
Liu et al. Cybersecurity (2023) 6:29
https://doi.org/10.1186/s42400-023-00160-1

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

Graph neural network based approach
to automatically assigning common weakness
enumeration identifiers for vulnerabilities
Peng Liu1,4, Wenzhe Ye1,4 , Haiying Duan2, Xianxian Li1,4*, Shuyi Zhang1,4, Chuanjian Yao1,4 and Yongnan Li3

Abstract

Vulnerability reports are essential for improving software security since they record key information on vulnerabilities.
In a report, CWE denotes the weakness of the vulnerability and thus helps quickly understand the cause of the vulner‑
ability. Therefore, CWE assignment is useful for categorizing newly discovered vulnerabilities. In this paper, we propose
an automatic CWE assignment method with graph neural networks. First, we prepare a dataset that contains 3394
real world vulnerabilities from Linux, OpenSSL, Wireshark and many other software programs. Then, we extract state‑
ments with vulnerability syntax features from these vulnerabilities and use program slicing to slice them according
to the categories of syntax features. On top of slices, we represent these slices with graphs that characterize the data
dependency and control dependency between statements. Finally, we employ the graph neural networks to learn
the hidden information from these graphs and leverage the Siamese network to compute the similarity between
vulnerability functions, thereby assigning CWE IDs for these vulnerabilities. The experimental results show that the
proposed method is effective compared to existing methods.

Keywords Vulnerability categorization, CWE, Graph representation, GNN

Introduction
Due to the increasing reliance on software in modern
society and the increasing number of newly reported
software vulnerabilities every day, software vulnerabili-
ties have become an important issue in network security.
The MITRE Corporation has presented CVE (Com-
mon Vulnerabilities and Exposures) (https:// cve. mitre.
org/) since January 1999, a public vulnerability database
to report vulnerabilities discovered in various software

including operating systems and web browsers. As of
September 15, 2022, 184,784 vulnerabilities have been
reported according to CVEDetails (https:// www. cvede
tails. com/). To better understand these vulnerabilities,
CWE (https:// cwe. mitre. org/), short for Common Weak-
ness Enumeration, was proposed to classify vulnerabili-
ties, which denotes the common weakness shared by a
set of vulnerabilities.

Generally, in a vulnerability report, a vulnerability is
assigned a unique CVE ID and is categorized into one
CWE. For example, the famous Heartbleed vulnerabil-
ity is assigned with CVE-2014-0160, and is categorized
into CWE-119, which denotes failure to constrain opera-
tions within the bounds of a memory buffer. Note that
the CWE ID reveals the common cause of many vulner-
abilities sharing the same weakness. CVE-2018-14438
and CVE-2017-3733 are two vulnerabilities in differ-
ent programs, but they both belong to CWE-20, which
states that the program does not validate or incorrectly

*Correspondence:
Xianxian Li
lixx@gxnu.edu.cn
1 Key Lab of Education Blockchain and Intelligent Technology, Ministry
of Education, Guangxi Normal University, Guilin 541004, China
2 School of Software, Beihang University, Beijing 100000, China
3 School of National Security, People’s Public Security University of China,
Beijing 1000000, China
4 Guangxi Key Lab of Multi‑Source Information Mining and Security,
Guangxi Normal University, Guilin 541004, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00160-1&domain=pdf
http://orcid.org/0009-0007-2587-6876
https://cve.mitre.org/
https://cve.mitre.org/
https://www.cvedetails.com/
https://www.cvedetails.com/
https://cwe.mitre.org/

Page 2 of 15Liu et al. Cybersecurity (2023) 6:29

validates the input. Categorizing vulnerabilities can help
us identify the cause of weakness, which further guides
us to fix the vulnerability quickly. Therefore, it is criti-
cal to assign an accurate CWE ID for a newly discovered
vulnerability.

Currently, CWE assignment is performed by security
experts. However, according to CVEDetails, the num-
ber of vulnerabilities was 894 in 1999, and is increased
to 20,169 in 2021. The sharp increase definitely imposes
heavy work load on security experts. In addition, there
exist as many as 927 CWE IDs. Such a number makes
manual classification error-prone, especially when
some CWE IDs are highly similar, e.g., buffer underflow
(CWE-124) and memory buffer errors (CWE-1218). In
addition, for some vulnerabilities, the expert is not sure
which CWE ID is more appropriate for the vulnerabil-
ity; as a result, the CWE ID in the vulnerability report is
missing, e.g., CVE-2022-33936 (https:// cwe. mitre. org/)
and CVE-2022-32552 (https:// www. cvede tails. com/ cve/
CVE- 2022- 32552/), just name a few. To this end, it is
becoming important to automatically assign the CWE ID
for vulnerabilities.

Recent studies have viewed CWE ID assignment as
a classification problem and have explored the use of
machine learning methods to classify vulnerabilities (Das
et al. 2021) at the level of function for C/C++ programs.
Generally, they treat the source code of the vulnerability
as text and then employ the methods of natural language
processing to learn the features from the text for classifi-
cation. However, a programing language is more logical
and structured than the natural language. In addition, the
snippets of the vulnerabilities generally take a small piece
of the source code to function. Thus, it is difficult for
these existing studies to effectively learn semantic infor-
mation. In addition, these studies perform valuations on
synthetic datasets where a number of vulnerabilities are
simple and highly similar. Therefore, they perform poorly
in real-world scenarios.

In this paper, we aim to propose an automated
approach to classify vulnerabilities (i.e., CWE assign-
ment) with deep neural networks. To achieve this goal,
we need to address three problems and challenges.
First, we must characterize the vulnerability code with
an appropriate format that can easily expose its syntax
and semantics. Second, we need a deep neural network
to learn well from the code representations. Third, since
existing vulnerability datasets are simple and contain few
vulnerabilities sharing the same CWE, we need to collect
a vulnerability dataset to help us reveal the similarities
within the same class of CWEs and the differences across
different CWEs.

To this end, we propose a new method to assign CWE
IDs for vulnerabilities with a graph neural network and

Siamese network. The key idea behind this is that the vul-
nerability snippets sharing the same type of CWE exhibit
similar syntax and semantics, which can be exploited by
deep neural networks to learn this hidden information
for classification. More specifically, we first prepare a
dataset that contains 3394 real world vulnerabilities from
Linux, OpenSSL, Wireshark and other software. Then,
we extract statements with vulnerability syntax features
from these vulnerabilities and use program slicing to
slice them according to the categories of syntax features.
On top of slices, we use Joern, a graph representation
of code, to represent these slices with graphs that char-
acterize the data dependency and control dependency
between statements. Finally, we employ the graph neu-
ral network to learn the hidden information from these
graphs and leverage the Siamese network to compute the
similarity between vulnerability functions, thereby per-
forming assigning CWE IDs for these vulnerabilities.

On our prepared dataset with 3394 CWEs across 8
CWE types, our method outperforms existing methods
such as CNN (Convolutional Neural Network), GCN
(Graph Convolutional Networks), LSTM (Long short-
term memory) in terms of precision, recall, f1-score and
accuracy upon CWE assignment.

To summarize, our main contributions are as follows:

(1) First, we present a dataset consisting of 3394 real
world vulnerabilities. Not only the source code of
the whole function, but also the vulnerability snip-
pets are pinpointed. We plan to release the dataset
after the paper is published.

(2) Second, a graph-based method is proposed to char-
acterize vulnerability from different aspects, which
helps reveal the syntactic and semantic information
more precisely.

(3) Third, we present a deep neural network model that
combines a graph neural network and a Siamese
network, where the former learns the hidden infor-
mation from graphs and the latter computes the
similarity between vulnerabilities for classification.

(4) Fourth, a set of experiments is performed to dem-
onstrate the effectiveness of the proposed method.

Related work
In recent years, many approaches have been proposed
to classify CVEs into CWEs. DeLooze (2004) proposed
CVE classification with four common classes of attacks
(Denial of Service, Deception, Reconnaissance, and
Unauthorized Access) using a Self-Organizing Map and
achieved a 75% success rate on testing data in 2004 before
the CWE list was published. Wita and Teng-Amnuay
(2005) focused on 388 CVE entries and candidates from

https://cwe.mitre.org/
https://www.cvedetails.com/cve/CVE-2022-32552/
https://www.cvedetails.com/cve/CVE-2022-32552/

Page 3 of 15Liu et al. Cybersecurity (2023) 6:29

Linux, and manually generated a vulnerability profile for
Linux system with the CVE severity level. Neuhaus and
Zimmermann (2010) explored the security trend within
each cybersecurity cluster derived by the unsupervised
Latent Dirichlet Allocation (LDA) learning model upon
CVE entries. Rahman and Yeasmin (2013) proposed an
adaptive bug classification method on a prepared CVE
dataset using Naïve Bayes and Bayes net, which achieved
80.64% and 81.50% of accuracy, respectively. Aivatoglou
et al. (2021) used the description of CVEs on the NVD
as the dataset and processed the dataset using an NLP-
based approach to classify CWEs using three tree-based
machine learning models, with the best result being an
accuracy of 76% for ten classes of CWEs using XGBoost.
Na et al. (2017) also used the descriptions of CVEs on the
NVD website to classify CWEs. They selected the larg-
est number of CWE categories for three experiments,
namely 1) the top three CWE categories, 2) the top five
CWE categories, and 3) the top ten CWE categories, with
final accuracy rates of 95.2%, 84.2%, and 75%, respec-
tively. Although Aivatoglou et al. (2021) also used the
description of CVE to classify CWE, they proposed the
concept of a hierarchical classification of CWE based on
the level of CWE and achieved good results. Wang et al.
(2022) used word2vec to embed the CVE descriptions,
which are then fed into the CNN and GRU models for
processing.

Dam et al. (2018) characterized the vulnerability source
code in the AST, and then embed the tree nodes of the
AST through a tree-based LSTM to obtain a vector rep-
resentation, which was then fed into a traditional classi-
fier for vulnerability detection. Zhou et al. (2019) used
AST and PDG to characterize the vulnerability function
as a graph for processing, using statements, identifiers,
and direct values as nodes of the graph and relations
between nodes as edges, although they use graph neural
networks for vulnerability detection. Xiao et al. (2020)
detected whether a vulnerability has been fixed in a vul-
nerability function by characterizing the vulnerability
source code in the form of AST and PDG to calculate
the signature in the vulnerability function and the patch
function. Sun et al. (2021) used similarity comparisons
of vulnerable functions for vulnerability detection, they
compare the similarity of the vulnerable function with
the function that has been fixed. Cui et al. (2020) pro-
posed the concept of a Weighted Featute Graph (WFG)
to assign values to nodes in the WFG based on the num-
ber of occurrences of the type of AST and to detect the
presence of vulnerabilities in the function using the WFG
of the vulnerable function and the repaired function.
Li et al. (2021b) employed program dependency graph
(PDG) to characterize the source code of vulnerability
by aggregating five vulnerability-related features, and

then feed the PDGs to FA-GCN for vulnerability detec-
tion and classification. Our approach is inspired by the
above methods, but the differences are: 1) The purpose
is different, The goal of the above methods is to detect
vulnerabilities, while our goal is to classify vulnerabili-
ties; 2) The code characterization methods are different,
The above methods use AST or CFG or treat the source
code directly as text, while our approach slices the graph
on the basis of PDG to generate graphs with vulnerability
features; 3) Our approach embeds the graphs with GCN
and then compares the similarity by Siamese network to
classify the vulnerability functions.

As seen from the above, the existing research on
CWE classification is still based on the NLP approach,
rather than classifying CWE based on the vulnerabil-
ity function, which is the main purpose of the work on
vulnerability functions as a dataset in performing vulner-
ability detection. Different from these methods, we clas-
sify CWEs on a dataset of vulnerability source code and
characterize the code (mainly the vulnerability snippets)
as a graph. By using the graph convolutional network and
Siamese network, the semantics of graphs can be well
learned and the similarity between two functions is com-
puted to assign newly discovered functions with CWE.
The experimental results show the effectiveness of our
proposed method.

Background and problems
Background
A vulnerability is a cyber-security term that refers to a
weakness, defect, or security bug in computer systems
that leaves information security exposed to a threat.
It can be exploited by an attacker to gain unauthorized
access (e.g., steal sensitive data) or even perform arbi-
trary actions (e.g., install malware) on a computer system.

CVE (Common Vulnerabilities and Exposures) is a list
of publicly known vulnerabilities and exposures. Each
CVE ID (in the form of CVE-Year-Number) on the list
is a record upon a finding of a specific vulnerability or
exposure in software, rather than a general class of vul-
nerabilities or exposures. For example CVE-2014-0160
denotes the Heartbleed bug in the dtls1 process heart-
beat() function of d1both.c and t1 lib.c of OpenSSL-1.0.1.
CWE (Common Weakness Enumeration) refers to types
of weaknesses, each of which is shared by many vulner-
abilities. For example, CWE-416 denotes use after free,
which refers to the attempt to access memory after it has
been freed (e.g., CVE-2015-2546 and CVE-2020-3947).
CWE-415 denotes that double free when free() is called
more than once with the same memory address as an
argument (e.g., CVE-2015-2419, CVE-2018-8460). Note
that many CWEs have a parent–child relationship, e.g.,
CWE-415 and CWE-416 are children of CWE-825.

Page 4 of 15Liu et al. Cybersecurity (2023) 6:29

Once a vulnerability is newly discovered, it is reported
publicly. Many databases, such as CVEDetails NVD,
manage the reported vulnerabilities across a broad range
of programs. A vulnerability report provides detailed
information on vulnerability. As shown in Fig. 1, which
comes from the report of CVE-2016-2842, it explains
the CVSS (Common Vulnerability Scoring System)
Score, which denotes the severity of vulnerability. Then,
it describes the impact on confidentiality, integrity and
availability. In addition, it provides the type of vulnerabil-
ity, which denotes it potential harm to the system, e.g.,
denial of service and overflow. Finally, it provides a CWE
ID, e.g., 119 which stands for failure to constrain opera-
tions within the bounds of a memory buffer.

As stated before, the CWE ID for a vulnerability may
be incorrectly provided or even missing, mainly because
i) the number of CWE IDs is as many as 924, ii) manual
assignment would make mistakes especially for CWE IDs
that are similar, and iii) the vulnerability is complex and
cannot find an appropriate CWE ID. Therefore, it is criti-
cal to assign CWE ID for a newly discovered vulnerability
automatically and accurately.

Problems and challenges
Assigning CWE ID for a newly discovered vulnerability
automatically and accurately faces several key problems
and challenges.

First, how can vulnerable information be revealed?
The vulnerability snippet, which denotes the vulnerable
information, is only a few lines of code. It generally takes
a small piece in the whole function, which may contain
dozens or even hundreds of lines. Therefore, it hides
deeply in the source code. Considering that the CWE ID
denotes the common weakness for many vulnerabilities,
how to reveal these small snippets is critical for accurate
CWE assignment.

Second, how can we learn the semantics of vulner-
ability snippets? The semantics of vulnerability snippets
are important for CWE assignment, i.e., understanding
the weakness of vulnerability. Although there exist many
approaches to learn the semantics of the whole function,
how to accurately learn the semantics of a smaller frag-
ment in the view of vulnerability is still a major challenge.

Third, how can high performance be achieved on real
world dataset? Different from synthetic datasets, real
world datasets generally contain only a few vulnerabili-
ties for each CWE, which further limits the learning abil-
ity of deep neural networks. Thus, we need a method to
effectively learn syntax and semantics from a few samples
and then use them for classification.

Our approach
In this section, we present the basic design of our pro-
posed method. As shown in Fig. 2, Data Collection first
prepares a dataset containing real world vulnerabilities,
in which each vulnerability is tagged with a CWE ID. On
our prepared dataset, Code Characterization represents
each vulnerability with a vulnerability graph, that more
accurately characterizes the syntactic and structural
dependencies by combining code property graphs such
as AST, PDG, CFG, etc. Then, the similarity model feeds
these graphs into a graph neural network and Siamese
network to compute the similarity between them. Finally,
CWE Assignment labels the vulnerability with a CWE ID
by comparing the similarities. In the following, we will
describe each component in detail.

Data collection
Although there exist several well-known vulnerability
datasets, we decide to build a new dataset on our own
for the following reasons. First, many existing datasets
are synthetic (Li et al. 2021a), and some vulnerability

Fig. 1 Vulnerability report of CVE‑2016‑2842 (https:// www. cvede tails. com/ cve/ CVE‑ 2016‑ 2842/)

https://www.cvedetails.com/cve/CVE-2016-2842/

Page 5 of 15Liu et al. Cybersecurity (2023) 6:29

functions and vulnerability snippets are highly similar,
which amplifies the performance of CWE assignment
methods. Second, the number of vulnerabilities of the
same CWE is relatively small, i.e., dozens or even fewer.
Meanwhile, the vulnerability snippets in real-world pro-
grams are generally more diverse, mainly due to different
developers having different coding styles. Therefore, we
need to collect a dataset that helps reveal the similari-
ties of vulnerabilities that belong to the same CWE, and
the differences in vulnerabilities that belong to different
CWEs. We prepare the dataset following the steps below.

Vulnerability collection We prepare the dataset from
two sources. The first source is the CVEDetails website
(https:// www. cvede tails. com/ cve/ CVE- 2022- 32552/),
a well-known vulnerability management system. We
employ a web-crawling framework Scrapy to extract the
information from the vulnerability reports in CVEDe-
tails, including the CVE-ID, CWE-ID, the file name and
function name associated with the vulnerability, and
the software version that is affected by the vulnerability.
Then, using the function name, file name, and software,
the source code of vulnerability at the function level can
be extracted using LLVM (Low Level Virtual Machine),
a famous open-source compiler (Lattner et al. 2004).
Meanwhile, since we collect many different versions of
software affected by vulnerability, we therefore obtain
many functions for one vulnerability. This will help us to
better learn the similarities or differences among vulner-
ability snippets, as will be detailed in the similarity model
(“Similarity Model” Section). In addition, we can also
obtain many patched functions from the software with
newer versions. Another data source is the Vulncode-db
website (https:// www. vulnc ode- db. com/), which records
thousands of vulnerabilities as well as their patches. Vul-
ncode-db includes the CVE-ID, CWE-ID, and link of the
patch. Similarly, we use the Scrapy framework to crawl
the webpage referred to by the patch link to extract the
vulnerability function.

Data distilling The prepared dataset may contain
redundant functions for the same vulnerability, when the
function across different versions of software remains
unchanged. These redundant functions would result in
the overfitting of the deep learning model. To exclude

these functions, we first remove the comments that are
irrelevant to the vulnerability and then compute the hash
value of the whole function code. For functions with the
same hash value, only one copy is kept. In addition, to
accurately pinpoint the vulnerability snippets that are
important for CWE assignment, we employ the diff tool
to find the difference between the vulnerability function
and the associated patched function. It is worth noting
that the difference may not only record the vulnerability
snippets but also contain codes used for code improve-
ment. To this end, we resort to the vulnerability descrip-
tions and manually filter out the snippets where the real
vulnerabilities are located to improve the accuracy of
snippets.

Code characterization
The vulnerability functions in the prepared dataset are in
the form of source code. Although they can be fed into
deep learning models such as LSTM (Long short-term
memory), the hidden semantics related to vulnerability
are difficult to be reveal. To this end, we first use slicing to
locate codes more related to the vulnerability snippets so
that the smaller pieces of code can more accurately rep-
resent the weakness, as shown in Fig. 3. Then, we employ
Joern (https:// joern. io/) to represent the sliced piece of
code with syntax and dependency semantics, which has
shown to be effective in characterizing codes. In this way,
the characteristics of different types of weakness in the
vulnerability function will be highlighted.

Vulnerability snippet-aware slicing We locate the vul-
nerability snippets when preparing our dataset, which

Fig. 2 Overall architecture of our proposed method

Fig. 3 Code characterization with graphs

https://www.cvedetails.com/cve/CVE-2022-32552/
https://www.vulncode-db.com/
https://joern.io/

Page 6 of 15Liu et al. Cybersecurity (2023) 6:29

are in the form of lines of code. The problem here is that
a snippet is still coarse-grained since it contains multi-
ple statements and identifiers. For further location, we
extract the vulnerability syntax features from the snip-
pets, e.g., the pointer and sensitive function. More spe-
cifically, we use the vulnerability signature statements
collected by the code static analysis tool Checkmarx
(https:// check marx. com/), which provides many com-
mon vulnerability syntax rules for C/C++ programs. Vul-
nerability syntax rules contain 93.6% of the vulnerability
programs in the NVD database, so the classification of
vulnerability syntax rules and the vulnerabilities included
are comprehensive. For example, functions including
strcpy, strcat, gets and the scanf family are more likely
to expose buffer overflow risks. fprintf, snprintf, and sys-
log may lead to format string problems. exec, system,
and popen may lead to potential shell metacharacter
dangers. The vulnerability syntax features fall into four
categories, i.e., function call, array usage, pointer usage,
and arithmetic expressions. Note that slicing from these
features may not ensure the existence of vulnerability,
but it can significantly exclude unnecessary code state-
ments that are irrelevant to vulnerability. The vulnerabil-
ity syntax features are extracted by traversing the nodes
in the AST (abstract syntax tree) of the function. If the
AST node satisfies the syntax statement that implements
the defined vulnerability, the statement corresponding to
that node will be extracted. Then, rooted from the state-
ment, slicing will be performed to obtain a piece of code,
which will be detailed in the next part.

Graph based characterization For each vulnerabil-
ity function, the graph-based static analysis tool Joern
(https:// check marx. com/) is employed to generate the
graph. Here, the graph is a program dependence graph,
i.e., PDG, which is the combination of a control flow
graph (CFG) and a data flow graph (DFG). In a CFG, a
node denotes a basic block of successive statements, and
an edge denotes the control transfer between blocks. In
a DFG, a node denotes an identifier or variable while an
edge denotes the relationship between two identifiers or
variables. In this way, the PDG is able to express both the
control dependencies and data dependencies, which are
useful for exposing the semantics of codes.

On top of the PDG, the previously collected statements
matching vulnerability syntax features will be traversed.
Upon traversal, slicing is performed to obtain a piece of
code that has a data dependency or control dependency
relationship with the root statement. More concretely,
rooted in the statement, bread first search (BFS) is per-
formed on the graph. One node, i.e., a block, variable
or statement, that is directly or indirectly connected to
the root node, is reserved. Meanwhile, the other nodes
that are unrelated to the root statement will be dropped.

Finally, a smaller piece of code is generated. Note that
there exist four types of syntax features and each type
records multiple statements. Thus, multiple pieces would
be generated for each function. To characterize the func-
tion concisely, we merge the pieces whose root state-
ments are of the same type of syntax features, and finally
obtain four pieces, Each piece corresponds to one type
(i.e., function call, array usage, pointer usage, or arithme-
tic expression). Thus, each vulnerability function can be
represented by up to four graphs, each of which charac-
terizes the function (mainly the vulnerability snippets)
from a certain aspect.

The process of graph characterization can be seen in
Fig. 4. First, the statements of vulnerability features are
found in the source code of the function, and then a
graph focused on vulnerability features is generated in
the PDG. The PDG was generated by the function based
on the node where the vulnerability feature statement is
located, and this node was the root node, as determined
by forward traversal and backward traversal to remove
nodes and edges that are irrelevant to the vulnerability
feature statement. Figure 4 shows only the process of
graph characterization of a vulnerability feature in a
function, and a vulnerability function may generate mul-
tiple vulnerability feature statements to generate multiple
graphs, and then finally aggregate multiple graphs into
one graph based on the PDG of the function.

Similarity model
To compute the similarity of two vulnerability functions
for CWE assignment, it is important to learn the seman-
tics of graphs of functions. The semantics are distributed
in two aspects. One is the semantic information of each
node in a graph, which expresses the operational inten-
tion of one or several lines of code. The other is the struc-
tural information, which expresses the dependencies
between codes in terms of both control and data.

To this end, we propose a deep learning model for bet-
ter learning the semantics of graphs and computing the
similarity between two vulnerability functions, as shown
in Fig. 4. The model takes two functions as input, each
of which is represented by four graphs, and outputs a
similarity value. Simply put, it first employs the embed-
ding layer to embed each node of the graph, which learns
the operational intention, and then calls the GCN layer to
embed the whole graph by learning the structural infor-
mation. In this way, considering that each function is rep-
resented by up to four graphs, the model merges the four
graph embeddings into the final function embedding.
Finally, it employs the Sia-mese Network to compute the
similarity between two function embeddings. The follow-
ing paragraphs will describe each step in detail (Fig. 5).

https://checkmarx.com/
https://checkmarx.com/

Page 7 of 15Liu et al. Cybersecurity (2023) 6:29

Fig. 4 Code characterization in a slice graph

Fig. 5 Similarity calculation with deep neural networks

Page 8 of 15Liu et al. Cybersecurity (2023) 6:29

Embedding layer This layer is responsible for learning
the semantic information of nodes in a graph. One pos-
sible method is to use Word2vec (Mikolov et al. 2013), as
performed in many other studies. However, a node here
generally contains one or multiple lines of code, and each
line contains many identifiers and variables with variable
length. Thus, we use doc2vec (Le et al. 2014) to create a
numeric representation of the codes in a node, regardless
of its length. Doc2vec is more capable of embedding sen-
tences than Word2vec, which can directly embed multiple
lines of code into a vector, not just one line of code, and in
practice, there are few cases where a node contains multi-
ple lines of code. After embedding, a node is represented
by a vector.

GCN layer In a graph, the edges represent the control
dependency or data dependency between nodes that have
been embedded with vectors. To learn the structural infor-
mation, we use a GCN (Graph Convolutional Network)
(Kipf and Welling 2016) to process the graphs of a vulner-
ability function. Note that each function is represented
by up to four graphs. The GCN layer takes four graphs as
input, produces one embedding for each graph, and then
outputs one final function embedding by merging the
four graph embeddings (here we use the average of four
embeddings).

Siamese model. Siamese networks are twin networks
used for metric learning, i.e., they are composed of two
identical subnetworks sharing the same weights (Neculoiu
et al. 2016). Here, each subnetwork is actually a GCN. To
learn the similarity between the vulnerability functions, we
first need to pair the generated function embeddings. If the
two functions belong to the same CWE, then they are con-
sidered similar, and the associated label y is 1. Otherwise,
we consider them different and set the label to 0. The goal
of Siamese training is to maximize the similarity between
functions of the same CWE while minimizing the similar-
ity between functions belonging to different CWEs. Specif-
ically, let SG1G2

 denotess the similarity of a pair
{

G1,G2, y
}

(the notations used in the similarity model are listed in
Table 1), which is calculated by Eq. 1

where D refers to the Euclidean distance of graphs G1 and
G2 and is calculated by Eq. 2.

Then, the loss L is calculated by Eq. 3 as follows.

(1)SG1G2
= 1− D

(2)D =
R1 · R2

R1 × R2

(3)

L ←
1

2N

N

n=1

yD2
+ 1− y max margin− D, 0

2

For a set of vulnerability function graphs, the total loss
L(G), i.e., the sum of loss for all pairs, is calculated by
Eq. 4.

CWE assignment
Now, we have trained a similarity model to obtain the
similarity between two vulnerability functions. With this
model, we can perform CWE assignment by the simi-
larities. Simply put, for a vulnerability function with a
labeled CWE ID and a newly discovered function, if their
similarity is larger than a predefined threshold T, then the
new function is labeled with the CWE ID of the known
vulnerability function. Otherwise, it is not in the same
category, and the subsequent calculation will continue
by paring it with vulnerability functions of other catego-
ries of CWE until one CWE ID is identified. If a CWE
ID cannot be determined because all the similarities are
below the threshold, we then leave the assignment to the
security experts. A newly reported vulnerability is input
to the trained model; if this vulnerability belongs to the
trained CWE type, it will be assigned correctly; if the vul-
nerability belongs to a new CWE type, then this vulner-
ability will not be assigned a CWE ID in the model, and
the vulnerability will be handed over to a security expert
for further research to assign a CWE.

Algorithm 1 describes how we label the new function
CWE assignment. In Lines 1–2, we extract the adjacency
matrix A of the edge relations and the code statements X
in the nodes from vulnerability function graphs. In Lines
3–7, we initialize the embedding matrix of the whole cor-
pus W and the embedding matrix of graph node E1,E2 .
Then, matrices E1 and E2 are determined according the
graph nodes X1 and X2 . In Line 8, the GCN model takes
embedding matrix E1,E2 and adjacency matrix A1,A2 as
inputs and obtains the embedding of the whole graph R.

(4)L(G) =
∑

(

L
(

Gi,Gj , y
))

Table 1 The notations in the similarity model

G Graphs of vulnerability functions

X Statements of nodes of G

SG1G2 Similarity between two functions G1,G2
W Embedding matrix of all words in statements

A Adjacency matrices of graphs G

E Words embedding matrix of X

R The embedding of graphs G

D Distance between two functions

N Number of function pairs

L Contrastive of two functions

Page 9 of 15Liu et al. Cybersecurity (2023) 6:29

Finally, we use cosine similarity to calculat the distance
between R1 and R2 , and the distance is predicted as the
output.

Implementation
In this section, we describe how we implement the pro-
posed method in detail, mainly how we characterize the
code and how we set up the similarity model.

Dataset preparation
Our prepared dataset contains 3394 CVEs in total. Of
these, 498 CVEs are from Linux, OpenSSL, and Wire-
shark of the CVE-Details website, and 2896 CVEs are
from multiple software programs and are from the
Vulcode-db website. These CVEs are distributed in
eight CWEs, whose detailed descriptions are reported
in Table 2. We collect CVEs from three popular open-
source projects, i.e., Linux kernel, OpenSSL, and Wire-
shark of the CVE-Details website, and multiple programs
from the Vulcode-DB website. Considering that the
machine learning models generally require a larger data-
set for training classifiers, where there exist a number of
samples for each type. Thus, when preparing the dataset,
we dropped the categories with samples less than 100.
Finally, we obtain 3394 CVEs in total, of which 498 are
from CVE-Details and 2896 are from Vulcode-DB. These
CVEs are distributed in eight CWEs, whose detailed
descriptions are reported in Table 2. In the future, we will
collect CVEs from more projects to cover more types of
CWEs.”

Code characterization
We use the SySeVR framework to represent the vulnera-
bility functions (Li et al. 2021a). More specifically, we use
the vulnerability syntax rules provided on Checkmarx to

filter out the vulnerability syntax features in vulnerabil-
ity functions. The rules of Checkmarx cover 93.6% of the
vulnerability programs collected on SARD and are useful
in identifying potential security issues. In addition, the
vulnerability syntax features can be broadly classified into
four types: function call, array usage, pointer usage, and
arithmetic expressions. We use these features to match
the nodes in the abstract syntax tree that are related to
the located vulnerability snippets. Then, these matched
nodes will be used as root candidates for slicing.

Based on these root candidates that match vulner-
ability syntax features in the function, graph slicing is
performed on the PDG graph generated by Joern. Each
vulnerability syntax feature was traversed forward and
backward on the PDG, and the program slices contain-
ing all the related statements were traversed. For each
function, the slices of the same type of syntax feature are
then aggregated together based on the PDG graph, where
data dependencies and structural dependencies between
statements are added to the program slices.

Similarity model with deep neural network
We implemented the similarity model on PyTorch. For
encoding the statements inside a node of graph, the key
hyperparamenters in Doc2vec are the dimension of the
word vector is 30, the window size is 5, the training algo-
rithm is skip-gram, and the threshold for configuring
which higher-frequency words are randomly downsam-
pled is 0.0001.

To feed the graph into the GCN layer, an adjacency
matrix is used to represent the edges of the graph, and a
feature matrix is used to represent the nodes of the graph.
Each row denotes the embedding with doc2vec. For a
graph with m nodes, the size of the adjacency matrix is
m*m, and the size of the feature matrix is m*s, where s
denotes the length of the embedding.

Table 2 The CWE distribution in our dataset

CWE Percent Description

20 0.26 Improper input validation

119 0.206 Improper restriction of operations within the bounds of
a memory buffer

125 0.139 Out‑of‑bounds read

189 0.064 Numeric errors

200 0.12 Exposure of sensitive information to an unauthorized
actor

264 0.086 Permissions, privileges, access controls

399 0.084 Resource management errors

476 0.087 NULL pointer dereference

Page 10 of 15Liu et al. Cybersecurity (2023) 6:29

Evaluation
Experimental setup
We evaluate our methods on our prepared dataset, con-
sisting of 3394 CVEs across 8 CWEs. We perform three
different configurations in the experiments, mainly in
terms of the number of CWE types: (1) the top 2 cat-
egories of CWE with the highest number of CVEs, i.e.,
CWE-20 and CWE-119. In this case, 2261 pairs (i.e.,
two vulnerability functions) are generated. (2) The
top 5 categories of CWE with the highest number of
CVEs, i.e., CWE-20, CWE-119, CWE-200, CWE-476,
CWE-399, generating a total of 12,498 pairs. (3) All 8
categories of CWE, in which 25,372 pairs are gener-
ated. Under these configurations, the percentage of the
same pairs (label is 1) and different pairs (label is 0) are
almost similar; as a result the set is balanced. We use
90% of the pairs as the training set and the other 10%
as the testing set. We compare our method with other
machine learning models, including Support Vector
Machine (SVM) (Russell 2010) and Naïve Bayes (Fuku-
shima 1980) and common deep neural networks such as
Convolutional Neural Network (CNN) (Shi et al. 2015),
Long Short-Term Memory (LSTM) (Shi et al. 2015) and
Graph Convolutional Network (GCN) (Kipf and Well-
ing 2016), on the same dataset. These models take as
input the embedding of Sysevr (Li et al. 2021a), which
is a graph-based embedding method proposed recently.

Our method mainly consists of graph-based char-
acterization and similarity model. Therefore, we com-
pare our method with two types of models. First, two
vulnerability representation models, SySeVR (Li et al.
2021a) and IVDetect (Li et al. 2021b). Second, five
machine learning-based classification models that fed
with the same embedding, including Support Vector
Machine (SVM) (Russell 2010) and Naïve Bayes (Fuku-
shima 1980) and common deep neural networks such as
Convolutional Neural Network (CNN) (Shi et al. 2015),
Long Short-Term Memory (LSTM) (Shi et al. 2015) and
Graph Convolutional Network (GCN) (Kipf and Well-
ing 2016), on the same dataset. These models take as
input the embedding of Sysevr (Li et al. 2021a), which
is a graph-based embedding method proposed recently.

We measure the effectiveness of our model in terms
of widely used metrics: accuracy(A), precision(P),
recall(R), and F1-score(F1). When the dataset is unbal-
anced, precision, recall and F1-score are more reliable
metrics in comparison to accuracy. Specifically, accu-
racy metric equals to the correct predictions divided
by the total examples in the dataset, precision for each
class corresponds to the true positives, recall for each
class equals the true positives by the number of exam-
ples that should have been identified as positive and
finally, the F1-score for each class is the harmonic mean

of the Precision and Recall. For each of the metrics pre-
cision, recall and F1-score, the overall result of each
metric corresponds to the average of the respective
metric for each class.

Performance on CWE assignment
Comparison with similarity models
We first compare our method with 5 machine learning-
based similarity models. We present the results by differ-
ent configurations, which have different number of CWE
types.

Configuration 1: 2 CWE types Table 3 compares the
results of different methods for the data distributed over
2 CWE types, i.e., CWE-20 and CWE-119. As we can
see, our method performs best in recall, F1-score and
accuracy. Note that the GCN method, which takes the
whole graph as input, performs the second best among
all methods, showing that the graph-based source code
characterization is effective. Nevertheless, our method
improves naïve GCN by 0.07 in f1-score, mainly contrib-
uting to i) vulnerability-snippet based slicing that cap-
tures vulnerability-related code well and ii) the Siamese
network that effectively learns the similarity between two
functions.

It is worth noting that LSTM achieves the highest pre-
cision, which is probably because LSTM takes the raw
source code as input so that it can learn the semantics of
the entire code. Thus, if two functions are highly similar
in both length and semantics, it is able to identify them
as similar. However, it may miss some potentially simi-
lar functions, which are similar in the small vulnerability
snippets, and thus fail to assign the correct CWE ID. As
a result, the recall of LSTM is low, i.e., only 0.78 as shown
in the table, so the f1-score is accordingly low.

Configuration 2: 5 CWE types Table 4 compares the
results of different methods for the data distributed over
5 CWE types, i.e., configuration 2. Similarly, our method
outperforms the other methods in f1-score and accuracy.
Given that the F1-score is a harmonic measurement of
precision and recall, our method is more effective than
other methods in assigning CWE for vulnerabilities.

Table 3 Results for 2 CWE types

Model P R F1 A

SVM 0.78 0.47 0.59 0.657

Naïve Bayes 0.56 0.69 0.62 0.658

CNN 0.79 0.68 0.73 0.853

LSTM 0.94 0.78 0.85 0.895

GCN 0.74 0.89 0.81 0.926

Our method 0.83 0.94 0.88 0.953

Page 11 of 15Liu et al. Cybersecurity (2023) 6:29

Configuration 3: 8 CWE types Table 5 compares the
results of different methods for the data distributed over
8 CWE types, i.e., configuration 3. Nevertheless, our
method achieves the best recall, f1-score and accuracy
among these methods, proving the effectiveness of our
method in CWE assignment.

It should be noted that the performance drops when
the number of CWE types increases, e.g., the f1-score for
2 CWE types is 0.88 and drops to 0.83 for 5 CWE types
and then 0.75 for 8 CWE types. This is because of two
reasons. First, with the increase in the number of types,
deep learning-based methods are prone to degradation,
which is still a challenging problem. Second, some CWE
types are more general and involve more problems, and
some CWE types are closely related and have parent–
child relationships, making many vulnerability functions
hard to assign correctly. For example, CWE-264 denotes
weakness related to permissions, privileges, and access
control, covering a broad range of problems. CWE-125
(out-of-bounds read) is a child of CWE-119. The same
results can be found in Fig. 6, where the AUC value (area
under the ROC curve) decreases when the number of
CWE types increases. We will study the performance
improvement on more CWE types in our future work.

Comparison with representation models
To demonstrate the effectiveness of the proposed vul-
nerability graph representation, we compared it with
two vulnerability representation frameworks. The first
one is SySeVR (Li et al. 2021a), which uses a graph

representation to remove code statements irrelevant
to the vulnerability, and the processed source code is
input to the BLSTM model; the second one is IVDetect
(Li et al. 2021b), which characterizes the function into
a graph based on five features in the vulnerability, and
finally input to FA-GCN(Feature-Attention Graph Con-
volutional Networks) to perform the vulnerability classi-
fication task.

As can be seen from the Table 6, our method is bet-
ter than the comparison methods. The reasons are: 1)
Our graph characterization method targets the specific
location where the vulnerability is located rather than
the whole function and removes code statements that
are irrelevant to vulnerability features, which makes the
generated vulnerability graph more focused on the rep-
resentation of vulnerability features. 2) The graph is
non-Euclidean space data, which can clearly reflect the
information in the code language, and combined with
graph neural networks and siamese networks, it can bet-
ter distinguish between different categories of vulner-
abilities differences, thus classifying vulnerabilities more
effectively.

Results per CWE with our method
We further explore whether the CWE assignment exhib-
its bias to certain CWE types, mainly to show which type
of CWE our method is more suitable for. From Tables 7,

Table 4 Results for 5 CWE types

Model P R F1 A

SVM 0.43 0.32 0.37 0.435

Naïve Bayes 0.54 0.23 0.32 0.579

CNN 0.68 0.89 0.77 0.752

LSTM 0.86 0.78 0.82 0.794

GCN 0.76 0.77 0.76 0.810

Our method 0.83 0.83 0.83 0.885

Table 5 Results for 8 CWE types

Model P R F1 A

SVM 0.25 0.45 0.32 0.354

Naïve Bayes 0.53 0.36 0.43 0.457

CNN 0.43 0.53 0.47 0.651

LSTM 0.82 0.62 0.71 0.712

GCN 0.65 0.56 0.6 0.774

Our method 0.77 0.73 0.75 0.818

Fig. 6 ROC curve of our method for different configurations

Table 6 Comparison experiments (Accuracy)

2CWE 5CWE 8CWE

SySeVR 0.876 0.785 0.647

IVDetect 0.853 0.710 0.713

Our approach 0.953 0.885 0.818

Page 12 of 15Liu et al. Cybersecurity (2023) 6:29

8, and 9, it can be seen that the performance of our
method on different CWE types is different. For example,
the performance on CWE-119 is always higher than that
of CWE-20 in these tables. The assignment for CWE-264
is much poorer than other CWEs. We suspect that the
reason is as follows.

CWE-20 denotes improper input validation, while
CWE-119 denotes improper restriction of operations
within the bounds of a memory buffer. It can be seen that
CWE-119 is focused on memory buffer-related vulnera-
bilities, which is more focused than CWE-20, which cov-
ers more types involving input validation. Remember that
we use four types of vulnerability syntax features upon
code characterization, two of which are array usage and
pointer usage. Therefore, our method can more precisely
capture the memory buffer related vulnerability snippets
and thus performs better in assigning functions belong-
ing to CWE-119.

CWE-264, as stated before, denotes weakness related
to permissions, privileges, and access control, covering
a broad range of problems. Similarly, it involves more
general types and vulnerability weakness; as a result the

associated vulnerability functions exhibit large differ-
ences in structure and semantics, thereby compromising
the assignment.

Note that the number of CVEs for CWE-476 is the
smallest, i.e., it takes only 8.7% in our dataset, as shown in
Table 2. However, the performance on CWE-476 is good,
i.e., 0.886, as shown in Table 8, the second best among
all CWE types. CWE-476 denotes NULL pointer derefer-
ence. As explained before, we have a syntax feature spe-
cific to pointer usage upon code characterization, which
helps express this type of vulnerability snippet.

From these results, it can be concluded that our
method has good assignment ability for relatively type-
focused vulnerabilities, e.g., memory related and pointer-
related vulnerabilities. In addition, although it performs
relatively poorly on CWE types that are more generic, it
still performs better than other existing methods.

The effects of CWEs and CVEs on performance
The results in “Performance on CWE Assignment” Sec-
tion show that the performance decrease with the num-
ber of CWEs, i.e., the performance is poor in 5-CWE
compared to that in 8-CWE. To explore the reasons for
the decrease, we perform two experiments by varying the
number of CWEs and the number of CVEs, respectively.

Varying number of CWEs
We first measure the performance with varying num-
ber of CWEs, each has equal number of CVEs. For the
2-CWE, 5-CWE and 8-CWE configurations, instead
of using all the CVEs of each CWE types, we randomly
select 50 CVEs for each CWE type and perform training
and testing using these CVEs for each configuration. As
can be seen in Table 10, the precision, recall and f1-score
are comparable for the three configurations, e.g., the
f1-score is 0.62, 0.65, and 0.63 for 2-CWE, 5-CWE, and
8-CWE, respectively. In other words, the performance
doesn’t decrease significantly as the increase of the num-
ber of CWE types.

Varying number of CVEs
We then measure the performance with increasing num-
ber of CVEs per CWE. We use 50, 100 and all CVEs per
CWE for the 5-CWE configuration and perform training

Table 7 Assignment performance for 2 CWE types

P R F1 A

CWE‑20 0.8 0.94 0.86 0.933

CWE‑119 0.85 0.93 0.88 0.971

Table 8 Assignment performance for 5 CWE types

P R F1 A

CWE‑20 0.71 0.77 0.74 0.831

CWE‑119 0.88 0.87 0.87 0.853

CWE‑125 0.9 0.88 0.88 0.924

CWE‑189 0.9 0.91 0.90 0.916

CWE‑200 0.73 0.75 0.74 0.901

Table 9 Assignment performance for 8 CWE types

P R F1 A

CWE‑20 0.61 0.57 0.59 0.743

CWE‑119 0.89 0.81 0.85 0.921

CWE‑125 0.79 0.53 0.63 0.786

CWE‑189 0.93 0.94 0.93 0.809

CWE‑200 0.65 0.84 0.73 0.831

CWE‑264 0.61 0.57 0.59 0.704

CWE‑399 0.83 0.94 0.88 0.864

CWE‑476 0.88 0.65 0.74 0.886

Table 10 Performance with 50 CVEs per CWE for different
configurations

Configuration P R F1 A

2‑CWE 0.61 0.63 0.62 0.67

5‑CWE 0.68 0.62 0.65 0.68

8‑CWE 0.62 0.65 0.63 0.69

Page 13 of 15Liu et al. Cybersecurity (2023) 6:29

and testing on these CVEs. As can be seen in Table 11,
the precision, recall and f1-score increases gradu-
ally as the number of CVEs increases, e.g., f1 increases
from 0.65 for 50 CWEs to 0.81 for 100 CVEs. This is
because when the number of vulnerabilities in the data-
set becomes larger, the model is better able to learn fea-
tures implied in each category of vulnerabilities and is
better able to perform the task of vulnerability classifica-
tion. Although letting data pairing in Siamese networks
requires less data than a general deep learning model,
a certain amount of data is needed to ensure the effec-
tiveness of the model. Due to heavy manual effects, our
dataset currently is relatively small, and it only contains 8
CWEs of vulnerabilities whose number is more than 190
for each CWE.

From the two experiments, we can see that the number
of CVEs per CWE is one key factor that affects the per-
formance in our prepared dataset. From the results from
natural language processing (NLP) or computer vision
(CV), more classes would decrease the classification per-
formance. Therefore, it can be concluded that with more
CWE types, the performance would decrease as well.
To this end, we plan to extend our work in two direc-
tions. First, we plan to collect more CVEs spanning more
CWEs to enrich our dataset. Second, we plan to employ
the popular large language models (LLM), e.g., Codex,
to improve our method especially in learning from few
samples.

Performance of assigning newly reported CVEs
In practical usage, we train the model on existing vulner-
abilities and then use the CWE for newly reported vul-
nerabilities. The new vulnerabilities (or CVEs) fall into
two types within the paper, i) it belongs to one CWE type
in our dataset, ii) it doesn’t belong to any CWE type in
our dataset (i.e., unknown CWE).

New CVEs with labeled CWEs
To verify whether our approach can perform the clas-
sification of newly discovered vulnerabilities correctly,
we divide the dataset into two parts according to the
reported time of vulnerabilities. Specifically, we use
706 CVEs discovered from 2013 to 2017 as the training
dataset and 71 CVEs reported from 2018 and 2019 as

the testing dataset. For the model learned on the train-
ing dataset, the vulnerabilities in the testing dataset are
viewed as newly discovered vulnerabilities. Note that one
CVE ID contains the time when the vulnerability was
discovered, which makes it easier for us to prepare the
experiment.

Table 12 reports the results of this experiment. Similar
to our previous experiments, we also conducted experi-
ments in 2CWEs, 5CWEs, and 8CWEs and computed
the accuracy, precision, recall, and F1-score. As we can
see, the model works well for these newly discovered vul-
nerabilities. For example, 2CWEs, 5CWEs, and 8CWEs
achieve F1-scores of 0.934, 0.81 and 0.803 respectively;
note that these results are slightly lower than the previ-
ous results, which are 0.953, 0.885 and 0.818, respec-
tively. This is reasonable since these new vulnerabilities
are not seen in the training dataset, which makes the
model compromised when predicting the new vulner-
abilities. However, we believe the results are still promis-
ing for assigning future vulnerabilities.

New CVEs with unknown CWEs
Since the performance of the model degrades when
CWEs become more numerous, we added 300 CVEs
that are not part of the dataset (the CWEs of these vul-
nerabilities are also not in the dataset) to be paired with
the CVEs in the original test set and input to the trained
model, and if these vulnerability pairs are identified as
different categories, it proves that the model is effec-
tive for the assignment of CWEs. Table 13 shows the
results of the experiments, and it can be seen that the
performance of the classification is decreased compared
to the previous experiments, which is understandable,
firstly, the accuracy of the deep learning model decreases
when there are too many categories, which is a problem
that also needs to be solved in the field of deep learning.

Table 11 Performance with increasing number of CVEs per CWE

Number of CVEs P R F1 A

50 0.68 0.62 0.65 0.68

100 0.75 0.71 0.81 0.79

All 0.83 0.83 0.83 0.885

Table 12 Performance on classifying newly reported CVEs

CWE type P R F1 A

2CWE 0.79 0.86 0.82 0.934

5CWE 0.83 0.81 0.81 0.810

8CWE 0.74 0.72 0.72 0.803

Table 13 Performance on classifying unknown CVEs

CWE Type P R F1 A

2CWE 0.77 0.90 0.83 0.92

5CWE 0.81 0.81 0.81 0.78

8CWE 0.71 0.69 0.7 0.75

Page 14 of 15Liu et al. Cybersecurity (2023) 6:29

Second, some of the additional data we added are vulner-
abilities that have not yet been assigned CWEs, which
may belong to CWEs in the dataset, and some of the
CWEs are vaguely defined or similar, such as CWE-119
(Improper Restriction of Operations within the Bounds
of a Memory Buffer) and CWE-120 (Buffer Copy without
Checking Size of Input) can both indicate Buffer Over-
flow, which causes Buffer Overflow to arise for different
reasons distinguishing the categories, which leads to a
decrease in model accuracy.

Time overhead
In this experiment, we measure whether our method is
efficient in CWE assignment. The time overhead mainly
lies in two aspects: code characterization and training on
a dataset.

Code characterization involves transforming a func-
tion in the form of a source into several graphs. On our
dataset, the average time to process vulnerability is 6 s.
Although the overhead is slightly higher, a function is
processed only once and can be stored in the database for
future usage. Therefore, the overhead is affordable.

For the time overhead upon training, the results are
reported in Table 14. Note that the inputs of these meth-
ods are embedded vectors; therefore, the training is fast,
i.e., dozens of seconds. Our method takes more time than
the other methods upon training, e.g., for the dataset
across 8 CWE types, it uses the longest time to train the
model, i.e., 98 s. This is mainly because the Siamese net-
work needs pairs of vulnerability functions; therefore, the
actual samples upon training are multiplied. Although it
consumes more time, the pairing helps mitigate the over-
fitting problem when the amount of data is too small and
thus improves the performance of the model.

Conclusion
CWE assignment is useful for categorizing newly dis-
covered vulnerabilities. In this paper, we propose an
automatic CWE assignment method with deep neural
networks. We prepare a dataset that contains 3394 real
world vulnerabilities. Then, we extract statements with
vulnerability syntax features from these vulnerabilities

and use program slicing to slice them according to the
categories of syntax features. On top of slices, we repre-
sent these slices with graphs that characterize the data
dependency and control dependency between state-
ments. We employ the graph neural network to learn
the hidden information from these graphs and leverage
the Siamese network to compute the similarity between
vulnerability functions, thereby assigning CWE IDs for
these vulnerabilities. The experimental results show that
the proposed method is effective compared to existing
methods. In the future, we plan to improve our method
along two directions. First, we plan to extend our data-
set to cover more CWE types and release it publicly to
foster further research. Second, we plan to design more
types of vulnerability syntax features to cover more types
of weakness so that the performance on CWE type that is
generic can be improved.

Acknowledgements
Not applicable

Author contributions
PL: Conceptualization, Methodology, Resources, Writing‑review& editing,
Supervision. WY: Investigation, Resources, Writing‑original draft. HD: Investiga‑
tion. XL: Supervision. SZ: Investigation. CY: Resources. YL: Resources. All authors
read and approved the final manuscript.

Funding
The research was supported in part by the National Natural Science Founda‑
tion of China (Nos. 62166004, U21A20474), the Guangxi Science and Technol‑
ogy Major Project (No. AA22068070), the Guangxi Natural Science Foundation
(No. 2020GXNSFAA297075), the Center for Applied Mathematics of Guangxi,
the Guangxi "Bagui Scholar" Teams for Innovation and Research Project, the
Guangxi Talent Highland Project of Big Data Intelligence and Application, the
Guangxi Collaborative Center of Multisource Information Integration and Intel‑
ligent Processing and Fundamental Research Funds for the Central Universities
(No. 2021JKF06).

Availability of data and materials
Data sharing is not applicable to this article.

Declarations

Competing interests
The authors declare no competing interests.

Received: 31 January 2023 Accepted: 20 April 2023

References
Aivatoglou G, Anastasiadis M, Spanos G, Voulgaridis A, Votis K, Tzovaras D

(2021) A tree‑based machine learning methodology to automatically
classify software vulnerabilities. In: 2021 IEEE International Conference on
Cyber Security and Resilience (CSR), pp 312–317

Common Vulnerabilities and Exposures (2023) https:// cve. mitre. org/. Accessed
on 15 Jan 2023

Common Weakness Enumeration (2023) https:// cwe. mitre. org/. Accessed on
15 Jan 2023

Cui L, Hao Z, Jiao Y, Fei H, Yun X (2020) Vuldetector: detecting vulnerabilities
using weighted feature graph comparison. IEEE Trans Inf Forensics Secur
16:2004–2017

Table 14 Time overhead (seconds) upon training the model

Model 2CWE 5CWE 8CWE

SVM 35 72 98

Naïve Bayes 23 57 74

CNN 28 57 76

LSTM 21 45 63

GCN 12 25 64

Our Method 16 54 98

https://cve.mitre.org/
https://cwe.mitre.org/

Page 15 of 15Liu et al. Cybersecurity (2023) 6:29

CVE‑2016‑2842 (2023) https:// www. cvede tails. com/ cve/ CVE‑ 2016‑ 2842/.
Accessed on 15 Jan 2023

CVE‑2022‑32552 (2023) https:// www. cvede tails. com/ cve/ CVE‑ 2022‑ 32552/.
Accessed on 15 Jan 2023

CVE‑2022‑33936 (2023) https:// www. cvede tails. com/ cve/ CVE‑ 2022‑ 33936/.
Accessed on 15 Jan 2023

CVEDetails (2023) https:// www. cvede tails. com/. Accessed on 15 Jan 2023
Dam HK, Pham T, Ng SW, Tran T, Grundy J, Ghose A, Kim CJ (2018) A deep

tree‑based model for software defect prediction. arXiv preprint arXiv:
1802. 00921

Das SS, Serra E, Halappanavar M, Pothen A, Al‑Shaer E (2021) V2w‑bert: a
framework for effective hierarchical multiclass classification of software
vulnerabilities. In: 2021 IEEE 8th International Conference on Data Science
and Advanced Analytics (DSAA), pp 1–12

DeLooze LL (2004) Classification of computer attacks using a self‑organizing
map. In: Proceedings from the Fifth Annual IEEE SMC Information Assur‑
ance Workshop, pp 365–369

Fukushima K (1980) A self‑organizing neural network model for a mecha‑
nism of pattern recognition unaffected by shift in position. Biol Cybern
36:193–202

Joern tool (2023) https:// joern. io/. Accessed on 15 Jan 2023
Kipf TN, Welling M (2016) Semi‑supervised classification with graph convolu‑

tional networks. arXiv preprint arXiv: 1609. 02907
Lattner C, Adve V (2004) LLVM: a compilation framework for lifelong program

analysis & transformation. In: International symposium on code genera‑
tion and optimization, 2004. CGO, pp 75–86

Le Q, Mikolov T (2014) Distributed representations of sentences and docu‑
ments. In: International conference on machine learning, pp 1188–1196

Li Z, Zou D, Xu S, Jin H, Zhu Y, Chen Z (2021a) Sysevr: a framework for using
deep learning to detect software vulnerabilities. IEEE Trans Dependable
Secure Comput 19(4):2244–2258

Li Y, Wang S, Nguyen TN (2021b) Vulnerability detection with fine‑grained
interpretations. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp 292–303

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word repre‑
sentations in vector space. arXiv preprint arXiv: 1301. 3781

Na S, Kim T, Kim H (2017) A study on the classification of common vulner‑
abilities and exposures using naïve bayes. In: Advances on Broad‑Band
Wireless Computing, Communication and Applications: Proceedings of
the 11th International Conference On Broad‑Band Wireless Computing,
Communication and Applications (BWCCA–2016) November 5–7, 2016,
Korea, Springer International Publishing, pp 657–662

Neculoiu P, Versteegh M, Rotaru M (2016) Learning text similarity with siamese
recurrent networks. In: Proceedings of the 1st Workshop on Representa‑
tion Learning for NLP, pp 148–157

Neuhaus S, Zimmermann T (2010) Security trend analysis with cve topic mod‑
els. In: 2010 IEEE 21st International Symposium on Software Reliability
Engineering, pp 111–120

Rahman MM, Yeasmin S (2013) Adaptive bug classification for cve list using
bayesian probabilistic approach. USask, Saskatoon

Russell SJ (2010) Artificial intelligence a modern approach. Pearson Education,
Inc

Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC (2015) Convolutional
LSTM network: A machine learning approach for precipitation nowcast‑
ing. Adv Neural Inf Process Syst 28

Sun H, Cui L, Li L, Ding Z, Hao Z, Cui J, Liu P (2021) VDSimilar: vulnerability
detection based on code similarity of vulnerabilities and patches. Com‑
put Secur 110:102417

The code static analysis tool Checkmarx (2023) https:// check marx. com/.
Accessed on 15 Jan 2023

Vulncode‑db (2023) https:// www. vulnc ode‑ db. com/. Accessed on 15 Jan
2023

Wang Q, Li Y, Wang Y, Ren J (2022) An automatic algorithm for software
vulnerability classification based on CNN and GRU. Multim Tools Appl
81(5):7103–7124

Wita R, Teng‑Amnuay Y (2005) Vulnerability profile for linux. In: 19th Interna‑
tional Conference on Advanced Information Networking and Applica‑
tions (AINA’05) Volume 1 (AINA papers) Vol 1, pp 953–958

Xiao Y, Chen B, Yu C, Xu Z, Yuan Z, Li F, Shi W (2020) MVP: detecting vulnerabili‑
ties using patch‑enhanced vulnerability signatures. In: USENIX Security
Symposium, pp 1165–1182

Zhou Y, Liu S, Siow J, Du X, Liu Y (2019) Devign: effective vulnerability identifi‑
cation by learning comprehensive program semantics via graph neural
networks. Adv Neural Inf Process Syst 32

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://www.cvedetails.com/cve/CVE-2016-2842/
https://www.cvedetails.com/cve/CVE-2022-32552/
https://www.cvedetails.com/cve/CVE-2022-33936/
https://www.cvedetails.com/
http://arxiv.org/abs/1802.00921
http://arxiv.org/abs/1802.00921
https://joern.io/
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1301.3781
https://checkmarx.com/
https://www.vulncode-db.com/

	Graph neural network based approach to automatically assigning common weakness enumeration identifiers for vulnerabilities
	Abstract
	Introduction
	Related work
	Background and problems
	Background
	Problems and challenges

	Our approach
	Data collection
	Code characterization
	Similarity model
	CWE assignment

	Implementation
	Dataset preparation
	Code characterization
	Similarity model with deep neural network

	Evaluation
	Experimental setup
	Performance on CWE assignment
	Comparison with similarity models
	Comparison with representation models

	Results per CWE with our method
	The effects of CWEs and CVEs on performance
	Varying number of CWEs
	Varying number of CVEs

	Performance of assigning newly reported CVEs
	New CVEs with labeled CWEs
	New CVEs with unknown CWEs

	Time overhead

	Conclusion
	Acknowledgements
	References

