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Abstract 

Due to the importance of Critical Infrastructure (CI) in a nation’s economy, they have been lucrative targets for cyber 
attackers. These critical infrastructures are usually Cyber-Physical Systems such as power grids, water, and sewage 
treatment facilities, oil and gas pipelines, etc. In recent times, these systems have suffered from cyber attacks numer-
ous times. Researchers have been developing cyber security solutions for CIs to avoid lasting damages. According to 
standard frameworks, cyber security based on identification, protection, detection, response, and recovery are at the 
core of these research. Detection of an ongoing attack that escapes standard protection such as firewall, anti-virus, 
and host/network intrusion detection has gained importance as such attacks eventually affect the physical dynamics 
of the system. Therefore, anomaly detection in physical dynamics proves an effective means to implement defense-
in-depth. PASAD is one example of anomaly detection in the sensor/actuator data, representing such systems’ 
physical dynamics. We present EPASAD, which improves the detection technique used in PASAD to detect these 
micro-stealthy attacks, as our experiments show that PASAD’s spherical boundary-based detection fails to detect. Our 
method EPASAD overcomes this by using Ellipsoid boundaries, thereby tightening the boundaries in various dimen-
sions, whereas a spherical boundary treats all dimensions equally. We validate EPASAD using the dataset produced by 
the TE-process simulator and the C-town datasets. The results show that EPASAD improves PASAD’s average recall by 
5.8% and 9.5% for the two datasets, respectively.
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Introduction
Critical infrastructures (CIs) are mostly Cyber-Physical 
Systems (CPS) with few exceptions (such as telecommu-
nication, financial services, and Agriculture) that facili-
tate and boost societal and economical operations. Some 
examples of CIs include infrastructure supporting sup-
ply of natural gas, water treatment and supply, electricity 
generation and renewable energy, food production and 
distribution, transportation, healthcare, and goods and 
services. The architecture of a CI is layered- an industrial 

control system (ICS - also known as cyber-physical sys-
tems (CPS)), Supervisory Control and Data Acquisition 
systems (SCADA), and Process Control Systems (PCS or 
Distributed Control Systems (DCS)) monitor and control 
the infrastructure (Cardenas et  al. 2011). These high-
level designs of supervisory systems are often networked 
with Programmable Logic Controllers (PLCs). PLCs are 
industrial computational devices coupled with sensors 
and actuators to control physical processes by communi-
cating usually with SCADA. The SCADA system is com-
prised of numerous intrusion detection systems (IDSs) 
that monitor physical processes or network data gener-
ated by sensors and actuators on a regular basis and gen-
erate an alarm if the system behaves abnormally.

Minor damage to a CI may lead to catastrophe and sig-
nificantly impacts public safety, economy, and daily life 
demands. With the rise of the Internet and connected 
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things, CIs have become more vulnerable to cyber-
attacks. A state’s vested interests further escalate this. In 
the past, there have been numerous cases where cyber-
criminals successfully infiltrated CIs. For example, an 
attack on the Iranian power plant in 2009 was conducted 
using Stuxnet (Falliere et al. 2010) malware. Other exam-
ples of such attacks include (i) attack on a German steel 
mill in 2014 (Lee et  al. 2014) that was conducted using 
spear-phishing through mails, (ii) attack on the Ukrain-
ian power grid in 2015 which was conducted using 
spear-phishing via Microsoft doc file affecting ≈225,000 
customers (Lee et  al. 2016), and (iii) attack on a Saudi 
petroleum refinery in 2017 using TRITON malware 
caused the refinery to shut down its operations (Di Pinto 
et  al. 2018). Besides these, there are numerous recent 
attempts reported by the Center for Strategic and Inter-
national Studies (CSIS). These include attacks on Indian 
nuclear plant in 2019, Israel water treatment plant in 
2020, and oil and natural gas pipeline companies in USA 
in 2021 (CSIS 2022).

Thus, the question that motivates us is how we can 
secure CIs from such attacks? Multiple methods are used 
to answer this and secure CIs. These methods include 
securing network architecture by adhering to the policies 
such as network segmentation and segregation, the use of 
boundary protection devices, and firewall filters between 
each network segment (Stouffer et  al. 2015). However, 
network security is constantly being breached due to 
exploitation of vulnerabilities that also include zero-day 
attacks. Assuming that network security is foolproof and 
no attacker will break it to cause harm to the ICS is not 
correct. Only by bypassing the network security attack-
ers do not harm the CI until they perform any malicious 
activity. When an attacker performs any malicious activ-
ity on the CI, it gets reflected in the physical processes 
(Zheng et  al. 2015). The sensors and control behavior 
associated with attack-targeted devices start to show 
structural changes in their normal behavior. Usually it 
happens in direct damage attack (DDA). Such structural 
changes can be identified to detect an attack. However, 
an attacker can hide their manipulation within the noise 
margin. These attacks are known as

stealthy attacks (SA). Such attacks are likely to produce 
a cascading effect due to the interaction of control loops, 
eventually causing the control system to fail. Further, an 
attacker can reduce the impact of SA in such way the sen-
sor produced abnormal structural changes do not deviate 
much from the normal behavior. We call such attacks as 
micro-stealthy attacks (MSA) (cf. “Proposed framework: 
EPASAD” section). These attacks are extremely difficult 
to detect and evade current state-of-the-art detection 
techniques. The MSA does not interrupt or fail the 
control system but slowly degrades the system causing 

huge losses in terms of money and raw material over an 
extended period. In this paper, we develop a novel IDS 
framework whose objective is to detect the most chal-
lenging attack category MSA, and quickly detect the SA 
and DDA to save the CIs from lasting damage.

A process-level intrusion detection system (IDS) con-
tinuously monitors the physical process of ICSs. It is 
deployed over SCADA, whose goal is to detect any 
abnormal structural changes in the physical process 
behavior. State-of-the-art approaches categorize process 
level IDS in two categories: univariate (independent IDS 
for each sensor) and multivariate (Single IDS for multiple 
sensor). Among the many popular IDS-based solutions 
(discussed in “Related works” section  ), PASAD (Aoudi 
et al. 2018) is one of the most promising framework. Yet, 
PASAD suffers from same drawbacks as mentioned ear-
lier. It fails to detect the micro-stealthy attacks (MSAs), 
and is delayed in detecting Stealthy Attacks (SAs) and 
Direct Damage Attacks (DDAs). We consider PASAD as 
a baseline for the validation of our approach.

An efficient and realistic process level IDS must ful-
fill following objectives: (i) be capable of detecting an 
attack before lasting damage, (ii) be secure against eva-
sion attack, (iii) work under noisy environment, (iv) be 
realistic to build and deploy, (v) have less computational 
overhead and produce the result for streaming data 
quickly, and (vi) have lower false alarm rate. Motivated 
by this, we present an efficient and realistic process level 
IDS solution called EPASAD (Ellipsoid decision bound-
ary based Process-Aware Stealthy Attack Detector), 
which addresses above-mentioned objectives. EPASAD 
is a univariate process-level IDS based on Singular Spec-
trum Analysis (SSA) (Broomhead and King 1986; Elsner 
and Tsonis 2013; Golyandina and Korobeynikov 2014; 
Golyandina et al. 2001; Golyandina and Zhigljavsky 2013; 
Hassani 2010; Vautard and Ghil 1989), a time series anal-
ysis tool. EPASAD is designed to detect any structural 
changes in a sensor behavior caused due to the presence 
of an adversary. EPASAD projects raw sensor data into 
a noise-free lower-dimensional signal subspace to clus-
ter normal data. It uses the distribution of the clustered 
data to learn an efficient and uniformly tight decision 
boundary. EPASAD envelops the signal subspace within 
an ellipsoid decision boundary. After learning the deci-
sion boundary, any sensor datum that falls outside is 
considered abnormal, and an alarm is raised. From the 
attacker’s perspective, in PASAD, it is easier to compro-
mise huge redundant normal space within the decision-
boundary and easier to determine the radius using any 
one projected dimension. However, EPASAD provides 
a tighter boundary with respective radii in each dimen-
sion, necessitating more effort for attackers to determine 
ellipsoid parameters in each projected dimension to stay 
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under the radar. This is the novelty that we bring over the 
existing state-of-the-art approaches.

We consider various attack scenarios present in the 
two datasets: TE-process and C-town dataset to vali-
date EPASAD. We use TE chemical process simulator 
to generate two MSAs, three SAs, and two DDA scenar-
ios with the motivation to simulate realistic situations. 
Our results show that EPASAD successfully detects the 
MSAs and quickly detects the stealthy and the DDAs 
when compared to the baseline method PASAD. Further, 
we consider C-town network datasets to validate our 
approach on a much larger dataset. Using the dataset, we 
validate EPASAD using 14 different attacks scenarios that 
happen over a testing period of 9-months. Each attack 
present in the C-town dataset is sandwiched between 
a long-duration normal operation. Testing for such an 
extended period validates our framework for a realistic 
scenario. We show that EPASAD is capable of detecting 
all 14 attacks present in the C-town dataset with a low 
false alarms rate of 3.7%. Compared to PASAD, EPASAD 
shows a significant improvement over each attack scenar-
ios. Over PASAD, EPASAD improves the overall recall 
for all the sensors in the system operating under MSAs, 
SAs, and DDAs present in the TE-dataset from 7.5% to 
17.3%, 50.3% to 54.2%, and 46.2% to 51.0%, respectively. 
Similarly, in the C-town dataset, EPASAD improves the 
overall recall from 54.8% to 64.3% for all the 14 attacks 
present in it. When an attacker attacks a CPS, the behav-
ioral change to anomalous state takes time. But the train-
ing data is labeled as “attack” as soon as the attacker 
engages. This is why the low accuracy appears in both 
the PASAD and EPASAD. In such low accuracy scenar-
ios, an improvement of even 3.9% (the minimum average 
gain among all scenarios mentioned above) might appear 
small from an absolute perspective. From a relative per-
spective, it is a significant improvement.

In summary, the major contributions of our work are:

• We introduce an attack scenario called Micro-
Stealthy Attack (MSA), which although existed but 
was not studied before and posed detection chal-
lenges for current state-of-the-art approaches (cf. 
“Micro stealthy attack (MSA)” section).

• Our framework called EPASAD provides an efficient 
and realistic process-level univariate IDS for securing 
CIs. EPASAD continuously monitors the data stream 
consisting of sensor measurements for detecting tiny 
structural changes in the normal behavior hidden 
within the noise margin.

• We validate EPASAD on MSA and find that EPASAD 
efficiently detects them. Further, EPASAD signifi-
cantly improves PASAD without any additional 
computation overhead. We compare EPASAD with 

PASAD, using multiple attack scenarios present in 
the TE-process and C-town dataset.

The rest of the paper is organized as follows: first we 
discuss the required concepts that form a background 
knowledge needed to understand EPASAD in “Back-
ground” section  . Then, in “Attack model” section, we 
describe the attack model that forms the motivation 
behind the proposal of the EPASAD framework. In the 
“Proposed framework: EPASAD” section, we present our 
proposed framework EPASAD and provide detail of its 
training, online testing process, and computation cost 
analysis. In “Validation datasets” section, we describe the 
generated and the existing datasets used for validation. 
In “Experiments and results” section , we experimentally 
validate our method under three subsections and report 
our results. In “Related works” section  , we discuss the 
related works, mainly highlighting the process-level IDS. 
Finally, in “Discussion and conclusion” section we con-
clude our paper along with an in-depth discussion.

Background
In this section, we discuss the techniques and the con-
cepts that are useful for this work.

Singular spectral analysis (SSA)
SSA is a non-parametric model-free time series analysis 
tool with a wide range of applications (Broomhead and 
King 1986; Elsner and Tsonis 2013; Vautard and Ghil 
1989; Golyandina et  al. 2001; Mohammad and Nishida 
2011), including IDS (Aoudi et al. 2018; Terai et al. 2018; 
Dong et al. 2017; Moskvina and Zhigljavsky 2003; Goly-
andina et  al. 2001; Mohammad and Nishida 2011). SSA 
can robustly recover the deterministic pattern of a time 
series even in the presence of noise. Such aspects of SSA 
enable us to use it to analyze the noise-free structure 
of a time series. SSA is also used to identify structural 
changes in a time series data by learning a projection 
matrix P that projects a real-valued noisy subseries into 
a noise-free signal subspace. However, to do so, only two 
steps of SSA are sufficient. As our focus is to identify 
structural changes in normal sensor measurements, here, 
we only explain these two steps. Note that a summary of 
the notations/symbols used in this paper are listed in the 
Table 1. The two steps are:

Step 1: (Embedding) This step maps a univariate time 
series into a trajectory matrix. Let T = {m1,m2, . . . ,mN } 
be a univariate time series of length N where mi ∈ R is 
a sensor’s measurement collected at the ith timestamp. 
Let L ∈ I where 1 < L < N/2 be called as lag or window-
length and K = N − L+ 1 . The SSA arranges the time 
series T  in the form of a trajectory matrix M of dimen-
sion L× K .
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A column vector of M is called the lagged vector where 
the ith (1 ≤ i ≤ K ) lagged vector ( Mi ) is defined by 
Mi = [mi,mi+1, . . . ,mi+L−1]T.

Step 2: singular value decomposition (SVD) In this 
step, SVD of M is done by using the following four 
steps: (i) compute a lagged co-variance matrix MM

T of 
dimension L× L , (ii) compute the eigenvalues denoted 
by �1, �2, . . . , �L and the corresponding eigenvectors 
denoted by U1,U2, . . . ,UL , which are arranged according 
to decreasing magnitude of eigenvalues, (iii) orthonor-
malize the eigenvectors, and (iv) pick R leading eigen-
vectors to form eigen matrix U of dimension L× R , i.e., 
U = [U1,U2, . . . ,UR] . Ignoring the minor and keeping 
the leading eigenvectors in the eigen matrix U eliminates 

M =











m1 m2 ... mK

m2 m3 ... mK+1

. . .

. . .
mL mL+1 ... mN











the noise and retains the deterministic behavior of a sig-
nal subseries. The set of eigenvectors {U1,U2, · · · ,UR} 
are linearly independent, spanning an R-dimensional 
subspace in RL (length of vectors in the R-dimen-
sional subspace is L) called signal subspace. There exists 
P = U(UT

U)−1
U

T = UU
T (since U is an orthonormal 

matrix, then UT
U = I ) that projects a lagged vector 

from L-dimensional real space to the signal subspace. Let 
m ∈ R

L be a lagged vector, then the projection of m, i.e., 
Pm ∈ R

L , be a noise-free vector in signal subspace. Note 
that the notation m is an L-length variable lagged vector 
while Mi is a constant representing ith column vector of 
matrix M.

PASAD
In Aoudi et  al. (2018), the authors describe PASAD, a 
process-level, univariate, and anomaly-based IDS that 
monitors ICS process activity in real-time to determine 
whether the system is operating normally or abnormally. 
The motivation behind is to detect any aberrant struc-
tural change in the physical process to detect stealthy and 
direct damage attacks.

PASAD leverages from SSA to learn P = UU
T . To 

reduce the computational overhead of PASAD, in Aoudi 
et  al. (2018), the authors proved that an L−dimensional 
lagged vector m projected by P = U

T in RR preserves 
the Euclidean distance projected by P = UU

T in RL , i.e., 
||UU

T v|| = ||UT v|| . The P = U
T captures the determin-

istic behavior of the physical process by projecting an L
-dimensional normal subseries onto a lower R-dimen-
sional signal subspace. PASAD computes the squared 
Euclidean from centroid in R-dimensional signal space 
for each streaming test lagged vectors Mi ( i > N  ) called 
departure score ( Di ) to detect the attack-induced struc-
tural changes in the normal behavior. Di is defined via 
Eq. 1, where ĉ = U

T c and c is the mean of column vec-
tors of X such that c = K

i=1 Xi.

The projection of the normal subseries forms a dense 
cluster which is closer to the center. While an abnor-
mal subseries is forced to be projected far away from the 
center of a normal cluster ( ̂c ) thereby having a higher 
departure score. If the departure score crosses certain 
threshold θp , i.e., if ||ĉ −U

T vi||2 > θp , an attack alarm is 
triggered.

To compute θp , PASAD computes departure scores 
on training measurements and few extended measure-
ments collected during normal operation. The extended 
measurements are called validation dataset. PASAD sets 
θp = max∀i(Di) . As a result, PASAD forms an n-spheri-
cal decision boundary (an n-sphere is a generalized form 

(1)Di = ||ĉ −U
TMi||2

Table 1 Notations and their description

Notation Description

R Set of Real numbers

I Set of Integers

mi ith Measurement

M Trajectory Matrix of size L× K

m L-length lagged vector

Mi A specific lagged vector of length L, ith column vector of M or 
test subsequence for ith measurement

c Centroid vector in RL

P Projection matrix

U Eigen matrix

Ui ith Eigenvector

X A signal subspace matrix of size R × K ′

Xi A specific R-length lagged vector in RR , ith  column vector of 
X or projected test subsequence for ith measurement

x A R-length lagged vector in signal subspace

w A weight vector in RR

ĉ Centroid vector in RR

Dt Departure score at timestamp t

θp Threshold of PASAD

θe Threshold of EPASAD

δf (x) Tightness of decision boundary f(x) at a point x

N Length of training subsequence

N′ Length of training + validation subsequence

L Lag parameter in I

R Dimensionality of signal subspace parameter

ǫ Slack-value parameter
∏

(w) Product of elements of vector w
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of a sphere in the n-dimensions) in R-dimensional signal 
subspace. The radius of the n-sphere is 

√

θp which is the 
distance of the farthest normal point from center ( ̂c ) in 
the signal subspace.

PASAD is a lightweight IDS suitable for deploying on 
limited hardware resources. PASAD’s most computation-
ally intensive step is to project the L-dimensional vector 
into an R-dimensional signal space which is an R× L 
dimensional matrix to L dimensional vector multiplica-
tion. As a result, the computational complexity of the 
PASAD is O(RL).

Attack model
In this section, we discuss the attack model that encom-
passes the motivation for developing EPASAD along with 
necessary definitions.

Definition 1 (Normal cluster) Set of normal points 
(column vectors of X in Eq.  2) in signal subspace col-
lected by projecting the measurements when there was 
no attack (also referred as normal measurements).

Definition 2 (Decision boundary) A non-linear func-
tion f(x) encloses the normal cluster and separates the 
projection of the measurements captured under attack 
(also referred to as attack measurements) and normal 
operations.

Definition 3 (Tightness of decision boundary) Let x1 
and x2 be two points on a decision boundary f(x), points 
x′1 and x′2 be the nearest (shortest Euclidean distance) 
points of the normal cluster from x1 and x2 , respectively. 
The distance between x1 and x′1 be δf (x1) = ||x1 − x′1|| 
defined as tightness of the decision boundary f(x) at x1 , 
similarly for x2 . If δf (x1) < δf (x2) , then the decision 
boundary f(x) is tighter at x1 in comparison to x2 . In other 
words, f(x) is loose at x2 than x1.

Definition 4 (Uniformly tight decision boundary) 
Let f(x) and g(y) be the two decision boundaries, and if 
|max(δf (x))−min(δf (x))| < |max(δg (y))−min(δg (y))|  , 
then we call f(x) is more uniformly tight decision bound-
ary than g(y).

Direct damage attack (DDA)
A DDA is a conventional attacking approach where 
an attacker does not hide their malicious activities in 
the physical process. A DDA attacker’s goal is to dam-
age the devices and eventually interrupt the process. 
Here, the attacker tries to accomplish his harmful goals 

before being detected and make CI operate abnormally. 
These attacks are trivial to be detected, but any delay in 
their detection causes severe consequences for a CI. An 
efficient IDS aims to detect abnormal behavior induced 
by such attacks at the initial stages to save CIs from 
lasting damage.

Stealthy attack (SA)
In Feng et al. (2017), the authors argued that in a noisy 
environment, a strategic attacker benefits from inflict-
ing a substantial perturbation on the system state. 
The attack escapes the detection by failure and anom-
aly detectors as they do not consider noise. Strategic 
attackers’ goal is to cause slow damaging perturbations 
in the physical process while being undetected for an 
extended period. Such attacks are likely to produce a 
cascading effect due to the interaction of control loops, 
eventually causing the control system to fail. Some-
times a strategic attacker may mask their attack so that 
the reflected anomaly in physical process variables 
remains within the noise level; the noise can be man-
ufactured intentionally by the attacker or naturally by 
the system. Attacks that hide their manipulation within 
noise margin are known as SAs.

Micro stealthy attack (MSA)
There have been several attack incidents where attackers 
compromised CIs by either installing malware, misus-
ing the resources, making user compromise, performing 
Denial-of-Service (DoS) attacks, making root compro-
mise, and performing social engineering attacks (Kova-
cevic et al. 2015). An attacker’s abnormal activities cause 
structural changes in the physical process. As attackers 
aim to cause maximum damage without being detected, 
a smart attacker hides the abnormalities by controlling 
the manipulations. There are several other SAs such 
as those that are model-based advanced SAs. In these 
types of SAs attackers use control-theoretical knowledge. 
Some of these SAs are zero-dynamics attacks (Teixeira 
et al. 2012), poly dynamics attacks (Jeon and Eun 2019), 
false data injection attacks (Liang et al. 2016), and covert 
attacks (Smith 2015). Such attacks do not make signifi-
cant structural changes in the sensor’s measurements and 
are difficult to detect. In this paper, we do not focus on 
these types of attacks or conduct such attacks. We rather 
focus on detection of SAs where the sensor measure-
ments are manipulated to cause even minute structural 
changes in the normal behavior.

In Aoudi et al. (2018), the authors present PASAD that 
detects such structural changes. However, PASAD has 
drawbacks. An attacker can evade PASAD by control-
ling the structural changes. Since PASAD envelops the R
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-dimensional signal subspace in an n-spherical decision 
boundary, one side is tight enough while the remain-
ing are loose. There is a high probability that an attack-
induced abnormal subseries get projected toward the 
loose side, or an attacker targets the abnormal projection 
towards the loosest side to hide the maximum abnor-
mal manipulations. The projection towards the loose 
side causes serious issues such as delay in detecting the 
SAs, DDAs, and inability to detected some low-intensity 
attacks. We refer to such low-intensity SAs as Micro 
Stealthy attack.

In Fig. 1, we demonstrate the problem caused by a non-
uniform loose decision boundary. Figure 1a shows a time 
series of the reactor’s temperature captured by the sensor 

XMEAS(9) of TE-process, initially under normal (green 
and black measurements) operation and ended with a 
SAs (red measurements) operation. We use the measure-
ments under normal operation (green measurements) to 
determine P . The other points under normal conditions 
(black measurements) determines the decision boundary. 
Finally, we test the model using the measurement (red 
measurements) captured under attack. Figure 1b demon-
strates the departure score of each sensor measurements 
computed by PASAD framework.

We further demonstrate the projections of each nor-
mal and attack measurement on a 2-dimensional signal 
subspace (cf. Fig.  1c) for better visualization. In this 
2-dimensional signal subspace, the red points (attack 
subsequence projections) are projected far enough 
away from the green point’s cluster. Since the abnor-
mal projections are towards the loose side, it takes a 
long time to cross the spherical decision boundary 
of PASAD, causing a delay in detecting the SA. Thus, 
a question arises: What if a strategic attacker slightly 
reduces the SA’s impact and attempts an MSA, never 
to cross the decision boundary? PASAD will not detect 
the MSA attack that silently damages the CI and wastes 
valuable resources. We demonstrate such MSA attack 
scenario using Fig.  2. Figure  2a represents measure-
ments generated by sensor XMEAS(21) (represents 
reactor’s cooling water outlet temperature) captured 
under an MSA scenario (cf. “The Tennessee-Eastman 
process dataset (TE-dataset)” section–MSA1). Here, 
the attacker manipulates the purge valve (XMV6) 
slightly higher than normal with the objective of wast-
ing the reactor’s gases. Figure 2c shows that the attack-
induced manipulated measurements are projected far 
enough from the normal cluster. Since the projections 
are toward the loose side and the impact of the attack is 
not that high to cross the decision boundary, the depar-
ture score of PASAD has never crossed the threshold 
(cf. Fig.  2b) and fails to detect the attacks reflected in 
XMEAS(21). Thus, we introduce EPASAD with a moti-
vation to quickly detect the MSA, SA, and DDA.

Proposed framework: EPASAD
EPASAD is a process-level, univariate, and anomaly-
based IDS framework that monitors ICS process activ-
ity in real-time to determine whether the system is 
under normal or abnormal operation. Due to SSA’s noise 
cancellation property, EPASAD works even in a noisy 
environment.

EPASAD collects the set of normal subseries on the 
signal subspace and envelops it within an efficient deci-
sion boundary. The subseries captured under normal 

Fig. 1 We demonstrate a stealthy attack scenario on a reactor’s 
temperature sensor (XMEAS(9)). Here, PASAD framework is delayed 
in detecting the attack because of the projection of attacked 
measurements towards the loose side of decision boundary. 
Subfigure a shows the sensor-generated measurements. The green 
and black measurements are the normal measurements used for 
training and validation, respectively, while the red measurements 
are captured under a stealthy attack (SA3). Subfigure b represents 
the departure score of corresponding measurements generated by 
PASAD frameworks. Subfigure c demonstrates the projections of each 
normal and attack measurement on the signal subspace (we consider 
a 2-dimensional signal subspace for better visualization) and the 
PASAD’s Decision Boundary (PDB)
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operation follow certain oscillation and trend structures, 
projecting a set of normal subseries that forms a dense 
cluster of normal points. While an abnormal subsequence 
that has some structural manipulations get projected far 
from the normal cluster. An attack alarm is triggered if 
the projection surpasses the decision boundary.

EPASAD uses the normal cluster to learn a uniformly 
tight and computationally efficient decision boundary. 
Many nonlinear functions such as convex/non-convex 
hull, skewed ellipsoid, higher-order nonlinear functions 
can envelop the signal subspace. Nonetheless, we use a 
specific ellipsoid function to parallel the standard axis of 
signal space to avoid any increase in online testing com-
putation cost while ensuring a uniformly tight decision 
boundary for every dimension. We demonstrate EPASAD 
using Fig.  3. Figure  3a represents the same attack sce-
nario demonstrated in the Fig.  1. Figure  3d shows an 
elliptical curve enveloping the 2-dimensional signal space 

within a minimum area. It brings the loose side of the 
decision boundary closer to the normal cluster, making 
each dimension uniformly tight. The elliptic decision 
boundary easily separates the abnormal red points that 
the spherical decision boundary misses. Hence EPASAD 
creates a challenging decision boundary for an attacker 
but is simpler to deploy. It does not give any redundant 
normal subspace where attacker can hide his abnormal 
activities.

Training of EPASAD framework
Consider a real-valued univariate time series 
T = [m1,m2, . . . ,mN , . . . ,mN ′ ,mN ′+1, . . .] . The subseries 
from m1 to mN is used to determine P = U

T while from 
mN+1 to mN ′ as validation dataset. Before proceeding 
with the section, we list our assumptions.

Assumptions
There are three basic assumptions to develop the 
EPASAD framework: (i) the dataset used for training 
EPASAD can be noisy but cannot be anomalous. An 
anomalous pattern in training data can cause a data poi-
soning attack. (ii) EPASAD is trained in an offline fash-
ion, which needs all the training and validation datasets 
of length N ′ to be available during training. (iii) EPASAD 
prepares input features with the help of recent meas-
urements that require an uninterrupted sequence of 
measurement.

Step 1: generate normal cluster
We collect the normal cluster by projecting the normal 
lagged vectors into the noise-free signal subspace. To 
determine P = U

T  , EPASAD is trained over T [1 : N ] 
by utilizing the SSA and PASAD. The projection matrix 
projects an L-dimensional lagged vector from real 
space to an R-dimensional (R ≤ L) signal subspace. The 
projection matrix is trained over the series has a possi-
bility of over-fitting the training data. Hence, we extend 
the normal training subseries with the validation data-
sets extending from N to N ′ ( N ′ > N  ), i.e., ( T [1:N ′] ). 
Thus, the trajectory matrix M for the extended valida-
tion subseries is of size L× K ′ , where K ′ = N ′ − L+ 1 
and each column vectors of M are projected to a signal 
matrix X of size R× K ′ . The ith column vector is pro-
jected as Xi = U

TMi . Hence, using Eq. 2 we project the 
entire L−dimensional matrix M to an R−dimensional 
signal matrix X.

(2)X = U
T
M

Fig. 2 We demonstrate an MSA scenario where PASAD framework 
fails to detect the attack because of the attack’s projection towards 
the loose side. Subfigure a shows measurements generated by 
the reactor’s cooling water outlet temperature sensor (XMEAS(21). 
The red measurements are captured under a micro-stealthy attack 
(MSA1). Note that all other aspects and subfigures have same 
definition as Fig. 1
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Step 2: finding centroid
We estimate the centroid ĉ ∈ R

R of the ellipsoid deci-
sion boundary using Eq.  3. Here, the elements of vec-
tor min(X) are minimum elements of the corresponding 
dimension of X similarly, max(X) are maximum ele-
ments. The mean of the cluster of a skewed sample dis-
tribution shift towards the dense side. Considering the 
mean as the centroid of the ellipsoid makes the decision 
boundary envelop the sparse side tightly and the oppo-
site side loosely. Therefore, rather than choosing the pro-
jection of the mean of cluster to determine centroid as 
in PASAD, we determine the mid-point of the range of 
each dimension of X . Further, we make centroid invariant 
signal subspace by using Eq.  4 where C(x) is a centroid 

invariant element-wise squared vector. The centroid 
invariant signal subspace standardizes the ellipsoid deci-
sion boundary centered around zero-vector for every 
sensor.

Step 3: learning ellipsoid decision boundary
We determine the ellipsoid decision boundary that envel-
ops the normal cluster in signal subspace X . We consider 
a hypothesis function f(x) for a variable vector x ∈ R

R to 
learn the decision boundary (cf. Eq. 5, here w is a weight 
vector). When we express the hypotheses function f(x) 
in the form of a standard ellipsoid function, the 

√
wi 

describes the length of ith axis of the ellipsoid.

Our aim is to minimize the generalized n-dimensional 
volume to get minimum void space inside the deci-
sion boundary. Thus, we minimize the length of each 
ellipsoid axis such that all points of the normal cluster 
remain inside f(x). Since the product of axis length is pro-
portional to the ellipsoid volume, Eq.  6 is our objective 
function for learning the hypothesis function f(x). Solv-
ing the objective function returns an optimal weight vec-
tor ŵ that minimizes the product of the length of each 
axis ( 

∏

(w)−0.5 ). There are two hard constraints associ-
ated with the objective function 6: (i) wTC(x) ≤ 1 , forces 
each point to remain inside f(x), and (ii) w > 0 assures an 
ellipsoid’s real-valued axis length. We train the objective 
function over the column vectors of signal matrix X that 
gives an optimal weight vector ŵ to get an optimal deci-
sion boundary.

Step 4: set threshold
Since we train the objective function to minimize length 
of each axis of decision boundary using a hard constraint 
wTC(x) ≤ 1 , the value of f(x) at a threshold θe = 1 is a deci-
sion boundary. The function f(x) forms the tightest envel-
oping function f(x), which does not consider any margin of 
error. However, a normal measurement can slightly deviate 

(3)ĉ = min(X)+max(X)

2

(4)C(x) = (x − ĉ)2

(5)

f (x) = wT
C(x)

= (x1 − ĉ1)
2

(w−0.5
1 )2

+ (x2 − ĉ2)
2

(w−0.5
2 )2

+ · · · + (xr − ĉr)
2

(w−0.5
r )2

(6)
ŵ = arg min

w

(

∏

(w)−0.5
)

|wT
C(x) ≤ 1, ∀x ∈ X & w > 0

Fig. 3 We demonstrate a stealthy attack scenario and its detection. 
Our proposed framework EPASAD is able to detect the attack more 
quickly than the baseline method PASAD. Subfigure a shows a 
sensor-generated measurements (by XMEAS(9) sensor, represents 
reactor’s temperature). The green and black measurements are 
normal measurements used for training and validation, and the 
red measurements are captured under a stealthy attack (SA3). 
Subfigures b and c represent the departure score of corresponding 
measurements generated by PASAD and EPASAD frameworks. 
Subfigure d demonstrates the projections of each normal and attack 
measurement on the signal subspace (we consider a 2-dimensional 
signal subspace for better visualization) and the decision boundaries 
of both, i.e., PASAD’s decision boundary (PDB) and EPASAD’s decision 
boundary (EDB)



Page 9 of 17Maurya et al. Cybersecurity            (2023) 6:28  

from the normal cluster causing false alarms. Thus, we add 
a margin of error, ǫ , also called slack-value in the threshold, 
θe = 1+ ǫ , to control the false alarms.

Testing EPASAD framework
The EPASAD framework is deployed over SCADA to 
test each live streaming measurement in an online fash-
ion. If mt is a measurement generated at timestamp t and 
received by the SCADA, EPASAD prepares an L length 
lagged vector Mt using previous L− 1 measurements; 
Mt = [mt−L,mt−L+1, . . . ,mt ]T . The real-space lagged 
vector Mt ∈ RL are projected onto the R-dimensional sig-
nal subspace; Xt = U

TMt . For the most recent test meas-
urement mt , EPASAD computes a Dt = f (Xt) . The Dt 
describes the confidence, regardless of whether the meas-
urement is classified as an attack or normal. A smaller 
Dt indicates greater confidence of a measurement to be 
normal, while a higher Dt indicates greater confidence of 
an attack. A test measurement is classified as normal up 
to a tolerable value of the departure score threshold θe . If 
Dt ≥ θe , then EPASAD raises an attack alarm. This pro-
cess completes the online testing step for a single measure-
ment. The same procedure is repeated for the subsequent 
measurement generated at time t + 1 , and so on. The Algo-
rithm  1 depicts the pseudo-code of the EPASAD frame-
work’s online testing phase.

Computation cost
An IDS is deployed for the long term to secure the real-
time streaming measurements from sensors. A sensor 
associated with ICS regularly sends measurements to 
the IDS; there may be a small-time difference between 
the streaming measurements. The IDS deployment 
must be efficient enough to generate the decision before 

proceeding to the subsequent measurement. Hence, 
online testing is crucial for low-cost hardware deploy-
ment. On the other hand, training is typically one time 
task accomplished in an offline fashion.

The main computation cost of EPASAD is the comput-
ing the departure score. The departure score evaluates a 
matrix to vector multiplication x ← U

Tm , it multiplies a 
R× L matrix to an L−dimensional vector requires O(RL) 
computing cost. Then, y ← (x − c)2 is an element-wise 
operation of two R-dimensional vectors with O(R) com-
plexity. The final computation steps D ← wTy requires a 
dot product of two R−dimensional vectors, O(R) . Hence, 
the overall computation cost of EPASAD is O(RL+ R) , 
which is equivalent to the computation cost of PASAD. 
Usually, only a few leading eigenvectors retain the major-
ity of the signal information. Therefore, R << L is the 
average case of the computation cost. In the average case, 
the time complexity for online detection of EPASAD is 
linear in L, i.e., O(L). The online deployment of EPASAD 
needs to store a projection matrix UT , centroid c, weight 
vector w, Which is require space to keep RL, R, and R real 
numbers, respectively. Hence the space complexity of 
EPASAD is O(RL) . Compare to PASAD, EPASAD needs 
to store an addition R-length weight vector w which does 
not contribute much to space complexity. Hence both 
PASAD and EPASAD have the same space complexity of 
O(RL).

Validation datasets
We validate our proposed methodology using multi-
ple attacks scenarios present in the two datasets listed 
below:

The Tennessee‑Eastman process dataset (TE‑dataset)
The TE-dataset is generated using an industrial chemi-
cal process simulation model proposed in 1993 (Downs 
and Vogel 1993). The TE simulation framework mim-
ics the process in a real-world chemical plant. The TE-
process serves as a more realistic and safe environment 
for experimentation, transcending its original objec-
tive and becoming a popular choice among ICS secu-
rity researchers (Aoudi et al. 2018; Zhu et al. 2017; Gao 
and Hou 2016). The TE process has 12 cross-correlated 
Manipulated Variables (XMVs) and 41 cross-correlated 
MEAsured variableS (XMEAS). XMEAS(i) represents 
measured values by the ith sensors, and XMV(i) rep-
resents the ith variable, which can be manipulated 
to collect the measured values. In Aoudi et  al. (2018), 
the authors considered five attack scenarios to validate 
their method: three SAs and two DDAs. We consider 
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two additional attack scenarios representing MSA and 
generate the TE-dataset by performing the following 
attacks.

Micro‑stealthy attack (MSA)
We consider two MSA attack scenarios to validate 
EPASAD. These include:

• MSA1 We simulate this attack by manipulating the 
process variable of a purge valve (XMV(6)). The 
XMV(6) restrict the reactor gas in the reactor tank 
from escaping into the atmosphere. Unnecessarily 
opening the valve more than a certain level causes 
low pressure in the reactor; Thereby causing the pro-
cess to halt. Also, it causes unnecessary wastage of 
valuable gasses. In this scenario, we open the valve 
by 26%, which is enough to degrade the system and 
waste the reactor gases but not that high to interrupt 
the process.

• MSA2 We simulate this attack by manipulating the 
speed of an agitator (XMV(12)). The agitator ensures 
a well-mixed reactor, which impacts the heat trans-
fer coefficients in the reactor. The maximum speed 
of the agitator should be 100% to maximize the cool-
ing capacity of the reactor coolant, and ideally, it is 
suggested to be 50% (Downs and Vogel 1993). Hence, 
reducing the agitator speed below 50% can increase 
the reactor’s temperature, causing damages to the 
system. In this attack scenario, we consider the 38% 
speed of the agitator which is slow enough to reduce 
the coolant capacity and increase the reactor’s tem-
perature.

Stealthy attack (SA)
We consider three SA scenarios:

• SA1 We simulate this attack by manipulating the 
Stripper steam valve XMV(9). This valve controls the 
steam input to the stripping column. In this attack, 
we open the valve at 40% compared to completely 
open.

• SA2 We simulate this attack using the MSA1 attack 
scenario with a higher impact. In this attack scenario, 
we open the purge valve by 28%, 2% more than in 
MSA1.

• SA3 We simulate this attack by tampering with the 
sensor XMEAS(10) to zero. The zero measurements 
of XMEAS(10) represent that purge valve XMV(6) is 
closed. For the counteraction, the controller would 
unnecessarily open the purge valve.

Direct damage attack (DDA)
We consider two DDA scenarios:

• DDA1 We simulate this attack by manipulating the 
process variable XMV(10) of a valve that controls 
cooling water flow to the reactor to prevent its tem-
perature and pressure reach at a dangerous level. 
In this scenario, we open the valve to 35.9%, which 
is lower than usual (41.106%). Consequently, it 
increases the reactor’s pressure and temperature and 
stops the process from reaching the maximum pre-
defined limit.

• DDA2 We tamper the reactor pressure sensor 
XMEAS(7) to zero. The controller takes action to per-
form more chemical reactions to maintain the reactor 
pressure. The abnormal increase in the pressure can 
damage the reactor, eventually stopping the process.

Each attack scenario of TE-dataset consists of measure-
ments of 41 sensor as a time series. The dataset is collected 
for 48 hours, with the initial 40 hours under normal opera-
tion, and the remaining last 8 hours are during an active 
attack. The measurements are generated periodically such 
that it takes one hour to generate 100 measurements.

C‑town dataset
The C-town network dataset (Taormina et al. 2018) is gen-
erated by simulating Epanet CPA (Taormina et  al. 2017). 
The network consists of 43 sensors and generates a meas-
urement after every hour periodically. The dataset contains 
14 distinct attacks launched in a different time window 
throughout nine months. The dataset contains three sub-
datasets, each of which consists of 43 process variables:

• Subdataset 1 It contains normal measurements dur-
ing a period of one year.

• Subdataset 2 It contains seven attacks along with 
normal operations during a period of six months.

• Subdataset 3 It also contains seven attacks (but dif-
ferent) along with normal operations during a period 
of three months.

Each subdataset, as mentioned above, is collected for 
the same sensor network. We combine subdataset 2 and 
3 and call it subdataset 4 to evaluate EPASAD on the 14 
attack scenarios captured during the nine-month-long 
period. The details of each attack scenario are provided in 
the paper (Taormina et al. 2018).

Experiments and results
In this section, we validate our proposed method using 
above mentioned datasets and provide parameter values 
selected for the experiments.
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Experiment on TE‑dataset
In this experiment, we study how quickly we can detect 
SAs, MSAs, and DDAs. This experiment is carried out 
using comparable datasets and parameters for train-
ing, validation, and testing to make a fair comparison 
with the baseline method PASAD. Hence, we consider 
the normal subseries of the first 2400 (green) meas-
urements to get the projection matrix UT  and then 
use the remaining 1600 (black) normal measurements 
as the validation dataset along with the training set to 
obtain the EPASAD decision boundary. We then apply 
the entire time series to EPASAD to do online testing. 
Figures  3,  4, and  5 demonstrate the effectiveness of 
EPASAD towards detecting different attack scenarios in 
the TE process and comparing it with the baseline line 
method. Figures 3a, 4a, and 5a represent the time series 
of sensor measurements. Figures 3b, 4b, and 5b repre-
sent the corresponding departure score by applying the 
baseline method PASAD. Figure  3c,  4c, and  5c repre-
sents the departure score by applying our proposing 
method EPASAD. Similar to Aoudi et al. (2018), we also 
set the threshold at maximum departure score of the 
normal measurements hence there was no false-alarm 
in the TE-dataset scenarios. Therefore, all the evalua-
tion of this dataset is represented in term of recall only.

Figure  3 shows sensor operating under SA scenario. 
The part of the subseries that has been captured under 
SA appears to be normal. Such anomalous series when 
projected on the signal subspace are significantly far 
from the normal cluster. PASAD’s departure score 
takes a long time to be more than θp , causing a delay 
in detecting the attack. Moreover, the departure score 
raising alarm returns to normal after a short period, 
which an administrator may think of as a false alarm. 
On the other hand, EPASAD detects the attack shortly 

after it begins and raises the alarm for an extended 
time. Hence, EPASAD is more effective at detecting 
SAs quickly. Further, we evaluate EPASAD on each pro-
cess variable of SA scenarios SA1, SA2, and SA3. Our 
results (cf. Fig.  6) show a significant improvement in 
all the attack scenarios. EPASAD improves the average 
recall of all three SAs from 50.3% to 54.2% compared to 
the baseline benchmark.

We demonstrate our method on a process variable 
which is captured under MSA (cf. Fig.  4). The results 
show that the departure score of PASAD is always less 
than the θp during the attack. Hence, it could not detect 
MSA. On the other hand, EPASAD computes a sig-
nificant departure score which is more than the θe for a 
lengthy period. Hence, EPASAD is able to detect even 
the MSA. We tested EPASAD on every process variable 
in the MSA1 and MSA2 datasets. The results (cf. Fig. 6) 
show significant improvement with the average recall 
increasing from 7.5% to 17.3%.

We evaluate our method on a process variable of the 
DDA1 attack scenario (cf. Fig.  5). In this scenario, the 
measurements during the attack operation are initially 
close to normal and then suddenly become abnormal, 
even beyond the normal range (the lower and upper limit 
of measurements generated by a sensor). The baseline 
method PASAD could not recognize the initial symp-
toms. It detects the attack when the attack induced-
measurements reach beyond the normal range. On the 
other hand, EPASAD detects such attacks at early stages, 
shows a significant gain over the baseline method. Hence, 
EPASAD can quickly detect the DDAs. Figure  6 shows 
the average performance of EPASAD on each process 
variable of the DDA1 and DDA2 attack scenario. Here, 
EPASAD improves recall score from 46.2% to 51.0%.

Fig. 4 We show the comparison of PASAD and EPASAD over sensor 
XMEAS(21) of TE-dataset. The attack measurements are collected 
during a micro-stealthy attack (MSA1) operation. EPASAD is able to 
detect the MSA, which PASAD fails to detect

Fig. 5 We show the comparison of PASAD and EPASAD over purge 
gas analysis stream sensor XMEAS(31) of TE-dataset. The attack 
measurements are collected during a Direct damage attack (DDA1) 
operation. EPASAD is able to detect the DDA more quickly
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Experiment on C‑town dataset
In a realistic scenarios, attacks are launched for a limited 
duration, and then the system resumes normal operation. 
The 14 attacks in this experiment are launched for a lim-
ited time before the system resumes normal operation. 
This is recurrent and done over a period of 9 months. 
Figure 7 demonstrates EPASAD on a process variable of 
the C-town dataset. We train EPASAD over a subseries 
of length 1500 (green measurement) captured under nor-
mal operation to get the projection matrix. Then, include 
1500 normal measurements (black measurements next 
to the green ones) as validation dataset to determine 
the decision boundary. Once the training phase is com-
plete, we test the entire subseries using the online test-
ing algorithm 1. Figure 7c indicates EPASAD’s strengths 
in detecting the structural changes caused by the 5th and 
6th attacks reflected in the FPU7 sensor and then return 
to the normal state.

In Tables  2 and  3, we evaluate the experiment at the 
entire infrastructure level by aggregating the nature of 
alarms in every process variable. If the IDS triggers an 
alarm in any processes during an attack, we consider 
the attack to be detected. We consider a false alarm if it 
is triggered in any sensor during the normal operation. 
Table  3 evaluates each attack using two attributes, time 
(in hours) and count. The time field represents how long 
an attack has been active without causing an alarm to be 
raised. In other words, it is the time taken by IDS to raise 
the first alarm. The count field represents the number of 
process variables involved in the alarm’s triggering. It is 
very unusual to raise false alarms in multiple sensors at a 
time, a higher number of counts sensors producing attack 
alarm increases the confidence of positive alarm. Table 2 
evaluates the overall accuracy in terms of true alarm rate 
(recall), precision, F1-score, and false alarm rate.

This experiment tests the long duration when measure-
ments are captured under mostly normal operation and 
sometimes under various attacks. Hence, there is a pos-
sibility that an IDS in this experiment generates a large 
number of false alarms. The results in Table 2 show a sig-
nificant improvement by EPASAD in the precision, recall 
(true alarm rate), F1-score, and a low false alarm rate as 
compared to PASAD. In addition to PASAD, we evalu-
ate the other benchmark methods (Hadžiosmanović et al. 
2014; Aoudi and Almgren 2020; Dutta et  al. 2021; Goh 
et  al. 2017; Taormina and Galelli 2018) under the same 
experimental setup. The comparative analysis is shown 
in Table  2. Here, EPASAD is identified as the best-per-
forming method, while PASAD performs best among the 
other baseline methods.

In addition to the overall performance, we analyze 
the detection of all 14 attacks in Table 3. As EPASAD is 
an extension of PASAD and performs the best among 
the baseline methods, we do an additional comparative 
analysis of PASAD and EPASAD for every 14 attack sce-
narios. We analyze the time taken to detect an attack and 
the count of the number of sensors engaged in trigger-
ing an alarm. EPASAD has a significant gain in detect-
ing the two attacks ( 9th , and 12th ) over PASAD, and 
EPASAD even detects the two missing ( 2nd and 8th ) 
attacks. EPASAD generates a valid alarm in more number 
of sensors that increase the alarm’s confidence. Hence, 
EPASAD can quickly and confidently raise the alarm for 
detecting an attack. EPASAD slightly under-performs in 

Fig. 6 We compare the accuracy of PASAD and EPASAD over the 
seven different attack scenarios of the TE-dataset in terms of recall. 
EPASAD achieves a significant improvement in each attack scenario Fig. 7 Comparison of PASAD and EPASAD over the pump-flow 

sensor (F_PU7) of C-town dataset, collected during 14 different 
attacks where PASAD fails to detect the abnormality induced 
during the 5th attack, and EPASAD is able to detect it. The green 
measurements are normal measurements used for training. The black 
and red measurements are normal, and attack measurements are 
used for testing. Note that the order of each subfigure has the same 
definition as Figs. 4 and 5
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three scenarios (cf. 5th , 6th , and 7th attack scenario in 
Table 3) of the C-town dataset. In PASAD, if the projec-
tion is on the tight dimension, it performs slightly better. 
EPASAD slightly loosens each dimension by adding a 
small value “slack” to the threshold. Thus, if the projec-
tion is in the tight dimension, PASAD might be better. 
But in general, keeping the attack such that all dimen-
sions are tight is hard for the attacker to find the loos-
est side as they would now need to identify radii in each 
dimension.

Parameter selection
In this section, we discuss the parameters and their 
choices that help us in implementing the above experi-
ments. We use the same datasets and parameters to 
experiment with PASAD and EPASAD to make a fair 
comparison. There are two main parameters that are 
required in the training phase: lag L and dimensionality 
of signal subspace R. The lack of generalization of param-
eters in the baseline paper encourages us to choose the 
best performing parameter for PASAD. We run PASAD 
over various lag values, from 100 to 1000 in the incre-
ments of 100 for the TE dataset and 20 to 200 in incre-
ments of 10 for the C-town dataset to find the best lag 
value. We find the best performing lag parameter, L=500 
for TE-dataset and L=50 for the C-town dataset. A 
smaller value of the lag parameter for the C-town dataset 
yield the best results because the time between two con-
secutive measurement is one hour, while the TE-dataset 

generates 100 measurements in one hour. Hence, a sub-
sequence of length 50 itself covers the subsequence of 
more than two days. The dimensionality of signal space 
R=3 is found to be best performing. Once the training is 
finished, we set a threshold θe to classify the departure of 
measurement between attack and normal. The experi-
ment  “Experiment on TE-dataset” of the TE dataset 
uses entire normal subseries for training and validation, 
which ensure no false alarm with a minimum threshold 
with slack-value ǫ = 0 . In the experiment  “Experiment 
on C-town dataset”, when we set θp to the maximum of 
validation subseries without adding any slack-value, we 
find that PASAD fails to detect two attacks ( 2nd and 8th ). 
Adding a slack-value could fail to detect more attacks 
and decreases the alarm. On the other hand, EPASAD is 
tighter in each dimension has a higher chance of raising 
a false alarm. Hence, we add a slack-value ǫ = 0.1 in θe to 
ensure a lesser false alarm rate.

Related works
In this section, we discuss earlier IDSs in the industrial 
control system. In Aoudi et  al. (2018), the authors pub-
lished a method to detect attacks in ICS at a process 
variable label named PASAD. PASAD is a univariate 
departure-based process-level detection method that can 
detect even a SA on control systems by identifying an 
abnormal sequence. There are two other popular process 
level detection methods: Linear Dynamic State-space 
(LDS) by Shoukry et  al. (2015) and the Auto-Regressive 

Table 2 The average performance and comparison (in percentage) of EPASAD, PASAD, and other baseline frameworks on the C-town 
dataset

Methods Precision Recall F1‑score False Alarm

EPASAD 71.36 64.29 67.64 3.70

PASAD (Aoudi et al. 2018) 64.36 54.84 59.22 4.36

AR (Hadžiosmanović et al. 2014) 32.37 53.99 40.47 3.96

MPASAD (Aoudi and Almgren 2020) 57.17 43.86 49.64 10.50

RPCA (Dutta et al. 2021) 24.36 26.01 25.16 9.94

LSTM (Goh et al. 2017) 54.39 61.36 57.67 4.92

AE (Taormina and Galelli 2018) 54.95 58.05 56.46 5.70

Table 3 Performance and comparison of PASAD and EPASAD framework for all 14 attacks present in the C-town dataset

The comparisons are based on the time (in hours) taken to detect an attack and the number of sensors that trigger the alarms. Here ‘ × ’ represents an attack not 
detected

Attack 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time (EPASAD) 0 10 3 16 12 16 32 18 0 0 10 18 4 10

Time (PASAD) 0 × 4 17 10 14 26 × 22 0 10 52 4 17

Count (EPASAD) 6 2 10 6 6 5 5 3 8 7 9 6 4 2

Count (PASAD) 6 0 9 6 3 5 5 0 4 6 11 3 3 2



Page 14 of 17Maurya et al. Cybersecurity            (2023) 6:28 

(AR) methods (Hadžiosmanović et  al. 2014) (which we 
describe later in the section). A comprehensive survey of 
these methods is presented in Urbina et al. (2016).

Along with the univariate process-level detectors, there 
are other popular multi-process-level detectors meth-
ods. In Guan et al. (2003), the authors used the K-Means 
clustering method along with the algorithms discussed 
in Hansen and Mladenović (2001) and named it Y-Mean 
clustering method for network intrusion detection. This 
method is tested on the KDD99 dataset. In Hu et  al. 
(2008), the authors applied the AdaBoost algorithm on 
the KDD99 dataset and achieved better accuracy with 
fewer false alarms. In Nader et  al. (2014), the authors 
used one-class SVM with kernel PCA to detect attacks in 
the Gas Pipeline testbed and water treatment plant (Lich-
man et al. 2013). Further, different studies also use recon-
struction-based deep learning methods (Feng et al. 2017; 
Goh et  al. 2017; Taormina and Galelli 2018). In Feng 
et al. (2017), the authors combined the Long Short-Term 
Memory (LSTM) network with a bloom filter to detect 
the malicious traffic in the gas pipeline SCADA data-
set. In Goh et al. (2017), the authors predicted the next 
measurement using the LSTM and checked both positive 
and negative deviation from actual measurement, vali-
dating the method on water treatment testbed datasets. 
Similarly, in Taormina and Galelli (2018), the authors 
used the AutoEncoder model to reconstruct a measure-
ment, and if it is found a higher deviation from the actual, 
then trigger an alarm. The method is further improved by 
using cumulative sum (CUSUM). In Aoudi and Almgren 
(2020), authors leveraged multivariate SSA and proposed 
MPASAD, where the main objective was to develop a 
computationally efficient approach. In Dutta et al. (2021), 
the authors developed a multivariate IDS using a robust 
PCA-based dimensionality reduction method.

A process-level IDS is categorized in two categories, the 
univariate (independent IDS for each sensor variables) 
(Aoudi et  al. 2018; Shoukry et  al. 2015; Hadžiosmanović 
et  al. 2014; Aoudi and Almgren 2021) and multivariate 
(an IDS model takes input from the multiple sensor vari-
ables) (Guan et al. 2003; Hansen and Mladenović 2001; Hu 
et al. 2008; Nader et al. 2014; Feng et al. 2017; Goh et al. 
2017; Taormina and Galelli 2018; Aoudi and Almgren 
2020; Dutta et al. 2021). In Garcia et al. (2017), the authors 
developed a PLC rootkit that can corrupt the communica-
tion route between sensors and SCADA. An attacker can 
compromise a few communication channel and manipu-
late them accordingly to misclassify the structural changes 
in any other sensors as well. In Erba et  al. (2020); Biggio 
and Roli (2018), the authors used this concept to construct 
an evasion attack against multivariate detectors (Feng et al. 
2017; Goh et  al. 2017; Taormina and Galelli 2018). On 
other hand, an univariate detectors are independent model 

for each sensor. Manipulating a few sensor measurements 
cannot evade any other univariate IDS model.

There are four univariate process-level-based detectors 
methods: LDS methods, AR methods, PASAD and PADS. 
In Urbina et  al. (2016), the authors survey and explain 
a model that uses the LDS method with a time delay to 
detect the pH water level using SWaT testbed (Mathur 
and Tippenhauer 2016). In Cardenas et  al. (2011), the 
authors created several TE process attacks and used 
LDS together with non-parametric CUSUM statistics. 
In Shoukry et  al. (2015), the authors used the model 
together with χ2 anomaly detection technique to extend 
it for various kinds of sensor variables named it PyCRA. 
These LDS-based methods are challenging to build. They 
need a detailed description of process variable that may 
not always be available (Feng et al. 2017; Kiss et al. 2015). 
In Hadžiosmanović et  al. (2014), the authors leveraged 
auto-regressive model with Shewhart control limits on 
time series extracted from the Modbus PLC traffic, eval-
uated their approach on two water treatment testbed 
datasets. The result of this method is compared with the 
PASAD in Aoudi et al. (2018). The authors found that the 
AR model fails to detect the SAs and delay detecting the 
DDA; hence PASAD is found more substantial to detect 
those attacks. In Aoudi and Almgren (2021), the authors 
present another univariate framework called PADS, 
which uses departure score of PASAD to classify an 
alarm in two categories, weak alarm and actionable alarm 
using two thresholds setting. This framework determines 
a higher threshold that classifies the alert as an actionable 
alert. It reduces the frequency of false alarms also recall. 
Similarly, for weak alert, it increases the false alarm rate 
as well as recall. Hence, it is difficult to compare the 
results with this framework. Since EPASAD is improving 
the departure score of PASAD can improve PADS as well.

In summary, two major categories of process-level IDSs 
are classified- univariate and multivariate. Multivari-
ate IDSs suffer from the vulnerability of evasion attacks, 
while the independent nature of univariate makes them 
secure. We find four univariate detector methods (Aoudi 
et  al. 2018; Shoukry et  al. 2015; Hadžiosmanović et  al. 
2014; Aoudi and Almgren 2021) where PASAD is the 
most accurate and efficient univariate process-level 
data-driven method to detect attacks in critical infra-
structures, therefore we consider PASAD for baseline 
comparison. Our proposed method EPASAD improves 
the performance without hurting its any strengths. The 
detailed comparison of EPASAD with PASAD and other 
baseline methods by using two popular benchmark 
shows that the proposed method EPASAD is more accu-
rate than PASAD, and it detects attacks that PASAD fails 
to detect.
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Discussion and conclusion
The CIs are vulnerable to cyber-attacks, primarily due 
to the importance of CIs to the nation and society. In 
a world full of threats, attackers successfully breach 
the many tiers of CI security. This research presents a 
last-layer security solution called EPASAD framework 
to detect an attack after an attacker has successfully 
evaded all network security and begun harming the CIs. 
EPASAD is a univariate, light-weighted, process-level, 
non-parametric, data-driven, and model-free attack 
detection framework, that is motivated to detect even 
tiny structural changes hidden within the noise margin of 
a process variable. To validate the EPASAD framework, 
we introduce a MSA scenario, which is extremely dif-
ficult to detect by any available methods, but EPASAD 
efficiently detects it. EPASAD detects quickly every other 
attack scenario considered for validation and significantly 
improves the performance of PASAD without any addi-
tional computational overhead. We summarize the fol-
lowing six essential strengths of EPASAD based on our 
experiments on various attack scenarios and available 
literature:

• EPASAD quickly detects an attack EPASAD aims to 
detect even tiny structural changes in the normal 
behavior of the sensor and detect even MSA attack 
at the very initial stages (cf. Fig.  4). Based on the 
experiments performed, EPASAD improves the per-
formance of detecting the attacks in all attack sce-
narios, including seven of TE-dataset and fourteen 
of C-town dataset (cf. “Experiments and results” sec-
tion  ). In a most unlikely scenario, when the signal 
space is equally distributed across each dimensions, 
EPASAD can still learn a uniformly tight n-spherical 
decision boundary. Thus, EPASAD’s performance 
will always be better than PASAD.

• EPASAD also works under noisy environment In Mo 
and Sinopoli (2015), the authors highlighted the criti-
cal problem of making the unrealistic assumption 
that the system model is noiseless. A noisy environ-
ment can cause severe problems for a non-robust 
IDS. An attacker can hide their malicious manipu-
lations within the noise, and the noisy environment 
causes lots of false alarms. Our proposed method, 
EPASAD, is based on a well-known robust time 
series tool called SSA. The SSA is suitable to capture 
the skeleton of deterministic pattern from a noisy 
time series that makes EPASAD robust enough to 
work even in a noisy environment (cf. Chapter  6 of 
Elsner and Tsonis 2013).

• EPASAD is realistic to build and deploy EPASAD is 
a non-parametric and purely data-driven framework 

that does not need prior knowledge of the system or 
the family of the probability distribution of the time 
series data. Hence we have not used any prior knowl-
edge of sensors measurement distribution to model 
EPASAD in our experiment (cf. “Experiments and 
results” section ).

• EPASAD is computationally efficient EPASAD 
is developed to deploy over real-time CI, which 
requires processing the streaming measurement. 
EPASAD is a light-weight framework that produces 
a decision for measurement in linear time complexity 
of O(L) in order of lagged vector. EPASAD is tested 
on a ‘Intel(R) Core(TM) i7-4770 CPU @  3.40GHz’ 
machine with ‘64-bit Ubuntu 16.04 LTS’ operating 
system and ‘16 GB’ RAM. EPASAD takes 3.6 and 
3.0 µsec to generate one result for TE-dataset and 
C-town datasets, respectively.

• EPASAD is secure against evasion attack In Garcia 
et  al. (2017), the authors developed a PLC rootkit 
that can corrupt the communication route between 
sensors and SCADA. An attacker can compromise a 
few communication channels and manipulate them 
accordingly to hide the structural changes in the 
normal behavior of any other sensors. In Erba et al. 
(2020); Biggio and Roli (2018), the authors used this 
concept to construct an evasion attack against mul-
tivariate detectors (Feng et al. 2017; Goh et al. 2017; 
Taormina and Galelli 2018). In the case of univariate 
IDS, each sensor is independently modeled. Manipu-
lating a few sensor variables cannot affect any other 
univariate IDS model. Hence univariate IDS are safer 
against evasion attacks.

• EPASAD generates a low false alarm rate unlike any 
other nonuniform decision boundary-based model 
in which low margin sides are volatile to raise a false 
alarm. EPASAD is motivated to learn a uniform deci-
sion boundary, and adding a small slack-value pro-
vides a margin of error without compromising accu-
racy. As a result, EPASAD generated only 3.70% false 
alarm (cf. Table 2) while testing it for nine months.

Identifying the structural changes in time series data is 
a classical problem that is useful for detecting irregular-
ities and attacks in a wide range of applications such as 
an automated vehicle, robotics, UAVs, IoT, etc. Improv-
ing the performance of detecting the structural changes 
in a time series data can also enhance the other appli-
cations that will be developed in the future. In addition 
to using EPASAD in other domains, we would like to 
extend it as a multivariate model, which can be com-
putationally more suitable for large sensor-connected 
networks.
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