE files in memory as memory-resident
malware.

• We propose the first memory-resident malware
detection framework that combines memory foren-
sics and deep learning named MRm-DLDet, which
focuses on capturing and analyzing memory dumps.
MRm-DLDet has a virtual machine environment for
capturing memory dumps, a novel memory dump
preprocessing method combining data deduplication
and ultra-high resolution image cropping, and a neu-
ral network named MRmNet.

• Because of the lack of publicly available open source
datasets for in-memory-resident malware detection,
we collected a dataset with 2,060 benign and mali-
cious programs. The memory dumps of the programs
that are converted into ultra-high resolution images
will be cropped into 1,287,500 sub-images. Now our
dataset is ready to be used publicly for non-commer-
cial reasons.

• We studied the influence of different image sizes
on the performance of MRm-DLDet and compared
MRm-DLDet with the most advanced methods.
Compared to the latest methods, our framework is
better in all experimental evaluation metrics. Spe-
cifically, MRm-DLDet has a detection rate of up to
98.34%.

Related work
Memory forensics‑based memory‑resident malware
detection
Since Malik (2019) first performed how to load and run
portable executables entirely from memory manually,
in-memory malware execution has gradually become
a prevalent attack method for cyber attackers. In this
paper, we divide MF-based malicious code detection
methods into two types based on different technical
bases: method based on the characteristics of operating
system and memory pages (OS Characteristics Based),
and detection method combining artificial intelligence

Fig. 1 A motivating example of memory dump visualization

Page 4 of 22Liu et al. Cybersecurity (2023) 6:21

(AI Based). Figure 2 succinctly shows the latest MF-based
malware detection techniques.

OS characteristics‑based
Volatility (Foundation 2020) is the most widely used and
authoritative open-source MF-based framework with
a plugin called malfind. It determines whether the pro-
cess is suspicious by checking the memory pages’ vir-
tual address descriptor (VAD), a process’ VAD tree that
describes the layout of memory segments. In the VAD
tree, there is also some information about the type and
level of protection (read, write, execute) of the memory
page (Ligh et al. 2014), in addition to information related
to the mapped object and several other flags. For exam-
ple, if the protection field of a memory page is set to
“PAGE_EXECUTE_READWRITE”, then malfind will ini-
tially determine that it is a malicious process. However,
malfind can be easily bypassed by malware developers.
For instance, the “Bypass Malfind” method proposed by
Block and Dewald (2019) will assign a memory of one
memory-resident malware with READONLY protec-
tion and then change the protection state of all contained
pages to EXECUTE_READWRITE by VirtualProtectEx.
What’s more, malfind needs an expert in the memory
forensics field, as malfind does not provide a post-pro-
cessing algorithm to distinguish benign software from
malicious ones, which means it requires extensive expert
knowledge of memory forensics to analyze Volatility’s
output and determine if a program is a malicious one.

Arefi et al. (2018) have reported a reverse engineering
tool named FAROS to detect in-memory-only malware
injection attacks. FAROS only focused on three in-mem-
ory code injection attack techniques. And only imple-
mented on Windows 7 VM, without considering new
attack methods on Windows 10 systems, which are now
more widely used.

A very recent effort by Alrawi et al. (2021) presented a
post-detection technique named FORECAST to predict
capabilities that malware has staged for execution auto-
matically. FORECAST guides a symbolic analysis of the
malware’s code by leveraging the execution context of the
ongoing attack from the malware’s memory image.

AI‑based
Wang et al. (2020) proposed PROVDETECTOR that
detects malware with steganography, which is a prove-
nance-based approach. PROVDETECTOR first uses a
novel selection algorithm to identify potentially malicious
parts of the process’ OS-level provenance data. Then
it applies neural embedding and machine learning. In
another study, Quincy (Barabosch et al. 2017) extracted
38 features from the volatile memory and used Random
Forests and Extremely Randomized Trees to classify the
memory storage area, which achieved an AUC score of
93.8% on Windows XP, but only 84.4% on Windows 10.

Bozkir et al. (2021) represented the suspicious pro-
cesses’ memory dumps into RGB images and reported
96.39% prediction accuracy by combining the RBF ker-
nel-based SMO algorithm with GIST+HOG for feature
vectors. Still, This study only investigated malware pro-
cesses and did not consider malware that hides in benign
processes to execute, such as UUID Shellcode (Team
2021) and Earlybird (spotheplanet 2020). We assume
that this limits the accuracy of the study by Bozkir et al.
(2021) to some extent.

Sihwail et al. (2021) applied memory forensics to
extract memory-based features from malware memory
images to expose the actual behavior of malware. They
used feature engineering and the SVM algorithm, con-
verted the features into binary vectors, and obtained
a classification accuracy of 98.5% in Windows 7 OS.

Fig. 2 Classification of related work on memory forensics-based malware detection

Page 5 of 22Liu et al. Cybersecurity (2023) 6:21

However, this task is time-consuming for manual feature
extraction and performs poorly on Windows 10.

Deep learning‑based malware detection vision methods
In recent years, computer vision has been applied to mal-
ware detection with good results. The idea of converting
files into images before detection inspired our research.

Nataraj et al. (2011) first visualized Malware binaries
as grayscale images based on the observation that the
images belonging to the same malware family appear
very similar in layout and texture. In their solution, Boz-
kir et al. (2019) employed several various convolutional
neural networks to classify persistent malware files. They
converted PE files’ binary bytes into images, and they
reported 97.48% detection accuracy in experiments.

Pinhero et al. (2021) used three malware visualiza-
tion methods: grayscale maps, RGB maps, and Markov
images, and then extracted features of the three types of
images using Gabor filters. Twelve different neural net-
works were trained and the F-measure up to 99.97%.

Tekerek and Yapici (2022) proposed a new method
based on CNN by converting byte files to gray and RGB
image formats respectively for malicious code classifica-
tion. O’Shaughnessy and Sheridan (2022) proposed a
hybrid framework for malware classification by setting an
entropy threshold to quickly determine whether a sample
is packed or not, then analyzing the samples using static
and dynamic methods respectively. Static PE files or
memory dump files of processes are mapped into images
by space-filling curves, then the model extracts visual
features from the images, reporting an accuracy of 97.6%.

However, most of the existing vision-based malware
detection methods directly analyze the binary files.
O’Shaughnessy and Sheridan (2022) converted memory
dumps to images when the malicious program is run-
ning, but they do not analyze the complete memory data.
All existing vision-based malware detection efforts can-
not deal with ultra-high resolution images. Our work
solves this problem by deduplicating complete memory
dumps and using non-overlapping sliding windows to cut
images into multiple sub-images.

Framework overview
We first discuss the threat model, then introduce the
overall framework of MRm-DLDet. Finally, we describe
the background of ultra-high resolution image classifica-
tion (one of the essential techniques used in this study) in
detail.

Threat model
MRm-DLDet is a framework for memory-resident mal-
ware detection in Windows 10. It takes PE files as input,
converts the memory dumps of PE programs runtime

to RGB images, and then uses deep neural network to
detect memory-resident malware. In this paper, memory-
resident malware is primarily used as attack payloads to
launch attacks on the target system to directly execute
the malware in the victim computer’s memory, instead of
writing malware to the hard drive to evade the progres-
sively increasing malware detection process and remain
invisible in the target device.

We assume that the memory-resident malware exe-
cutes the attack when we capture memory dumps.
Recent research (Wang et al. 2020) can help alleviate this
assumption. Moreover, it is assumed that all ICE attacks
leave traces of in-memory data.

Our framework
MRm-DLDet is a memory-resident malware detection
tool that integrates computer vision and deep learning
techniques with memory forensics to model ICE attacks.
Figure 3 gives an overview of the MRm-DLDet architec-
ture, which consists of three main parts. We outline the
approach here, and the following two sections provide
complete information.

First, MRm-DLDet captures memory dump files and
removes duplicate memory pages (A in Fig. 3). Next, we
convert deduplicated memory dumps to RGB images.
The RGB images are ultra-high resolution since the
memory dumps still contain too much data after remov-
ing duplicates. Inspired by ultra-high resolution image
processing methods in remote sensing image recogni-
tion, we propose a vision-based enormous image pro-
cessing solution. To avoid the important information
loss caused by traditional multiple downsampling layers
image scaling methods, we cropped the enormous ones
into sub-images (B in Fig. 3). After that, sub-images are
fed into the MRmNet. MRmNet extracts the feature
vector of each sub-image by a pre-trained ResNet-18
network. The feature vectors of sub-images formed the
feature of the whole memory dump file, which are fed
into the gated recurrent units (GRU) model later. Then,
we add an attention layer to retain important details and
prevent information loss. Finally, we design a voting layer
to output the memory-resident malware detection results
(C in Fig. 3).

Background on ultra‑high resolution image classification
Our MRm-DLDet framework first visualizes binary
files into RGB images. Then we want to get the features
of these images (i.e., features of the memory dump
files) by the ResNet-18 network. However, the dumps
converted after deduplication still have a minimum
size of 6000× 6000 . Limited by the storage of GPUs in
general devices at this stage, it is not possible to handle
the computation of ultra-high resolution images, and

Page 6 of 22Liu et al. Cybersecurity (2023) 6:21

processing such large images directly by CNN networks
will lead to memory overflow. Thus, it is considered
necessary to preprocess ultra-high resolution images
to reduce the image size and retain complete memory
information contained in the image. The direct resize
method is the easiest and fastest, but this will cause a
substantial loss of features, resulting in poor detection
accuracy.

In this work, we find inspiration from some methods
in remote sensing images field. Van Etten (2018) pro-
posed YOLT to detect small objects from large swaths
of imagery. YOLT first uses a sliding window in which
sizes and overlaps (15% by default) are defined by users
to partition ultra-high resolution images into cutouts,
then puts them into a network architecture to train and
test the model. The F1-score of YOLT is higher than
0.8. In the study proposed by Wang et al. (2019), they
cropped remote sensing images into several small sub-
images by large-scale cropping, utilizing the non-over-
lapping sliding window method, to ensure that the big
pictures are not scaled during training and testing.

In the MRm-DLDet framework, we use a non-over-
lapping sliding window technique to cut memory dump
images, which can preserve as much information as
possible in the memory dumps compared to resizing
images directly to the target size.

MRm‑DLDet
To solve the challenges presented in the “Introduction”
section, we created a memory-resident malware detec-
tion framework. This section shows the MRm-DLDet
framework and its three component modules in detail.

Memory data collection and preprocessing module
This module executes malicious samples and benign pro-
grams in the processed virtual machines and generates
a memory snapshot file for each program. This module
also does memory dump deduplication as the first mem-
ory dump preprocessing step. Specifically, the following
three modules are included.

Modify virtual machine
We use virtualization-based software VMware Work-
station (VMware 2022), to generate memory dumps for
memory-resident malware and benign samples. Before
getting the memory dump file, we first made some
changes to the virtual machine settings since malware
is likely to be sensitive to its operating environment.
For example, according to cybersecurity experts from
G DATA (Ebach 2017), malware of Zeus family verifies
if it is being launched on a VMware system by check-
ing whether \\.\HGFS file, \\.\vmci file, or registry key:
HKLM \SOFTWARE\VMware Inc. \VMware Tools

Fig. 3 The overview of MRm-DLDet framework

Page 7 of 22Liu et al. Cybersecurity (2023) 6:21

exists. If any of them is present, Zeus aborts execution
and removes itself. Screen resolution is a commonly
used anti-virtual machine detection indicator by mal-
ware as well. For example, the banking Trojan TrickBot
(Abrams 2020) checks the target device’s screen resolu-
tion to detect virtual machines. If the screen resolution
is 800× 600 or 1024 × 768 , the machine will be consid-
ered a virtual machine. In addition, malware will search
for user activity on the device by whether the mouse is
moved or clicked, or the keyboard is typed, etc., to deter-
mine if it is being analyzed within a virtual machine
(Miramirkhani et al. 2017; Yokoyama et al. 2016; Bulazel
and Yener 2017). According to Malware Behavior Catalog
(2022), samples from the DarkComet family will check
if the mouse is moving. The Darkhotel and Ursnif mal-
ware (MITRE 2021; Ionut Arghire 2017), check whether
the mouse cursor position has changed to determine
whether it is running on a real device. Therefore, we miti-
gate these anti-VM detections by performing actual user
actions while the malicious sample is running, including
moving and clicking the mouse and typing characters on
the keyboard.

Therefore, we modified the configuration of our Win-
dows 10 virtual machine by the following steps to prevent
it from being checked by memory-resident malware.

• Uninstall VMware Tools.
• Do some modifications to the.vmx file, such as mak-

ing the virtual machine use the same BIOS serial
number as the physical machine, etc.

• Modify the MAC address to a random one except
default VMware MAC address (e.g., 00:0c:29,
00:50:56, 00:05:69).

• Modify screen resolution to any value except
800× 600 and 1024 × 768 . In our virtual machine,
we set it to 1152× 864.

• Mimic normal user behavior by clicking or mov-
ing the mouse and tapping random characters on
the keyboard when running samples in the virtual
machine.

Generating memory dumps
To generate memory dumps, firstly, we do data cleaning
to remove samples that use outdated in-memory code
execution methods and those that don’t run in our Win-
dows 10 VM. Then we automate the memory dump gen-
eration process by controlling the vmrun utility through
python scripts to improve generation efficiency. Vmrun
utility is a command-line utility that controls virtual
machines to perform various tasks, such as power on/

off, and create a new snapshot. Finally, we use vmrun’s
‘createSnap’ operation to capture a snapshot that dumps
the VM’s memory state to a file. We created a snapshot of
the Windows 10 VM before any operations and named it
‘Initial State’. Every time before running one sample, the
VM machine will roll back to the ‘Initial State’. Küchler
et al. (2021) suggests that most malicious behavior can be
observed within the first two minutes that it is executed.
Each malicious sample was given two minutes to initial-
ize and execute.

To further analyze the memory dump file, we present
the structure of the captured memory dump files. Win-
dows memory management can be summarized into
three mechanisms: (1) virtual address space manage-
ment, (2) physical page management, and (3) address
translation and page swapping (Yu et al. 2015). MRm-
DLDet analyzes the entire data of the memory dump,
including the data of the physical and virtual memory
space, where each process runs in its own virtual address
space. In Fig. 4, we briefly show the layout of a typi-
cal process (Yosifovich et al. 2017), with each part of it
described as follows.

• Kernel address space: Users do not have access to
this part of the memory, which is managed by the
operating system and used for paging pools, system
cache, device drivers, etc.

• User address space: Programs running in user mode
have no access to the kernel address space but are

Fig. 4 Windows Memory Layout overview of one typical process

Page 8 of 22Liu et al. Cybersecurity (2023) 6:21

allowed to enter the user address space to which they
are assigned.

• Thread stack: It is used to display the memory alloca-
tion for the stack used by each thread in this process
and orderly allocate short-term storage for local vari-
ables.

• Process heap: It is the dynamically allocated memory
portion, shows the memory allocation for this process
heap, and is used by programs to store global variables.

• DLLs: Contains the DLL files that the sampling process
needs to call.

• Program image: Placement of the executable files.

Figure 4 illustrates a high-level layout since current Win-
dows operating systems use techniques such as address
space layout randomization (ASLR) to defend against
attacks such as buffer overflow, which means that sev-
eral parts of Fig. 4 may not be contiguous in a complete
memory dump file. Further exploration of these tech-
niques is out of scope of this paper. Furthermore, the
“Experiments” section shows that MRm-DLDet obtains
excellent detection results without turning off these
techniques.

Memory dump deduplication
The generated memory dumps are saved as snapshot
files. As the fact that the memory size of the virtual
machine and one memory dump is the same, which is
above 2GB. To reduce the consumption of storage space
and improve MRm-DLDet’s efficiency when analyzing
memory dumps, we are inspired by Brengel and Ros-
sow (2018) to design and implement a memory duplicate
page delete process, which is the first step of memory
dump preprocessing. We base on two observations: (1)
The memory-resident malware only injects payload in
small areas of memory compared to the whole memory.
(2) Rolling back to the ’Initial State’ to start running guar-
antees that the memory is always the same each time we
run a sample. Therefore, we only retained the memory
data related to ICE attacks to improve the specificity of
memory dumps. We define memory dump deduplica-
tion as: Analyzes the target memory dump and deletes
its pages that are the same as the ’Initial State’ memory
dump.

After memory dump deduplication, the memory dump
files from the previous module only retain the memory
data about changes after running samples, such as new
processes and threads, added registry configurations,
injected shellcodes, etc. Algorithm 1 shows the deduplica-
tion process briefly.

Ultra‑high resolution image preprocessing module
In this module, deduplicated memory dump files are
converted into RGB images. We cut one ultra-high reso-
lution RGB image into sub-images and labeled each sub-
image. It is the second memory dump preprocessing step.

Visualization memory dumps
In order to overcome the challenges faced by current
memory-resident malware detection method that relies
on massive expert knowledge and does not fully exploit
memory information. We are inspired by the motivating
example in Fig. 1. Moreover, from “Generating Memory
Dumps” section, we find that the data between different
parts of a process memory also correspond to different
uses and structures. We infer that the injected memory
regions will be distinguished from the benign memory
dump structure. Therefore, we represented the memory
dump files as RGB images. The difference between the
different data contents after visualization is used to dis-
tinguish benign programs from memory-resident ones.

The deduplicated memory dump files from the pre-
vious module can essentially be represented as binary
strings consisting of zeros and ones. We convert every
8 bits (1 byte) of a memory dump file to a pixel value
(0x00 → 0, 0xFF → 255). First, read three-pixel values
from one memory dump file at a time, and fill them into

Page 9 of 22Liu et al. Cybersecurity (2023) 6:21

a 3D array. Hence, the three dimensions are respectively
loaded into the R, G, B channels to generate an RGB
image. What’s more, to increase the variability in visual
features between various memory dump images and to
improve detection accuracy, we use the CLAHE (Reza
2004) technology on all memory dump images. Figure 5
depicts a process of developing a memory dump image.
The images we generate are all square, and the final size
of the image is determined by the number of pixels in
the image, which is square root of the number that rep-
resents (dumpfilesize)/3. At the same time, we choose a
lossless PNG format for the images to minimize the loss
of features. The resolution of the images ranged from
6000× 6000 pixels to 10000× 10000 pixels.

Figure 6 shows six memory dump images of benign and
memory-resident samples, with three images of benign
memory dumps on the left and three images of memory-
resident samples on the right. An empirical observa-
tion that can be made is that the benign and malicious
memory dump images are visually distinct. For color, the
benign image is lighter, while the memory-resident image
is darker. For texture, benign and malicious images have
different textures. This observation is also consistent with
our inference above. Therefore, it can be found that the
RGB images generated by memory dumps of memory-
resident malware are significantly different from those
generated by benign programs, i.e., the method of using
deep neural networks to classify images is efficacious for
memory-resident malware detection.

Ultra‑high resolution image processing
The RGB images converted from memory dump files
are ultra-high resolution images, and CNN networks
commonly used for image classification usually do not
support such large-scale inputs. As mentioned in “Back-
ground on Ultra-High Resolution Image Classifica-
tion” subsection, in previous studies (Wang et al. 2019;
Van Etten 2018), researchers have proposed sliding

window methods for ultra-high resolution images, which
are mainly used for target detection tasks of remote sens-
ing images and do not aim at image classification tasks.

Therefore, we first use the non-overlapping sliding
window method in vision-based malware detection.
Our approach overcomes the drawback of traditional
image scaling methods, which use multiple downsam-
pling layers and lead to information loss.

We set the size of each sub-image to 224 × 224 . How-
ever, the size of memory dumps varies, and so does the
number of sub-images. To solve this problem, MRm-
DLDet resizes all RGB images to the same size using
bicubic interpolation. In this resizing method, the tex-
tural features are still visible (Vasan et al. 2020a). In
addition, to choose an appropriate size, we investigate
the influence of three image sizes on model detection
results and choose 5600× 5600 as the adjusted size of
RGB images. The memory dump images are then cut
into multiple sub-images, and each memory dump pro-
duces 625 sub-images after cropping. “Experiments”

Fig. 5 Convert a memory dump file to an RGB image

Fig. 6 Several RGB memory dump images belonging to benign
samples and memory-resident malware

Page 10 of 22Liu et al. Cybersecurity (2023) 6:21

section describes more details on the influences of
image size on model detection accuracy.

Vision‑based features extraction and detection module
This module mainly includes the MRmNet, the neural
network in MRm-DLDet. “Structure of MRmNet” sec-
tion shows more details of this module.

Images features extraction
We use a pre-trained ResNet-18 network to extract a vec-
tor with a length of 512 for each sub-image that was cut
from one memory dump file. The features of each mem-
ory dump file are represented as a matrix of [625, 512].

Memory‑resident malware detection
We train the attention-based gated recurrent units (GRU)
network with the features of the sub-images and divide
the training set, verification set, and test set. Consider
performance evaluation metrics to adjust hyperparam-
eters, including accuracy, precision, recall and F1-score.
In the end, the model adds a voting layer, which we first
generated. After the neural network outputs the predic-
tion results of each sub-picture, the voting layer first cal-
culates the sum of each 625 outputs, i.e., each sub-picture
votes for the final classification of memory dump, with a
value of 1 or 0. The voting layer then calculates the aver-
age value of sub-images voting. If the average value is
above the threshold, the sample that the memory dump
represents is detected as a memory-resident malware.

Structure of MRmNet
We designed and implemented MRmNet consisting of
ResNet-18, an attention-based GRU, and a self-made vot-
ing layer in the Vision-Based Detection Module of the
MRm-DLDet framework. It extracts high-dimensional
features from memory dump images to improve the
accuracy of our detection framework.

More recently, methods combining convolutional neu-
ral networks and recurrent neural networks have been
widely used, the CNN models extract spatial features in
depth and retain valid information, followed by train-
ing and prediction with RNN, which allows the model to
better express temporal and spatial features. This paper
applies this approach to the malware detection problem,
using more advanced ResNet-18 and GRU networks to
improve the CNN-RNN combination. The MRmNet
structure in MRm-DLDet framework is shown in Fig. 7.

Input layer
In MRm-DLDet Framework, malicious and benign pro-
grams to be detected are first extracted from the runtime
memory dumps. Then the memory dumps are converted
into RGB images and cropped into multiple sub-images.
The sub-images are then imported into the ResNet-18
layer.

In this study, D i (i = 1, 2, 3...n) denotes the memory
dump files generated by memory-resident samples and
benign samples, i denotes that the sample is the i-th of
our dataset. While di,j (i = 1, 2, ..., n, j = 1, 2, ..., 625)

Fig. 7 The MRmNet structure in MRm-DLDet framework

Page 11 of 22Liu et al. Cybersecurity (2023) 6:21

denotes each sub-image generated after sliding window
partitioning a D i image, j denotes the serial number of
the sub-picture, 625 in total.

ResNet‑18 layer
The second layer is the network to extract the di,j fea-
tures. In this study, we use the ResNet-18 network (He
et al. 2016). To get over the difficulty that deep networks
are not easily optimized, the ResNet-18 network uses a
residual structure. Each residual block is a multilayer
neural network consisting of a convolutional layer, a
batch normalization layer, and an activation layer. The
new technique introduced by the ResNet model provides
shortcut connections between non-contiguous convolu-
tional layers. This technique allows the model to skip lay-
ers to process vanishing gradients to achieve lower losses
and better results.

To obtain the image features, we extract the output of
the ResNet-18 model’s avgpool layer as the result of one
sub-image feature extraction, which is a vector with a
length of 512. In detail, the cropped sub-images, repre-
sented as di,j that obtained from the input layer, enter the
ResNet-18 layer as the input. After going through the pre-
trained ResNet network, it extracts a [1, 512] vector Vi,j
(i = 1, 2, ..., n, j = 1, 2, ...625), which is generated by avgpool
layer. i denotes that the sample is the i-th program of our
dataset, and j denotes the serial number of the sub-image.
The output of the ResNet-18 layer is formalized as:

GRU layer
The third layer of MRmNet is the GRU layer. It is well
known that long short-term memory (LSTM) (Hochre-
iter and Schmidhuber 1997) solves RNN’s problem of
lacking long-term dependence on learning by adding a
gated mechanism and memory cell. However, the LSTM
network has many parameters and converges slowly.
GRU (Cho et al. 2014) is an improved version of standard
LSTM. GRU makes simplifications and improvements
on LSTM networks. GRU only has update gate and reset
gate, while LSTM has three gates (forget gate, input gate,
and output gate). GRU has fewer training parameters, so
it saves much time when the training data is enormous.

This layer divides the feature-extracted sub-image
vectors from the previous layer into the training set,
validation set, and test set. Then, for example, the mem-
ory-resident malware in the training set can be obtained
as the vector sequence shown in Eq.(2). Trainc(c = 0, 1)
represents the class of samples in the training set, i.e., 0,1.

(1)Vi,j = ResNet − 18(di,j)

To further describe the GRU principle, set Vt to represent
the input at the current moment, zt as the update gate, rt
as the reset gate, ht as the hidden state that passes to the
next moment, while ht−1 is the old state, h̃t is the candi-
date hidden state. The specific implementation of a single
gated recurrent unit is as follows:

In addition, we applied dropout technique on our GRU
layer to reduce the risk of overfitting. Overall, the output
by GRU layer at moment t is represented as:

Attention layer
The attention mechanism was proposed by Zhou et al.
(2016), which could assign weights to data and weight
summation, and is highly interpretable. The attention
mechanism effectively retains important details and pre-
vents critical information from being lost. For that rea-
son, we added an attention layer after the GRU layer and
let it assign weights to the output vectors so that it could
further improve the detection accuracy of the MRm-
DLDet framework. In our neural network, the attention
mechanism estimates the association level between fea-
tures. Gt is the vector output by the GRU layer at moment
t. W is set as the result of the GRU layer weighted sum-
mation of the output vectors. Let at represent the weight
of the hidden layer of the attention module, b represent
the bias.

Set Li,j as the final output label.

In the end, the output Li,j is the classification result of
sub-images. The output of MRmNet has two cases:
on the one hand, the source binary of the sub-image is
a memory-resident malware, i.e., Li,j is set to 1. On the
other hand, the program which generated the sub-image
is a benign file, i.e., Li,j is set to 0.

Voting layer
The final layer of MRmNet is voting layer, a layer that we
designed. In previous layers, ResNet-18 will go through

(2)Trainc = V1,1,V1,2, ...V2,1,V2,2, ...,Vn,625

(3)

zt = σ(Wz · [ht−1,Vt])

rt = σ(Wr · [ht−1,Vt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

h̃t = tanh(W · [rt ∗ ht−1,Vt]j)

(4)Gt = GRU
(

Vi,j

)

(5)W = atGt + b

(6)Li,j = softmax(atW)

Page 12 of 22Liu et al. Cybersecurity (2023) 6:21

GRU, and then the attention layer will assign weights and
give detection results.

The detection result Li,j from the attention layer is
only the classification result of one sub-image. In MRm-
DLDet, a memory dump image will be cropped into 625
sub-images. Therefore, a combined result of the 625 sub-
images will report the whole memory dump image’s clas-
sification result, which is the tested sample’s detection
result.

In order to effectively detect memory-resident mal-
ware, it becomes a challenge as how to most effectively
organize the classification results of the 625 sub-images
from each memory dump image. We designed a vot-
ing layer, the attention layer’s output Li,j as input. Every
625 sub-images represent a memory dump file, that
can be considered as a group, for example, when i = 1 ,
Group1 =

{

L(1,1), L(1,2), ...L(1,625)
}

 . Calculate the arithme-
tic mean of each sub-images group, the result is shown
as Mi.

That is, each sub-picture is considered to vote for the
classification of the final executable, with a value of 1 as
memory-resident malware, or 0 as benign. The arithme-
tic mean is averaged over those 625 sub-pictures, with
a threshold of 0.6 for classification, “Experiments” sec-
tion describes more details on the selection basis of the
threshold values.

• Mi < 0.6, detecting as benign program.
• Mi ≥ 0.6, detecting as memory-resident malware.

Experiments
This section introduces our basic experimental setup,
discusses existing malware datasets, and presents our
dataset. After that, we described each of our experiments
in detail and showed the experiments’ results.

Dataset
Many research institutions and companies have provided
malware datasets that can be used for artificial intelli-
gence and big data analysis, such as the 2015 Microsoft
Malware Classification Challenge dataset (BIG2015 data-
set) (Ronen et al. 2018), EMBER dataset (Anderson and
Roth 2018), and SOREL-20M dataset (Harang and Rudd
2020).

However, these datasets have some drawbacks. On
the one head, in order to prevent the spread of malware,
they all provide processed malicious sample data. For
example, the BIG2015 dataset only provides processed

(7)Mi =

n
∑

i=0

625
∑

j=0

Li,j

byte files and asm files. EMBER only includes features
extracted after parsing the PE file, and SOREL-20M
offers malicious samples with the PE header set to 0.
Since memory-based detection methods require memory
data when a program runs, these samples are not avail-
able for memory forensics. On the other hand, these
datasets provide few benign executables. Therefore, the
existing datasets do not apply to our study. To construct a
suitable dataset, we constructed a dataset that meets the
following requirements:

• Malicious samples from memory-resident malware
family.

• Both malicious samples and benign programs are
complete PE files and can be run on Windows 10.

• All the samples were built recently.

Malware samples
We collected memory-resident malware that use up-to-
date evasion methods from VirusShare, which is a mal-
ware sample repository that provides security researchers
and forensic analysts access to real-time malware sam-
ples. To cover as many existing ICE attack techniques
as possible, we selected more than 80 malware families
using ICE attack techniques such as process injection
based on security companies’ publicly available technical
analysis and the analysis in the globally-accessible knowl-
edge base of adversary tactics and techniques ATT &CK
matrix (MITRE).

Benign samples
The benign binaries consist of system files and some free-
ware with a large number of users. Some benign data is
extracted from the “System32” directory of the Win-
odws 10 system. In addition, we collected some free pop-
ular programs from CNET Download (Ventures 2022).
To ensure that the benign programs are not bundled
with malicious or adware, we verified the binary labels
by uploading benign samples to VirusTotal. VirusTo-
tal aggregates a large number of antivirus products and
online scanning engines to detect malware. We removed
the samples obtained from CNET Download that Virus-
Total detection ratio >3%.

We collected 1120 benign and 1648 malicious sam-
ples. After data cleaning, we eventually obtained 1010
benign and 1050 malicious binaries. Since every memory
dump image is a set of 625 sub-images, there are 631,250
benign sub-images and 656,250 malicious sub-images as
the input for MRmNet. Once all the data are processed,
we divide the train, validation, and test set according to
the ratio of 6 : 2 : 2. Table 1 describes the detailed division

Page 13 of 22Liu et al. Cybersecurity (2023) 6:21

of benign and malicious data, and the division of pro-
cessed sub-images for MRmNet’s model training can be
found in Table 2. Moreover, our datasets are now ready to
be used for non-profitable purposes (C1air3 2023).

Experiment settings
We implemented our execution environment on one
ThinkPad T480 physical machine with Intel Core
i5-8250U, 1.80 GHz processor, and 24 GB of RAM. We
generated memory dump files in VMware Workstation
(VMware 2022), version 16.0, which installed a Windows
10 OS. The main programming language environment is
Python 3.7.

After several evaluations and adjustments, the hyper-
parameter configuration of the attention based GRU
model in the experiment shows in Table 3. In the experi-
ments of this study, we chose Accuracy, Precision, Recall,
and F1-score to evaluate the effectiveness of our MRm-
DLDet framework and the neural network models used
for comparison. These four evaluation metrics have been
widely used in previous studies, and they are important
basis for model performance evaluation.

Threshold for detection
In MRmNet, the final voting layer needs to choose
a threshold to classify the voting results into

memory-resident malware and benign. Selecting a rea-
sonable threshold would help our model achieve the best
detection results. We used the median value 0.5 as guide-
line with a step size of 0.03 and tested the four evalua-
tion metrics of the model when the threshold values were
respectively chosen from 0.45 to 0.69, which is presented
in Fig. 8.

According to Fig. 8, when the threshold value is
selected as 0.6, we got the best accuracy, recall, and
F1-score scores. Thereby, it can be seen that 0.6 is an
appropriate threshold for our detection framework.

Ultra‑high resolution image preprocessing method
evaluation
The first experiment explored the effect of different
ultra-high resolution image processing methods on the
MRm-DLDet framework’s detection performance. On
the one hand, the ultra-high resolution images were
directly reduced to 224 × 224 by the bicubic interpo-
lation method. On the other hand, a non-overlapping
sliding window cuts every ultra-high resolution image
into 625 sub-images. Then separately fed, the memory
dump images using these two methods into the MRmNet
(ResNet-18+GRU+Attention) network for training and
testing. The evaluation metrics’ results of the two experi-
ments are in Table 4. Compared with the direct scaling

Table 1 Data distribution of benign and malicious samples

Class Train set Val set Test set Total

Memory-resident 630 210 210 1,050

Benign 606 202 202 1,010

Total 1,236 412 412 2,060

Table 2 Data distribution of sub-images

Class Train set Val set Test set Total

Memory-resident 393,750 131,250 131,250 656,250

Benign 378,750 126,250 126,250 631,250

Total 772,500 257,500 257,500 1,287,500

Table 3 The hyperparameters during training

Configuration Value

Epoch 60

Batch Size 2048

Learning Rate 0.001

ModelCheckpoint monitor=’val_
acc’,
mode=’max’

Fig. 8 Detection results of different thresholds

Table 4 Comparison of different image processing methods

Bold values indicate the best detection result

Method Accuracy (%) Precision Recall F1‑score

Directly resize 90.55 0.8824 0.9002 0.8912

Non-overlapping
sliding window

98.34 0.9896 0.9777 0.9836

Page 14 of 22Liu et al. Cybersecurity (2023) 6:21

method, using a non-overlapping sliding window could
significantly improve the memory-resident malware
detection performance of MRm-DLDet.

Furthermore, to compare the effect of different neural
networks with different image processing methods on
the performance of visual detection of memory-resident
malware, we selected three neural network models that
are widely used in malware visualization detection meth-
ods as comparison baselines. Then trained and tested
the models using the processed memory dump data. The
models are briefly described in Table 5.

Table 6 shows the results of training and testing the
four neural network models separately with images pro-
cessed by two different dimensionality reduction meth-
ods. It can be found that MRm-DLDet using sub-images
cropped by non-overlapping sliding windows as input has
the best detection accuracy of 98.34% and F1 score > 0.98,
and the detection results of the models using images pro-
cessed with the non-overlapping sliding window method
as input are better than those of the models trained with
direct resized images. This also proves that it is reason-
able to apply non-sliding windows with ultra-high resolu-
tion memory images, which can preserve the features of

memory dumps better than directly resized images to get
higher detection accuracy.

We analyzed the misreported programs. A malicious
sample of the DarkComet family was misreported as
benign, and we found that this was because when the
memory dump of the sample was obtained, the runt-
ime sample did not successfully connect to C&C and
therefore did not perform the following attack behavior,
resulting in similar characteristics to the benign program.
Another observation is that memory-resident malware
samples are falsely reported at a higher rate, probably
because hackers are constantly improving ICE attacks to
make their actions increasingly slight and more similar to
the APIs used by benign programs, for example, to obtain
a higher evade capability.

Different memory dump image sizes and neural networks
evaluation
In MRm-DLDet’s Ultra-High Resolution Image Preproc-
essing Module, when using the non-overlapping sliding
window to crop memory dump RGB images, the num-
ber of sub-images varies depending on the resolution of
the memory dumps. MRm-DLDet solves this problem
by resizing all RGB images to the same size by bicubic
interpolation. We evaluate the effect of three different
image sizes: 3360× 3360 , 4480× 4480 , and 5600× 5600
on the detection performance of the model. Additionally,
to choose the best CNN-RNN combination for MRm-
Net, we selected three CNN models (VGG16, Inception
V3, ResNet-18), three RNN models (RNN, LSTM, GRU)
and respectively cross-combined them. Each CNN-RNN
combination uses three different sizes of memory dump
images as input, the CNN models extract image features,
and the features are then transferred to the RNN models
that are combined with the attention mechanism.

Totally 27 detection models were generated, 9 of each
memory dump image size. Each sub-image is 224 × 224 ,
through the non-overlapping sliding window, one RGB
image of three sizes produces 625, 400 as well as 225
sub-images respectively. Table 7 shows the training
and detection results of each model. Besides the four

Table 5 Description of three CNN models

Model Author Description

VGG16 Simonyan and Zisserman (2014) The VGG16 network has a strong fitting ability. It is often used as a benchmark for malware identifica-
tion, and its core design idea is to use smaller convolutional kernels and build deeper network layers.

Inception V3 Vasan et al. (2020b) Proposed by Google, the highlight is the addition of decomposition techniques to decompose the
convolutional kernel.

ResNet-18 He et al. (2016) ResNet-18 is one of the ResNet network family, its network structure balances training efficiency and
accuracy well, and it has achieved excellent results in visual malware classification.

Table 6 Comparison of the MRm-DLDet framework evaluation
using different neural networks

Bold values indicate the best detection result

Method Model Accuracy
(%)

Precision Recall F1‑score

Directly
resize

VGG16 87.76 0.8842 0.8733 0.8787

ResNet-18 91.59 0.9124 0.9062 0.9093

Inception
V3

85.79 0.8649 0.8813 0.8730

MRm-
DLDet

90.55 0.8824 0.9002 0.8912

Non-
overlapping
sliding
window

VGG16 92.36 0.9192 0.9210 0.9201

ResNet-18 94.20 0.9276 0.9524 0.9398

Inception
V3

91.77 0.9193 0.9128 0.9160

MRm-
DLDet

98.34 0.9896 0.9777 0.9836

Page 15 of 22Liu et al. Cybersecurity (2023) 6:21

evaluation metrics, we also consider the feature extrac-
tion time, which shows the time taken by different CNN
models to extract features from a memory dump image
of different sizes.

Table 7 shows that in terms of image size, the accu-
racy of the neural networks decreases with the
increased compression of the images. The evalua-
tion metrics of the model gradually decrease from
5600× 5600 to 3360× 3360 . For example, the ResNet-
18+GRU+Attention model has 98.34% accuracy, 0.9896
precision, 0.9777 recall, and F1-score is 0.9836 when the
image size is 5600× 5600 , while the accuracy drops to
97.41% and 0.9808 when the image size is 4480× 4480 .
When the size is reduced to 3360× 3360 , the detection
accuracy is only 96.03% , the precision is only 0.9784. The
same finding was found in the other 9 combinations of
neural network models. This may be because using a
5600× 5600 image, more sub-images can be generated

by non-overlapping sliding windows and the model is
relatively getting better detection results. Therefore, we
choose 5600× 5600 for MRm-DLDet as the size of the
memory dump image after bicubic interpolation process-
ing in order to get the best detection results.

For the CNN models, five evaluation metrics are con-
sidered: accuracy, precision, recall, F1-score, and feature
extraction time. In MRm-DLDet, the pre-trained CNN
model extracts features for each memory dump file’s sub-
images, which are then transferred to the RNN model to
train and test. The feature extraction time is affected by
two factors:

• The number of sub-images of each memory dump
file is different due to the different sizes of the images.

• The difference between the structure of the neural
network results in different feature vector lengths
extracted by each model.

Table 7 Comparison of different memory dump image sizes and different neural networks

Bold values indicate the best experimental results

Memory dump image size MRmNet’s deep learning model Accuracy Precision Recall F1‑score Feature
extraction time
(minutes)

5600× 5600(625 Sub-Images) VGG16 + RNN + Attention 96.49% 0.9474 0.9671 0.9572 0.5970

VGG16 + LSTM + Attention 97.51% 0.9554 0.9676 0.9614 0.5970

VGG16+GRU+Attention 97.62% 0.9546 0.9680 0.9613 0.5970

Inception V3 + RNN + Attention 94.27% 0.9328 0.9351 0.9340 3.9532

Inception V3 + LSTM + Attention 94.90% 0.9450 0.9526 0.9488 3.9532

Inception V3 + GRU + Attention 95.22% 0.9309 0.9674 0.9488 3.9532

ResNet-18 + RNN + Attention 97.66% 0.9817 0.9642 0.9729 0.4779

ResNet-18 + LSTM + Attention 98.11% 0.9828 0.9810 0.9819 0.4779

ResNet‑18 + GRU + Attention 98.34% 0.9896 0.9777 0.9836 0.4779

4480× 4480(400 Sub-Images) VGG16 + RNN + Attention 95.67% 0.9529 0.9524 0.9527 0.5837

VGG16 + LSTM + Attention 95.97% 0.9500 0.9575 0.9537 0.5837

VGG16 + GRU + Attention 96.05% 0.9581 0.9534 0.9557 0.5837

Inception V3 + RNN + Attention 93.28% 0.9251 0.9388 0.9319 1.1931

Inception V3 + LSTM + Attention 94.01% 0.9468 0.9418 0.9442 1.1931

Inception V3 + GRU + Attention 93.78% 0.9321 0.9375 0.9348 1.1931

ResNet-18 + RNN + Attention 97.81% 0.9808 0.9787 0.9797 0.4598

ResNet-18 + LSTM + Attention 97.66% 0.9821 0.9733 0.9777 0.4598

ResNet-18 + GRU + Attention 97.41% 0.9808 0.9714 0.9761 0.4598

3360× 3360(225 Sub-Images) VGG16 + RNN + Attention 95.28% 0.9427 0.9531 0.9479 0.2674
VGG16 + LSTM + Attention 94.81% 0.9345 0.9463 0.9403 0.2674
VGG16 + GRU + Attention 95.59% 0.9464 0.9644 0.9553 0.2674
Inception V3 + RNN + Attention 94.98% 0.9316 0.9536 0.9425 1.4769

Inception V3 + LSTM + Attention 94.61% 0.9439 0.9404 0.9422 1.4769

Inception V3 + GRU + Attention 95.02% 0.9405 0.9562 0.9483 1.4769

ResNet-18 + RNN + Attention 95.58% 0.9807 0.9432 0.9616 0.3964

ResNet-18 + LSTM + Attention 96.00% 0.9794 0.9528 0.9659 0.3964

ResNet-18 + GRU + Attention 96.03% 0.9784 0.9643 0.9713 0.3964

Page 16 of 22Liu et al. Cybersecurity (2023) 6:21

In this experiment, the image feature vector extracted
from the ResNet-18 model’s avgpool layer is 512 in
length, the VGG16 model extracts features of 4096 in
length for each sub-image, and the pre-trained Inception
V3 model outputs sub-image features with 1 dimension
and 2048 in length. Therefore, for the 27 detection mod-
els, the combination of different memory dump image
sizes and pre-trained CNN models resulted in 9 different
feature matrices, and the corresponding feature extrac-
tion times are shown in Table 7 as well. Since the feature
extraction time only depends on the CNN model, every
three detection models using the same CNN share the
same feature extraction time.

Table 7 shows that among the nine models using the
same memory dump image size, ResNet-18 with differ-
ent RNN models combination obtained better detec-
tion results than the other CNN models. Taking a
5600× 5600 size image as an example, the highest accu-
racy of the three models using the pre-trained ResNet-18
extracted features was 98.34% , and the results of pre-
cision, recall, and F1-score were also the best. The best
model that combines the VGG16 model with each of the
three RNN models is VGG16+GRU+Attention, with
a detection accuracy of 97.62% . The detection accuracy
of the combination of Inception V3 and three RNNs is
lower than that of the model using the other two meth-
ods to extract features, with the highest detection accu-
racy of only 95.22% . The same conclusion can be found in
other memory dump image sizes.

Comparing the feature extraction time consump-
tion of the three CNN models in Table 7, Inception V3
takes much more time than the other two, which could
be more efficient and suitable for further deployment.
The difference between VGG16 and ResNet-18 in fea-
ture extraction efficiency is less than 0.1 min, which is
not significantly different. The shortest feature extrac-
tion time is found when the image size is 3360× 3360 ,
and the pre-training model is VGG16, which takes only
0.2674 min to extract the features of one sample. How-
ever, ResNet-18 is still selected as the CNN model for
the vision-based detection module because the detection
accuracy of ResNet-18 models is much better than that of
the VGG16 models, and the required feature extraction
time is 0.4779 min. There is no significant difference in
detection efficiency compared to VGG16.

Once the memory dump image size and CNN model
are determined, it can be found that the best perform-
ing RNN model in the MRmNet is GRU by analyzing
the detection results of the 27 deep learning models in
Table 7. Comparing the results with different combina-
tions of the three RNN models using the same image size
and CNN models, the combination of CNN with GRU

and attention achieved the best detection results out of
25 models.

In conclusion, the ResNet-18+GRU+Attention model
with memory dump images at the size of 5600× 5600
achieved the best detection result, with an accuracy of
98.34% . Figure 9 shows the variation of both accuracy as
well as loss of the model on the train and validation sets.
We noticed that this model attains high accuracy with
both train and validation sets, and the training loss and
validation loss are very close to each other, which means
our model works well in memory-resident malicious
code detection experiments.

Ablation study
In the previous subsection, we evaluated the effect of
using different CNN-RNN combinations and different
image sizes on the final detection results of MRm-DLDet.
We selected the image size as 5600× 5600 and the model
combination ResNet-18+GRU+Attention for MRmNet
that resulted in the best detection results. To further
explore the impact of different components in the MRm-
Net of MRm-DLDet on the final detection performance,
we performed an ablation study. Three MRmNet combi-
nations: only ResNet-18, ResNet-18+GRU, and ResNet-
18+GRU+Attention, were considered separately to
evaluate the effectiveness of each component. The results
can be found in Table 8.

According to Table 8, when using only the ResNet-18
model, MRmNet has the same results as those in Table 6.
The lowest detection accuracy is achieved by convert-
ing the size of ultra-high resolution images to 224 × 224
and inputting it directly into the ResNet-18 model for
detection only in this model. The detection accuracy of
MRmNet was significantly improved to 95.43% when
the ultra-high resolution images were cropped into sub-
images and then using ResNet-18 to extract sub-image

Fig. 9 Accuray and loss of each epoch

Page 17 of 22Liu et al. Cybersecurity (2023) 6:21

features before calling the GRU network for detection.
Finally, the best detection results were obtained after
adding the attention mechanism to the GRU network.
Thus, MRmNet using ResNet-18+GRU+Attention as in
MRm-DLDet gets the best results.

Comparing existing techniques
To comprehensively evaluate the effectiveness of our
MRm-DLDet framework, as MRm-DLDet focuses on
capturing and analyzing memory dumps, we compared
the MRm-DLDet with several up-to-date memory foren-
sics-based memory-resident malware detection works. In
addition, since our work detects memory-resident mal-
ware code using a vision-based approach, we also com-
pare it with several latest existing vision-based malware
detection methods. The methods used for both compari-
sons have been described in “Related work” and are only
briefly described in this subsection.

Comparing memory forensics‑based detection methods
We compared MRm-DLDet with four memory forensics-
based malware detection works. Malfind is a plugin of
Volatility, which detects malware by checking if the VAD
protection is set to PAGE_EXECUTE_READWRITE.
Quincy (Barabosch et al. 2017) extracted 38 features
from a memory dump and used Random Forests and
Extremely Randomized Trees to classify the memory
storage area. Sihwail et al. (2021) converted the features
extracted from malware memory into binary vectors,
further using the SVM algorithm to detect malware. Boz-
kir et al. (2021) is the most advanced study for detecting
memory-resident malware using memory forensics. It
represents memory dumps as RGB images and uses an
SMO algorithm with radial basis kernels combined with
feature vectors extracted by GIST+HOG.

We reproduced the detection methods according to the
principles described in the article and trained and tested
them by our dataset. The experimental results can be
found in Fig. 10.

The MRm-DLDet framework gets better results than
other methods in accuracy, precision, recall, and F1-score
according to Fig. 10. The dataset used in this experiment
was our memory-resident malware dataset contains

state-of-the-art evade methods. Malfind treats every
non-empty memory area with RWX permissions as mali-
cious, and once those permissions are well-tuned (i.e.,
only RX permissions are set), malfind performs poorly.
The other methods were trained and tested mainly on
Windows 7, and the features they selected may not take
full advantage of memory data information, resulting in
poor performance in our dataset.

Comparing deep learning and vision‑based malware
detection methods
To evaluate MRm-DLDet as comprehensively as pos-
sible, we compared it with four recent malware detec-
tion methods combining deep learning and vision-based
methods. Bozkir et al. (2019) converted raw binary bytes
of PE files into RGB images and used convolutional neu-
ral networks to classify persistent malware files. Pinhero
et al. (2021) visualized PE files into grayscale, RGB, and
Markov images and extracted features of the three types
of images by Gabor filters. VGG3 got the best classifi-
cation result in their work. Tekerek and Yapici (2022)
converting PE files to gray and RGB images for malware
classification. O’Shaughnessy and Sheridan (2022) used
a hybrid framework for malware classification, first set-
ting an entropy threshold to determine whether a sample
is packed or not, then analyzing the samples using static
and dynamic methods respectively. Their dynamic meth-
ods converted malicious process memory dumps into
space-filling curve images.

Again, we reproduced the methods according to the
principles in the article, then trained and tested them
by our dataset. The results are shown in Fig. 11. Due to
image layout limitations, Tekerek and Yapici (2022) is
represented as “Tekerek (2022)”, and O’Shaughnessy

Table 8 Ablation Study for MRm-Net

Entries in bold font indicate the best results

Model used by MRmNet Accuracy Precision Recall F1‑score

ResNet-18 91.59% 0.9124 0.9062 0.9093

ResNet-18 + GRU 95.43% 0.9633 0.9504 0.9568

ResNet-18 + GRU + Atten-
tion

98.34% 0.9896 0.9777 0.9836

Fig. 10 Comparing MRm-DLDet with Memory Forensics-based
detection methods

Page 18 of 22Liu et al. Cybersecurity (2023) 6:21

and Sheridan (2022) is represented as “O’Shaughnessy
(2022)”.

Analyzing the results in Fig. 11, the methods of Boz-
kir et al. (2019), Pinhero et al. (2021) and Tekerek and
Yapici (2022) perform similarly, but all have significant
differences with the detection results of the other two
methods. This may be because the above three meth-
ods visualize PE files directly, and the packed samples
affect the accuracy. O’Shaughnessy and Sheridan (2022)’s
method uses static and dynamic analysis methods by
distinguishing between packed and unpacked samples.
Its dynamic approach can capture malware activities in
the memory, thus showing high accuracy in our dataset.
However, its dynamic method only extracts the mini-
processes containing process threads and handles infor-
mation of malware, which means they do not analyze
the complete memory data, resulting in lower detection
results than our MRm-DLDet.

The two comparing experiment results prove that our
framework that converts memory-resident malware’s
memory dumps to RGB images and uses deep learning
models to detect them is an effective ICE attacks detector
with high accuracy and recall.

Time consumption evaluation in realistic environment
We investigated the performance of MRm-DLDet work-
ing in a realistic environment and evaluated the time
consumption of deploying it in a real environment. We
deployed our framework on a Windows 10 computer and
kept providing suspicious PE files into MRm-DLDet for
analysis to detect if they were memory-resident malicious
programs. Statistically, the average time taken by MRm-
DLDet from receiving a PE file to the end of detection is
2.39 min. This is expected as a PE file needs to be put into

the machine and run for about two minutes to initial-
ize and execute. It looks like MRm-DLDet is somewhat
time-consuming. However, from previous experimental
results, we found that the MRm-DLDet framework is far
ahead of the existing memory-resident malware detec-
tion methods regarding accuracy. Therefore, we consider
the time consumption of the memory dumps preprocess-
ing stage to be acceptable.

Robustness of MRm‑DLDet framework
To measure the robustness of MRm-DLDet, we evalu-
ate the impact of evasion attacks on our model. Neural
network-based malware detection methods are easily
attacked by mimicry attacks (Wagner and Soto 2002) and
adversarial attacks. In this section, we analyze both types
of attacks and evaluate the performance of our MRm-
DLDet framework against these evasion attacks.

Mimicry attacks to MRm‑DLDet framework
 To evaluate MRm-DLDet’s robustness to mimicry attack,
we described four kinds of up-to-date memory-resident
evasion methods in Table 9, they all have good evasion
capability.

We compared our MRm-DLDet detection framework
with the seven most popular AV engines (PCmag 2022).
We generate 30 mimicry attack samples for each state-
of-the-art memory-resident evasion method in Table 9
and detect them separately with the eight AV engines.
All mimicry attack samples do not appear in the train-
ing dataset of MRm-DLDet. The detection results can be
found in Table 10.

Table 10 shows that MRm-DLDet gets better detection
results than popular AV engines, and the only ICE attack
which is not detected is module stomping. We define the
criterion of robustness as the ability to detect three out
of four state-of-the-art attacks proving that the detec-
tion engines are robust. It can be found that only MRm-
DLDet and Microsoft’s Windows Defender are robust
against the latest mimicry attacks. Overall, this periment
confirmed that our MRm-DLDet is robust to the latest
mimicry attacks.

Adversarial attacks to MRm‑DLDet framework
Over the past few years, many studies of adversarial
attacks against deep learning-based malware detection
tools have proved effective (Suciu et al. 2019; Hu and Tan
2017; Anderson et al. 2018; Grosse et al. 2017). In theory,
MRm-DLDet is a deep learning-based detection frame-
work that can also be attacked by an adversarial exam-
ple carefully constructed by the attackers. We assume
that the attackers will not intercept our model, so the
attackers can only modify the attack sample based on the
model binary decision, i.e., black box attack.

Fig. 11 Comparing MRm-DLDet with Vision-Based detection
methods

Page 19 of 22Liu et al. Cybersecurity (2023) 6:21

We believe that attacks against deep neural networks
are not feasible in our environment. On the one hand, our
method takes PE files as input. It is deployed on the client
system, so the attackers cannot theoretically obtain the
feature data during detection for data poisoning attacks,
etc. On the other hand, existing black-box attack meth-
ods (Hu and Tan 2017; Anderson et al. 2018) are aimed
at static PE anti-malware, such as modifying malware by
adding irrelevant junk characters to bypass detection.
Since most of these methods are intended to alter mal-
ware without affecting the program’s regular function,
malware’s operations in memory will not change. So the
existing adversarial attacks that modify the PE files have
minimal impact on our detection framework.

Discussion
Our experimental results indicate that MRm-DLDet
framework is superior to the state-of-the-art memory-
resident malware detection methods. Measurements of
MRm-DLDet’s runtime have shown that it could also
be used in real-world malware detection. We detect
ICE attacks with memory forensics, which takes the
memory dumps of program runtime as information
sources. MRm-DLDet takes full advantage of the feature
that memory forensics can directly analyze RAM data
and detect malware operations in memory for captur-
ing memory-resident malware. Some challenges are still
faced in memory-resident malware detection.

The risk of overfitting
Our dataset consists of 1010 benign and 1050 memory-
resident samples, which seems insufficient for a deep
learning model, and the model may be at risk of overfit-
ting. In this paper, the risk of overfitting is concentrated
in the neural network MRmNet of MRm-DLDet, where
ResNet-18 is primarily used for extracting image features.
The attention-based GRU network is used to complete
the classification task. The high-resolution images input
into the GRU network is split into multiple sub-images
after the ultra-high resolution image preprocessing mod-
ule, samples for training and testing GRU network are
631,250 benign sub-images and 656,250 malicious sub-
images, so the sample size is enough to avoid overfitting.
We have also added dropout and early stopping tech-
niques that effectively generalize the network and reduce
the overfitting of trained data to the GRU network.

Table 9 The latest evasion methods used by memory-resident malware

Evasion Method Description

UUID Shellcode (Team 2021) UUidFromStrinA API takes a string based UUID and converts it to its binary representation.

 Providing UUidFromStrinA a pointer to a heap address, it decodes data and writes them to memory without using
common functions such as memcpy or WriteProcessMemory.

 The EnumSystemLocales function executs shellcode.

Earlybird (spotheplanet 2020) Earlybird method creates a new legitimate process in a suspended state and allocates memory for shellcode in
the new process’s memory space.

 Declare APC routine pointing to the shellcode, then shellcode is written to the previously allocated memory.

 Queuing APC to the main thread, resuming the thread and executing the shellcode.

Phantom DLL Hollowing (orr 2021) Phantom DLL Hollowing first open a TxF handle to a Microsoft signed DLL file on disk, and infect its .text section
with shellcode.

 Generate a phantom section from this malware-implanted image and map a view of it to the address space of a
process of his choice.

 The shellcode is hidden and then executed in the .text section with +RX permissions.

Module Stomping (ired.team
2020)

 Module Stomping first injects some benign Windows DLL into a remote (target) process.

 Overwrites DLL’s that loaded in step one, AddressOfEntryPoint point with shellcode.

 Starts a new thread in the target process at the benign DLL’s entry point, where the shellcode has been written to.

Table 10 Comparison of the detection results for the latest ICE
attacks by different antivirus solutions

∗ U means Undetcted
∗∗ M means Memory-Resident Malware

AV engines Attacks

UUID
Shellcode

Earlybird PhantomDLL
hollowing

Module
stomping

McAfee U ∗ U U M

Bitdefender M ∗∗ U U M

Webroot U U U U

Malwarebytes U U U U

ESET-NOD32 U U U M

Sophos U U U U

Microsoft M M U M

MRm-DLDet M M M U

Page 20 of 22Liu et al. Cybersecurity (2023) 6:21

Runtime time overhead
Getting a memory dump when performing malicious
operations usually takes more than two minutes for
execution time. It will reduce the efficiency of the detec-
tion system. This situation challenges memory forensics
and deep learning-based malware detection techniques,
which we identify as future work to be addressed.

Apply the MRm‑DLDet framework in a production
environment
To run MRm-DLDet in the production environment, it
will be deployed to the client device and detect suspicious
PE files according to the user’s requirements, get the
memory dumps and detect them, and return the detec-
tion results to the client in time so that the malicious files
can be handled in time to ensure the safety of the client
device. On the one hand, future research will need to
monitor malicious sample analysis reports published by
major security companies and forums to obtain updated
samples. On the other hand, there is also a demand to
investigate a way to reduce the training and testing time
for periodic model updates in the future, with an aim to
find a solution that doesn’t lead to a lag in model detec-
tion but also achieves high efficiency.

Conclusion
This study has applied deep neural networks to detect
memory-resident malware in memory forensics. We pro-
posed and evaluated a detection framework for memory-
resident malware named MRm-DLDet. It combines the
information of the malware’s whole memory dumps with
neural networks to overcome the bottleneck faced by
existing detection methods that rely on massive expert
knowledge and do not fully exploit memory informa-
tion. We Deduplicate the large memory dump file first.
Then in the process of visualizing memory dumps, we
converted memory dumps to RGB images. We used a
non-overlapping sliding window to cut the generated
high-resolution images to maximize the preservation
of memory dump features. This aims to improve deep
neural networks’ accuracy and determine whether there
are suspicious processes in the computer’s memory. To
support these findings, we collected a publicly available
dataset consisting of state-of-the-art memory-resident
malware and benign samples. We have designed and
implemented MRmNet for detection in MRm-DLDet,
which is composed of ResNet-18, GRU, and attention,
and it was trained by our dataset.

We explored the performance of different detection
methods. In our experiments, MRm-DLDet achieved
an impressive accuracy rate and detected 98.34% of
memory-resident malware. This method offers a reason-
able time to detect memory-resident malware. Moreover,

MRm-DLDet exhibits well robustness in detecting the
latest memory-resident malware, demonstrating that it is
potentially valuable in practical usage. As a result, MRm-
DLDet is a powerful detection scheme for memory-resi-
dent malware.

Acknowledgements
The authors of the paper sincerely appreciate anonymous reviewers who
reviewed this manuscript and provided constructive comments.

Author Contributions
JL participated in all the work, proposed the framework with careful experi-
ments, and wrote the manuscript. YF and XL provided suggestions on the
detection model and joined the discussion of this work. JZ did some work on
data collection. QL reviewed the manuscript and gave suggestions on the
revision of the details of the article. All authors read and approved the final
manuscript.

Funding
This work is supported by the Youth Innovation Promotion Association CAS
(No.2019163), the Strategic Priority Research Program of Chinese Academy
of Sciences (No. XDC02040100), the Key Laboratory of Network Assessment
Technology at Chinese Academy of Sciences and Beijing Key Laboratory of
Network security and Protection Technology.

Availability of data and materials
The full dataset used in this paper and the demo code for the detection
framework are publicly available and could be accessed at:https:// github.
com/ C1air3/ MRm- DLDet.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 16 January 2023 Accepted: 6 April 2023

References
Abrams L (2020) TrickBot malware now checks screen resolution to evade

analysis. https:// www. bleep ingco mputer. com/ news/ secur ity/ trick bot-
malwa re- now- checks- screen- resol ution- to- evade- analy sis/

Alrawi O, Ike M, Pruett M, Kasturi RP, Barua S, Hirani T, Hill B, Saltaformaggio
B (2021) Forecasting malware capabilities from cyber attack memory
images. In: 30th USENIX security symposium (USENIX security 21), pp
3523–3540

Anderson HS, Roth P (2018) Ember: an open dataset for training static pe
malware machine learning models. arXiv preprint arXiv: 1804. 04637

Anderson HS, Kharkar A, Filar B, Evans D, Roth P (2018) Learning to evade static
pe machine learning malware models via reinforcement learning. arXiv
preprint arXiv: 1801. 08917

Arefi MN, Alexander G, Rokham H, Chen A, Faloutsos M, Wei X, Oliveira DS,
Crandall JR (2018) Faros: illuminating in-memory injection attacks via
provenance-based whole-system dynamic information flow tracking.
In: 2018 48th annual IEEE/IFIP international conference on dependable
systems and networks (DSN), pp 231–242. IEEE

Barabosch T, Bergmann N, Dombeck A, Padilla E (2017) Quincy: Detecting
host-based code injection attacks in memory dumps. In: international
conference on detection of intrusions and malware, and vulnerability
assessment, pp 209–229. Springer

Binsalleeh H, Ormerod T, Boukhtouta A, Sinha P, Youssef A, Debbabi M, Wang
L (2010) On the analysis of the zeus botnet crimeware toolkit. In: 2010
eighth international conference on privacy, security and trust, pp 31–38.
IEEE

https://github.com/C1air3/MRm-DLDet
https://github.com/C1air3/MRm-DLDet
https://www.bleepingcomputer.com/news/security/trickbot-malware-now-checks-screen-resolution-to-evade-analysis/
https://www.bleepingcomputer.com/news/security/trickbot-malware-now-checks-screen-resolution-to-evade-analysis/
http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1801.08917

Page 21 of 22Liu et al. Cybersecurity (2023) 6:21

Block F, Dewald A (2019) Windows memory forensics: detecting (un) intention-
ally hidden injected code by examining page table entries. Digit Investig
29:3–12

Bozkir AS, Tahillioglu E, Aydos M, Kara I (2021) Catch them alive: a malware
detection approach through memory forensics, manifold learning and
computer vision. Comput Sec 103:102166

Bozkir AS, Cankaya AO, Aydos M (2019) Utilization and comparision of convolu-
tional neural networks in malware recognition. In: 2019 27th signal process-
ing and communications applications conference (SIU), pp 1–4. IEEE

Brengel M, Rossow C (2018) Memscrimper: Time-and space-efficient storage of
malware sandbox memory dumps. In: international conference on detec-
tion of intrusions and malware, and vulnerability assessment, pp 24–45.
Springer

Bulazel A, Yener B (2017) a survey on automated dynamic malware analysis eva-
sion and counter-evasion: Pc, mobile, and web. In: proceedings of the 1st
reversing and offensive-oriented trends symposium, pp. 1–21

C1air3: MRm-DLDet (2023). https:// github. com/ C1air3/ MRm- DLDet
CERT A (2018) Analysis of cyberattacks against the national bank of Malawi.

https:// www. antiy. com/ respo nse/ 20181 127. html
Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014) On the properties

of neural machine translation: encoder-decoder approaches. arXiv preprint
arXiv: 1409. 1259

Ebach L (2017) Analysis Results of Zeus. Variant Panda G DATA, G DATA
Fewer S (2008) Reflective DLL injection
Foundation V (2020) The volatility framework. http:// www. volat ility found ation.

org
Grosse K, Papernot N, Manoharan P, Backes M, McDaniel P (2017) Adversarial

examples for malware detection. In: European symposium on research in
computer security, pp 62–79. Springer

Harang R, Rudd EM (2020) Sorel-20m: A large scale benchmark dataset for mali-
cious pe detection. arXiv preprint arXiv: 2012. 07634

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition.
In: proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778

Hu W, Tan Y (2017) Generating adversarial malware examples for black-box
attacks based on gan. arXiv preprint arXiv: 1702. 05983

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput
9(8):1735–1780

Ionut Arghire: Ursnif banking Trojan gets mouse-based anti-sandboxing (2017).
https:// www. secur itywe ek. com/ ursnif- banki ng- trojan- gets- mouse- based-
anti- sandb oxing/

ired.team: Module stomping for shellcode injection (2020). https:// www. ired.
team/ offen sive- secur ity/ code- injec tion- proce ss- injec tion/ modul estom
ping- dll- hollo wing- shell code- injec tion

Küchler A, Mantovani A, Han Y, Bilge L, Balzarotti D (2021) Does every second
count? time-based evolution of malware behavior in sandboxes. In: pro-
ceedings of the network and distributed system security symposium, NDSS.
The Internet Society

Kumar S et al (2020) An emerging threat fileless malware: a survey and research
challenges. Cybersecurity 3(1):1–12

Lesueur J-P (2020) Darkcomet: remote administration tool. https:// www. darkc
omet- rat. com/

Ligh MH, Case A, Levy J, Walters A (2014) The art of memory forensics: detecting
malware and threats in windows, Linux, and Mac memory. John Wiley, USA

Malik A (2019) In-memory execution of an executable. https:// secur ityxp loded.
com/ memory- execu tion- of- execu table. php

Malware Behavior Catalog: Dark Comet (2022). https:// github. com/ MBCPr
oject/ mbc- markd own/ blob/ master/ xample- malwa re/ dark- comet. md#4

Microsoft: Out of sight but not invisible: Defeating fileless malware with behavior
monitoring, AMSI, and next-gen AV - microsoft security (2018). https:// www.
micro soft. com/ secur ity/ blog/ 2018/ 09/ 27/ out- of- sight- but- not- invis ibled
efeat ing- filel ess- malwa re- with- behav ior- monit oring- amsi- and- next- gen- av

Miramirkhani N, Appini MP, Nikiforakis N, Polychronakis M (2017) spotless sand-
boxes: evading malware analysis systems using wear-and-tear artifacts. In:
2017 IEEE symposium on security and privacy (SP), pp 1009–1024. IEEE

MITRE: virtualization/sandbox evasion: user activity based checks (2021). https://
attack. mitre. org/ techn iques/ T1497/ 002/

Mitre: mitre attck. https:// attack. mitre. org/
Mitre: lazarus group (2021). https:// attack. mitre. org/ groups/ G0032/

Nataraj L, Karthikeyan S, Jacob G, Manjunath BS (2011) Malware images: visualiza-
tion and automatic classification. In: proceedings of the 8th international
symposium on visualization for cyber security, pp 1–7

Ni S, Qian Q, Zhang R (2018) Malware identification using visualization images
and deep learning. Comput Sec 77:871–885

odzhan: Shellcode: in-memory execution of DLL (2019). https:// modexp. wordp
ress. com/ 2019/ 06/ 24/ inmem- exec- dll/

orr F (2021) Phantom DLL hollowing. https:// github. com/ forre st- orr/ phant om-
dll- hollo wer- poc

O’Murchu L, Gutierrez FP (2015) The evolution of the fileless click-fraud malware
poweliks. Symantec Corp

O’Shaughnessy S, Sheridan S (2022) Image-based malware classification hybrid
framework based on space-filling curves. Comput Sec 116:102660

Paschen C (2020) Avoiding get-injectedthread for internal thread creatioN.
https:// www. trust edsec. com/ blog/ avoid ing- get- injec tedth read- for- inter
nal- thread- creat ion/

PCmag: the best antivirus protection for 2022 (2022). https:// www. pcmag. com/
picks/ the- best- antiv irus- prote ction

Pinhero A, Anupama M, Vinod P, Visaggio CA, Aneesh N, Abhijith S, Anan-
thaKrishnan S (2021) Malware detection employed by visualization and
deep neural network. Comput Sec 105:102247

Reza AM (2004) Realization of the contrast limited adaptive histogram equaliza-
tion (clahe) for real-time image enhancement. J VLSI Signal Proc Syst Signal,
Image Video Technol 38(1):35–44

Ronen R, Radu M, Feuerstein C, Yom-Tov E, Ahmadi M (2018) Microsoft malware
classification challenge. arXiv preprint arXiv: 1802. 10135

Sihwail R, Omar K, Ariffin KAZ (2021) An effective memory analysis for malware
detection and classification. CMC-Comput Mater Continua 67(2):2301–2320

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv: 1409. 1556

spotheplanet: Early Bird APC Queue Code Injection (2020). https:// www. ired.
team/ offen sive- secur ity/ code- injec tion- proce ss- injec tion/ early- bird- apc-
queue- code- injec tion

Suciu O, Coull SE, Johns J (2019) Exploring adversarial examples in malware
detection. In: 2019 IEEE security and privacy workshops (SPW), pp 8–14. IEEE

Team R (2021) RIFT: analysing a lazarus shellcode execution method. https:// resea
rch. nccgr oup. com/ 2021/ 01/ 23/ rift- analy sing-a- lazar us- shell code- execu tion-
method/ Accessed Accessed 23 January 2021

Tekerek A, Yapici MM (2022) A novel malware classification and augmentation
model based on convolutional neural network. Comput Sec 112:102515

Van Etten A (2018) You only look twice: Rapid multi-scale object detection
in satellite imagery. arXiv preprint arXiv: 1805. 09512

Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q (2020) Imcfn: Image-
based malware classification using fine-tuned convolutional neural network
architecture. Comput Netw 171:107138

Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q (2020) Imcfn: Image-
based malware classification using fine-tuned convolutional neural network
architecture. Comput Netw 171:107138

Ventures R (2022) Download.com. https:// downl oad. cnet. com/
VirusShare: VirusShare. https:// virus share. com/
VirusTotal: virustotal. https:// www. virus total. com/ gui/ home/ upload
VMware I (2022) VMware. https:// www. vmware. com/
Wagner D, Soto P (2002) Mimicry attacks on host-based intrusion detection

systems. In: proceedings of the 9th ACM conference on computer and
communications security, pp 255–264

Wang Q, Hassan WU, Li D, Jee K, Yu X, Zou K, Rhee J, Chen Z, Cheng W, Gunter
CA et al (2020) You are what you do: hunting stealthy malware via data
provenance analysis. In: NDSS

Wang L, Tao D, Wang R, Wang R, Li H (2019) Big map r-cnn for object detection
in large-scale remote sensing images. Mathemat Foundations Comput
2(4):299

Yokoyama A, Ishii K, Tanabe R, Papa Y, Yoshioka K, Matsumoto T, Kasama T, Inoue
D, Brengel M, Backes M et al (2016) sandprint: Fingerprinting malware sand-
boxes to provide intelligence for sandbox evasion. In: research in attacks,
intrusions, and defenses: 19th international symposium, RAID 2016, Paris,
France, September 19-21, 2016, Proceedings 19, pp 165–187. Springer

Yosifovich P, Solomon DA, Ionescu A (2017) Windows internals, part 1: system
architecture, processes, threads, memory management, and more. Micro-
soft Press, USA, pp 113–202

Yu Z, Qing-Zhong L, Tao L, Li-Hua W, Chun S (2015) Research and development of
memory forensics. J Software 26(5):1151–1172

https://github.com/C1air3/MRm-DLDet
https://www.antiy.com/response/20181127.html
http://arxiv.org/abs/1409.1259
http://www.volatilityfoundation.org
http://www.volatilityfoundation.org
http://arxiv.org/abs/2012.07634
http://arxiv.org/abs/1702.05983
https://www.securityweek.com/ursnif-banking-trojan-gets-mouse-based-anti-sandboxing/
https://www.securityweek.com/ursnif-banking-trojan-gets-mouse-based-anti-sandboxing/
https://www.ired.team/offensive-security/code-injection-process-injection/modulestomping-dll-hollowing-shellcode-injection
https://www.ired.team/offensive-security/code-injection-process-injection/modulestomping-dll-hollowing-shellcode-injection
https://www.ired.team/offensive-security/code-injection-process-injection/modulestomping-dll-hollowing-shellcode-injection
https://www.darkcomet-rat.com/
https://www.darkcomet-rat.com/
https://securityxploded.com/memory-execution-of-executable.php
https://securityxploded.com/memory-execution-of-executable.php
https://github.com/MBCProject/mbc-markdown/blob/master/xample-malware/dark-comet.md#4
https://github.com/MBCProject/mbc-markdown/blob/master/xample-malware/dark-comet.md#4
https://www.microsoft.com/security/blog/2018/09/27/out-of-sight-but-not-invisibledefeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av
https://www.microsoft.com/security/blog/2018/09/27/out-of-sight-but-not-invisibledefeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av
https://www.microsoft.com/security/blog/2018/09/27/out-of-sight-but-not-invisibledefeating-fileless-malware-with-behavior-monitoring-amsi-and-next-gen-av
https://attack.mitre.org/techniques/T1497/002/
https://attack.mitre.org/techniques/T1497/002/
https://attack.mitre.org/
https://attack.mitre.org/groups/G0032/
https://modexp.wordpress.com/2019/06/24/inmem-exec-dll/
https://modexp.wordpress.com/2019/06/24/inmem-exec-dll/
https://github.com/forrest-orr/phantom-dll-hollower-poc
https://github.com/forrest-orr/phantom-dll-hollower-poc
https://www.trustedsec.com/blog/avoiding-get-injectedthread-for-internal-thread-creation/
https://www.trustedsec.com/blog/avoiding-get-injectedthread-for-internal-thread-creation/
https://www.pcmag.com/picks/the-best-antivirus-protection
https://www.pcmag.com/picks/the-best-antivirus-protection
http://arxiv.org/abs/1802.10135
http://arxiv.org/abs/1409.1556
https://www.ired.team/offensive-security/code-injection-process-injection/early-bird-apc-queue-code-injection
https://www.ired.team/offensive-security/code-injection-process-injection/early-bird-apc-queue-code-injection
https://www.ired.team/offensive-security/code-injection-process-injection/early-bird-apc-queue-code-injection
https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/
https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/
https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/
http://arxiv.org/abs/1805.09512
https://download.cnet.com/
https://virusshare.com/
https://www.virustotal.com/gui/home/upload
https://www.vmware.com/

Page 22 of 22Liu et al. Cybersecurity (2023) 6:21

Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, Xu B (2016) Attention-based bidirectional
long short-term memory networks for relation classification. In: proceedings
of the 54th annual meeting of the association for computational linguistics
(volume 2: Short Papers), pp 207–212

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	MRm-DLDet: a memory-resident malware detection framework based on memory forensics and deep neural network
	Abstract
	Introduction
	Challenges
	Motivation
	Our work

	Related work
	Memory forensics-based memory-resident malware detection
	OS characteristics-based
	AI-based

	Deep learning-based malware detection vision methods

	Framework overview
	Threat model
	Our framework
	Background on ultra-high resolution image classification

	MRm-DLDet
	Memory data collection and preprocessing module
	Modify virtual machine
	Generating memory dumps
	Memory dump deduplication

	Ultra-high resolution image preprocessing module
	Visualization memory dumps
	Ultra-high resolution image processing

	Vision-based features extraction and detection module
	Images features extraction
	Memory-resident malware detection

	Structure of MRmNet
	Input layer
	ResNet-18 layer
	GRU layer
	Attention layer
	Voting layer

	Experiments
	Dataset
	Malware samples
	Benign samples

	Experiment settings
	Threshold for detection
	Ultra-high resolution image preprocessing method evaluation
	Different memory dump image sizes and neural networks evaluation
	Ablation study
	Comparing existing techniques
	Comparing memory forensics-based detection methods
	Comparing deep learning and vision-based malware detection methods

	Time consumption evaluation in realistic environment
	Robustness of MRm-DLDet framework
	Mimicry attacks to MRm-DLDet framework
	Adversarial attacks to MRm-DLDet framework

	Discussion
	The risk of overfitting
	Runtime time overhead
	Apply the MRm-DLDet framework in a production environment

	Conclusion
	Acknowledgements
	References

