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Abstract 

Vulnerability reports are essential for improving software security since they record key information on vulnerabilities. 
In a report, CWE denotes the weakness of the vulnerability and thus helps quickly understand the cause of the vulner‑
ability. Therefore, CWE assignment is useful for categorizing newly discovered vulnerabilities. In this paper, we propose 
an automatic CWE assignment method with graph neural networks. First, we prepare a dataset that contains 3394 
real world vulnerabilities from Linux, OpenSSL, Wireshark and many other software programs. Then, we extract state‑
ments with vulnerability syntax features from these vulnerabilities and use program slicing to slice them according 
to the categories of syntax features. On top of slices, we represent these slices with graphs that characterize the data 
dependency and control dependency between statements. Finally, we employ the graph neural networks to learn 
the hidden information from these graphs and leverage the Siamese network to compute the similarity between 
vulnerability functions, thereby assigning CWE IDs for these vulnerabilities. The experimental results show that the 
proposed method is effective compared to existing methods.

Keywords Vulnerability categorization, CWE, Graph representation, GNN

Introduction
Due to the increasing reliance on software in modern 
society and the increasing number of newly reported 
software vulnerabilities every day, software vulnerabili-
ties have become an important issue in network security. 
The MITRE Corporation has presented CVE (Com-
mon Vulnerabilities and Exposures) (https:// cve. mitre. 
org/) since January 1999, a public vulnerability database 
to report vulnerabilities discovered in various software 

including operating systems and web browsers. As of 
September 15, 2022, 184,784 vulnerabilities have been 
reported according to CVEDetails (https:// www. cvede 
tails. com/). To better understand these vulnerabilities, 
CWE (https:// cwe. mitre. org/), short for Common Weak-
ness Enumeration, was proposed to classify vulnerabili-
ties, which denotes the common weakness shared by a 
set of vulnerabilities.

Generally, in a vulnerability report, a vulnerability is 
assigned a unique CVE ID and is categorized into one 
CWE. For example, the famous Heartbleed vulnerabil-
ity is assigned with CVE-2014-0160, and is categorized 
into CWE-119, which denotes failure to constrain opera-
tions within the bounds of a memory buffer. Note that 
the CWE ID reveals the common cause of many vulner-
abilities sharing the same weakness. CVE-2018-14438 
and CVE-2017-3733 are two vulnerabilities in differ-
ent programs, but they both belong to CWE-20, which 
states that the program does not validate or incorrectly 
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validates the input. Categorizing vulnerabilities can help 
us identify the cause of weakness, which further guides 
us to fix the vulnerability quickly. Therefore, it is criti-
cal to assign an accurate CWE ID for a newly discovered 
vulnerability.

Currently, CWE assignment is performed by security 
experts. However, according to CVEDetails, the num-
ber of vulnerabilities was 894 in 1999, and is increased 
to 20,169 in 2021. The sharp increase definitely imposes 
heavy work load on security experts. In addition, there 
exist as many as 927 CWE IDs. Such a number makes 
manual classification error-prone, especially when 
some CWE IDs are highly similar, e.g., buffer underflow 
(CWE-124) and memory buffer errors (CWE-1218). In 
addition, for some vulnerabilities, the expert is not sure 
which CWE ID is more appropriate for the vulnerabil-
ity; as a result, the CWE ID in the vulnerability report is 
missing, e.g., CVE-2022-33936 (https:// cwe. mitre. org/) 
and CVE-2022-32552 (https:// www. cvede tails. com/ cve/ 
CVE- 2022- 32552/), just name a few. To this end, it is 
becoming important to automatically assign the CWE ID 
for vulnerabilities.

Recent studies have viewed CWE ID assignment as 
a classification problem and have explored the use of 
machine learning methods to classify vulnerabilities (Das 
et al. 2021) at the level of function for C/C++ programs. 
Generally, they treat the source code of the vulnerability 
as text and then employ the methods of natural language 
processing to learn the features from the text for classifi-
cation. However, a programing language is more logical 
and structured than the natural language. In addition, the 
snippets of the vulnerabilities generally take a small piece 
of the source code to function. Thus, it is difficult for 
these existing studies to effectively learn semantic infor-
mation. In addition, these studies perform valuations on 
synthetic datasets where a number of vulnerabilities are 
simple and highly similar. Therefore, they perform poorly 
in real-world scenarios.

In this paper, we aim to propose an automated 
approach to classify vulnerabilities (i.e., CWE assign-
ment) with deep neural networks. To achieve this goal, 
we need to address three problems and challenges. 
First, we must characterize the vulnerability code with 
an appropriate format that can easily expose its syntax 
and semantics. Second, we need a deep neural network 
to learn well from the code representations. Third, since 
existing vulnerability datasets are simple and contain few 
vulnerabilities sharing the same CWE, we need to collect 
a vulnerability dataset to help us reveal the similarities 
within the same class of CWEs and the differences across 
different CWEs.

To this end, we propose a new method to assign CWE 
IDs for vulnerabilities with a graph neural network and 

Siamese network. The key idea behind this is that the vul-
nerability snippets sharing the same type of CWE exhibit 
similar syntax and semantics, which can be exploited by 
deep neural networks to learn this hidden information 
for classification. More specifically, we first prepare a 
dataset that contains 3394 real world vulnerabilities from 
Linux, OpenSSL, Wireshark and other software. Then, 
we extract statements with vulnerability syntax features 
from these vulnerabilities and use program slicing to 
slice them according to the categories of syntax features. 
On top of slices, we use Joern, a graph representation 
of code, to represent these slices with graphs that char-
acterize the data dependency and control dependency 
between statements. Finally, we employ the graph neu-
ral network to learn the hidden information from these 
graphs and leverage the Siamese network to compute the 
similarity between vulnerability functions, thereby per-
forming assigning CWE IDs for these vulnerabilities.

On our prepared dataset with 3394 CWEs across 8 
CWE types, our method outperforms existing methods 
such as CNN (Convolutional Neural Network), GCN 
(Graph Convolutional Networks), LSTM (Long short-
term memory) in terms of precision, recall, f1-score and 
accuracy upon CWE assignment.

To summarize, our main contributions are as follows:

(1) First, we present a dataset consisting of 3394 real 
world vulnerabilities. Not only the source code of 
the whole function, but also the vulnerability snip-
pets are pinpointed. We plan to release the dataset 
after the paper is published.

(2) Second, a graph-based method is proposed to char-
acterize vulnerability from different aspects, which 
helps reveal the syntactic and semantic information 
more precisely.

(3) Third, we present a deep neural network model that 
combines a graph neural network and a Siamese 
network, where the former learns the hidden infor-
mation from graphs and the latter computes the 
similarity between vulnerabilities for classification.

(4) Fourth, a set of experiments is performed to dem-
onstrate the effectiveness of the proposed method.

Related work
In recent years, many approaches have been proposed 
to classify CVEs into CWEs. DeLooze (2004) proposed 
CVE classification with four common classes of attacks 
(Denial of Service, Deception, Reconnaissance, and 
Unauthorized Access) using a Self-Organizing Map and 
achieved a 75% success rate on testing data in 2004 before 
the CWE list was published. Wita and Teng-Amnuay 
(2005) focused on 388 CVE entries and candidates from 
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Linux, and manually generated a vulnerability profile for 
Linux system with the CVE severity level. Neuhaus and 
Zimmermann (2010) explored the security trend within 
each cybersecurity cluster derived by the unsupervised 
Latent Dirichlet Allocation (LDA) learning model upon 
CVE entries. Rahman and Yeasmin (2013) proposed an 
adaptive bug classification method on a prepared CVE 
dataset using Naïve Bayes and Bayes net, which achieved 
80.64% and 81.50% of accuracy, respectively. Aivatoglou 
et  al. (2021) used the description of CVEs on the NVD 
as the dataset and processed the dataset using an NLP-
based approach to classify CWEs using three tree-based 
machine learning models, with the best result being an 
accuracy of 76% for ten classes of CWEs using XGBoost. 
Na et al. (2017) also used the descriptions of CVEs on the 
NVD website to classify CWEs. They selected the larg-
est number of CWE categories for three experiments, 
namely 1) the top three CWE categories, 2) the top five 
CWE categories, and 3) the top ten CWE categories, with 
final accuracy rates of 95.2%, 84.2%, and 75%, respec-
tively. Although Aivatoglou et  al. (2021) also used the 
description of CVE to classify CWE, they proposed the 
concept of a hierarchical classification of CWE based on 
the level of CWE and achieved good results. Wang et al. 
(2022) used word2vec to embed the CVE descriptions, 
which are then fed into the CNN and GRU models for 
processing.

Dam et al. (2018) characterized the vulnerability source 
code in the AST, and then embed the tree nodes of the 
AST through a tree-based LSTM to obtain a vector rep-
resentation, which was then fed into a traditional classi-
fier for vulnerability detection. Zhou et  al. (2019) used 
AST and PDG to characterize the vulnerability function 
as a graph for processing, using statements, identifiers, 
and direct values as nodes of the graph and relations 
between nodes as edges, although they use graph neural 
networks for vulnerability detection. Xiao et  al. (2020) 
detected whether a vulnerability has been fixed in a vul-
nerability function by characterizing the vulnerability 
source code in the form of AST and PDG to calculate 
the signature in the vulnerability function and the patch 
function. Sun et  al. (2021) used similarity comparisons 
of vulnerable functions for vulnerability detection, they 
compare the similarity of the vulnerable function with 
the function that has been fixed. Cui et  al. (2020) pro-
posed the concept of a Weighted Featute Graph (WFG) 
to assign values to nodes in the WFG based on the num-
ber of occurrences of the type of AST and to detect the 
presence of vulnerabilities in the function using the WFG 
of the vulnerable function and the repaired function. 
Li et  al. (2021b) employed program dependency graph 
(PDG) to characterize the source code of vulnerability 
by aggregating five vulnerability-related features, and 

then feed the PDGs to FA-GCN for vulnerability detec-
tion and classification. Our approach is inspired by the 
above methods, but the differences are: 1) The purpose 
is different, The goal of the above methods is to detect 
vulnerabilities, while our goal is to classify vulnerabili-
ties; 2) The code characterization methods are different, 
The above methods use AST or CFG or treat the source 
code directly as text, while our approach slices the graph 
on the basis of PDG to generate graphs with vulnerability 
features; 3) Our approach embeds the graphs with GCN 
and then compares the similarity by Siamese network to 
classify the vulnerability functions.

As seen from the above, the existing research on 
CWE classification is still based on the NLP approach, 
rather than classifying CWE based on the vulnerabil-
ity function, which is the main purpose of the work on 
vulnerability functions as a dataset in performing vulner-
ability detection. Different from these methods, we clas-
sify CWEs on a dataset of vulnerability source code and 
characterize the code (mainly the vulnerability snippets) 
as a graph. By using the graph convolutional network and 
Siamese network, the semantics of graphs can be well 
learned and the similarity between two functions is com-
puted to assign newly discovered functions with CWE. 
The experimental results show the effectiveness of our 
proposed method.

Background and problems
Background
A vulnerability is a cyber-security term that refers to a 
weakness, defect, or security bug in computer systems 
that leaves information security exposed to a threat. 
It can be exploited by an attacker to gain unauthorized 
access (e.g., steal sensitive data) or even perform arbi-
trary actions (e.g., install malware) on a computer system.

CVE (Common Vulnerabilities and Exposures) is a list 
of publicly known vulnerabilities and exposures. Each 
CVE ID (in the form of CVE-Year-Number) on the list 
is a record upon a finding of a specific vulnerability or 
exposure in software, rather than a general class of vul-
nerabilities or exposures. For example CVE-2014-0160 
denotes the Heartbleed bug in the dtls1 process heart-
beat() function of d1both.c and t1 lib.c of OpenSSL-1.0.1. 
CWE (Common Weakness Enumeration) refers to types 
of weaknesses, each of which is shared by many vulner-
abilities. For example, CWE-416 denotes use after free, 
which refers to the attempt to access memory after it has 
been freed (e.g., CVE-2015-2546 and CVE-2020-3947). 
CWE-415 denotes that double free when free() is called 
more than once with the same memory address as an 
argument (e.g., CVE-2015-2419, CVE-2018-8460). Note 
that many CWEs have a parent–child relationship, e.g., 
CWE-415 and CWE-416 are children of CWE-825.
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Once a vulnerability is newly discovered, it is reported 
publicly. Many databases, such as CVEDetails NVD, 
manage the reported vulnerabilities across a broad range 
of programs. A vulnerability report provides detailed 
information on vulnerability. As shown in Fig.  1, which 
comes from the report of CVE-2016-2842, it explains 
the CVSS (Common Vulnerability Scoring System) 
Score, which denotes the severity of vulnerability. Then, 
it describes the impact on confidentiality, integrity and 
availability. In addition, it provides the type of vulnerabil-
ity, which denotes it potential harm to the system, e.g., 
denial of service and overflow. Finally, it provides a CWE 
ID, e.g., 119 which stands for failure to constrain opera-
tions within the bounds of a memory buffer.

As stated before, the CWE ID for a vulnerability may 
be incorrectly provided or even missing, mainly because 
i) the number of CWE IDs is as many as 924, ii) manual 
assignment would make mistakes especially for CWE IDs 
that are similar, and iii) the vulnerability is complex and 
cannot find an appropriate CWE ID. Therefore, it is criti-
cal to assign CWE ID for a newly discovered vulnerability 
automatically and accurately.

Problems and challenges
Assigning CWE ID for a newly discovered vulnerability 
automatically and accurately faces several key problems 
and challenges.

First, how can vulnerable information be revealed? 
The vulnerability snippet, which denotes the vulnerable 
information, is only a few lines of code. It generally takes 
a small piece in the whole function, which may contain 
dozens or even hundreds of lines. Therefore, it hides 
deeply in the source code. Considering that the CWE ID 
denotes the common weakness for many vulnerabilities, 
how to reveal these small snippets is critical for accurate 
CWE assignment.

Second, how can we learn the semantics of vulner-
ability snippets? The semantics of vulnerability snippets 
are important for CWE assignment, i.e., understanding 
the weakness of vulnerability. Although there exist many 
approaches to learn the semantics of the whole function, 
how to accurately learn the semantics of a smaller frag-
ment in the view of vulnerability is still a major challenge.

Third, how can high performance be achieved on real 
world dataset? Different from synthetic datasets, real 
world datasets generally contain only a few vulnerabili-
ties for each CWE, which further limits the learning abil-
ity of deep neural networks. Thus, we need a method to 
effectively learn syntax and semantics from a few samples 
and then use them for classification.

Our approach
In this section, we present the basic design of our pro-
posed method. As shown in Fig. 2, Data Collection first 
prepares a dataset containing real world vulnerabilities, 
in which each vulnerability is tagged with a CWE ID. On 
our prepared dataset, Code Characterization represents 
each vulnerability with a vulnerability graph, that more 
accurately characterizes the syntactic and structural 
dependencies by combining code property graphs such 
as AST, PDG, CFG, etc. Then, the similarity model feeds 
these graphs into a graph neural network and Siamese 
network to compute the similarity between them. Finally, 
CWE Assignment labels the vulnerability with a CWE ID 
by comparing the similarities. In the following, we will 
describe each component in detail.

Data collection
Although there exist several well-known vulnerability 
datasets, we decide to build a new dataset on our own 
for the following reasons. First, many existing datasets 
are synthetic (Li et  al. 2021a), and some vulnerability 

Fig. 1 Vulnerability report of CVE‑2016‑2842 (https:// www. cvede tails. com/ cve/ CVE‑ 2016‑ 2842/)

https://www.cvedetails.com/cve/CVE-2016-2842/
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functions and vulnerability snippets are highly similar, 
which amplifies the performance of CWE assignment 
methods. Second, the number of vulnerabilities of the 
same CWE is relatively small, i.e., dozens or even fewer. 
Meanwhile, the vulnerability snippets in real-world pro-
grams are generally more diverse, mainly due to different 
developers having different coding styles. Therefore, we 
need to collect a dataset that helps reveal the similari-
ties of vulnerabilities that belong to the same CWE, and 
the differences in vulnerabilities that belong to different 
CWEs. We prepare the dataset following the steps below.

Vulnerability collection We prepare the dataset from 
two sources. The first source is the CVEDetails website 
(https:// www. cvede tails. com/ cve/ CVE- 2022- 32552/), 
a well-known vulnerability management system. We 
employ a web-crawling framework Scrapy to extract the 
information from the vulnerability reports in CVEDe-
tails, including the CVE-ID, CWE-ID, the file name and 
function name associated with the vulnerability, and 
the software version that is affected by the vulnerability. 
Then, using the function name, file name, and software, 
the source code of vulnerability at the function level can 
be extracted using LLVM (Low Level Virtual Machine), 
a famous open-source compiler (Lattner et  al. 2004). 
Meanwhile, since we collect many different versions of 
software affected by vulnerability, we therefore obtain 
many functions for one vulnerability. This will help us to 
better learn the similarities or differences among vulner-
ability snippets, as will be detailed in the similarity model 
(“Similarity Model” Section). In addition, we can also 
obtain many patched functions from the software with 
newer versions. Another data source is the Vulncode-db 
website (https:// www. vulnc ode- db. com/), which records 
thousands of vulnerabilities as well as their patches. Vul-
ncode-db includes the CVE-ID, CWE-ID, and link of the 
patch. Similarly, we use the Scrapy framework to crawl 
the webpage referred to by the patch link to extract the 
vulnerability function.

Data distilling The prepared dataset may contain 
redundant functions for the same vulnerability, when the 
function across different versions of software remains 
unchanged. These redundant functions would result in 
the overfitting of the deep learning model. To exclude 

these functions, we first remove the comments that are 
irrelevant to the vulnerability and then compute the hash 
value of the whole function code. For functions with the 
same hash value, only one copy is kept. In addition, to 
accurately pinpoint the vulnerability snippets that are 
important for CWE assignment, we employ the diff tool 
to find the difference between the vulnerability function 
and the associated patched function. It is worth noting 
that the difference may not only record the vulnerability 
snippets but also contain codes used for code improve-
ment. To this end, we resort to the vulnerability descrip-
tions and manually filter out the snippets where the real 
vulnerabilities are located to improve the accuracy of 
snippets.

Code characterization
The vulnerability functions in the prepared dataset are in 
the form of source code. Although they can be fed into 
deep learning models such as LSTM (Long short-term 
memory), the hidden semantics related to vulnerability 
are difficult to be reveal. To this end, we first use slicing to 
locate codes more related to the vulnerability snippets so 
that the smaller pieces of code can more accurately rep-
resent the weakness, as shown in Fig. 3. Then, we employ 
Joern (https:// joern. io/) to represent the sliced piece of 
code with syntax and dependency semantics, which has 
shown to be effective in characterizing codes. In this way, 
the characteristics of different types of weakness in the 
vulnerability function will be highlighted.

Vulnerability snippet-aware slicing We locate the vul-
nerability snippets when preparing our dataset, which 

Fig. 2 Overall architecture of our proposed method

Fig. 3 Code characterization with graphs

https://www.cvedetails.com/cve/CVE-2022-32552/
https://www.vulncode-db.com/
https://joern.io/
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are in the form of lines of code. The problem here is that 
a snippet is still coarse-grained since it contains multi-
ple statements and identifiers. For further location, we 
extract the vulnerability syntax features from the snip-
pets, e.g., the pointer and sensitive function. More spe-
cifically, we use the vulnerability signature statements 
collected by the code static analysis tool Checkmarx 
(https:// check marx. com/), which provides many com-
mon vulnerability syntax rules for C/C++ programs. Vul-
nerability syntax rules contain 93.6% of the vulnerability 
programs in the NVD database, so the classification of 
vulnerability syntax rules and the vulnerabilities included 
are comprehensive. For example, functions including 
strcpy, strcat, gets and the scanf family are more likely 
to expose buffer overflow risks. fprintf, snprintf, and sys-
log may lead to format string problems. exec, system, 
and popen may lead to potential shell metacharacter 
dangers. The vulnerability syntax features fall into four 
categories, i.e., function call, array usage, pointer usage, 
and arithmetic expressions. Note that slicing from these 
features may not ensure the existence of vulnerability, 
but it can significantly exclude unnecessary code state-
ments that are irrelevant to vulnerability. The vulnerabil-
ity syntax features are extracted by traversing the nodes 
in the AST (abstract syntax tree) of the function. If the 
AST node satisfies the syntax statement that implements 
the defined vulnerability, the statement corresponding to 
that node will be extracted. Then, rooted from the state-
ment, slicing will be performed to obtain a piece of code, 
which will be detailed in the next part.

Graph based characterization For each vulnerabil-
ity function, the graph-based static analysis tool Joern 
(https:// check marx. com/) is employed to generate the 
graph. Here, the graph is a program dependence graph, 
i.e., PDG, which is the combination of a control flow 
graph (CFG) and a data flow graph (DFG). In a CFG, a 
node denotes a basic block of successive statements, and 
an edge denotes the control transfer between blocks. In 
a DFG, a node denotes an identifier or variable while an 
edge denotes the relationship between two identifiers or 
variables. In this way, the PDG is able to express both the 
control dependencies and data dependencies, which are 
useful for exposing the semantics of codes.

On top of the PDG, the previously collected statements 
matching vulnerability syntax features will be traversed. 
Upon traversal, slicing is performed to obtain a piece of 
code that has a data dependency or control dependency 
relationship with the root statement. More concretely, 
rooted in the statement, bread first search (BFS) is per-
formed on the graph. One node, i.e., a block, variable 
or statement, that is directly or indirectly connected to 
the root node, is reserved. Meanwhile, the other nodes 
that are unrelated to the root statement will be dropped. 

Finally, a smaller piece of code is generated. Note that 
there exist four types of syntax features and each type 
records multiple statements. Thus, multiple pieces would 
be generated for each function. To characterize the func-
tion concisely, we merge the pieces whose root state-
ments are of the same type of syntax features, and finally 
obtain four pieces, Each piece corresponds to one type 
(i.e., function call, array usage, pointer usage, or arithme-
tic expression). Thus, each vulnerability function can be 
represented by up to four graphs, each of which charac-
terizes the function (mainly the vulnerability snippets) 
from a certain aspect.

The process of graph characterization can be seen in 
Fig.  4. First, the statements of vulnerability features are 
found in the source code of the function, and then a 
graph focused on vulnerability features is generated in 
the PDG. The PDG was generated by the function based 
on the node where the vulnerability feature statement is 
located, and this node was the root node, as determined 
by forward traversal and backward traversal to remove 
nodes and edges that are irrelevant to the vulnerability 
feature statement. Figure  4 shows only the process of 
graph characterization of a vulnerability feature in a 
function, and a vulnerability function may generate mul-
tiple vulnerability feature statements to generate multiple 
graphs, and then finally aggregate multiple graphs into 
one graph based on the PDG of the function.

Similarity model
To compute the similarity of two vulnerability functions 
for CWE assignment, it is important to learn the seman-
tics of graphs of functions. The semantics are distributed 
in two aspects. One is the semantic information of each 
node in a graph, which expresses the operational inten-
tion of one or several lines of code. The other is the struc-
tural information, which expresses the dependencies 
between codes in terms of both control and data.

To this end, we propose a deep learning model for bet-
ter learning the semantics of graphs and computing the 
similarity between two vulnerability functions, as shown 
in Fig.  4. The model takes two functions as input, each 
of which is represented by four graphs, and outputs a 
similarity value. Simply put, it first employs the embed-
ding layer to embed each node of the graph, which learns 
the operational intention, and then calls the GCN layer to 
embed the whole graph by learning the structural infor-
mation. In this way, considering that each function is rep-
resented by up to four graphs, the model merges the four 
graph embeddings into the final function embedding. 
Finally, it employs the Sia-mese Network to compute the 
similarity between two function embeddings. The follow-
ing paragraphs will describe each step in detail (Fig. 5).

https://checkmarx.com/
https://checkmarx.com/
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Fig. 4 Code characterization in a slice graph

Fig. 5 Similarity calculation with deep neural networks
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Embedding layer This layer is responsible for learning 
the semantic information of nodes in a graph. One pos-
sible method is to use Word2vec (Mikolov et al. 2013), as 
performed in many other studies. However, a node here 
generally contains one or multiple lines of code, and each 
line contains many identifiers and variables with variable 
length. Thus, we use doc2vec (Le et  al. 2014) to create a 
numeric representation of the codes in a node, regardless 
of its length. Doc2vec is more capable of embedding sen-
tences than Word2vec, which can directly embed multiple 
lines of code into a vector, not just one line of code, and in 
practice, there are few cases where a node contains multi-
ple lines of code. After embedding, a node is represented 
by a vector.

GCN layer In a graph, the edges represent the control 
dependency or data dependency between nodes that have 
been embedded with vectors. To learn the structural infor-
mation, we use a GCN (Graph Convolutional Network) 
(Kipf and Welling 2016) to process the graphs of a vulner-
ability function. Note that each function is represented 
by up to four graphs. The GCN layer takes four graphs as 
input, produces one embedding for each graph, and then 
outputs one final function embedding by merging the 
four graph embeddings (here we use the average of four 
embeddings).

Siamese model. Siamese networks are twin networks 
used for metric learning, i.e., they are composed of two 
identical subnetworks sharing the same weights (Neculoiu 
et al. 2016). Here, each subnetwork is actually a GCN. To 
learn the similarity between the vulnerability functions, we 
first need to pair the generated function embeddings. If the 
two functions belong to the same CWE, then they are con-
sidered similar, and the associated label y is 1. Otherwise, 
we consider them different and set the label to 0. The goal 
of Siamese training is to maximize the similarity between 
functions of the same CWE while minimizing the similar-
ity between functions belonging to different CWEs. Specif-
ically, let SG1G2

 denotess the similarity of a pair 
{

G1,G2, y
}

 
(the notations used in the similarity model are listed in 
Table 1), which is calculated by Eq. 1

where D refers to the Euclidean distance of graphs G1 and 
G2 and is calculated by Eq. 2.

Then, the loss L is calculated by Eq. 3 as follows.

(1)SG1G2
= 1− D

(2)D =
R1 · R2

R1 × R2

(3)

L ←
1

2N

N

n=1

yD2
+ 1− y max margin− D, 0

2

For a set of vulnerability function graphs, the total loss 
L(G), i.e., the sum of loss for all pairs, is calculated by 
Eq. 4.

CWE assignment
Now, we have trained a similarity model to obtain the 
similarity between two vulnerability functions. With this 
model, we can perform CWE assignment by the simi-
larities. Simply put, for a vulnerability function with a 
labeled CWE ID and a newly discovered function, if their 
similarity is larger than a predefined threshold T, then the 
new function is labeled with the CWE ID of the known 
vulnerability function. Otherwise, it is not in the same 
category, and the subsequent calculation will continue 
by paring it with vulnerability functions of other catego-
ries of CWE until one CWE ID is identified. If a CWE 
ID cannot be determined because all the similarities are 
below the threshold, we then leave the assignment to the 
security experts. A newly reported vulnerability is input 
to the trained model; if this vulnerability belongs to the 
trained CWE type, it will be assigned correctly; if the vul-
nerability belongs to a new CWE type, then this vulner-
ability will not be assigned a CWE ID in the model, and 
the vulnerability will be handed over to a security expert 
for further research to assign a CWE.

Algorithm 1 describes how we label the new function 
CWE assignment. In Lines 1–2, we extract the adjacency 
matrix A of the edge relations and the code statements X 
in the nodes from vulnerability function graphs. In Lines 
3–7, we initialize the embedding matrix of the whole cor-
pus W and the embedding matrix of graph node E1,E2 . 
Then, matrices E1 and E2 are determined according the 
graph nodes X1 and X2 . In Line 8, the GCN model takes 
embedding matrix E1,E2 and adjacency matrix A1,A2 as 
inputs and obtains the embedding of the whole graph R. 

(4)L(G) =
∑

(

L
(

Gi,Gj , y
))

Table 1 The notations in the similarity model

G Graphs of vulnerability functions

X Statements of nodes of G

SG1G2 Similarity between two functions G1,G2
W Embedding matrix of all words in statements

A Adjacency matrices of graphs G

E Words embedding matrix of X

R The embedding of graphs G

D Distance between two functions

N Number of function pairs

L Contrastive of two functions
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Finally, we use cosine similarity to calculat the distance 
between R1 and R2 , and the distance is predicted as the 
output.

Implementation
In this section, we describe how we implement the pro-
posed method in detail, mainly how we characterize the 
code and how we set up the similarity model.

Dataset preparation
Our prepared dataset contains 3394 CVEs in total. Of 
these, 498 CVEs are from Linux, OpenSSL, and Wire-
shark of the CVE-Details website, and 2896 CVEs are 
from multiple software programs and are from the 
Vulcode-db website. These CVEs are distributed in 
eight CWEs, whose detailed descriptions are reported 
in Table  2. We collect CVEs from three popular open-
source projects, i.e., Linux kernel, OpenSSL, and Wire-
shark of the CVE-Details website, and multiple programs 
from the Vulcode-DB website. Considering that the 
machine learning models generally require a larger data-
set for training classifiers, where there exist a number of 
samples for each type. Thus, when preparing the dataset, 
we dropped the categories with samples less than 100. 
Finally, we obtain 3394 CVEs in total, of which 498 are 
from CVE-Details and 2896 are from Vulcode-DB. These 
CVEs are distributed in eight CWEs, whose detailed 
descriptions are reported in Table 2. In the future, we will 
collect CVEs from more projects to cover more types of 
CWEs.”

Code characterization
We use the SySeVR framework to represent the vulnera-
bility functions (Li et al. 2021a). More specifically, we use 
the vulnerability syntax rules provided on Checkmarx to 

filter out the vulnerability syntax features in vulnerabil-
ity functions. The rules of Checkmarx cover 93.6% of the 
vulnerability programs collected on SARD and are useful 
in identifying potential security issues. In addition, the 
vulnerability syntax features can be broadly classified into 
four types: function call, array usage, pointer usage, and 
arithmetic expressions. We use these features to match 
the nodes in the abstract syntax tree that are related to 
the located vulnerability snippets. Then, these matched 
nodes will be used as root candidates for slicing.

Based on these root candidates that match vulner-
ability syntax features in the function, graph slicing is 
performed on the PDG graph generated by Joern. Each 
vulnerability syntax feature was traversed forward and 
backward on the PDG, and the program slices contain-
ing all the related statements were traversed. For each 
function, the slices of the same type of syntax feature are 
then aggregated together based on the PDG graph, where 
data dependencies and structural dependencies between 
statements are added to the program slices.

Similarity model with deep neural network
We implemented the similarity model on PyTorch. For 
encoding the statements inside a node of graph, the key 
hyperparamenters in Doc2vec are the dimension of the 
word vector is 30, the window size is 5, the training algo-
rithm is skip-gram, and the threshold for configuring 
which higher-frequency words are randomly downsam-
pled is 0.0001.

To feed the graph into the GCN layer, an adjacency 
matrix is used to represent the edges of the graph, and a 
feature matrix is used to represent the nodes of the graph. 
Each row denotes the embedding with doc2vec. For a 
graph with m nodes, the size of the adjacency matrix is 
m*m, and the size of the feature matrix is m*s, where s 
denotes the length of the embedding.

Table 2 The CWE distribution in our dataset

CWE Percent Description

20 0.26 Improper input validation

119 0.206 Improper restriction of operations within the bounds of 
a memory buffer

125 0.139 Out‑of‑bounds read

189 0.064 Numeric errors

200 0.12 Exposure of sensitive information to an unauthorized 
actor

264 0.086 Permissions, privileges, access controls

399 0.084 Resource management errors

476 0.087 NULL pointer dereference
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Evaluation
Experimental setup
We evaluate our methods on our prepared dataset, con-
sisting of 3394 CVEs across 8 CWEs. We perform three 
different configurations in the experiments, mainly in 
terms of the number of CWE types: (1) the top 2 cat-
egories of CWE with the highest number of CVEs, i.e., 
CWE-20 and CWE-119. In this case, 2261 pairs (i.e., 
two vulnerability functions) are generated. (2) The 
top 5 categories of CWE with the highest number of 
CVEs, i.e., CWE-20, CWE-119, CWE-200, CWE-476, 
CWE-399, generating a total of 12,498 pairs. (3) All 8 
categories of CWE, in which 25,372 pairs are gener-
ated. Under these configurations, the percentage of the 
same pairs (label is 1) and different pairs (label is 0) are 
almost similar; as a result the set is balanced. We use 
90% of the pairs as the training set and the other 10% 
as the testing set. We compare our method with other 
machine learning models, including Support Vector 
Machine (SVM) (Russell 2010) and Naïve Bayes (Fuku-
shima 1980) and common deep neural networks such as 
Convolutional Neural Network (CNN) (Shi et al. 2015), 
Long Short-Term Memory (LSTM) (Shi et al. 2015) and 
Graph Convolutional Network (GCN) (Kipf and Well-
ing 2016), on the same dataset. These models take as 
input the embedding of Sysevr (Li et al. 2021a), which 
is a graph-based embedding method proposed recently.

Our method mainly consists of graph-based char-
acterization and similarity model. Therefore, we com-
pare our method with two types of models. First, two 
vulnerability representation models, SySeVR (Li et  al. 
2021a) and IVDetect (Li et  al. 2021b). Second, five 
machine learning-based classification models that fed 
with the same embedding, including Support Vector 
Machine (SVM) (Russell 2010) and Naïve Bayes (Fuku-
shima 1980) and common deep neural networks such as 
Convolutional Neural Network (CNN) (Shi et al. 2015), 
Long Short-Term Memory (LSTM) (Shi et al. 2015) and 
Graph Convolutional Network (GCN) (Kipf and Well-
ing 2016), on the same dataset. These models take as 
input the embedding of Sysevr (Li et al. 2021a), which 
is a graph-based embedding method proposed recently.

We measure the effectiveness of our model in terms 
of widely used metrics: accuracy(A), precision(P), 
recall(R), and F1-score(F1). When the dataset is unbal-
anced, precision, recall and F1-score are more reliable 
metrics in comparison to accuracy. Specifically, accu-
racy metric equals to the correct predictions divided 
by the total examples in the dataset, precision for each 
class corresponds to the true positives, recall for each 
class equals the true positives by the number of exam-
ples that should have been identified as positive and 
finally, the F1-score for each class is the harmonic mean 

of the Precision and Recall. For each of the metrics pre-
cision, recall and F1-score, the overall result of each 
metric corresponds to the average of the respective 
metric for each class.

Performance on CWE assignment
Comparison with similarity models
We first compare our method with 5 machine learning-
based similarity models. We present the results by differ-
ent configurations, which have different number of CWE 
types.

Configuration 1: 2 CWE types Table  3 compares the 
results of different methods for the data distributed over 
2 CWE types, i.e., CWE-20 and CWE-119. As we can 
see, our method performs best in recall, F1-score and 
accuracy. Note that the GCN method, which takes the 
whole graph as input, performs the second best among 
all methods, showing that the graph-based source code 
characterization is effective. Nevertheless, our method 
improves naïve GCN by 0.07 in f1-score, mainly contrib-
uting to i) vulnerability-snippet based slicing that cap-
tures vulnerability-related code well and ii) the Siamese 
network that effectively learns the similarity between two 
functions.

It is worth noting that LSTM achieves the highest pre-
cision, which is probably because LSTM takes the raw 
source code as input so that it can learn the semantics of 
the entire code. Thus, if two functions are highly similar 
in both length and semantics, it is able to identify them 
as similar. However, it may miss some potentially simi-
lar functions, which are similar in the small vulnerability 
snippets, and thus fail to assign the correct CWE ID. As 
a result, the recall of LSTM is low, i.e., only 0.78 as shown 
in the table, so the f1-score is accordingly low.

Configuration 2: 5 CWE types Table  4 compares the 
results of different methods for the data distributed over 
5 CWE types, i.e., configuration 2. Similarly, our method 
outperforms the other methods in f1-score and accuracy. 
Given that the F1-score is a harmonic measurement of 
precision and recall, our method is more effective than 
other methods in assigning CWE for vulnerabilities.

Table 3 Results for 2 CWE types

Model P R F1 A

SVM 0.78 0.47 0.59 0.657

Naïve Bayes 0.56 0.69 0.62 0.658

CNN 0.79 0.68 0.73 0.853

LSTM 0.94 0.78 0.85 0.895

GCN 0.74 0.89 0.81 0.926

Our method 0.83 0.94 0.88 0.953



Page 11 of 15Liu et al. Cybersecurity            (2023) 6:29  

Configuration 3: 8 CWE types Table  5 compares the 
results of different methods for the data distributed over 
8 CWE types, i.e., configuration 3. Nevertheless, our 
method achieves the best recall, f1-score and accuracy 
among these methods, proving the effectiveness of our 
method in CWE assignment.

It should be noted that the performance drops when 
the number of CWE types increases, e.g., the f1-score for 
2 CWE types is 0.88 and drops to 0.83 for 5 CWE types 
and then 0.75 for 8 CWE types. This is because of two 
reasons. First, with the increase in the number of types, 
deep learning-based methods are prone to degradation, 
which is still a challenging problem. Second, some CWE 
types are more general and involve more problems, and 
some CWE types are closely related and have parent–
child relationships, making many vulnerability functions 
hard to assign correctly. For example, CWE-264 denotes 
weakness related to permissions, privileges, and access 
control, covering a broad range of problems. CWE-125 
(out-of-bounds read) is a child of CWE-119. The same 
results can be found in Fig. 6, where the AUC value (area 
under the ROC curve) decreases when the number of 
CWE types increases. We will study the performance 
improvement on more CWE types in our future work.

Comparison with representation models
To demonstrate the effectiveness of the proposed vul-
nerability graph representation, we compared it with 
two vulnerability representation frameworks. The first 
one is SySeVR (Li et  al. 2021a), which uses a graph 

representation to remove code statements irrelevant 
to the vulnerability, and the processed source code is 
input to the BLSTM model; the second one is IVDetect 
(Li et  al. 2021b), which characterizes the function into 
a graph based on five features in the vulnerability, and 
finally input to FA-GCN(Feature-Attention Graph Con-
volutional Networks) to perform the vulnerability classi-
fication task.

As can be seen from the Table  6, our method is bet-
ter than the comparison methods. The reasons are: 1) 
Our graph characterization method targets the specific 
location where the vulnerability is located rather than 
the whole function and removes code statements that 
are irrelevant to vulnerability features, which makes the 
generated vulnerability graph more focused on the rep-
resentation of vulnerability features. 2) The graph is 
non-Euclidean space data, which can clearly reflect the 
information in the code language, and combined with 
graph neural networks and siamese networks, it can bet-
ter distinguish between different categories of vulner-
abilities differences, thus classifying vulnerabilities more 
effectively.

Results per CWE with our method
We further explore whether the CWE assignment exhib-
its bias to certain CWE types, mainly to show which type 
of CWE our method is more suitable for. From Tables 7, 

Table 4 Results for 5 CWE types

Model P R F1 A

SVM 0.43 0.32 0.37 0.435

Naïve Bayes 0.54 0.23 0.32 0.579

CNN 0.68 0.89 0.77 0.752

LSTM 0.86 0.78 0.82 0.794

GCN 0.76 0.77 0.76 0.810

Our method 0.83 0.83 0.83 0.885

Table 5 Results for 8 CWE types

Model P R F1 A

SVM 0.25 0.45 0.32 0.354

Naïve Bayes 0.53 0.36 0.43 0.457

CNN 0.43 0.53 0.47 0.651

LSTM 0.82 0.62 0.71 0.712

GCN 0.65 0.56 0.6 0.774

Our method 0.77 0.73 0.75 0.818

Fig. 6 ROC curve of our method for different configurations

Table 6 Comparison experiments (Accuracy)

2CWE 5CWE 8CWE

SySeVR 0.876 0.785 0.647

IVDetect 0.853 0.710 0.713

Our approach 0.953 0.885 0.818
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8, and 9, it can be seen that the performance of our 
method on different CWE types is different. For example, 
the performance on CWE-119 is always higher than that 
of CWE-20 in these tables. The assignment for CWE-264 
is much poorer than other CWEs. We suspect that the 
reason is as follows.

CWE-20 denotes improper input validation, while 
CWE-119 denotes improper restriction of operations 
within the bounds of a memory buffer. It can be seen that 
CWE-119 is focused on memory buffer-related vulnera-
bilities, which is more focused than CWE-20, which cov-
ers more types involving input validation. Remember that 
we use four types of vulnerability syntax features upon 
code characterization, two of which are array usage and 
pointer usage. Therefore, our method can more precisely 
capture the memory buffer related vulnerability snippets 
and thus performs better in assigning functions belong-
ing to CWE-119.

CWE-264, as stated before, denotes weakness related 
to permissions, privileges, and access control, covering 
a broad range of problems. Similarly, it involves more 
general types and vulnerability weakness; as a result the 

associated vulnerability functions exhibit large differ-
ences in structure and semantics, thereby compromising 
the assignment.

Note that the number of CVEs for CWE-476 is the 
smallest, i.e., it takes only 8.7% in our dataset, as shown in 
Table 2. However, the performance on CWE-476 is good, 
i.e., 0.886, as shown in Table  8, the second best among 
all CWE types. CWE-476 denotes NULL pointer derefer-
ence. As explained before, we have a syntax feature spe-
cific to pointer usage upon code characterization, which 
helps express this type of vulnerability snippet.

From these results, it can be concluded that our 
method has good assignment ability for relatively type-
focused vulnerabilities, e.g., memory related and pointer-
related vulnerabilities. In addition, although it performs 
relatively poorly on CWE types that are more generic, it 
still performs better than other existing methods.

The effects of CWEs and CVEs on performance
The results in “Performance on CWE Assignment” Sec-
tion show that the performance decrease with the num-
ber of CWEs, i.e., the performance is poor in 5-CWE 
compared to that in 8-CWE. To explore the reasons for 
the decrease, we perform two experiments by varying the 
number of CWEs and the number of CVEs, respectively.

Varying number of CWEs
We first measure the performance with varying num-
ber of CWEs, each has equal number of CVEs. For the 
2-CWE, 5-CWE and 8-CWE configurations, instead 
of using all the CVEs of each CWE types, we randomly 
select 50 CVEs for each CWE type and perform training 
and testing using these CVEs for each configuration. As 
can be seen in Table 10, the precision, recall and f1-score 
are comparable for the three configurations, e.g., the 
f1-score is 0.62, 0.65, and 0.63 for 2-CWE, 5-CWE, and 
8-CWE, respectively. In other words, the performance 
doesn’t decrease significantly as the increase of the num-
ber of CWE types.

Varying number of CVEs
We then measure the performance with increasing num-
ber of CVEs per CWE. We use 50, 100 and all CVEs per 
CWE for the 5-CWE configuration and perform training 

Table 7 Assignment performance for 2 CWE types

P R F1 A

CWE‑20 0.8 0.94 0.86 0.933

CWE‑119 0.85 0.93 0.88 0.971

Table 8 Assignment performance for 5 CWE types

P R F1 A

CWE‑20 0.71 0.77 0.74 0.831

CWE‑119 0.88 0.87 0.87 0.853

CWE‑125 0.9 0.88 0.88 0.924

CWE‑189 0.9 0.91 0.90 0.916

CWE‑200 0.73 0.75 0.74 0.901

Table 9 Assignment performance for 8 CWE types

P R F1 A

CWE‑20 0.61 0.57 0.59 0.743

CWE‑119 0.89 0.81 0.85 0.921

CWE‑125 0.79 0.53 0.63 0.786

CWE‑189 0.93 0.94 0.93 0.809

CWE‑200 0.65 0.84 0.73 0.831

CWE‑264 0.61 0.57 0.59 0.704

CWE‑399 0.83 0.94 0.88 0.864

CWE‑476 0.88 0.65 0.74 0.886

Table 10 Performance with 50 CVEs per CWE for different 
configurations

Configuration P R F1 A

2‑CWE 0.61 0.63 0.62 0.67

5‑CWE 0.68 0.62 0.65 0.68

8‑CWE 0.62 0.65 0.63 0.69
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and testing on these CVEs. As can be seen in Table 11, 
the precision, recall and f1-score increases gradu-
ally as the number of CVEs increases, e.g., f1 increases 
from 0.65 for 50 CWEs to 0.81 for 100 CVEs. This is 
because when the number of vulnerabilities in the data-
set becomes larger, the model is better able to learn fea-
tures implied in each category of vulnerabilities and is 
better able to perform the task of vulnerability classifica-
tion. Although letting data pairing in Siamese networks 
requires less data than a general deep learning model, 
a certain amount of data is needed to ensure the effec-
tiveness of the model. Due to heavy manual effects, our 
dataset currently is relatively small, and it only contains 8 
CWEs of vulnerabilities whose number is more than 190 
for each CWE.

From the two experiments, we can see that the number 
of CVEs per CWE is one key factor that affects the per-
formance in our prepared dataset. From the results from 
natural language processing (NLP) or computer vision 
(CV), more classes would decrease the classification per-
formance. Therefore, it can be concluded that with more 
CWE types, the performance would decrease as well. 
To this end, we plan to extend our work in two direc-
tions. First, we plan to collect more CVEs spanning more 
CWEs to enrich our dataset. Second, we plan to employ 
the popular large language models (LLM), e.g., Codex, 
to improve our method especially in learning from few 
samples.

Performance of assigning newly reported CVEs
In practical usage, we train the model on existing vulner-
abilities and then use the CWE for newly reported vul-
nerabilities. The new vulnerabilities (or CVEs) fall into 
two types within the paper, i) it belongs to one CWE type 
in our dataset, ii) it doesn’t belong to any CWE type in 
our dataset (i.e., unknown CWE).

New CVEs with labeled CWEs
To verify whether our approach can perform the clas-
sification of newly discovered vulnerabilities correctly, 
we divide the dataset into two parts according to the 
reported time of vulnerabilities. Specifically, we use 
706 CVEs discovered from 2013 to 2017 as the training 
dataset and 71 CVEs reported from 2018 and 2019 as 

the testing dataset. For the model learned on the train-
ing dataset, the vulnerabilities in the testing dataset are 
viewed as newly discovered vulnerabilities. Note that one 
CVE ID contains the time when the vulnerability was 
discovered, which makes it easier for us to prepare the 
experiment.

Table 12 reports the results of this experiment. Similar 
to our previous experiments, we also conducted experi-
ments in 2CWEs, 5CWEs, and 8CWEs and computed 
the accuracy, precision, recall, and F1-score. As we can 
see, the model works well for these newly discovered vul-
nerabilities. For example, 2CWEs, 5CWEs, and 8CWEs 
achieve F1-scores of 0.934, 0.81 and 0.803 respectively; 
note that these results are slightly lower than the previ-
ous results, which are 0.953, 0.885 and 0.818, respec-
tively. This is reasonable since these new vulnerabilities 
are not seen in the training dataset, which makes the 
model compromised when predicting the new vulner-
abilities. However, we believe the results are still promis-
ing for assigning future vulnerabilities.

New CVEs with unknown CWEs
Since the performance of the model degrades when 
CWEs become more numerous, we added 300 CVEs 
that are not part of the dataset (the CWEs of these vul-
nerabilities are also not in the dataset) to be paired with 
the CVEs in the original test set and input to the trained 
model, and if these vulnerability pairs are identified as 
different categories, it proves that the model is effec-
tive for the assignment of CWEs. Table  13 shows the 
results of the experiments, and it can be seen that the 
performance of the classification is decreased compared 
to the previous experiments, which is understandable, 
firstly, the accuracy of the deep learning model decreases 
when there are too many categories, which is a problem 
that also needs to be solved in the field of deep learning. 

Table 11 Performance with increasing number of CVEs per CWE

Number of CVEs P R F1 A

50 0.68 0.62 0.65 0.68

100 0.75 0.71 0.81 0.79

All 0.83 0.83 0.83 0.885

Table 12 Performance on classifying newly reported CVEs

CWE type P R F1 A

2CWE 0.79 0.86 0.82 0.934

5CWE 0.83 0.81 0.81 0.810

8CWE 0.74 0.72 0.72 0.803

Table 13 Performance on classifying unknown CVEs

CWE Type P R F1 A

2CWE 0.77 0.90 0.83 0.92

5CWE 0.81 0.81 0.81 0.78

8CWE 0.71 0.69 0.7 0.75
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Second, some of the additional data we added are vulner-
abilities that have not yet been assigned CWEs, which 
may belong to CWEs in the dataset, and some of the 
CWEs are vaguely defined or similar, such as CWE-119 
(Improper Restriction of Operations within the Bounds 
of a Memory Buffer) and CWE-120 (Buffer Copy without 
Checking Size of Input) can both indicate Buffer Over-
flow, which causes Buffer Overflow to arise for different 
reasons distinguishing the categories, which leads to a 
decrease in model accuracy.

Time overhead
In this experiment, we measure whether our method is 
efficient in CWE assignment. The time overhead mainly 
lies in two aspects: code characterization and training on 
a dataset.

Code characterization involves transforming a func-
tion in the form of a source into several graphs. On our 
dataset, the average time to process vulnerability is 6  s. 
Although the overhead is slightly higher, a function is 
processed only once and can be stored in the database for 
future usage. Therefore, the overhead is affordable.

For the time overhead upon training, the results are 
reported in Table 14. Note that the inputs of these meth-
ods are embedded vectors; therefore, the training is fast, 
i.e., dozens of seconds. Our method takes more time than 
the other methods upon training, e.g., for the dataset 
across 8 CWE types, it uses the longest time to train the 
model, i.e., 98 s. This is mainly because the Siamese net-
work needs pairs of vulnerability functions; therefore, the 
actual samples upon training are multiplied. Although it 
consumes more time, the pairing helps mitigate the over-
fitting problem when the amount of data is too small and 
thus improves the performance of the model.

Conclusion
CWE assignment is useful for categorizing newly dis-
covered vulnerabilities. In this paper, we propose an 
automatic CWE assignment method with deep neural 
networks. We prepare a dataset that contains 3394 real 
world vulnerabilities. Then, we extract statements with 
vulnerability syntax features from these vulnerabilities 

and use program slicing to slice them according to the 
categories of syntax features. On top of slices, we repre-
sent these slices with graphs that characterize the data 
dependency and control dependency between state-
ments. We employ the graph neural network to learn 
the hidden information from these graphs and leverage 
the Siamese network to compute the similarity between 
vulnerability functions, thereby assigning CWE IDs for 
these vulnerabilities. The experimental results show that 
the proposed method is effective compared to existing 
methods. In the future, we plan to improve our method 
along two directions. First, we plan to extend our data-
set to cover more CWE types and release it publicly to 
foster further research. Second, we plan to design more 
types of vulnerability syntax features to cover more types 
of weakness so that the performance on CWE type that is 
generic can be improved.
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