
Wei et al. Cybersecurity (2023) 6:24
https://doi.org/10.1186/s42400-023-00158-9

REVIEW Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

Security estimation of LWE via BKW
algorithms
Yu Wei1,2, Lei Bi1,2* , Xianhui Lu1,2 and Kunpeng Wang1,2

Abstract

The Learning With Errors (LWE) problem is widely used in lattice-based cryptography, which is the most promising
post-quantum cryptography direction. There are a variety of LWE-solving methods, which can be classified into four
groups: lattice methods, algebraic methods, combinatorial methods, and exhaustive searching. The Blum–Kalai–Was-
serman (BKW) algorithm is an important variety of combinatorial algorithms, which was first presented for solving the
Learning Parity With Noise (LPN) problem and then extended to solve LWE. In this paper, we give an overview of BKW
algorithms for solving LWE. We introduce the framework and key techniques of BKW algorithms and make compari-
sons between different BKW algorithms and also with lattice methods by estimating concrete security of specific LWE
instances. We also briefly discuss the current problems and potential future directions of BKW algorithms.

Keywords Post-quantum cryptography, Learning with errors problem, Lattice-based cryptography, Security
estimation

Introduction
The learning with errors (LWE) problem, introduced by
Regev (2005), has received widespread attention over the
last decade. It is one of the most important problems in
lattice-based cryptography. The schemes based on LWE
and its variants have developed rapidly and are regarded
as one of the most promising routes for the standardiza-
tion of post-quantum cryptography. Due to its efficiency,
versatility, and theoretical reduction to standard lattice
problems, the LWE problem has various applications. For
instance, significant research progress has been made in
Attribute-based Encryption (ABE) (Boyen 2013; Brak-
erski and Vaikuntanathan 2016), Fully Homomorphic
Encryption (FHE) (Gentry 2009; Brakerski and Vaikun-
tanathan 2014), Function Encryption (FE) (Agrawal et al.
2015; Goldwasser et al. 2014), key exchange protocols

(Ding et al. 2012; Alkim et al. 2015), and digital signa-
tures (Abdalla et al. 2012; Güneysu et al. 2012) based on
the LWE problem.

Definition 1 (Regev 2005) Let n, q be positive
integers, and χ be an error distribution over Z . s is
a randomly uniform secret vector in Z

n
q . Choose

a ∈ Z
n
q randomly and e ∈ Z according to χ , return

(a, z) = (a, �a, s� + e mod q) ∈ Z
n
q × Zq as the samples

from distribution Ls,χ over Zn
q × Zq.

The Search-LWE aims to identify s given some samples.
The Decision-LWE aims to distinguish whether the sam-
ples are from Ls,χ or a uniform distribution over Zn

q × Zq.
The security of LWE is a prominent area of public-

key cryptographic research. A cryptanalytic treatment
of LWE includes a concrete security estimation and an
extrapolation from asymptotic complexity to crypto-
graphic security level. The concrete security estimation
is to calculate the number of operations of certain algo-
rithms for solving LWE (Albrecht et al. 2015a). While
the asymptotic analysis describes the performance of the

*Correspondence:
Lei Bi
bilei121@outlook.com
1 SKLOIS, Institute of Information Engineering, CAS, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00158-9&domain=pdf
http://orcid.org/0000-0003-0760-3149

Page 2 of 17Wei et al. Cybersecurity (2023) 6:24

algorithms by 2cn , where n is the dimension of LWE (Her-
old et al. 2018).

Algorithms for solving LWE
There are several LWE-solving algorithms in the litera-
ture, which can be divided into four groups: methods
based on solving lattice problems (Chen and Nguyen
2011; Schnorr and Euchner 1994; Lindner and Peikert
2011; Liu and Nguyen 2013; Albrecht and Fitzpatrick
2013; Micciancio and Regev 2009), algebraic methods
(Arora and Ge 2011), combinatorial methods (Blum et al.
2003; Dong et al. 2021), and exhaustive searching (Bi
et al. 2019).

Due to the strong connection with lattice problems,
the most common method is to reduce LWE to a lattice
problem and then settle it with lattice reduction (Chen
and Nguyen 2011; Schnorr and Euchner 1994). For exam-
ple, Search-LWE can be directly reduced to the Bounded
Distance Decoding (BDD) problem (Lindner and Peik-
ert 2011; Liu and Nguyen 2013). The BDD problem can
also be reduced to the unique Shortest Vector Problem
(uSVP) (Albrecht and Fitzpatrick 2013). Alternatively, the
LWE problem can be rewritten as a Short Integer Solu-
tion (SIS) problem, which aims to find a short vector in a
dual lattice (Micciancio and Regev 2009). Although this
sort of approach does not require exponential samples,
there seems to be some ambiguity regarding the com-
plexity of higher dimensions.

The algebraic approach was proposed by Arora and
Ge (2011), which transforms solving LWE into solving
non-linear equations. This approach can solve the LWE
problem in a sub-exponential time when the Gaussian
distribution is narrow sufficiently, i.e., σ <

√
n where σ is

the standard deviation of the Gaussian distribution. Oth-
erwise, it takes fully exponential time. However, in prac-
tice, this approach is much more expensive than other
approaches for the parameters commonly considered in
cryptographic applications (Albrecht and Faugre 2012).

Combinatorial algorithms for solving LWE generally
use the well-known BKW (Blum et al. 2003) algorithm,
which is the focus of this article, as a foundation. The
Meet-In-The-Middle (MITM) attack also belongs to
combinatorial algorithms (Dong et al. 2021). These com-
binatorial approaches have the benefit of being standard-
ized in their complexity analysis, allowing us to obtain
explicit complexity values for different instantiations of
LWE. The disadvantage of these approaches is that their
memory requirements are often on the same scale as
their time complexity.

BKW algorithms
The BKW algorithm is similar to Wagner’s (2002) gen-
eralized birthday approach and was originally proposed

to solve the LPN problem. Later, a lot of advancements
for BKW solving LPN appeared (E Levieil 2006; Kirch-
ner 2011; Guo et al. 2014; Zhang et al. 2016; Bogos
and Vaudenay 2016; Bogos et al. 2015). Subsequently,
together with these fresh techniques, BKW algorithms
are extended to solving LWE.

When solving LWE, the most trivial strategy is to
exhaust all vectors a and find the samples where all posi-
tions except one are zero. Thus, it is possible to get the
corresponding position component of the secret vec-
tor s . However, the time and sample complexities of
successfully solving LWE with this approach are both
super-exponential.

Based on the above idea, the first BKW algorithm (we
refer to it as Plain BKW algorithm in this paper) using the
sort-and-match technique for solving LWE was proposed
by Albrecht et al. (2015b). The Plain BKW algorithm has
three stages: sample reduction, hypothesis testing, and
back substitution.

Sample reduction partitions all vectors a into ‘blocks’
which are then sorted, after which new samples are cre-
ated by finding collisions in the ‘blocks’ and then reduc-
ing these positions to zero by matching (i.e., adding or
subtracting). The new vectors a obtained in this way are
all zero except for one or two positions, at the cost of
increased noise.

Hypothesis testing aims to distinguish the correct
guess of the secret sub-vector from incorrect ones. If the
guessed value is correct, the distribution of the observed
noise elements will follow a Gaussian distribution. Oth-
erwise, these values will be uniformly random.

Back substitution allows the operation to be repeated
on a smaller LWE instance after we have obtained some
information about the secret vector.

The BKW algorithm for solving LWE has undergone
numerous significant developments in sample reduction
and hypothesis testing, which are at the heart of BKW
algorithms, over the last ten years. We will introduce
them as follows, and an overview is shown in Fig. 1.

Developments of sample reduction
There are currently four classes of BKW algorithms opti-
mizing the sample reduction stage: LMS-BKW (Albrecht
et al. 2014), Coded-BKW (Guo et al. 2015), Sieve-Coded-
BKW (Guo et al. 2017, 2019; Mårtensson 2019) and
BKW-FWHT-SR (Budroni et al. 2021), which use differ-
ent techniques.

The LMS-BKW algorithm, introduced by Albrecht
et al. (2014), uses the lazy modulus switching tech-
nique. It chooses a modular p < q and searches for col-
lisions by only taking into account the top log2 p bits of
each component in the ‘blocks’. Thus, it does not reduce
the collisions to zero like Plain BKW but to a smaller

Page 3 of 17Wei et al. Cybersecurity (2023) 6:24

value, which will accumulate as the number of itera-
tions increases. This algorithm can remove more com-
ponents in each step than Plain BKW, but the overall
noise distribution of the final samples is not uniform.

The Coded-BKW algorithm, proposed by Guo et al.
(2015), uses linear lattice codes to map the ‘blocks’ of
a vectors into the nearest codeword in a lattice code. If
any pairs of the ‘blocks’ in a map to the identical code-
word, these two vectors are merged to produce a new
sample with this block reduced.

Same as LMS-BKW, each iteration of Coded-BKW
does not completely reduce the block to zero, which
introduces some noise. With proper parameter selec-
tion, the coding noise can be maintained low enough
that it has no discernible effect on the final noise. By
gradually increasing the step size, the issue of imbal-
anced final noise of LMS-BKW can be fixed.

The Sieve-Coded-BKW algorithm (Guo et al. 2017) is
a combination of Coded-BKW with lattice sieving. By
using sieving, this algorithm ensures that the noise
from reduced components does not increase dramati-
cally, which addresses the issue of the increasing coding
noise in Coded-BKW. Each iteration is divided into two
steps. The first step is to find vector pairs that can be
matched to reduce the size of some positions. To ensure
that the size of the reduced vector positions is approxi-
mately the same as the already reduced vector posi-
tions, the second step uses sieving to cover all
components from all preceding steps. Afterwards, the γ
-Sieve-Coded-BKW algorithm (Guo et al. 2019) takes
the same value of reduction factor γ in each iteration,
where the reduction factor is not limited to 1 like Sieve-
Coded-BKW but belongs to 0,

√
2 . After that, an

improved γi-Sieve-Coded-BKW algorithm (Mårtensson
2019) takes different γi in each iteration, which

outperforms the former two Coded-BKW with sieving
in asymptotic complexity.

The BKW-FWHT-SR algorithm, proposed by Budroni
et al. (2021), uses a modified reduction step of lazy mod-
ulus switching, which was called Smooth-LMS. This new
approach is to partially reduce one additional component
after reducing a given number of components using easy
LMS. The sample reduction stage balances the complex-
ity between various reduction steps. As a result, it can
reduce more components overall with the same time and
memory complexity in each iteration. The complexity of
this algorithm outperforms all other previous methods.

Developments of hypothesis testing
After sample reduction, we guess the secret vector par-
tially and distinguish the correct one from others by
hypothesis testing. Initially, the hypothesis testing stage
used log-likelihood estimation. The tool used to improve
this stage of the BKW algorithm is mainly the Fast Fou-
rier Transform (FFT) technique. The FFT-BKW algo-
rithm proposed by Duc et al. (2015) is the first BKW
algorithm to use the FFT-distinguisher. In contrast to
Plain BKW (Albrecht et al. 2015b), FFT-BKW elimi-
nates integrals that are challenging to analyze in the final
complexity.

Later, the Coded-BKW algorithm (Guo et al. 2015)
proposed the subspace hypothesis testing in Zq , which is
extended from the Z2 case. Then this method combined
it with FFT to efficiently record the occurrences of the
error symbols in Zq . If we guess correctly, these error
terms follow a Gaussian distribution; otherwise, they are
uniformly random.

Afterwards, the pruned FFT algorithm (Guo et al.
2021) and the BKW-FWHT-SR algorithm (Budroni
et al. 2021) used pruned FFT distinguisher and the Fast

Fig. 1 The progress of BKW algorithms for solving LWE

Page 4 of 17Wei et al. Cybersecurity (2023) 6:24

Walsh-Hadamard Transform (FWHT) distinguisher to
optimize the hypothesis testing separately. The pruned
FFT distinguisher works by limiting the number of
hypotheses, and the FWHT allows for a more accurate
distinction with a larger noise level.

Contribution
We provide an overview of BKW algorithms as follows:

(1) We review the improvements of the sample reduc-
tion stage and the hypothesis testing stage, includ-
ing some technologies such as lazy modulus switch-
ing, linear lattice codes, sieving, FFT, and so on.

(2) We estimated the concrete security of specific LWE
instances using various BKW algorithms and lat-
tice-based algorithms and present comparisons of
them.

(3) We discuss the current problems and potential
future directions of BKW algorithms.

Organization
The remaining part of this paper is arranged as follows.
“Preliminaries” section states some necessary back-
ground. The framework of Plain BKW is discussed in
“Plain BKW” section. We demonstrate the improve-
ments of the sample reduction stage and the hypothesis
testing stage in “Improvements of sample reduction in
BKW algorithms” section and “Improvements of hypoth-
esis testing in BKW algorithms” section, respectively. In
“Comparisons” section we make a comparison of BKW
algorithms by presenting the features and concrete secu-
rity estimation results on LWE instances by using them.
Finally, we conclude this paper in “Conclusion” section.

Preliminaries
Notations
In Euclidean space Rn with n dimensions, the L2-norm of
a vector x = (x1, x2, . . . , xn) is defined as the square root
of the sum of the squares of its components:
||x|| =

√

x21 + · · · + x2n . Denoted by ||x − y|| the Euclid-
ean distance between two vectors x and y in Rn . Given a
vector x and start counting at zero, x(a,b) represents the
vector

(
x(a), . . . , x(b−1)

)
 . ⌈·⌋ : R → Z denotes the round-

ing function that rounds to the closest integer. The set of
integers in

[

− q−1
2 ,

q−1
2

]

 represents elements in Zq.

Discrete Gaussian distribution
Denote the discrete Gaussian distribution over Z with
mean 0 and variance σ 2 as DZ,σ . The χσ ,q distribu-
tion over Zq (often be written as χσ) with variance σ 2 is
obtained by folding DZ,σ mod q, namely adding up the

probability mass function value for each residue class
mod q across all integers. Let the noise level be repre-
sented by α , where α = σ/q.

Even while the discrete Gaussian distribution often
does not precisely take the typical features of the contin-
uous one, we will still be able to use the continuous fea-
tures since they will be close enough. If two independent
distributions X is taken from χσ1 and Y is taken from χσ2 ,
then their sum X + Y is taken from χ√

σ 2
1+σ 2

2

.

The LWE problem reformulated
The LWE problem can be reformulated as a decoding
problem. Here are m samples

selected from Ls,χ , where ai ∈ Z
n
q , zi ∈ Zq . Write

y = (y1, y2, . . . , ym) = sA and z = (z1, z2, . . . , zm) .
Therefore, A =

[
aT1 a

T
2 · · · aTm

]
 and z = sA + e , where

zi = yi + ei = �s, ai� + ei and ei ← χσ is error. The matrix
A is responsible for generating a linear code in the field
of Zq and z represents the received message. The task of
discovering s is to find the codeword y = sA , where the
distance between z and y is smallest.

The transformation of secret distribution
If the secret vector s is uniformly random, a transforma-
tion (Kirchner 2011; Applebaum et al. 2009) can be used
to guarantee that s follows the noise distribution χσ.

Through Gaussian elimination, we first transform An×m
into systematic form. Suppose that the first n columns of
A are linearly independent and denoted by the matrix A0 .
Write D = A−1

0 and ŝ = sD−1 − (z1, z2 · · · , zn) . Thus, we
can get a similar problem that Â =

(
I, âTn+1, â

T
n+2, . . . , â

T
m

)
 ,

where Â = DA . And then calculate

By this transformation, each component in s is distrib-
uted according to χσ , which makes sense to some famous
reduction algorithms for solving LWE.

The sieving algorithm
In 2001, Ajtai–Kumar–Sivakumar proposed an algorithm
for the Shortest Vector Problem (SVP), which was called
sieving. Assume there is a large list L with many short
lattice vectors. The main goal of sieving is to efficiently
find a vector x ∈ L that is the closest to a vector y ∈ L .
By addition or subtraction, we can get many pairs of vec-
tors x, y ∈ L that satisfy ||x ± y|| ≤ max{||x||, ||y||} . After
repeating this reduction for polynomial times, we can
get the shortest vector with a high probability. The most

(a1, z1), (a2, z2), . . . , (am, zm),

ẑ = z − (z1, z2, . . . , zn)Â =
(
0, ẑn+1, ẑn+2, . . . , ẑm

)
.

Page 5 of 17Wei et al. Cybersecurity (2023) 6:24

asymptotically efficient solution is Locality Sensitive Fil-
tering (LSF) (Becker et al. 2016) which was used in con-
junction with the BKW algorithms.

Plain BKW
The Plain BKW (Albrecht et al. 2015b) is the first BKW algo-
rithm for solving LWE. It serves as the framework and foun-
dation for subsequent BKW algorithms. Now we provide a
detailed explanation of this algorithm, specifically focusing
on the sample reduction and hypothesis testing stage, which
are the main targets of subsequent optimization.

Intuition
When solving the LWE problem, we need to get some
information about the secret vector s . A trivial method
is to find sample vectors a where all positions except one
are zero. For example, if we get some sample vectors like

we can recover some positions of secret s by solving the
corresponding LWE equations.

However, this idea needs a large number of samples.
The time and sample complexities of successfully finding
the secret vector with it are both super-exponential.

Sample reduction
Based on the above idea, the BKW algorithm uses
the sort-and-match technique to produce new sam-
ples during the sample reduction stage. Given m sam-
ples (ai, zi) ∈ Z

n
q × Zq , we sort them into different

groups based on the b positions of each vector a . If the
b positions are eliminated when vectors a are matched
(added/subtracted), such pairs of samples will be in the
same group. For instance, samples (±[a10, a11], z1) and
(±[a20, a21], z2) are in the same category if they can be
added/subtracted to obtain

The resulting error is e1,2 = e1 + e2 , which follows the
distribution χ√2σ . After repeating the reduction process
t times, we will get a new LWE instance whose dimension
is n− t · b , and the error follows the distribution χ√

2tσ
.

The Plain BKW algorithm defines positive integers
b ≤ n , a := ⌈n/b⌉ . We denote by Bs,χ ,l the oracles that
output samples whose first b · l positions of a are zero.

a1 = (∗ 0 0 · · · 0 0),

a2 = (0 ∗ 0 · · · 0 0),

· · ·
ak = (0 0 · · · 0 0 ∗),

([0 · · · 0
︸ ︷︷ ︸

b

∗ · · · ∗], z1 ± z2).

• For l = 0 , Bs,χ ,0 is equivalent to Ls,χ.
• For 1 ≤ l ≤ a , Bs,χ ,l is created from Bs,χ ,l−1 . By

constantly checking Bs,χ ,l−1 , one can get at most
(qb − 1)/2 samples (a, z) with different non-zero
values for b components of a and put them in the
table Tl . Choose a new sample (a′, z′) from Bs,χ ,l−1 .
As long as the absolute values of b components of a′
are matched by the b components of vector a in Tl ,
compute (a′ ± a, z′ ± z) as a new sample from Bs,χ ,l .
If the b components of a′ are already zero, compute
(a′, z′) as a new sample from Bs,χ ,l.

The process of recursively generating oracles Bs,χ ,l is the
process of sample reduction in Plain BKW.

Hypothesis testing
Assume that after t reduction processes, the vectors a are
all zero except for the d positions, 0 ≤ d ≤ b . Then we
have samples

where ei follow the Gaussian distribution χ√
2tσ

.
We then perform hypothesis testing on the unknown

sub-vector s′ = (s1, s2, . . . , sd) of the secret to distinguish
the correct one among the qd candidates. The error fol-
lows χ√

2tσ
 if we guess s′ correctly, otherwise it is uniform.

The Plain BKW algorithm uses the log-likelihood ratio,
which is the most effective test for determining whether
samples belong to one of two given distributions accord-
ing to the Neyman–Pearson Lemma (Neyman and Pear-
son 1933). The detailed formula is given in “Optimal
distinguisher” section.

Back substitution
Note that the noiseless equations in linear systems are
solved by converting them into triangles, locating an
optimal solution, and then expanding this solution via
back substitution. Using this terminology from lin-
ear algebra, the back substitution of BKW means the
entire process can be carried out on a smaller LWE
problem.

We employ back substitution when given the candidate
answer to s′ that is very likely to be accurate. Following
back substitution, the BKW algorithm can be restarted
at the first stage. We then need m new samples that
are reduced utilizing the modified tables and conduct
hypothesis testing on them in order to find the next d
positions of s.

zi =
d∑

j=1

aij · sj + ei ⇔ ei = zi −
d∑

j=1

aij · sj ,

Page 6 of 17Wei et al. Cybersecurity (2023) 6:24

The complexity of plain BKW

Lemma 1 (Search-LWE, Albrecht et al. 2015b)
Given m LWE samples (ai, zi) ∈ Z

n
q × Zq , let 0 < b ≤ n ,

d ≤ b , a = ⌈n/b⌉ , q is a prime. Then, the computa-
tional cost of Plain BKW for recovering s with success
probability 0 < ε < 1 is

(

(n+ 1) · (a−1)a
2 − (a−1)ab

4 − b
6 (

1
2 (a− 1)+ 3

2 (a− 1)2 + (a− 1)3
))

·
(
qb−1
2

)

 operations

in Zq to create the elimination tables,

operations in Zq to create samples for hypothesis testing.
For the hypothesis testing stage

operations in Zq are needed and

operations in Zq for back substitution. Furthermore,

calls to Ls,χ and storage for

elements in Zq are needed.

Improvements of sample reduction in BKW
algorithms
The core idea of sample reduction is to sort and match
samples to eliminate some components of vectors a to zero.
In order to optimize this stage, several new types of elimi-
nation methods have emerged. In this section, we will show
the enhancements of the sample reduction stage in differ-
ent BKW algorithms, including the LMS-BKW algorithm,
the Coded-BKW algorithm, three types of Sieve-Coded-
BKW algorithm, and the BKW-FWHT-SR algorithm.
Finally, we will give a high-level comparison of them.

The LMS‑BKW algorithm
Since the complexity of the BKW algorithm is essentially
dependent on qb and b doesn’t depend on q, applying
modulus switching may be intuitively expected to reduce

⌈
n
d

⌉
+ 1

2
· qd

qd − 1
·m ·

(

(n+ 2) · a
2

)

(m · qd) ·
⌈n

d

⌉

a · d · ⌈q
b

2
⌉ ·

(⌈n

d

⌉
+ 1

)

⌈qb

2

⌉
· a+m ·

⌈n

d

⌉
· qd

qd − 1

a · q
b

2
·
(

1+ n− a− 1

2
· b

)

the complexity. Based on this idea, the LMS-BKW algo-
rithm (Albrecht et al. 2014) can be viewed as a hybrid of
Plain BKW and lazy modulus switching, which means
changing to a lower precision when necessary rather than
applying modulus switching in a ‘one shot’.

The sample reduction stage of LMS-BKW only
searches for collisions within the b components of each
vector a by only taking into account the most signifi-
cant log2 p bits of Zq , where p < q is a positive integer.
If such a collision is found, combine the colliding sam-
ples to eliminate the most significant log2 p bits of the b
components. This stage can also be seen as the process
of recursively constructing several oracles Bs,χ (b, l, p) like
the Plain BKW in Albrecht et al. (2015b), where b ≤ n ,
a := ⌈n/b⌉ , 0 ≤ l ≤ a.

• For l = 0 , oracle Bs,χ (b, 0, p) is equivalent to Ls,χ.
• For 1 ≤ l ≤ a , Bs,χ (b, l, p) is created from

Bs,χ (b, l − 1, p) . Constantly checking Bs,χ (b, l − 1, p)
can get at most (qb − 1)/2 samples (a, z) with differ-
ent non-zero vectors ⌊p/q · a(b·l−b,b·l)⌉ and then put
them in the table Tl . Choose a new sample (a′, z′)
from Bs,χ (b, l − 1, p) , as long as ⌊p/q · a′(b·l−b,b·l)⌉
(resp. their negation) matches ⌊p/q · a(b·l−b,b·l)⌉ in
Tl , compute (a′ ± a, z′ ± z) as a new sample from
Bs,χ (b, l, p) . If ⌊p/q · a′(b·l−b,b·l)⌉ is already zero, com-
pute (a′, z′) as a new sample from Bs,χ (b, l, p).

After repeating the iteration for a times, LMS-BKW has
produced new samples in the format of

(
ã, z̃ = �ã, s� + ẽ

)
 ,

where ã is short enough, ẽ follows the Gaussian distribu-
tion χ√2aσ . Assume that |�ã, s�| ≈

√
2aσ to balance the

increased initial noise ẽ and the contribution of |�ã, s�|
which is called the rounding noise.

To further reduce the size of the whole noise, a pre-
processing step called unnatural selection was intro-
duced. When finding collisions in positions of vector a
with index l · b ≤ j ≤ l · b+ b , select the samples with
the smallest values in positions with index j < b·l . As a
result, the whole noise size of new samples can be further
reduced.

The overall complexity of LMS-BKW and the behav-
iors of solving LWE via Plain BKW, LMS-BKW, BKZ with
modulus switching, and MITM strategy can be found in
Albrecht et al. (2014). Under their parameter settings, the
LMS-BKW algorithm yields the best results when com-
pared to other alternatives. However, LMS-BKW is based
on many unproven assumptions, although they seem
sound. Thus, it is appropriate to view their estimations
as heuristics. Therefore, confirming these hypotheses is a
viable direction for future research.

Page 7 of 17Wei et al. Cybersecurity (2023) 6:24

The Coded‑BKW algorithm
The Coded-BKW algorithm (Guo et al. 2015) employs
linear lattice codes to cancel more positions in each
reduction step, a task that LMS-BKW fails to accom-
plish. The main idea of this approach is to add a pro-
cess for mapping the considered subvectors into the
closest codeword in a linear lattice code.

Fix a q-ary linear code with the following parameters
[Ni, b] in the i-th step, where Ni represents the length
of code, b represents the dimension. Let aI represent
the subvector consisting of entries corresponding to a
collision index set I. Rewrite aI = cI + eI , where cI ∈ Ci
denotes the codeword part and eI ∈ Z

Ni
q denotes the

error part. Because of this, the inner product 〈sI , aI 〉 is
equivalent to �sI , cI � + �sI , eI �.

Each vector aI is sorted by the codeword to which it
was mapped. Merging two vectors that are mapped to
the same codeword can eliminate 〈sI , cI 〉 but leave an
additional noise term 〈sI , eI 〉 , called coding noise. In
order to keep eI as small as possible, choosing a suit-
able decoding process to determine the nearest code-
word is a good idea. The noise can be maintained small
enough not to affect the whole noise too much by
employing a series of lattice codes with various rates.

A full description of the Coded-BKW algorithm con-
sists of five steps. The first three steps are the sample
reduction stage, and the last two steps are the hypoth-
esis testing stage. Details are described in Algorithm 1.

Applying t1 pure BKW steps aims to balance the
merging noise and the coding noise. If not, perform-
ing Coded-BKW steps directly will cause the accumu-
lation of coding noise at the beginning of the iteration.

In the hypothesis testing stage, this method applies
partial guessing to balance the complexity of the earlier
and subsequent procedures. The last step is performed
by using subspace hypothesis testing for each guess in

the previous part, which we will introduce in “Improve-
ments of hypothesis testing in BKW algorithms” section.

The complexity of Coded‑BKW
Let n, q, σ be LWE parameters, t1, t2, b, d, l, ntest be the
parameters in Algorithm 1. Let ncod =

∑t2
i=1Ni be the

whole number of components eliminated by t2 Coded-
BKW steps, ntop be the remaining unknown positions in
the secret ŝ vector. Then let P(d) denote the probability
that

∣
∣ŝi
∣
∣ < d , ŝtest denote the subvector to be tested, Ptest

represent the probability that
∥
∥ŝtest

∥
∥ < β

√
ntotσ where

ntot = ncod + ntest , β is usually set to be 1.2.

Lemma 2 (Guo et al. 2015) Following the above param-
eters, the complexity required for a successful run of
Coded-BKW for solving LWE is

where

is the complexity of Gaussian Elimination, n′ = n− t1b,

is the complexity of t1 standard BKW steps,

is the complexity of t2 Coded-BKW steps, where

C ′
2 =

t2∑

i=1

4Ni

(
i(qb−1)

2 +M
)

 is the decoding cost, M is the

amount of samples following the last Coded-BKW step,

is the complexity of the partial guessing in the fourth step,

is the complexity of the subspace hypothesis testing in the
last step.

The estimated amount of samples needed for testing is

C = C0 + C1 + C2 + C3 + C4

(P(d))ntop · Ptest
,

C0 = (n+ 1) · (m− n′) ·
⌈ n′

b− 1

⌉

C1 =
t1∑

i=1

(n+ 1− ib)

(

m− i(qb − 1)

2

)

C2 = C
′
2 +

t2�

i=1

ntest + ntop +
i�

j=1

Nj

�

M + (qb − 1)(i − 1)

2

�

C3 = Mntop(2d + 1)ntop

C4 = 4Mntest + (2d + 1)ntop
(

ql+1(l + 1)log2q + ql+1
)

M =
4 ln

(
(2d + 1)ntop ql

)

�

(

χσfinal ||U
) ,

Page 8 of 17Wei et al. Cybersecurity (2023) 6:24

where U is the uniform distribution over Zq and
σ 2
final = 2t1+t2σ 2 + β2σ 2σ 2

setntot , �

(

χσfinal ||U
)

 is the

divergence between two distributions, σ 2
set is a preset vari-

ance that is decided by the coding noise utilized in the last
phase.

The similarity between Coded-BKW and LMS-BKW
is that each iteration does not exactly reduce the vectors
to zero but adds some noise. Although the Coded-BKW
step can eliminate more components in the treated vec-
tors than the Plain BKW step, it comes with the penalty
of introducing an additional noise component, which
influences the number of reduction steps. But the cod-
ing noise can be maintained small enough that it will not
significantly affect the final noise with proper parameter
selection. By gradually increasing the step size, Coded-
BKW solves the imbalanced final noise distribution of
LMS-BKW. The comparison of solving LWE with Coded-
BKW for various parameter settings, including Regev’s
and Lindner-Peikert’s cryptosystems, can be found in
Guo et al. (2015). Compared to other previous methods,
Coded-BKW exhibits a significant performance improve-
ment for all instantiations studied.

The Sieve‑Coded‑BKW algorithm
In addition to modular switching and linear lattice codes,
BKW algorithms also utilize other technologies, such
as the use of lattice sieving in Coded-BKW algorithm.
Using a sieving step can solve the problem of the grow-
ing coding noise in Coded-BKW. Since coding noise
will get larger with each step, it must be maintained
extremely small in the beginning steps. Using sieving can
ensure that the noise from reduced components does not
increase but keeps the same size.

Before explaining this new algorithm, we reformulate
the LWE problem and the reduction stage in a new man-
ner. Given LWE samples of the form z = sA + e , rewrite

this equation as (s, e)
(
A
I

)

= z, where M0 =
(
A
I

)

 .

Decrease the size of columns in Mi by multiplying the
above equation with some particular matrices Xi . Firstly,
multiplying the equation (s, e)M0 = z by a matrix X0 can
get (s, e)M1 = z1, where M1 = M0X0 , z1= zX0 . After t
steps, we have (s, e)Mt = zt , where Mt = M0X0 · · ·Xt−1 ,
zt= zX0 · · ·Xt−1.

The basic ideas of Plain BKW, LMS-BKW, and Coded-
BKW can be explained using the procedure described
above.

• The reduction procedure of Plain BKW subsequently
eliminates rows in matrices Mi in this way, such that

Mt =
(

0

M
′
t

)

.

 There are only two nonzero items from {−1, 1} in
each column of Xi . This procedure aims to minimize
the size of the entries of columns in Mt.

• LMS-BKW and Coded-BKW reduce Mt in a similar
way to Plain BKW, but the top rows above M′

t do not
need to be eliminated to 0 . Rather, positions above
M

′
t are set to be of the same size as those in M′

t.

Using the above notions and procedures, the sample
reduction process of Sieve-Coded-BKW, proposed by
Guo et al. (2017), can be introduced in the following.

Assume that we have certain subvectors whose
lengths are n1, n2, . . . , nt respectively and they are con-
catenated at the first n components in columns of M
(or n components in columns of A). So n =

∑t
i=1 ni ,

Nj =
∑j

i=1 ni, j = 1, . . . , t . Let the average size of a
reduced component be a constant B. The goal of Sieve-
Coded-BKW is to make the average size of vectors whose
length is n′ less than

√
n′ · B . The i-th iterative reduction

process can be divided into two steps, as shown in Fig. 2.

• The first step CodeMap(m, i) : For all columns
m ∈ Mi−1 , consider the positions from Ni−1 + 1 to
Ni . Map the subvector whose length is ni to the clos-
est codeword in Ci of the same length, the distance
should be smaller than √ni · B . The closest codeword

Fig. 2 The core ideas of Sieve-Coded-BKW in the ith reduction step

Page 9 of 17Wei et al. Cybersecurity (2023) 6:24

is the output of CodeMap(m, i) , and store m in the
list L�.

• The second step Sieve(L�, i,
√
Ni · B) : Compute all

differences between any pairs of vectors in the list
L� . Considering the first Ni positions, if the norm of
the difference is smaller than

√
Ni · B , put it in the list

S� . Then store all S� in Mi.

After repeating the reduction t times, the average
norm of the first n components of columns in Mt is
smaller than

√
n · B . The resulting samples roughly fol-

low Gaussian distribution χσ 2·(nB2+2t) , then one can use
a distinguisher to confirm whether a hypothesis about
secret values is correct or not. The entire process can be
repeated after obtaining some correct secret values with
a smaller dimension.

The concrete instantiation of the Sieve-Coded-BKW
algorithm is shown in Algorithm 2.

Using the t0 Plain BKW reduction steps for pre-pro-
cessing can avoid the massive accumulation of coding
noise at the beginning of the algorithm. Using the t1a
Coded-BKW steps will be more effective than always
using sieving when the dimension is relatively small. This
algorithm significantly outperforms the previous best
BKW variants for some specific parameters, that will be
demonstrated in “Comparisons” section.

Improvements of Sieve‑Coded‑BKW
Assume that after i − 1 reduction steps, the average size
of the first Ni−1 components of the vector a is less than
the constant Bi−1 . After i reduction steps, the average
size of the first Ni components is less than the constant
Bi , satisfying Bi = γBi−1.

The Sieve-Coded-BKW algorithm is a particular case
when γ = 1 . Because using sieving can ensure that the
noise from reduced components does not increase but
keeps the same size.

Guo et al. (2019) introduced a new variant of Sieve-
Coded-BKW by applying the nearest neighbor searching

after Coded-BKW, that was called the γ-Sieve-Coded-
BKW algorithm. This algorithm selects the same reduc-
tion factor γ at each iteration step, where γ is not limited
to 1 but satisfies 0 < γ ≤

√
2.

Mårtensson (2019) continued to improve the γ-Sieve-
Coded-BKW algorithm by increasing the reduction fac-
tors γi in different sieving steps, and the improved new
algorithm is called γi-Sieve-Coded-BKW. In the begin-
ning steps, sieving is so cheap that a small γi can be
employed. With sieving getting more and more costly, it’s
better to increase γi . Assume that there are t2 reduction
steps of γi-Sieve-Coded-BKW in total. Let γ1 = γs and
γt2 = γf . The authors let

The comparison of asymptotic complexity between three
types of the Coded-BKW with sieving algorithms can
be seen in Table 1 of this paper (Mårtensson 2019). The
asymptotic complexity of the γi-Sieve-Coded-BKW algo-
rithm performs best for all parameter settings.

The BKW‑FWHT‑SR algorithm
In order to reduce more positions in a finite number of
iterations, a modified reduction step of lazy modulus
switching was presented by Budroni et al. (2021), which
was called Smooth-LMS. This method employs easy LMS
to partially reduce one additional position after reduc-
ing a given number of positions. The new algorithm
also improves the hypothesis testing stage to recover the
secret by mapping LWE to a binary problem and utilizing
the FWHT distinguisher, as discussed in “Improvements
of hypothesis testing in BKW algorithms” section. The
whole algorithm was named BKW-FWHT-SR.

Given some samples of the form z = sA + emod q ,
where A has at most 2v columns. This method can reduce
the size of some components to less than Bi , i = 1, · · · , t .
In other words, the size of these components will be in
the set {−Bi + 1, . . . , 0, 1, . . . ,Bi − 1}.

In the first reduction step, check all columns in A . Sim-
ply write column i as x = (x1, . . . , xn) and compute

where n1 is the number of fully reduced positions, n1 + 1
is the partially reduced position in the first reduction.

Put these vectors Ki = (k1, k2, . . . , kn1+1) in a sorted
list L . If the integers divided by B1 have the same values,
the samples that are reduced will be in the same category

γi = γs +
γf − γs

t2 − 1
(i − 1).

kj =
{
xjdiv B1, x1 ≥ 0
−xjdiv B1, x1 < 0

, j = 1, . . . , n1

kn1+1 =
{
xn1+1div B

′
1, x1 ≥ 0

−xn1+1div B
′
1, x1 < 0

,

Page 10 of 17Wei et al. Cybersecurity (2023) 6:24

in list L . The same as the last position divided by B′
1 . In

particular, all component values are inverted if x1 < 0
to ensure that this kind of samples that are reduced will
belong to the same category.

After inserting each column into the list L , a new
matrix A can be built. Check all columns and merge each
pair of columns in the same category by adding or sub-
tracting to create new columns in A . When there are 2v
new columns in total, stop this process. The size of posi-
tions {1, . . . , n1} and position n1 + 1 in the new matrix A
are less than B1 and less than B′

1 , respectively.
In the next l iterations, continue to check each column

in A . Simply write column i as x = (x1, . . . , xn) . For the
{Nl−1 + 1, · · · ,Nl + 1} positions, calculate

Put these vectors Ki = (k1, k2, . . . , knl+1) in a sorted list
L . After inserting all columns into the list, a new matrix
A can be built as in the first step.

After t iterations, the resulting samples will have the
form zi = �ai, s� + ei , where the norm of each ai has been
reduced. The term on the right-hand side may be roughly
represented as a discrete Gaussian sample, if the norm of
the columns in A is small enough. Furthermore, we can
distinguish the samples zi with samples from a uniform
distribution, if the standard deviation is small.

We can also apply Smooth-LMS to Plain BKW, which
is called Smooth-plain BKW steps. In the first step,
set B1 = 1 and B′

1 > 1 , and the reduced vector x will
have x1 = · · · = xn1 = 0 and

∣
∣xn1+1

∣
∣ < B

′
1 . Employing

kj =
{
xNl−1 +jdiv Bl , xNl−1 +1 ≥ 0
−xNl−1 +jdiv Bl , xNl−1 +1 < 0

, j = 1, . . . , nl

knl+1 =
{
xNl+1div B

′
l , xNl−1 +1 ≥ 0

−xNl+1div B
′
l , xNl−1 +1 < 0

.

Smooth-plain BKW steps can reduce some extra posi-
tions in the sample reduction.

The sample reduction of the BKW-FWHT-SR algo-
rithm has the identical time and memory complexity in
each iteration step, which can balance the whole com-
plexity in this stage and reduce more components in
total. When it comes to complexity, this algorithm per-
forms best among all other previous methods. Its com-
plexity theorem for solving LWE can be found in paper
(Budroni et al. 2021).

A high‑level comparison of the sample reduction stage
A comprehensive comparison between the features
of the sample reduction of different BKW algorithms
is shown in Figs. 3, 4, 5 and Table 1. Figure 3, a simi-
lar version of figure 7.1 from Mårtensson (2020), is a
depiction of how the values of the a vectors vary dur-
ing the reduction stage for various BKW algorithms.
Figure 4, a similar version of Fig. 2 from Mårtensson

Fig. 3 A comprehensive comparison of sample reduction of different BKW algorithms

Fig. 4 A comparison of different types of Coded-BKW combined
with sieving

Page 11 of 17Wei et al. Cybersecurity (2023) 6:24

(2019), is a depiction of various Coded-BKW with siev-
ing. Figure 5, a similar version of Fig. 1 from Budroni
et al. (2021), shows how the Smooth-LMS and Smooth-
plain BKW perform better than their standard equiva-
lents by partially reducing an additional component
in each iteration. In these figures, the horizontal axis
denotes components in vectors a , the vertical axis
denotes the mean norm of the relevant component. The
yellow color represents reduced positions, and the pur-
ple color represents unreduced positions.

The sample reduction of each BKW algorithm has
its own unique characteristics, but they can also be
viewed within a unified framework. Assume that after
i − 1 reduction steps, the first Ni−1 positions have been
reduced to Bi−1 . After i steps, the first Ni positions of
new sample vectors have been reduced to Bi . Table 1
gives a generic BKW reduction framework about the
changes of absolute values in the a vectors.

From the above figures and table, we draw the follow-
ing conclusions about the sample reduction of various
BKW algorithms.

• Plain BKW aims to get zero vectors by adding or
subtracting samples in each iteration such that b
components of columns in A reduced to 0, which is
equivalent to setting Bi = Bi−1 = 0.

• LMS-BKW/Coded-BKW reduces components of a
to a small value, but not to zero, which is equivalent
to setting Bi =

√
2Bi−1.

– LMS-BKW maps samples to the same group if the
reduced components yield the same value when
divided by an appropriate modulus p. However, the
distribution of the a vectors becomes uneven as a
result of the size of the earlier reduced components
increasing step by step.

– Coded-BKW maps samples to the same group if the
codeword they are mapped to is identical. The dis-
tribution of vectors a is even as a result of the step
sizes steadily increasing and the degree of reduction
gradually decreasing.

• Sieve-Coded-BKW ensures that the earlier reduced
components do not increase, which is equivalent
to setting Bi = Bi−1 �= 0 for γ = 1 . In contrast to
Coded-BKW, Sieve-Coded-BKW does not initially
need to reduce the components as much. However,
the more positions we work with, the more expensive

Fig. 5 A description of how the Smooth-LMS and Smooth-plain BKW perform better than their standard equivalents (Budroni et al. 2021)

Table 1 The connection between Bi and Bi−1 in sample reduction
of BKW algorithms

The BKW algorithms The connection
between Bi and
Bi−1

Plain BKW Bi = Bi−1 = 0

LMS-BKW/Coded-BKW Bi =
√
2Bi−1

Sieve-Coded-BKW Bi = Bi−1 �= 0

γ-Sieve-Coded-BKW Bi = γ Bi−1

γi-Sieve-Coded-BKW Bi = γiBi−1

BKW-FWHT-SR Bi = ⌊
√
2Bi−1⌉

Page 12 of 17Wei et al. Cybersecurity (2023) 6:24

the sieving process gets. Consequently, the step size
must be gradually reduced. The improved version of
γ-Sieve-Coded-BKW sets Bi = γBi−1 for an invari-
able γ . γi-Sieve-Coded-BKW sets Bi = γiBi−1 for dif-
ferent values of γi in different reduction steps.

• BKW-FWHT-SR, which supports non-integer step
sizes, utilizes Smooth-LMS to entirely eliminate a
given number of components and partly reduce an
additional position. This method can balance the
whole complexity and reduce more components in
total. In each iteration i, it reduces some positions
to be less than Bi , for i = 1, · · · , t . The connection
between the magnitudes of the components is related
to the constant Bi.

Improvements of hypothesis testing in BKW
algorithms
After sample reduction, there are k positions of the
secret vector s for the hypothesis testing stage, which
are denoted as s = (s1, . . . , sk) . The challenge is to iden-
tify the correct guess among all the other qk guesses.
The observed error values are uniformly random for the
incorrect guess, whereas they follow a Gaussian distri-
bution for the correct one. We will introduce the distin-
guishing methods for BKW algorithms in this section.

In the following parts, we denote the guesses of
the secret sub-vector as ŝ . The errors ei = zi −

∑k
j=1

aij · ŝj , i = 1, 2, . . . ,m follow a Gaussian distribution with
standard deviation σfinal and mean 0.

Optimal distinguisher
The optimal distinguisher for the hypothesis testing stage
is an exhaustive search method. It aims to distinguish the
hypothesis Dŝ = U against Dŝ = χσfinal ,q , where U is the
uniform distribution over Zq and χσfinal ,q is the error dis-
tribution when the guess is ŝ.

Compute the log-likelihood ratio

where F(e) represents the frequency of occurrence of
e when guessing ŝ , PrD(e) represents the probability of
choosing e from the distribution D. Select ŝ that opti-
mizes the equation by maximizing its value.

The computational time needed by this method is
O
(
m · qk

)
 if all potential hypotheses are tested. With the

secret-noise transformation applied, the complexity can
drop to O

(

m · (2d + 1)k
)

 as the absolute values of k

components in s will be less than d.

∑

e

F(e) log
Prχσfinal ,q (e)

PrU (e)
=
∑

e

F(e) log
(

q · Prχσfinal ,q (e)
)

,

FFT distinguisher
The FFT-BKW (Duc et al. 2015) is the first BKW algo-
rithm that uses the FFT technique in the hypothesis
testing stage. It slightly changes the sample reduction of
Plain BKW by removing the final iteration. As a result,
the samples used for the hypothesis testing would have
noise made up of 2a−1 Gaussians rather than 2a.

Now we focus on the FFT distinguisher in the hypoth-
esis testing stage. Given m samples (ai, zi) after the
sample reduction, where every ai has all of its elements
equal to zero with the exception of a block that has a size
k = n− b(a− 1) . Represent the m samples as a matrix
A ∈ Z

m×k
q and a vector z ∈ Z

m
q , with Aj as the rows.

Remember that θq := e2π i/q , write the following
function

If π(x) is true, then I{π(x)} = 1 ; otherwise, it is zero. The
FFT distinguisher works by computing the FFT of f, that
is,

When there are sufficient samples relative to the noise
level, then the right guess α = s results in the maximum
value of Re

(

f̂ (α)
)

.
The FFT distinguisher costs O

(
m+ k · qk · log q

)
 ,

which is much lower than O
(
m · qk

)
 in general. The upper

bound of sample complexity of the FFT distinguisher is

8 · ln
(
qk

ε

)

·
(
1− 2π2σ 2/q2

)−2t+1

 according to Duc et al.

(2015), where ε is the probability of guessing s incorrectly.
The whole complexity to solve Search-LWE with FFT-
BKW is given in Theorem 17 of Duc et al. (2015).

Pruned FFT distinguisher
By limiting the number of hypotheses, Guo et al. (2021)
introduced a new method called the Pruned FFT distin-
guisher. In general, only a few output values of the FFT
distinguisher are needed, so limiting the size of the k
components of s to d is a good idea.

This method changes the complexity of distinguishing
into O

(
m+ k · qk · log (2d + 1)

)
 . Furthermore, the

f (x) :=
m∑

j=1

I{Aj=x}θ
zj
q , ∀x ∈ Z

k
q .

f̂ (α) :=
∑

x∈Zk
q

f (x)θ−�x,α�
q =

m∑

j=1

θ
−(�Aj ,α�−zj)
q .

Page 13 of 17Wei et al. Cybersecurity (2023) 6:24

maximum limit of sample complexity is also reduced to
8 · ln

(
(2d+1)k

ε

)

·
(
1− 2π2σ 2/q2

)−2t+1

.

Subspace hypothesis testing
The subspace hypothesis testing was originally presented
for LPN in the Z2 case, then generalized to the Zq case to
efficiently calculate the frequencies of different symbols
in Zq (Guo et al. 2015).

Utilize an [ntest , l] systematic linear code to sort the
samples (âi, ẑi) from sample reduction, which was
described in “The Coded-BKW algorithm” section by
their nearest codewords ci . Write the function

Write hu(X) = f ci(X) , where u is the information part of
the codeword and has ql possible values. Define

Among all candidates of y ∈ Z
l
q , there exists only one

unique y ∈ Z
l
q that satisfies

〈
y,u

〉
=

〈
ŝ, ci

〉
 . The polyno-

mial Hy(X) , which can be sped up by FFT, will record
the frequency of the Gaussian error symbols if the guess
is correct; otherwise, it will be uniformly randomly
distributed.

Following the notations from “The Coded-BKW algo-
rithm” section, the overall complexity of subspace
hypothesis testing is

FWHT distinguisher
The FWHT distinguisher was also originally proposed
for LPN in the Z2 case (Chose et al. 2002).

Let k represent a n-bit vector as (k0, k1, . . . , kn−1) and
consider a sequence Xk that denotes the number of
occurrences of X = k , k = 0, 1, . . . , 2n − 1 . Given sam-
ples in the format z = sA + e mod 2 , write

where L is the set of all columns in A that match the con-
stant k.

The Walsh-Hadamard transform is defined as

f ci(X) =
∑

(ai ,zi)

Xẑi(mod q).

Hy(X) =
∑

u∈Zl
q

hu(X) · X−�y,u�.

O

(

M · ntest + (2d + 1)ntop ·
(

ql+1 · log2ql+1 + ql+1
))

.

Xk =
∑

j∈L
(−1)zj ,

X̂w =
N−1∑

k=0

Xk · (−1)w·k ,

where w · k represents the multiplication of the n-bit
indices w and k. Compute

∣
∣
∣X̂w̄

∣
∣
∣ = maxw

∣
∣
∣X̂w

∣
∣
∣ , which cor-

responds to the correct s . The FWHT technique can
accelerate WHT with time complexity O

(
N logN

)
.

The BKW-FWHT-SR algorithm (Budroni et al. 2021)
mapped the LWE problem to a binary LPN problem and
applied the fast Walsh Hadamard transform, which can
quickly and accurately guess a large number of entries.
This kind of method can precisely distinguish the secret
at a higher noise level and perform better than the FFT-
based method. Additionally, the FWHT is implemented
considerably more quickly.

A comparison of various distinguishers in the hypothesis
testing stage
A detailed comparison of the characteristics of various
distinguishers as well as the corresponding time and
sample complexity is shown in Table 2. The parameters
that appear in the formula in Table 2 can be found in the
corresponding algorithms in “Improvements of sample
reduction in BKW algorithms”.

Comparisons
This section begins with a unified framework for the
BKW algorithms, followed by a comparison of the char-
acteristics of each BKW algorithm in Table 3. Then we
estimate the concrete security of some specific LWE
instances by using all BKW algorithms and also com-
pared them with lattice-based algorithms. The results are
given in Tables 4 and 5.

Table 2 A comparison of different distinguishers in the
hypothesis testing stage

Distinguisher Time complexity

Sample complexity

Optimal distin-
guisher

O

(

m · (2d + 1)k
)

8 · ln
(
q
k

ε

)

·
(
1− 2π2σ 2/q2

)−2t+1

FFT distinguisher O
(
m+ k · qk · log q

)

8 · ln
(
q
k

ε

)

·
(
1− 2π2σ 2/q2

)−2t+1

Pruned FFT distin-
guisher

O
(
m+ k · qk · log (2d + 1)

)

8 · ln
(
(2d+1) k

ε

)

·
(
1− 2π2σ 2/q2

)−2
t+1

Subspace hypoth-
esis testing

O
(
M · ntest + (2d + 1)ntop ·

(
q
l+1 · log2ql+1 + q

l+1
))

4 ln

(

(2d+1)
n top q

l

)

�

(

χσ
final

� U

)

FWHT distin-
guisher

O
(
2k log 2k

)

4 ln (2n t)

�

(

χσ
final

, 2q ‖U 2q

)

Page 14 of 17Wei et al. Cybersecurity (2023) 6:24

A general framework and characteristics of BKW
algorithms
All various BKW algorithms can be described by a
generic framework when solving the LWE problem, as

shown in Algorithm 3.
Here are m LWE samples. If more samples are

required, we first apply sample amplification. Addition-
ally, if the secret’s standard deviation is larger than that

Table 3 A comparison of BKW algorithms in sample reduction and hypothesis testing

BKW algorithms Sample reduction Hypothesis testing

Plain BKW Reduces a fixed number of positions to zero Optimal distinguisher

FFT-BKW Same as Plain BKW except removing the final iteration FFT distinguisher

LMS-BKW Reduces a fixed number of positions to a small value not to zero by combining lazy
modulus switching

Optimal distinguisher

Coded-BKW Reduces an increasing number of positions to a small value not to zero by combining
linear lattice codes

Subspace hypothesis testing + FFT

Sieve-Coded-BKW Reduces a decreasing number of positions to a small value not to zero by combining
linear lattice codes and sieving. Different cases with different reduction factors

Subspace hypothesis testing + FFT

BKW-FWHT-SR Fully reduces a given amount of positions and partially reduces an additional position to
configured values

Map LWE to LPN + FWHT distinguisher

Table 4 Concrete security estimation of LWE instances in the TU Darmstadt LWE challenge

Among these different estimation methods, bold-faced numbers are the smallest

Parameters The BKW algorithms The lattice‑based
algorithms

n q α Plain BKW LMS‑BKW FFT‑BKW Coded‑BKW Sieve‑
Coded‑
BKW

BKW‑FWHT‑SR Primal Decoding Dual

40 1601 0.005 47.3 47.4 40.6 42.6 41.5 34.4 31.4 35.0 37.1

0.010 51.6 49.9 43.5 43.7 42.7 39.3 31.7 35.0 37.6

0.015 55.2 52.2 46.5 52.6 44.1 42.4 32.0 35.2 41.4

0.020 57.4 53.4 49.0 52.6 49.1 46.2 32.4 35.3 43.8

0.025 59.9 54.8 52.6 52.7 49.2 48.3 34.3 36.6 48.1

0.030 62.5 56.6 52.6 52.7 50.4 50.0 37.9 39.0 53.4

45 2027 0.005 51.7 51.6 44.1 55.2 45.0 37.7 31.6 35.1 37.4

0.010 56.6 54.4 48.8 55.2 45.3 43.5 32.0 35.3 39.9

0.015 60.8 57.0 51.8 55.2 54.7 48.3 32.5 35.5 43.9

0.020 63.3 58.5 55.4 55.2 54.8 51.2 35.7 37.3 50.7

0.025 66.1 60.2 55.7 55.3 54.8 54.1 39.9 41.0 57.1

0.030 72.8 65.2 59.7 64.1 63.3 56.3 44.2 45.1 64.1

50 2503 0.005 56.3 55.7 48.9 46.4 45.5 41.8 31.9 35.2 37.6

0.010 61.6 59.0 54.4 56.0 53.3 48.7 32.5 35.5 42.5

0.015 66.3 61.9 57.8 56.8 53.4 52.5 35.5 37.2 50.5

0.020 72.2 66.2 61.9 61.9 60.4 56.4 41.0 42.7 59.0

0.025 72.2 65.3 61.9 66.1 61.7 59.3 46.4 47.7 65.4

0.030 75.7 67.7 66.9 66.3 65.6 63.3 51.4 52.9 75.5

70 4903 0.005 75.9 74.0 66.2 62.3 62.2 62.3 34.6 37.5 49.5

0.010 82.8 79.5 72.9 67.1 70.6 73.7 47.1 49.6 66.3

0.015 88.2 81.1 77.5 73.3 72.7 75.6 57.4 60.9 81.2

120 14401 0.005 125.2 119.1 113.4 110.5 108.8 100.1 70.3 79.4 98.4

0.010 142.0 130.4 123.1 124.0 115.8 115.1 86.5 101.7 106.1

0.015 148.9 133.8 130.9 136.8 135.3 127.0 98.3 118.5 133.3

Page 15 of 17Wei et al. Cybersecurity (2023) 6:24

of the error, we apply the secret-error transform before
reduction. Then in the sample reduction stage, we per-
form some Plain BKW steps, followed by other new
reduction steps. The purpose of some Plain BKW steps
is to avoid the accumulation of a large amount of noise
at the beginning of the algorithm. After that, we choose
a suitable distinguisher to guess some positions of the
secret vector. In the end, we backtrack to the previous
step if needed.

Within the same framework, each BKW algorithm
has its characteristics, which we summarize in Table 3
by presenting the features of their sample reduction and
hypothesis testing stages.

Concrete security estimation
In the end, by using the BKW algorithms and also three
lattice attacks (the primal attack, decoding attack, and
dual attack) (Albrecht et al. 2015a), we estimate the con-
crete security of LWE instances from TU Darmstadt
LWE challenge (https:// www. latti cecha llenge. org/ lwe_
chall enge/ chall enge) and Regev’s (2005)/Lindner–Pei-
kert’s (2011) cryptosystems to present the comparisons

among them. The estimation results are given in Tables 4
and 5. Among these different methods of estimation,
bold-faced numbers are the smallest.

In “Improvements of sample reduction in BKW
algorithms”, we studied the complexity of Plain BKW
and Coded-BKW for given parameters n, q, σ in Lem-
mas 1 and 2. The complexity of LMS-BKW, FFT-BKW,
Sieve-Coded-BKW, and BKW-FWHT-SR can be found
in Albrecht et al. (2014), Duc et al. (2015), Guo et al.
(2017), Budroni et al. (2021), respectively. According to
these, we can compute the overall complexity of these
BKW algorithms by building some Sage (http:// www.
sagem ath. org/ doc/ tutor ial/) modules with the lattice-
estimator (https:// github. com/ malb/ latti ce- estim ator).
The results of the lattice attacks in the last three col-
umns invoked the latest update of the lattice-estimator
(https:// github. com/ malb/ latti ce- estim ator). Both the
sieving and enumeration cost models are used, but only
the lower values are selected.

To simplify our complexity calculation, we make the
following assumptions.

• The complexity of operations over C and Zq is equal
in our estimation.

• There are infinite samples.
• Take CFFT = 1 , and the successful probability

ε = 0.99.

In the calculation of Table 4, for the sake of com-
parison, we select the parameters n, q,α according to
Table 2 in Budroni et al. (2021). For instance, we esti-
mate the complexities by implementing estimator
codes for n = 40, q = 1601,α = 0.005 . Plain BKW takes
247.3 operations, while BKW-FWHT-SR requires 234.4
operations. The best result of the lattice attacks needs
231.4 operations according to the LWE-estimator. In

Table 5 Concrete security estimation of LWE instances from Regev’s and Lindner-Peikert’s cryptosystems

Among these different estimation methods, bold-faced numbers are the smallest

Parameters The BKW Algorithms The Lattice‑based
Algorithms

n q σ Plain BKW LMS‑BKW FFT‑BKW Coded‑BKW Sieve‑
Coded‑
BKW

BKW‑FWHT‑SR Primal Decoding Dual

Regev parameters

128 16411 11.81 119.4 114.7 107.5 84.5 84.2 59.2 57.3 61.9 69.2

256 65537 25.53 269.6 220.3 200.8 145.1 130.0 107.0 103.6 121.7 121.0

512 262147 57.06 429.4 403.4 384.6 287.6 247.6 243.3 201.6 252.7 231.2

Lindner-Peikert parameters

128 2053 2.7 104.4 100.0 95.7 69.7 69.2 48.8 53.4 57.1 67.5

256 4099 3.34 181.8 176.0 167.9 123.8 112.9 98.5 95.2 111.8 112.3

512 4099 2.9 338.8 327.7 308.0 209.2 197.3 188.7 179.0 226.5 207.8

https://www.latticechallenge.org/lwe_challenge/challenge
https://www.latticechallenge.org/lwe_challenge/challenge
http://www.sagemath.org/doc/tutorial/
http://www.sagemath.org/doc/tutorial/
https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator

Page 16 of 17Wei et al. Cybersecurity (2023) 6:24

calculating Table 5, we choose n = 128, 256, 512 . The
cost values of these algorithms can be computed in a
similar way using Sage and the LWE-estimator.

Discussion. From Tables 4 and 5, we can see that
the BKW-FWHT-SR algorithm significantly outper-
forms other BKW algorithms in most cases, while Pri-
mal attack has the lowest cost among lattice attacks in
all cases. For fixed n and q, the costs of all algorithms
increase as noise increases.

In general, Primal attack beats all kinds of BKW
algorithms for almost all values of n, except for
n = 128, q = 2053 . In this parameter setting, the BKW-
FWHT-SR algorithm appears to be more efficient.

In conclusion, the BKW algorithms, which use differ-
ent techniques, have been improved to some extent com-
pared with Plain BKW. However, compared with lattice
attacks, the BKW algorithms are less efficient in practice.
In addition, compared with lattice attacks, the sample
complexity needed in BKW algorithms is much greater.
For example, under the Regev/Lindner-Peikert parame-
ters, the lattice-based algorithms only require about hun-
dreds of samples in our implementation, while the BKW
algorithms require exponential samples. In practice, we
can not get as many samples as they need, which is the
biggest limitation of BKW algorithms.

Conclusion
In this paper, we provide a review of the evolution of
BKW algorithms for solving LWE over the last decade.
We describe the various methods used for the sam-
ple reduction stage and the hypothesis testing stage,
respectively. We also compare these BKW algorithms by
estimating the concrete security of LWE with different
parameters, and we also compare them with lattice-based
algorithms.

The BKW algorithms have an advantage in concrete
security comparisons on LWE with certain parameters.
However, there are still many unresolved problems in
practical applications, among which the most important
one is that it needs an unlimited number of samples and
a large memory to store them.

There are still many potential points for innovation
about BKW in the future. For sample reduction stages,
there are essentially two different possible ways: choos-
ing what steps to take or improving the individual step
in an iteration. Accordingly, there are several direc-
tions for improvement that can be considered, as fol-
lows. First, we consider organizing the reduction stage
in a wiser manner. For example, for the Coded-BKW
with sieving algorithm, we can decrease the reduction
factors of the sample reduction stage and use quantum

Grover’s algorithm to speed up the iteration. Second, we
can reduce the positions to different set magnitudes by
using sieving or modulus switching to improve the indi-
vidual step in an iteration. Third, we can combine the
idea of k-BKW for solving LPN (Esser et al. 2018) with
the Coded-BKW reduction steps instead of only merging
two samples in an iteration. We can also adopt a hybrid
method to strike a balance between the complexity of
the sample reduction and hypothesis testing stages. In
addition, combining other new techniques with BKW to
improve its implementation in practice is also a pressing
research question.

Acknowledgements
We would like to thank the anonymous reviewers and editors for detailed
comments and useful feedback.

Author contributions
WY and BL completed the drafted manuscripts of the paper. LXH and WKP
participated in problem discussions. All authors read and approved the final
manuscript.

Funding
This work is supported by National Natural Science Foundation of China (No.
U1936209).

Availability of data and materials
No applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 23 January 2023 Accepted: 12 April 2023

References
Abdalla M, Fouque P, Lyubashevsky V, Tibouchi M (2012) Tightly-secure

signatures from lossy identification schemes. In: Annual international
conference on the theory and applications of cryptographic techniques.
Springer, pp 572–590

Agrawal S, Libert B, Stehle D (2015) Fully secure functional encryption for inner
products, from standard assumptions. Cryptology ePrint Archive, Paper
2015/608. https:// eprint. iacr. org/ 2015/ 608

Albrecht M, Faugre J (2012) On the complexity of the Arora-Ge algorithm
against LWE. In: Proceedings of the 3rd international conference on
symbolic computation and cryptography, pp 93–99

Albrecht M, Fitzpatrick R (2013) On the efficacy of solving LWE by reduction to
unique-SVP. In: ICISC 2013, pp 293–310

Albrecht M, Faugere J, Fitzpatrick R (2014) Lazy modulus switching for the BKW
algorithm on LWE. PublicKey Cryptogr PKC 8383:429–445

Albrecht M, Player R, Scott S (2015a) On the concrete hardness of learning
with errors. J Math Cryptol 9:169–203

Albrecht M, Cid C, Faugère J (2015b) On the complexity of the BKW algorithm
on LWE. Des Codes Cryptogr 74:325–354

Alkim E, Ducas L, Pöppelmann T, Schwabe P (2015) Post-quantum key
exchange—a new hope. Cryptology ePrint Archive, Paper 2015/1092.
https:// eprint. iacr. org/ 2015/ 1092

Applebaum B, Cash D, Peikert C (2009) Fast cryptographic primitives and cir-
cular-secure encryption based on hard learning problems. In: CRYPTO’09,
pp 595–618

https://eprint.iacr.org/2015/608
https://eprint.iacr.org/2015/1092

Page 17 of 17Wei et al. Cybersecurity (2023) 6:24

Arora S, Ge R (2011) New algorithms for learning in presence of errors. In: Inter-
national colloquim conference on automata, languages and program-
ming, pp 403–415

Becker A, Ducas L, Gama N, Laarhoven T (2016) New directions in nearest
neighbor searching with applications to lattice sieving. In: Proceed-
ings of the twenty seventh annual ACM-SIAM symposium on discrete
algorithms, pp 10–24

Bi L, Li S, Liu Y, Zhang J, Fan S (2019) A survey on the analysis of the concrete
hardness of LWE. J Cyber Secur 4(2):1–12

Blum A, Kalai A, Wasserman H (2003) Noise-tolerant learning, the parity prob-
lem, and the statistical query model. J ACM 50:506–519

Bogos S, Vaudenay S (2016) Optimization of LPN solving algorithms. In:
Advances in cryptology—ASIACRYPT, pp 703–728

Bogos S, Tramèr F, Vaudenay S (2015) On solving LPN using BKW and variants.
In: Cryptography and communications, vol 8, p 3

Boyen X (2013) Attribute-based functional encryption on lattices. In: Theory of
cryptography conference on theory of cryptography

Brakerski Z, Vaikuntanathan V (2014) Efficient fully homomorphic encryption
from (standard) LWE. SIAM J Comput 43(2):831–871

Brakerski Z, Vaikuntanathan V (2016) Circuit-ABE from LWE: unbounded attrib-
utes and semi-adaptive security. Springer, Berlin

Budroni A, Guo Q, Johansson T (2021) Improvements on making BKW practical
for solving LWE. Cryptography 5:31

Chen Y, Nguyen PQ (2011) Bkz 2.0: better lattice security estimates. In: ASIA-
CRYPT 2011, pp 1–20

Chose P, Joux A, Mitton M (2002) Fast correlation attacks: an algorithmic point
of view. In: Advances in cryptology—EUROCRYPT 2002, pp 209–221

Ding J, Xie X, Lin X (2012) A simple provably secure key exchange scheme
based on the learning with errors problem. Cryptology ePrint Archive

Dong X, Hua J, Sun S, Li Z, Wang X, Hu L (2021) Meet-in-the-middle attacks
revisited: key-recovery, collision, and preimage attacks. Cryptology ePrint
Archive, Paper 2021/427. https:// eprint. iacr. org/ 2021/ 427

Duc A, Tramèr F, Vaudenay S (2015) Better algorithms for LWE and LWR. In:
Advances in cryptology—EUROCRYPT, pp 173–202

Esser A, Heuer F, Kübler R (2018) Dissection-BKW. In: Cryptology—CRYPTO
2018, pp 638–666

Gentry C (2009) A fully homomorphic encryption scheme. Ph.D. thesis, Stan-
ford University

Goldwasser S, Gordon SD, Goyal V, Jain A, Katz J, Liu F-H, Sahai A, Shi E, Zhou
H-S (2014) Multi-input functional encryption. In: Annual international
conference on the theory and applications of cryptographic techniques,
pp 578–602

Güneysu T, Lyubashevsky V, Pöppelmann T (2012) Practical lattice-based cryp-
tography: a signature scheme for embedded systems. In: International
workshop on cryptographic hardware and embedded systems. Springer,
pp 530–547

Guo Q, Johansson T, Londahl C (2014) Solving LPN using covering codes. In:
ASIACRYPT, pp 1–20

Guo Q, Johansson T, Stankovski P (2015) Coded-bkw: solving LWE using lattice
codes. In: Advances in cryptology—CRYPTO, pp 23–42

Guo Q, Johansson T, Mårtensson E (2017) Coded-BKW with sieving. In:
Advances in cryptology—ASIACRYPT, pp 323–346

Guo Q, Johansson T, Mårtensson E (2019) On the asymptotics of solving
the LWE problem using coded-BKW with sieving. IEEE Trans Inf Theory
65:5243–5259

Guo Q, Mårtensson E, Stankovski W (2021) On the sample complexity of solv-
ing LWE using BKW-style algorithms. In: IEEE international symposium on
information theory, pp 12–20

Herold G, Kirshanova E, May A (2018) On the asymptotic complexity of solving
LWE. Des Codes Cryptogr 86:55–83

Kirchner P (2011) Improved generalized birthday attack. iacr cryptol-ogy eprint
archive

Lattice-estimator. https:// github. com/ malb/ latti ce- estim ator
Levieil E, Fouque P (2006) An improved LPN algorithm. In: Security and cryp-

tography for networks, pp 348–359
Lindner R, Peikert C (2011) Better key sizes (and attacks) for LWE-based encryp-

tion. In: Topics in cryptology—CTRSA’11, pp 319–339
Liu M, Nguyen P (2013) Solving BDD by enumeration: an update. In: CT-RSA

2013, pp 293–309

Mårtensson E (2019) The asymptotic complexity of coded-BKW with sieving
using increasing reduction factors. In: 2019 IEEE International Symposium
on Information Theory (ISIT), pp 2579–2583

Mårtensson E (2020) Some notes on post-quantum cryptanalysis. Ph.D. thesis,
Lund University

Micciancio D, Regev O (2009) Lattice-based cryptography. In: Post-quantum
cryptography, pp 147–191

Neyman J, Pearson E (1933) On the problem of the most efficient tests of
statistical hypotheses. Contain Pap Math Phys Charact 231:289–337

Regev O (2005) On lattices, learning with errors, random linear codes, and
cryptography. In: ACM symposium on theory of computing, pp 84–93

Sage: Open source mathematics software. http:// www. sagem ath. org/ doc/
tutor ial/. Accessed 16 Mar 2023

Schnorr C, Euchner M (1994) Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Math Program 63:1–3

TU Darmstadt Learning with Errors Challenge. https:// www. latti cecha llenge.
org/ lwe_ chall enge/ chall enge. Accessed 20 July 2022

Wagner D (2002) A generalized birthday problem. In: Advances in cryptol-
ogy—CRYPTO, pp 288–304

Zhang B, Jiao L, Wang M (2016) Faster algorithms for solving LPN. In: Advances
in cryptology—EUROCRYPT, pp 168–195

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://eprint.iacr.org/2021/427
https://github.com/malb/lattice-estimator
http://www.sagemath.org/doc/tutorial/
http://www.sagemath.org/doc/tutorial/
https://www.latticechallenge.org/lwe_challenge/challenge
https://www.latticechallenge.org/lwe_challenge/challenge

	Security estimation of LWE via BKW algorithms
	Abstract
	Introduction
	Algorithms for solving LWE
	BKW algorithms
	Developments of sample reduction
	Developments of hypothesis testing

	Contribution
	Organization

	Preliminaries
	Notations
	Discrete Gaussian distribution
	The LWE problem reformulated
	The transformation of secret distribution
	The sieving algorithm

	Plain BKW
	Intuition
	Sample reduction
	Hypothesis testing
	Back substitution
	The complexity of plain BKW

	Improvements of sample reduction in BKW algorithms
	The LMS-BKW algorithm
	The Coded-BKW algorithm
	The complexity of Coded-BKW

	The Sieve-Coded-BKW algorithm
	Improvements of Sieve-Coded-BKW

	The BKW-FWHT-SR algorithm
	A high-level comparison of the sample reduction stage

	Improvements of hypothesis testing in BKW algorithms
	Optimal distinguisher
	FFT distinguisher
	Pruned FFT distinguisher
	Subspace hypothesis testing
	FWHT distinguisher
	A comparison of various distinguishers in the hypothesis testing stage

	Comparisons
	A general framework and characteristics of BKW algorithms
	Concrete security estimation

	Conclusion
	Acknowledgements
	References

