
Maurya et al. Cybersecurity (2023) 6:28
https://doi.org/10.1186/s42400-023-00162-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

EPASAD: ellipsoid decision boundary based
Process-Aware Stealthy Attack Detector
Vikas Maurya1* , Rachit Agarwal1,2, Saurabh Kumar1 and Sandeep Shukla1

Abstract

Due to the importance of Critical Infrastructure (CI) in a nation’s economy, they have been lucrative targets for cyber
attackers. These critical infrastructures are usually Cyber-Physical Systems such as power grids, water, and sewage
treatment facilities, oil and gas pipelines, etc. In recent times, these systems have suffered from cyber attacks numer-
ous times. Researchers have been developing cyber security solutions for CIs to avoid lasting damages. According to
standard frameworks, cyber security based on identification, protection, detection, response, and recovery are at the
core of these research. Detection of an ongoing attack that escapes standard protection such as firewall, anti-virus,
and host/network intrusion detection has gained importance as such attacks eventually affect the physical dynamics
of the system. Therefore, anomaly detection in physical dynamics proves an effective means to implement defense-
in-depth. PASAD is one example of anomaly detection in the sensor/actuator data, representing such systems’
physical dynamics. We present EPASAD, which improves the detection technique used in PASAD to detect these
micro-stealthy attacks, as our experiments show that PASAD’s spherical boundary-based detection fails to detect. Our
method EPASAD overcomes this by using Ellipsoid boundaries, thereby tightening the boundaries in various dimen-
sions, whereas a spherical boundary treats all dimensions equally. We validate EPASAD using the dataset produced by
the TE-process simulator and the C-town datasets. The results show that EPASAD improves PASAD’s average recall by
5.8% and 9.5% for the two datasets, respectively.

Keywords Intrusion detection system, Critical infrastructure security, Industrial control system, Machine learning

Introduction
Critical infrastructures (CIs) are mostly Cyber-Physical
Systems (CPS) with few exceptions (such as telecommu-
nication, financial services, and Agriculture) that facili-
tate and boost societal and economical operations. Some
examples of CIs include infrastructure supporting sup-
ply of natural gas, water treatment and supply, electricity
generation and renewable energy, food production and
distribution, transportation, healthcare, and goods and
services. The architecture of a CI is layered- an industrial

control system (ICS - also known as cyber-physical sys-
tems (CPS)), Supervisory Control and Data Acquisition
systems (SCADA), and Process Control Systems (PCS or
Distributed Control Systems (DCS)) monitor and control
the infrastructure (Cardenas et al. 2011). These high-
level designs of supervisory systems are often networked
with Programmable Logic Controllers (PLCs). PLCs are
industrial computational devices coupled with sensors
and actuators to control physical processes by communi-
cating usually with SCADA. The SCADA system is com-
prised of numerous intrusion detection systems (IDSs)
that monitor physical processes or network data gener-
ated by sensors and actuators on a regular basis and gen-
erate an alarm if the system behaves abnormally.

Minor damage to a CI may lead to catastrophe and sig-
nificantly impacts public safety, economy, and daily life
demands. With the rise of the Internet and connected

*Correspondence:
Vikas Maurya
vikasmr@cse.iitk.ac.in
1 Department of Computer Science and Engineering, Indian Institute
of Technology Kanpur, kanpur, India
2 Merkle Science, Bangalore, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00162-z&domain=pdf
http://orcid.org/0000-0002-3650-4804

Page 2 of 17Maurya et al. Cybersecurity (2023) 6:28

things, CIs have become more vulnerable to cyber-
attacks. A state’s vested interests further escalate this. In
the past, there have been numerous cases where cyber-
criminals successfully infiltrated CIs. For example, an
attack on the Iranian power plant in 2009 was conducted
using Stuxnet (Falliere et al. 2010) malware. Other exam-
ples of such attacks include (i) attack on a German steel
mill in 2014 (Lee et al. 2014) that was conducted using
spear-phishing through mails, (ii) attack on the Ukrain-
ian power grid in 2015 which was conducted using
spear-phishing via Microsoft doc file affecting ≈225,000
customers (Lee et al. 2016), and (iii) attack on a Saudi
petroleum refinery in 2017 using TRITON malware
caused the refinery to shut down its operations (Di Pinto
et al. 2018). Besides these, there are numerous recent
attempts reported by the Center for Strategic and Inter-
national Studies (CSIS). These include attacks on Indian
nuclear plant in 2019, Israel water treatment plant in
2020, and oil and natural gas pipeline companies in USA
in 2021 (CSIS 2022).

Thus, the question that motivates us is how we can
secure CIs from such attacks? Multiple methods are used
to answer this and secure CIs. These methods include
securing network architecture by adhering to the policies
such as network segmentation and segregation, the use of
boundary protection devices, and firewall filters between
each network segment (Stouffer et al. 2015). However,
network security is constantly being breached due to
exploitation of vulnerabilities that also include zero-day
attacks. Assuming that network security is foolproof and
no attacker will break it to cause harm to the ICS is not
correct. Only by bypassing the network security attack-
ers do not harm the CI until they perform any malicious
activity. When an attacker performs any malicious activ-
ity on the CI, it gets reflected in the physical processes
(Zheng et al. 2015). The sensors and control behavior
associated with attack-targeted devices start to show
structural changes in their normal behavior. Usually it
happens in direct damage attack (DDA). Such structural
changes can be identified to detect an attack. However,
an attacker can hide their manipulation within the noise
margin. These attacks are known as

stealthy attacks (SA). Such attacks are likely to produce
a cascading effect due to the interaction of control loops,
eventually causing the control system to fail. Further, an
attacker can reduce the impact of SA in such way the sen-
sor produced abnormal structural changes do not deviate
much from the normal behavior. We call such attacks as
micro-stealthy attacks (MSA) (cf. “Proposed framework:
EPASAD” section). These attacks are extremely difficult
to detect and evade current state-of-the-art detection
techniques. The MSA does not interrupt or fail the
control system but slowly degrades the system causing

huge losses in terms of money and raw material over an
extended period. In this paper, we develop a novel IDS
framework whose objective is to detect the most chal-
lenging attack category MSA, and quickly detect the SA
and DDA to save the CIs from lasting damage.

A process-level intrusion detection system (IDS) con-
tinuously monitors the physical process of ICSs. It is
deployed over SCADA, whose goal is to detect any
abnormal structural changes in the physical process
behavior. State-of-the-art approaches categorize process
level IDS in two categories: univariate (independent IDS
for each sensor) and multivariate (Single IDS for multiple
sensor). Among the many popular IDS-based solutions
(discussed in “Related works” section), PASAD (Aoudi
et al. 2018) is one of the most promising framework. Yet,
PASAD suffers from same drawbacks as mentioned ear-
lier. It fails to detect the micro-stealthy attacks (MSAs),
and is delayed in detecting Stealthy Attacks (SAs) and
Direct Damage Attacks (DDAs). We consider PASAD as
a baseline for the validation of our approach.

An efficient and realistic process level IDS must ful-
fill following objectives: (i) be capable of detecting an
attack before lasting damage, (ii) be secure against eva-
sion attack, (iii) work under noisy environment, (iv) be
realistic to build and deploy, (v) have less computational
overhead and produce the result for streaming data
quickly, and (vi) have lower false alarm rate. Motivated
by this, we present an efficient and realistic process level
IDS solution called EPASAD (Ellipsoid decision bound-
ary based Process-Aware Stealthy Attack Detector),
which addresses above-mentioned objectives. EPASAD
is a univariate process-level IDS based on Singular Spec-
trum Analysis (SSA) (Broomhead and King 1986; Elsner
and Tsonis 2013; Golyandina and Korobeynikov 2014;
Golyandina et al. 2001; Golyandina and Zhigljavsky 2013;
Hassani 2010; Vautard and Ghil 1989), a time series anal-
ysis tool. EPASAD is designed to detect any structural
changes in a sensor behavior caused due to the presence
of an adversary. EPASAD projects raw sensor data into
a noise-free lower-dimensional signal subspace to clus-
ter normal data. It uses the distribution of the clustered
data to learn an efficient and uniformly tight decision
boundary. EPASAD envelops the signal subspace within
an ellipsoid decision boundary. After learning the deci-
sion boundary, any sensor datum that falls outside is
considered abnormal, and an alarm is raised. From the
attacker’s perspective, in PASAD, it is easier to compro-
mise huge redundant normal space within the decision-
boundary and easier to determine the radius using any
one projected dimension. However, EPASAD provides
a tighter boundary with respective radii in each dimen-
sion, necessitating more effort for attackers to determine
ellipsoid parameters in each projected dimension to stay

Page 3 of 17Maurya et al. Cybersecurity (2023) 6:28

under the radar. This is the novelty that we bring over the
existing state-of-the-art approaches.

We consider various attack scenarios present in the
two datasets: TE-process and C-town dataset to vali-
date EPASAD. We use TE chemical process simulator
to generate two MSAs, three SAs, and two DDA scenar-
ios with the motivation to simulate realistic situations.
Our results show that EPASAD successfully detects the
MSAs and quickly detects the stealthy and the DDAs
when compared to the baseline method PASAD. Further,
we consider C-town network datasets to validate our
approach on a much larger dataset. Using the dataset, we
validate EPASAD using 14 different attacks scenarios that
happen over a testing period of 9-months. Each attack
present in the C-town dataset is sandwiched between
a long-duration normal operation. Testing for such an
extended period validates our framework for a realistic
scenario. We show that EPASAD is capable of detecting
all 14 attacks present in the C-town dataset with a low
false alarms rate of 3.7%. Compared to PASAD, EPASAD
shows a significant improvement over each attack scenar-
ios. Over PASAD, EPASAD improves the overall recall
for all the sensors in the system operating under MSAs,
SAs, and DDAs present in the TE-dataset from 7.5% to
17.3%, 50.3% to 54.2%, and 46.2% to 51.0%, respectively.
Similarly, in the C-town dataset, EPASAD improves the
overall recall from 54.8% to 64.3% for all the 14 attacks
present in it. When an attacker attacks a CPS, the behav-
ioral change to anomalous state takes time. But the train-
ing data is labeled as “attack” as soon as the attacker
engages. This is why the low accuracy appears in both
the PASAD and EPASAD. In such low accuracy scenar-
ios, an improvement of even 3.9% (the minimum average
gain among all scenarios mentioned above) might appear
small from an absolute perspective. From a relative per-
spective, it is a significant improvement.

In summary, the major contributions of our work are:

• We introduce an attack scenario called Micro-
Stealthy Attack (MSA), which although existed but
was not studied before and posed detection chal-
lenges for current state-of-the-art approaches (cf.
“Micro stealthy attack (MSA)” section).

• Our framework called EPASAD provides an efficient
and realistic process-level univariate IDS for securing
CIs. EPASAD continuously monitors the data stream
consisting of sensor measurements for detecting tiny
structural changes in the normal behavior hidden
within the noise margin.

• We validate EPASAD on MSA and find that EPASAD
efficiently detects them. Further, EPASAD signifi-
cantly improves PASAD without any additional
computation overhead. We compare EPASAD with

PASAD, using multiple attack scenarios present in
the TE-process and C-town dataset.

The rest of the paper is organized as follows: first we
discuss the required concepts that form a background
knowledge needed to understand EPASAD in “Back-
ground” section . Then, in “Attack model” section, we
describe the attack model that forms the motivation
behind the proposal of the EPASAD framework. In the
“Proposed framework: EPASAD” section, we present our
proposed framework EPASAD and provide detail of its
training, online testing process, and computation cost
analysis. In “Validation datasets” section, we describe the
generated and the existing datasets used for validation.
In “Experiments and results” section , we experimentally
validate our method under three subsections and report
our results. In “Related works” section , we discuss the
related works, mainly highlighting the process-level IDS.
Finally, in “Discussion and conclusion” section we con-
clude our paper along with an in-depth discussion.

Background
In this section, we discuss the techniques and the con-
cepts that are useful for this work.

Singular spectral analysis (SSA)
SSA is a non-parametric model-free time series analysis
tool with a wide range of applications (Broomhead and
King 1986; Elsner and Tsonis 2013; Vautard and Ghil
1989; Golyandina et al. 2001; Mohammad and Nishida
2011), including IDS (Aoudi et al. 2018; Terai et al. 2018;
Dong et al. 2017; Moskvina and Zhigljavsky 2003; Goly-
andina et al. 2001; Mohammad and Nishida 2011). SSA
can robustly recover the deterministic pattern of a time
series even in the presence of noise. Such aspects of SSA
enable us to use it to analyze the noise-free structure
of a time series. SSA is also used to identify structural
changes in a time series data by learning a projection
matrix P that projects a real-valued noisy subseries into
a noise-free signal subspace. However, to do so, only two
steps of SSA are sufficient. As our focus is to identify
structural changes in normal sensor measurements, here,
we only explain these two steps. Note that a summary of
the notations/symbols used in this paper are listed in the
Table 1. The two steps are:

Step 1: (Embedding) This step maps a univariate time
series into a trajectory matrix. Let T = {m1,m2, . . . ,mN }
be a univariate time series of length N where mi ∈ R is
a sensor’s measurement collected at the ith timestamp.
Let L ∈ I where 1 < L < N/2 be called as lag or window-
length and K = N − L+ 1 . The SSA arranges the time
series T in the form of a trajectory matrix M of dimen-
sion L× K .

Page 4 of 17Maurya et al. Cybersecurity (2023) 6:28

A column vector of M is called the lagged vector where
the ith (1 ≤ i ≤ K) lagged vector (Mi) is defined by
Mi = [mi,mi+1, . . . ,mi+L−1]T.

Step 2: singular value decomposition (SVD) In this
step, SVD of M is done by using the following four
steps: (i) compute a lagged co-variance matrix MM

T of
dimension L× L , (ii) compute the eigenvalues denoted
by �1, �2, . . . , �L and the corresponding eigenvectors
denoted by U1,U2, . . . ,UL , which are arranged according
to decreasing magnitude of eigenvalues, (iii) orthonor-
malize the eigenvectors, and (iv) pick R leading eigen-
vectors to form eigen matrix U of dimension L× R , i.e.,
U = [U1,U2, . . . ,UR] . Ignoring the minor and keeping
the leading eigenvectors in the eigen matrix U eliminates

M =

m1 m2 ... mK

m2 m3 ... mK+1

. . .

. . .
mL mL+1 ... mN

the noise and retains the deterministic behavior of a sig-
nal subseries. The set of eigenvectors {U1,U2, · · · ,UR}
are linearly independent, spanning an R-dimensional
subspace in RL (length of vectors in the R-dimen-
sional subspace is L) called signal subspace. There exists
P = U(UT

U)−1
U

T = UU
T (since U is an orthonormal

matrix, then UT
U = I) that projects a lagged vector

from L-dimensional real space to the signal subspace. Let
m ∈ R

L be a lagged vector, then the projection of m, i.e.,
Pm ∈ R

L , be a noise-free vector in signal subspace. Note
that the notation m is an L-length variable lagged vector
while Mi is a constant representing ith column vector of
matrix M.

PASAD
In Aoudi et al. (2018), the authors describe PASAD, a
process-level, univariate, and anomaly-based IDS that
monitors ICS process activity in real-time to determine
whether the system is operating normally or abnormally.
The motivation behind is to detect any aberrant struc-
tural change in the physical process to detect stealthy and
direct damage attacks.

PASAD leverages from SSA to learn P = UU
T . To

reduce the computational overhead of PASAD, in Aoudi
et al. (2018), the authors proved that an L−dimensional
lagged vector m projected by P = U

T in RR preserves
the Euclidean distance projected by P = UU

T in RL , i.e.,
||UU

T v|| = ||UT v|| . The P = U
T captures the determin-

istic behavior of the physical process by projecting an L
-dimensional normal subseries onto a lower R-dimen-
sional signal subspace. PASAD computes the squared
Euclidean from centroid in R-dimensional signal space
for each streaming test lagged vectors Mi (i > N) called
departure score (Di) to detect the attack-induced struc-
tural changes in the normal behavior. Di is defined via
Eq. 1, where ĉ = U

T c and c is the mean of column vec-
tors of X such that c = K

i=1 Xi.

The projection of the normal subseries forms a dense
cluster which is closer to the center. While an abnor-
mal subseries is forced to be projected far away from the
center of a normal cluster (̂c) thereby having a higher
departure score. If the departure score crosses certain
threshold θp , i.e., if ||ĉ −U

T vi||2 > θp , an attack alarm is
triggered.

To compute θp , PASAD computes departure scores
on training measurements and few extended measure-
ments collected during normal operation. The extended
measurements are called validation dataset. PASAD sets
θp = max∀i(Di) . As a result, PASAD forms an n-spheri-
cal decision boundary (an n-sphere is a generalized form

(1)Di = ||ĉ −U
TMi||2

Table 1 Notations and their description

Notation Description

R Set of Real numbers

I Set of Integers

mi ith Measurement

M Trajectory Matrix of size L× K

m L-length lagged vector

Mi A specific lagged vector of length L, ith column vector of M or
test subsequence for ith measurement

c Centroid vector in RL

P Projection matrix

U Eigen matrix

Ui ith Eigenvector

X A signal subspace matrix of size R × K ′

Xi A specific R-length lagged vector in RR , ith column vector of
X or projected test subsequence for ith measurement

x A R-length lagged vector in signal subspace

w A weight vector in RR

ĉ Centroid vector in RR

Dt Departure score at timestamp t

θp Threshold of PASAD

θe Threshold of EPASAD

δf (x) Tightness of decision boundary f(x) at a point x

N Length of training subsequence

N′ Length of training + validation subsequence

L Lag parameter in I

R Dimensionality of signal subspace parameter

ǫ Slack-value parameter
∏

(w) Product of elements of vector w

Page 5 of 17Maurya et al. Cybersecurity (2023) 6:28

of a sphere in the n-dimensions) in R-dimensional signal
subspace. The radius of the n-sphere is

√

θp which is the
distance of the farthest normal point from center (̂c) in
the signal subspace.

PASAD is a lightweight IDS suitable for deploying on
limited hardware resources. PASAD’s most computation-
ally intensive step is to project the L-dimensional vector
into an R-dimensional signal space which is an R× L
dimensional matrix to L dimensional vector multiplica-
tion. As a result, the computational complexity of the
PASAD is O(RL).

Attack model
In this section, we discuss the attack model that encom-
passes the motivation for developing EPASAD along with
necessary definitions.

Definition 1 (Normal cluster) Set of normal points
(column vectors of X in Eq. 2) in signal subspace col-
lected by projecting the measurements when there was
no attack (also referred as normal measurements).

Definition 2 (Decision boundary) A non-linear func-
tion f(x) encloses the normal cluster and separates the
projection of the measurements captured under attack
(also referred to as attack measurements) and normal
operations.

Definition 3 (Tightness of decision boundary) Let x1
and x2 be two points on a decision boundary f(x), points
x′1 and x′2 be the nearest (shortest Euclidean distance)
points of the normal cluster from x1 and x2 , respectively.
The distance between x1 and x′1 be δf (x1) = ||x1 − x′1||
defined as tightness of the decision boundary f(x) at x1 ,
similarly for x2 . If δf (x1) < δf (x2) , then the decision
boundary f(x) is tighter at x1 in comparison to x2 . In other
words, f(x) is loose at x2 than x1.

Definition 4 (Uniformly tight decision boundary)
Let f(x) and g(y) be the two decision boundaries, and if
|max(δf (x))−min(δf (x))| < |max(δg (y))−min(δg (y))| ,
then we call f(x) is more uniformly tight decision bound-
ary than g(y).

Direct damage attack (DDA)
A DDA is a conventional attacking approach where
an attacker does not hide their malicious activities in
the physical process. A DDA attacker’s goal is to dam-
age the devices and eventually interrupt the process.
Here, the attacker tries to accomplish his harmful goals

before being detected and make CI operate abnormally.
These attacks are trivial to be detected, but any delay in
their detection causes severe consequences for a CI. An
efficient IDS aims to detect abnormal behavior induced
by such attacks at the initial stages to save CIs from
lasting damage.

Stealthy attack (SA)
In Feng et al. (2017), the authors argued that in a noisy
environment, a strategic attacker benefits from inflict-
ing a substantial perturbation on the system state.
The attack escapes the detection by failure and anom-
aly detectors as they do not consider noise. Strategic
attackers’ goal is to cause slow damaging perturbations
in the physical process while being undetected for an
extended period. Such attacks are likely to produce a
cascading effect due to the interaction of control loops,
eventually causing the control system to fail. Some-
times a strategic attacker may mask their attack so that
the reflected anomaly in physical process variables
remains within the noise level; the noise can be man-
ufactured intentionally by the attacker or naturally by
the system. Attacks that hide their manipulation within
noise margin are known as SAs.

Micro stealthy attack (MSA)
There have been several attack incidents where attackers
compromised CIs by either installing malware, misus-
ing the resources, making user compromise, performing
Denial-of-Service (DoS) attacks, making root compro-
mise, and performing social engineering attacks (Kova-
cevic et al. 2015). An attacker’s abnormal activities cause
structural changes in the physical process. As attackers
aim to cause maximum damage without being detected,
a smart attacker hides the abnormalities by controlling
the manipulations. There are several other SAs such
as those that are model-based advanced SAs. In these
types of SAs attackers use control-theoretical knowledge.
Some of these SAs are zero-dynamics attacks (Teixeira
et al. 2012), poly dynamics attacks (Jeon and Eun 2019),
false data injection attacks (Liang et al. 2016), and covert
attacks (Smith 2015). Such attacks do not make signifi-
cant structural changes in the sensor’s measurements and
are difficult to detect. In this paper, we do not focus on
these types of attacks or conduct such attacks. We rather
focus on detection of SAs where the sensor measure-
ments are manipulated to cause even minute structural
changes in the normal behavior.

In Aoudi et al. (2018), the authors present PASAD that
detects such structural changes. However, PASAD has
drawbacks. An attacker can evade PASAD by control-
ling the structural changes. Since PASAD envelops the R

Page 6 of 17Maurya et al. Cybersecurity (2023) 6:28

-dimensional signal subspace in an n-spherical decision
boundary, one side is tight enough while the remain-
ing are loose. There is a high probability that an attack-
induced abnormal subseries get projected toward the
loose side, or an attacker targets the abnormal projection
towards the loosest side to hide the maximum abnor-
mal manipulations. The projection towards the loose
side causes serious issues such as delay in detecting the
SAs, DDAs, and inability to detected some low-intensity
attacks. We refer to such low-intensity SAs as Micro
Stealthy attack.

In Fig. 1, we demonstrate the problem caused by a non-
uniform loose decision boundary. Figure 1a shows a time
series of the reactor’s temperature captured by the sensor

XMEAS(9) of TE-process, initially under normal (green
and black measurements) operation and ended with a
SAs (red measurements) operation. We use the measure-
ments under normal operation (green measurements) to
determine P . The other points under normal conditions
(black measurements) determines the decision boundary.
Finally, we test the model using the measurement (red
measurements) captured under attack. Figure 1b demon-
strates the departure score of each sensor measurements
computed by PASAD framework.

We further demonstrate the projections of each nor-
mal and attack measurement on a 2-dimensional signal
subspace (cf. Fig. 1c) for better visualization. In this
2-dimensional signal subspace, the red points (attack
subsequence projections) are projected far enough
away from the green point’s cluster. Since the abnor-
mal projections are towards the loose side, it takes a
long time to cross the spherical decision boundary
of PASAD, causing a delay in detecting the SA. Thus,
a question arises: What if a strategic attacker slightly
reduces the SA’s impact and attempts an MSA, never
to cross the decision boundary? PASAD will not detect
the MSA attack that silently damages the CI and wastes
valuable resources. We demonstrate such MSA attack
scenario using Fig. 2. Figure 2a represents measure-
ments generated by sensor XMEAS(21) (represents
reactor’s cooling water outlet temperature) captured
under an MSA scenario (cf. “The Tennessee-Eastman
process dataset (TE-dataset)” section–MSA1). Here,
the attacker manipulates the purge valve (XMV6)
slightly higher than normal with the objective of wast-
ing the reactor’s gases. Figure 2c shows that the attack-
induced manipulated measurements are projected far
enough from the normal cluster. Since the projections
are toward the loose side and the impact of the attack is
not that high to cross the decision boundary, the depar-
ture score of PASAD has never crossed the threshold
(cf. Fig. 2b) and fails to detect the attacks reflected in
XMEAS(21). Thus, we introduce EPASAD with a moti-
vation to quickly detect the MSA, SA, and DDA.

Proposed framework: EPASAD
EPASAD is a process-level, univariate, and anomaly-
based IDS framework that monitors ICS process activ-
ity in real-time to determine whether the system is
under normal or abnormal operation. Due to SSA’s noise
cancellation property, EPASAD works even in a noisy
environment.

EPASAD collects the set of normal subseries on the
signal subspace and envelops it within an efficient deci-
sion boundary. The subseries captured under normal

Fig. 1 We demonstrate a stealthy attack scenario on a reactor’s
temperature sensor (XMEAS(9)). Here, PASAD framework is delayed
in detecting the attack because of the projection of attacked
measurements towards the loose side of decision boundary.
Subfigure a shows the sensor-generated measurements. The green
and black measurements are the normal measurements used for
training and validation, respectively, while the red measurements
are captured under a stealthy attack (SA3). Subfigure b represents
the departure score of corresponding measurements generated by
PASAD frameworks. Subfigure c demonstrates the projections of each
normal and attack measurement on the signal subspace (we consider
a 2-dimensional signal subspace for better visualization) and the
PASAD’s Decision Boundary (PDB)

Page 7 of 17Maurya et al. Cybersecurity (2023) 6:28

operation follow certain oscillation and trend structures,
projecting a set of normal subseries that forms a dense
cluster of normal points. While an abnormal subsequence
that has some structural manipulations get projected far
from the normal cluster. An attack alarm is triggered if
the projection surpasses the decision boundary.

EPASAD uses the normal cluster to learn a uniformly
tight and computationally efficient decision boundary.
Many nonlinear functions such as convex/non-convex
hull, skewed ellipsoid, higher-order nonlinear functions
can envelop the signal subspace. Nonetheless, we use a
specific ellipsoid function to parallel the standard axis of
signal space to avoid any increase in online testing com-
putation cost while ensuring a uniformly tight decision
boundary for every dimension. We demonstrate EPASAD
using Fig. 3. Figure 3a represents the same attack sce-
nario demonstrated in the Fig. 1. Figure 3d shows an
elliptical curve enveloping the 2-dimensional signal space

within a minimum area. It brings the loose side of the
decision boundary closer to the normal cluster, making
each dimension uniformly tight. The elliptic decision
boundary easily separates the abnormal red points that
the spherical decision boundary misses. Hence EPASAD
creates a challenging decision boundary for an attacker
but is simpler to deploy. It does not give any redundant
normal subspace where attacker can hide his abnormal
activities.

Training of EPASAD framework
Consider a real-valued univariate time series
T = [m1,m2, . . . ,mN , . . . ,mN ′ ,mN ′+1, . . .] . The subseries
from m1 to mN is used to determine P = U

T while from
mN+1 to mN ′ as validation dataset. Before proceeding
with the section, we list our assumptions.

Assumptions
There are three basic assumptions to develop the
EPASAD framework: (i) the dataset used for training
EPASAD can be noisy but cannot be anomalous. An
anomalous pattern in training data can cause a data poi-
soning attack. (ii) EPASAD is trained in an offline fash-
ion, which needs all the training and validation datasets
of length N ′ to be available during training. (iii) EPASAD
prepares input features with the help of recent meas-
urements that require an uninterrupted sequence of
measurement.

Step 1: generate normal cluster
We collect the normal cluster by projecting the normal
lagged vectors into the noise-free signal subspace. To
determine P = U

T , EPASAD is trained over T [1 : N]
by utilizing the SSA and PASAD. The projection matrix
projects an L-dimensional lagged vector from real
space to an R-dimensional (R ≤ L) signal subspace. The
projection matrix is trained over the series has a possi-
bility of over-fitting the training data. Hence, we extend
the normal training subseries with the validation data-
sets extending from N to N ′ (N ′ > N), i.e., (T [1:N ′]).
Thus, the trajectory matrix M for the extended valida-
tion subseries is of size L× K ′ , where K ′ = N ′ − L+ 1
and each column vectors of M are projected to a signal
matrix X of size R× K ′ . The ith column vector is pro-
jected as Xi = U

TMi . Hence, using Eq. 2 we project the
entire L−dimensional matrix M to an R−dimensional
signal matrix X.

(2)X = U
T
M

Fig. 2 We demonstrate an MSA scenario where PASAD framework
fails to detect the attack because of the attack’s projection towards
the loose side. Subfigure a shows measurements generated by
the reactor’s cooling water outlet temperature sensor (XMEAS(21).
The red measurements are captured under a micro-stealthy attack
(MSA1). Note that all other aspects and subfigures have same
definition as Fig. 1

Page 8 of 17Maurya et al. Cybersecurity (2023) 6:28

Step 2: finding centroid
We estimate the centroid ĉ ∈ R

R of the ellipsoid deci-
sion boundary using Eq. 3. Here, the elements of vec-
tor min(X) are minimum elements of the corresponding
dimension of X similarly, max(X) are maximum ele-
ments. The mean of the cluster of a skewed sample dis-
tribution shift towards the dense side. Considering the
mean as the centroid of the ellipsoid makes the decision
boundary envelop the sparse side tightly and the oppo-
site side loosely. Therefore, rather than choosing the pro-
jection of the mean of cluster to determine centroid as
in PASAD, we determine the mid-point of the range of
each dimension of X . Further, we make centroid invariant
signal subspace by using Eq. 4 where C(x) is a centroid

invariant element-wise squared vector. The centroid
invariant signal subspace standardizes the ellipsoid deci-
sion boundary centered around zero-vector for every
sensor.

Step 3: learning ellipsoid decision boundary
We determine the ellipsoid decision boundary that envel-
ops the normal cluster in signal subspace X . We consider
a hypothesis function f(x) for a variable vector x ∈ R

R to
learn the decision boundary (cf. Eq. 5, here w is a weight
vector). When we express the hypotheses function f(x)
in the form of a standard ellipsoid function, the

√
wi

describes the length of ith axis of the ellipsoid.

Our aim is to minimize the generalized n-dimensional
volume to get minimum void space inside the deci-
sion boundary. Thus, we minimize the length of each
ellipsoid axis such that all points of the normal cluster
remain inside f(x). Since the product of axis length is pro-
portional to the ellipsoid volume, Eq. 6 is our objective
function for learning the hypothesis function f(x). Solv-
ing the objective function returns an optimal weight vec-
tor ŵ that minimizes the product of the length of each
axis (

∏

(w)−0.5). There are two hard constraints associ-
ated with the objective function 6: (i) wTC(x) ≤ 1 , forces
each point to remain inside f(x), and (ii) w > 0 assures an
ellipsoid’s real-valued axis length. We train the objective
function over the column vectors of signal matrix X that
gives an optimal weight vector ŵ to get an optimal deci-
sion boundary.

Step 4: set threshold
Since we train the objective function to minimize length
of each axis of decision boundary using a hard constraint
wTC(x) ≤ 1 , the value of f(x) at a threshold θe = 1 is a deci-
sion boundary. The function f(x) forms the tightest envel-
oping function f(x), which does not consider any margin of
error. However, a normal measurement can slightly deviate

(3)ĉ = min(X)+max(X)

2

(4)C(x) = (x − ĉ)2

(5)

f (x) = wT
C(x)

= (x1 − ĉ1)
2

(w−0.5
1)2

+ (x2 − ĉ2)
2

(w−0.5
2)2

+ · · · + (xr − ĉr)
2

(w−0.5
r)2

(6)
ŵ = arg min

w

(

∏

(w)−0.5
)

|wT
C(x) ≤ 1, ∀x ∈ X & w > 0

Fig. 3 We demonstrate a stealthy attack scenario and its detection.
Our proposed framework EPASAD is able to detect the attack more
quickly than the baseline method PASAD. Subfigure a shows a
sensor-generated measurements (by XMEAS(9) sensor, represents
reactor’s temperature). The green and black measurements are
normal measurements used for training and validation, and the
red measurements are captured under a stealthy attack (SA3).
Subfigures b and c represent the departure score of corresponding
measurements generated by PASAD and EPASAD frameworks.
Subfigure d demonstrates the projections of each normal and attack
measurement on the signal subspace (we consider a 2-dimensional
signal subspace for better visualization) and the decision boundaries
of both, i.e., PASAD’s decision boundary (PDB) and EPASAD’s decision
boundary (EDB)

Page 9 of 17Maurya et al. Cybersecurity (2023) 6:28

from the normal cluster causing false alarms. Thus, we add
a margin of error, ǫ , also called slack-value in the threshold,
θe = 1+ ǫ , to control the false alarms.

Testing EPASAD framework
The EPASAD framework is deployed over SCADA to
test each live streaming measurement in an online fash-
ion. If mt is a measurement generated at timestamp t and
received by the SCADA, EPASAD prepares an L length
lagged vector Mt using previous L− 1 measurements;
Mt = [mt−L,mt−L+1, . . . ,mt]T . The real-space lagged
vector Mt ∈ RL are projected onto the R-dimensional sig-
nal subspace; Xt = U

TMt . For the most recent test meas-
urement mt , EPASAD computes a Dt = f (Xt) . The Dt
describes the confidence, regardless of whether the meas-
urement is classified as an attack or normal. A smaller
Dt indicates greater confidence of a measurement to be
normal, while a higher Dt indicates greater confidence of
an attack. A test measurement is classified as normal up
to a tolerable value of the departure score threshold θe . If
Dt ≥ θe , then EPASAD raises an attack alarm. This pro-
cess completes the online testing step for a single measure-
ment. The same procedure is repeated for the subsequent
measurement generated at time t + 1 , and so on. The Algo-
rithm 1 depicts the pseudo-code of the EPASAD frame-
work’s online testing phase.

Computation cost
An IDS is deployed for the long term to secure the real-
time streaming measurements from sensors. A sensor
associated with ICS regularly sends measurements to
the IDS; there may be a small-time difference between
the streaming measurements. The IDS deployment
must be efficient enough to generate the decision before

proceeding to the subsequent measurement. Hence,
online testing is crucial for low-cost hardware deploy-
ment. On the other hand, training is typically one time
task accomplished in an offline fashion.

The main computation cost of EPASAD is the comput-
ing the departure score. The departure score evaluates a
matrix to vector multiplication x ← U

Tm , it multiplies a
R× L matrix to an L−dimensional vector requires O(RL)
computing cost. Then, y ← (x − c)2 is an element-wise
operation of two R-dimensional vectors with O(R) com-
plexity. The final computation steps D ← wTy requires a
dot product of two R−dimensional vectors, O(R) . Hence,
the overall computation cost of EPASAD is O(RL+ R) ,
which is equivalent to the computation cost of PASAD.
Usually, only a few leading eigenvectors retain the major-
ity of the signal information. Therefore, R << L is the
average case of the computation cost. In the average case,
the time complexity for online detection of EPASAD is
linear in L, i.e., O(L). The online deployment of EPASAD
needs to store a projection matrix UT , centroid c, weight
vector w, Which is require space to keep RL, R, and R real
numbers, respectively. Hence the space complexity of
EPASAD is O(RL) . Compare to PASAD, EPASAD needs
to store an addition R-length weight vector w which does
not contribute much to space complexity. Hence both
PASAD and EPASAD have the same space complexity of
O(RL).

Validation datasets
We validate our proposed methodology using multi-
ple attacks scenarios present in the two datasets listed
below:

The Tennessee‑Eastman process dataset (TE‑dataset)
The TE-dataset is generated using an industrial chemi-
cal process simulation model proposed in 1993 (Downs
and Vogel 1993). The TE simulation framework mim-
ics the process in a real-world chemical plant. The TE-
process serves as a more realistic and safe environment
for experimentation, transcending its original objec-
tive and becoming a popular choice among ICS secu-
rity researchers (Aoudi et al. 2018; Zhu et al. 2017; Gao
and Hou 2016). The TE process has 12 cross-correlated
Manipulated Variables (XMVs) and 41 cross-correlated
MEAsured variableS (XMEAS). XMEAS(i) represents
measured values by the ith sensors, and XMV(i) rep-
resents the ith variable, which can be manipulated
to collect the measured values. In Aoudi et al. (2018),
the authors considered five attack scenarios to validate
their method: three SAs and two DDAs. We consider

Page 10 of 17Maurya et al. Cybersecurity (2023) 6:28

two additional attack scenarios representing MSA and
generate the TE-dataset by performing the following
attacks.

Micro‑stealthy attack (MSA)
We consider two MSA attack scenarios to validate
EPASAD. These include:

• MSA1 We simulate this attack by manipulating the
process variable of a purge valve (XMV(6)). The
XMV(6) restrict the reactor gas in the reactor tank
from escaping into the atmosphere. Unnecessarily
opening the valve more than a certain level causes
low pressure in the reactor; Thereby causing the pro-
cess to halt. Also, it causes unnecessary wastage of
valuable gasses. In this scenario, we open the valve
by 26%, which is enough to degrade the system and
waste the reactor gases but not that high to interrupt
the process.

• MSA2 We simulate this attack by manipulating the
speed of an agitator (XMV(12)). The agitator ensures
a well-mixed reactor, which impacts the heat trans-
fer coefficients in the reactor. The maximum speed
of the agitator should be 100% to maximize the cool-
ing capacity of the reactor coolant, and ideally, it is
suggested to be 50% (Downs and Vogel 1993). Hence,
reducing the agitator speed below 50% can increase
the reactor’s temperature, causing damages to the
system. In this attack scenario, we consider the 38%
speed of the agitator which is slow enough to reduce
the coolant capacity and increase the reactor’s tem-
perature.

Stealthy attack (SA)
We consider three SA scenarios:

• SA1 We simulate this attack by manipulating the
Stripper steam valve XMV(9). This valve controls the
steam input to the stripping column. In this attack,
we open the valve at 40% compared to completely
open.

• SA2 We simulate this attack using the MSA1 attack
scenario with a higher impact. In this attack scenario,
we open the purge valve by 28%, 2% more than in
MSA1.

• SA3 We simulate this attack by tampering with the
sensor XMEAS(10) to zero. The zero measurements
of XMEAS(10) represent that purge valve XMV(6) is
closed. For the counteraction, the controller would
unnecessarily open the purge valve.

Direct damage attack (DDA)
We consider two DDA scenarios:

• DDA1 We simulate this attack by manipulating the
process variable XMV(10) of a valve that controls
cooling water flow to the reactor to prevent its tem-
perature and pressure reach at a dangerous level.
In this scenario, we open the valve to 35.9%, which
is lower than usual (41.106%). Consequently, it
increases the reactor’s pressure and temperature and
stops the process from reaching the maximum pre-
defined limit.

• DDA2 We tamper the reactor pressure sensor
XMEAS(7) to zero. The controller takes action to per-
form more chemical reactions to maintain the reactor
pressure. The abnormal increase in the pressure can
damage the reactor, eventually stopping the process.

Each attack scenario of TE-dataset consists of measure-
ments of 41 sensor as a time series. The dataset is collected
for 48 hours, with the initial 40 hours under normal opera-
tion, and the remaining last 8 hours are during an active
attack. The measurements are generated periodically such
that it takes one hour to generate 100 measurements.

C‑town dataset
The C-town network dataset (Taormina et al. 2018) is gen-
erated by simulating Epanet CPA (Taormina et al. 2017).
The network consists of 43 sensors and generates a meas-
urement after every hour periodically. The dataset contains
14 distinct attacks launched in a different time window
throughout nine months. The dataset contains three sub-
datasets, each of which consists of 43 process variables:

• Subdataset 1 It contains normal measurements dur-
ing a period of one year.

• Subdataset 2 It contains seven attacks along with
normal operations during a period of six months.

• Subdataset 3 It also contains seven attacks (but dif-
ferent) along with normal operations during a period
of three months.

Each subdataset, as mentioned above, is collected for
the same sensor network. We combine subdataset 2 and
3 and call it subdataset 4 to evaluate EPASAD on the 14
attack scenarios captured during the nine-month-long
period. The details of each attack scenario are provided in
the paper (Taormina et al. 2018).

Experiments and results
In this section, we validate our proposed method using
above mentioned datasets and provide parameter values
selected for the experiments.

Page 11 of 17Maurya et al. Cybersecurity (2023) 6:28

Experiment on TE‑dataset
In this experiment, we study how quickly we can detect
SAs, MSAs, and DDAs. This experiment is carried out
using comparable datasets and parameters for train-
ing, validation, and testing to make a fair comparison
with the baseline method PASAD. Hence, we consider
the normal subseries of the first 2400 (green) meas-
urements to get the projection matrix UT and then
use the remaining 1600 (black) normal measurements
as the validation dataset along with the training set to
obtain the EPASAD decision boundary. We then apply
the entire time series to EPASAD to do online testing.
Figures 3, 4, and 5 demonstrate the effectiveness of
EPASAD towards detecting different attack scenarios in
the TE process and comparing it with the baseline line
method. Figures 3a, 4a, and 5a represent the time series
of sensor measurements. Figures 3b, 4b, and 5b repre-
sent the corresponding departure score by applying the
baseline method PASAD. Figure 3c, 4c, and 5c repre-
sents the departure score by applying our proposing
method EPASAD. Similar to Aoudi et al. (2018), we also
set the threshold at maximum departure score of the
normal measurements hence there was no false-alarm
in the TE-dataset scenarios. Therefore, all the evalua-
tion of this dataset is represented in term of recall only.

Figure 3 shows sensor operating under SA scenario.
The part of the subseries that has been captured under
SA appears to be normal. Such anomalous series when
projected on the signal subspace are significantly far
from the normal cluster. PASAD’s departure score
takes a long time to be more than θp , causing a delay
in detecting the attack. Moreover, the departure score
raising alarm returns to normal after a short period,
which an administrator may think of as a false alarm.
On the other hand, EPASAD detects the attack shortly

after it begins and raises the alarm for an extended
time. Hence, EPASAD is more effective at detecting
SAs quickly. Further, we evaluate EPASAD on each pro-
cess variable of SA scenarios SA1, SA2, and SA3. Our
results (cf. Fig. 6) show a significant improvement in
all the attack scenarios. EPASAD improves the average
recall of all three SAs from 50.3% to 54.2% compared to
the baseline benchmark.

We demonstrate our method on a process variable
which is captured under MSA (cf. Fig. 4). The results
show that the departure score of PASAD is always less
than the θp during the attack. Hence, it could not detect
MSA. On the other hand, EPASAD computes a sig-
nificant departure score which is more than the θe for a
lengthy period. Hence, EPASAD is able to detect even
the MSA. We tested EPASAD on every process variable
in the MSA1 and MSA2 datasets. The results (cf. Fig. 6)
show significant improvement with the average recall
increasing from 7.5% to 17.3%.

We evaluate our method on a process variable of the
DDA1 attack scenario (cf. Fig. 5). In this scenario, the
measurements during the attack operation are initially
close to normal and then suddenly become abnormal,
even beyond the normal range (the lower and upper limit
of measurements generated by a sensor). The baseline
method PASAD could not recognize the initial symp-
toms. It detects the attack when the attack induced-
measurements reach beyond the normal range. On the
other hand, EPASAD detects such attacks at early stages,
shows a significant gain over the baseline method. Hence,
EPASAD can quickly detect the DDAs. Figure 6 shows
the average performance of EPASAD on each process
variable of the DDA1 and DDA2 attack scenario. Here,
EPASAD improves recall score from 46.2% to 51.0%.

Fig. 4 We show the comparison of PASAD and EPASAD over sensor
XMEAS(21) of TE-dataset. The attack measurements are collected
during a micro-stealthy attack (MSA1) operation. EPASAD is able to
detect the MSA, which PASAD fails to detect

Fig. 5 We show the comparison of PASAD and EPASAD over purge
gas analysis stream sensor XMEAS(31) of TE-dataset. The attack
measurements are collected during a Direct damage attack (DDA1)
operation. EPASAD is able to detect the DDA more quickly

Page 12 of 17Maurya et al. Cybersecurity (2023) 6:28

Experiment on C‑town dataset
In a realistic scenarios, attacks are launched for a limited
duration, and then the system resumes normal operation.
The 14 attacks in this experiment are launched for a lim-
ited time before the system resumes normal operation.
This is recurrent and done over a period of 9 months.
Figure 7 demonstrates EPASAD on a process variable of
the C-town dataset. We train EPASAD over a subseries
of length 1500 (green measurement) captured under nor-
mal operation to get the projection matrix. Then, include
1500 normal measurements (black measurements next
to the green ones) as validation dataset to determine
the decision boundary. Once the training phase is com-
plete, we test the entire subseries using the online test-
ing algorithm 1. Figure 7c indicates EPASAD’s strengths
in detecting the structural changes caused by the 5th and
6th attacks reflected in the FPU7 sensor and then return
to the normal state.

In Tables 2 and 3, we evaluate the experiment at the
entire infrastructure level by aggregating the nature of
alarms in every process variable. If the IDS triggers an
alarm in any processes during an attack, we consider
the attack to be detected. We consider a false alarm if it
is triggered in any sensor during the normal operation.
Table 3 evaluates each attack using two attributes, time
(in hours) and count. The time field represents how long
an attack has been active without causing an alarm to be
raised. In other words, it is the time taken by IDS to raise
the first alarm. The count field represents the number of
process variables involved in the alarm’s triggering. It is
very unusual to raise false alarms in multiple sensors at a
time, a higher number of counts sensors producing attack
alarm increases the confidence of positive alarm. Table 2
evaluates the overall accuracy in terms of true alarm rate
(recall), precision, F1-score, and false alarm rate.

This experiment tests the long duration when measure-
ments are captured under mostly normal operation and
sometimes under various attacks. Hence, there is a pos-
sibility that an IDS in this experiment generates a large
number of false alarms. The results in Table 2 show a sig-
nificant improvement by EPASAD in the precision, recall
(true alarm rate), F1-score, and a low false alarm rate as
compared to PASAD. In addition to PASAD, we evalu-
ate the other benchmark methods (Hadžiosmanović et al.
2014; Aoudi and Almgren 2020; Dutta et al. 2021; Goh
et al. 2017; Taormina and Galelli 2018) under the same
experimental setup. The comparative analysis is shown
in Table 2. Here, EPASAD is identified as the best-per-
forming method, while PASAD performs best among the
other baseline methods.

In addition to the overall performance, we analyze
the detection of all 14 attacks in Table 3. As EPASAD is
an extension of PASAD and performs the best among
the baseline methods, we do an additional comparative
analysis of PASAD and EPASAD for every 14 attack sce-
narios. We analyze the time taken to detect an attack and
the count of the number of sensors engaged in trigger-
ing an alarm. EPASAD has a significant gain in detect-
ing the two attacks (9th , and 12th) over PASAD, and
EPASAD even detects the two missing (2nd and 8th)
attacks. EPASAD generates a valid alarm in more number
of sensors that increase the alarm’s confidence. Hence,
EPASAD can quickly and confidently raise the alarm for
detecting an attack. EPASAD slightly under-performs in

Fig. 6 We compare the accuracy of PASAD and EPASAD over the
seven different attack scenarios of the TE-dataset in terms of recall.
EPASAD achieves a significant improvement in each attack scenario Fig. 7 Comparison of PASAD and EPASAD over the pump-flow

sensor (F_PU7) of C-town dataset, collected during 14 different
attacks where PASAD fails to detect the abnormality induced
during the 5th attack, and EPASAD is able to detect it. The green
measurements are normal measurements used for training. The black
and red measurements are normal, and attack measurements are
used for testing. Note that the order of each subfigure has the same
definition as Figs. 4 and 5

Page 13 of 17Maurya et al. Cybersecurity (2023) 6:28

three scenarios (cf. 5th , 6th , and 7th attack scenario in
Table 3) of the C-town dataset. In PASAD, if the projec-
tion is on the tight dimension, it performs slightly better.
EPASAD slightly loosens each dimension by adding a
small value “slack” to the threshold. Thus, if the projec-
tion is in the tight dimension, PASAD might be better.
But in general, keeping the attack such that all dimen-
sions are tight is hard for the attacker to find the loos-
est side as they would now need to identify radii in each
dimension.

Parameter selection
In this section, we discuss the parameters and their
choices that help us in implementing the above experi-
ments. We use the same datasets and parameters to
experiment with PASAD and EPASAD to make a fair
comparison. There are two main parameters that are
required in the training phase: lag L and dimensionality
of signal subspace R. The lack of generalization of param-
eters in the baseline paper encourages us to choose the
best performing parameter for PASAD. We run PASAD
over various lag values, from 100 to 1000 in the incre-
ments of 100 for the TE dataset and 20 to 200 in incre-
ments of 10 for the C-town dataset to find the best lag
value. We find the best performing lag parameter, L=500
for TE-dataset and L=50 for the C-town dataset. A
smaller value of the lag parameter for the C-town dataset
yield the best results because the time between two con-
secutive measurement is one hour, while the TE-dataset

generates 100 measurements in one hour. Hence, a sub-
sequence of length 50 itself covers the subsequence of
more than two days. The dimensionality of signal space
R=3 is found to be best performing. Once the training is
finished, we set a threshold θe to classify the departure of
measurement between attack and normal. The experi-
ment “Experiment on TE-dataset” of the TE dataset
uses entire normal subseries for training and validation,
which ensure no false alarm with a minimum threshold
with slack-value ǫ = 0 . In the experiment “Experiment
on C-town dataset”, when we set θp to the maximum of
validation subseries without adding any slack-value, we
find that PASAD fails to detect two attacks (2nd and 8th).
Adding a slack-value could fail to detect more attacks
and decreases the alarm. On the other hand, EPASAD is
tighter in each dimension has a higher chance of raising
a false alarm. Hence, we add a slack-value ǫ = 0.1 in θe to
ensure a lesser false alarm rate.

Related works
In this section, we discuss earlier IDSs in the industrial
control system. In Aoudi et al. (2018), the authors pub-
lished a method to detect attacks in ICS at a process
variable label named PASAD. PASAD is a univariate
departure-based process-level detection method that can
detect even a SA on control systems by identifying an
abnormal sequence. There are two other popular process
level detection methods: Linear Dynamic State-space
(LDS) by Shoukry et al. (2015) and the Auto-Regressive

Table 2 The average performance and comparison (in percentage) of EPASAD, PASAD, and other baseline frameworks on the C-town
dataset

Methods Precision Recall F1‑score False Alarm

EPASAD 71.36 64.29 67.64 3.70

PASAD (Aoudi et al. 2018) 64.36 54.84 59.22 4.36

AR (Hadžiosmanović et al. 2014) 32.37 53.99 40.47 3.96

MPASAD (Aoudi and Almgren 2020) 57.17 43.86 49.64 10.50

RPCA (Dutta et al. 2021) 24.36 26.01 25.16 9.94

LSTM (Goh et al. 2017) 54.39 61.36 57.67 4.92

AE (Taormina and Galelli 2018) 54.95 58.05 56.46 5.70

Table 3 Performance and comparison of PASAD and EPASAD framework for all 14 attacks present in the C-town dataset

The comparisons are based on the time (in hours) taken to detect an attack and the number of sensors that trigger the alarms. Here ‘ × ’ represents an attack not
detected

Attack 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time (EPASAD) 0 10 3 16 12 16 32 18 0 0 10 18 4 10

Time (PASAD) 0 × 4 17 10 14 26 × 22 0 10 52 4 17

Count (EPASAD) 6 2 10 6 6 5 5 3 8 7 9 6 4 2

Count (PASAD) 6 0 9 6 3 5 5 0 4 6 11 3 3 2

Page 14 of 17Maurya et al. Cybersecurity (2023) 6:28

(AR) methods (Hadžiosmanović et al. 2014) (which we
describe later in the section). A comprehensive survey of
these methods is presented in Urbina et al. (2016).

Along with the univariate process-level detectors, there
are other popular multi-process-level detectors meth-
ods. In Guan et al. (2003), the authors used the K-Means
clustering method along with the algorithms discussed
in Hansen and Mladenović (2001) and named it Y-Mean
clustering method for network intrusion detection. This
method is tested on the KDD99 dataset. In Hu et al.
(2008), the authors applied the AdaBoost algorithm on
the KDD99 dataset and achieved better accuracy with
fewer false alarms. In Nader et al. (2014), the authors
used one-class SVM with kernel PCA to detect attacks in
the Gas Pipeline testbed and water treatment plant (Lich-
man et al. 2013). Further, different studies also use recon-
struction-based deep learning methods (Feng et al. 2017;
Goh et al. 2017; Taormina and Galelli 2018). In Feng
et al. (2017), the authors combined the Long Short-Term
Memory (LSTM) network with a bloom filter to detect
the malicious traffic in the gas pipeline SCADA data-
set. In Goh et al. (2017), the authors predicted the next
measurement using the LSTM and checked both positive
and negative deviation from actual measurement, vali-
dating the method on water treatment testbed datasets.
Similarly, in Taormina and Galelli (2018), the authors
used the AutoEncoder model to reconstruct a measure-
ment, and if it is found a higher deviation from the actual,
then trigger an alarm. The method is further improved by
using cumulative sum (CUSUM). In Aoudi and Almgren
(2020), authors leveraged multivariate SSA and proposed
MPASAD, where the main objective was to develop a
computationally efficient approach. In Dutta et al. (2021),
the authors developed a multivariate IDS using a robust
PCA-based dimensionality reduction method.

A process-level IDS is categorized in two categories, the
univariate (independent IDS for each sensor variables)
(Aoudi et al. 2018; Shoukry et al. 2015; Hadžiosmanović
et al. 2014; Aoudi and Almgren 2021) and multivariate
(an IDS model takes input from the multiple sensor vari-
ables) (Guan et al. 2003; Hansen and Mladenović 2001; Hu
et al. 2008; Nader et al. 2014; Feng et al. 2017; Goh et al.
2017; Taormina and Galelli 2018; Aoudi and Almgren
2020; Dutta et al. 2021). In Garcia et al. (2017), the authors
developed a PLC rootkit that can corrupt the communica-
tion route between sensors and SCADA. An attacker can
compromise a few communication channel and manipu-
late them accordingly to misclassify the structural changes
in any other sensors as well. In Erba et al. (2020); Biggio
and Roli (2018), the authors used this concept to construct
an evasion attack against multivariate detectors (Feng et al.
2017; Goh et al. 2017; Taormina and Galelli 2018). On
other hand, an univariate detectors are independent model

for each sensor. Manipulating a few sensor measurements
cannot evade any other univariate IDS model.

There are four univariate process-level-based detectors
methods: LDS methods, AR methods, PASAD and PADS.
In Urbina et al. (2016), the authors survey and explain
a model that uses the LDS method with a time delay to
detect the pH water level using SWaT testbed (Mathur
and Tippenhauer 2016). In Cardenas et al. (2011), the
authors created several TE process attacks and used
LDS together with non-parametric CUSUM statistics.
In Shoukry et al. (2015), the authors used the model
together with χ2 anomaly detection technique to extend
it for various kinds of sensor variables named it PyCRA.
These LDS-based methods are challenging to build. They
need a detailed description of process variable that may
not always be available (Feng et al. 2017; Kiss et al. 2015).
In Hadžiosmanović et al. (2014), the authors leveraged
auto-regressive model with Shewhart control limits on
time series extracted from the Modbus PLC traffic, eval-
uated their approach on two water treatment testbed
datasets. The result of this method is compared with the
PASAD in Aoudi et al. (2018). The authors found that the
AR model fails to detect the SAs and delay detecting the
DDA; hence PASAD is found more substantial to detect
those attacks. In Aoudi and Almgren (2021), the authors
present another univariate framework called PADS,
which uses departure score of PASAD to classify an
alarm in two categories, weak alarm and actionable alarm
using two thresholds setting. This framework determines
a higher threshold that classifies the alert as an actionable
alert. It reduces the frequency of false alarms also recall.
Similarly, for weak alert, it increases the false alarm rate
as well as recall. Hence, it is difficult to compare the
results with this framework. Since EPASAD is improving
the departure score of PASAD can improve PADS as well.

In summary, two major categories of process-level IDSs
are classified- univariate and multivariate. Multivari-
ate IDSs suffer from the vulnerability of evasion attacks,
while the independent nature of univariate makes them
secure. We find four univariate detector methods (Aoudi
et al. 2018; Shoukry et al. 2015; Hadžiosmanović et al.
2014; Aoudi and Almgren 2021) where PASAD is the
most accurate and efficient univariate process-level
data-driven method to detect attacks in critical infra-
structures, therefore we consider PASAD for baseline
comparison. Our proposed method EPASAD improves
the performance without hurting its any strengths. The
detailed comparison of EPASAD with PASAD and other
baseline methods by using two popular benchmark
shows that the proposed method EPASAD is more accu-
rate than PASAD, and it detects attacks that PASAD fails
to detect.

Page 15 of 17Maurya et al. Cybersecurity (2023) 6:28

Discussion and conclusion
The CIs are vulnerable to cyber-attacks, primarily due
to the importance of CIs to the nation and society. In
a world full of threats, attackers successfully breach
the many tiers of CI security. This research presents a
last-layer security solution called EPASAD framework
to detect an attack after an attacker has successfully
evaded all network security and begun harming the CIs.
EPASAD is a univariate, light-weighted, process-level,
non-parametric, data-driven, and model-free attack
detection framework, that is motivated to detect even
tiny structural changes hidden within the noise margin of
a process variable. To validate the EPASAD framework,
we introduce a MSA scenario, which is extremely dif-
ficult to detect by any available methods, but EPASAD
efficiently detects it. EPASAD detects quickly every other
attack scenario considered for validation and significantly
improves the performance of PASAD without any addi-
tional computational overhead. We summarize the fol-
lowing six essential strengths of EPASAD based on our
experiments on various attack scenarios and available
literature:

• EPASAD quickly detects an attack EPASAD aims to
detect even tiny structural changes in the normal
behavior of the sensor and detect even MSA attack
at the very initial stages (cf. Fig. 4). Based on the
experiments performed, EPASAD improves the per-
formance of detecting the attacks in all attack sce-
narios, including seven of TE-dataset and fourteen
of C-town dataset (cf. “Experiments and results” sec-
tion). In a most unlikely scenario, when the signal
space is equally distributed across each dimensions,
EPASAD can still learn a uniformly tight n-spherical
decision boundary. Thus, EPASAD’s performance
will always be better than PASAD.

• EPASAD also works under noisy environment In Mo
and Sinopoli (2015), the authors highlighted the criti-
cal problem of making the unrealistic assumption
that the system model is noiseless. A noisy environ-
ment can cause severe problems for a non-robust
IDS. An attacker can hide their malicious manipu-
lations within the noise, and the noisy environment
causes lots of false alarms. Our proposed method,
EPASAD, is based on a well-known robust time
series tool called SSA. The SSA is suitable to capture
the skeleton of deterministic pattern from a noisy
time series that makes EPASAD robust enough to
work even in a noisy environment (cf. Chapter 6 of
Elsner and Tsonis 2013).

• EPASAD is realistic to build and deploy EPASAD is
a non-parametric and purely data-driven framework

that does not need prior knowledge of the system or
the family of the probability distribution of the time
series data. Hence we have not used any prior knowl-
edge of sensors measurement distribution to model
EPASAD in our experiment (cf. “Experiments and
results” section).

• EPASAD is computationally efficient EPASAD
is developed to deploy over real-time CI, which
requires processing the streaming measurement.
EPASAD is a light-weight framework that produces
a decision for measurement in linear time complexity
of O(L) in order of lagged vector. EPASAD is tested
on a ‘Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz’
machine with ‘64-bit Ubuntu 16.04 LTS’ operating
system and ‘16 GB’ RAM. EPASAD takes 3.6 and
3.0 µsec to generate one result for TE-dataset and
C-town datasets, respectively.

• EPASAD is secure against evasion attack In Garcia
et al. (2017), the authors developed a PLC rootkit
that can corrupt the communication route between
sensors and SCADA. An attacker can compromise a
few communication channels and manipulate them
accordingly to hide the structural changes in the
normal behavior of any other sensors. In Erba et al.
(2020); Biggio and Roli (2018), the authors used this
concept to construct an evasion attack against mul-
tivariate detectors (Feng et al. 2017; Goh et al. 2017;
Taormina and Galelli 2018). In the case of univariate
IDS, each sensor is independently modeled. Manipu-
lating a few sensor variables cannot affect any other
univariate IDS model. Hence univariate IDS are safer
against evasion attacks.

• EPASAD generates a low false alarm rate unlike any
other nonuniform decision boundary-based model
in which low margin sides are volatile to raise a false
alarm. EPASAD is motivated to learn a uniform deci-
sion boundary, and adding a small slack-value pro-
vides a margin of error without compromising accu-
racy. As a result, EPASAD generated only 3.70% false
alarm (cf. Table 2) while testing it for nine months.

Identifying the structural changes in time series data is
a classical problem that is useful for detecting irregular-
ities and attacks in a wide range of applications such as
an automated vehicle, robotics, UAVs, IoT, etc. Improv-
ing the performance of detecting the structural changes
in a time series data can also enhance the other appli-
cations that will be developed in the future. In addition
to using EPASAD in other domains, we would like to
extend it as a multivariate model, which can be com-
putationally more suitable for large sensor-connected
networks.

Page 16 of 17Maurya et al. Cybersecurity (2023) 6:28

Acknowledgements
We thank to the C3iHub (Technology Innovation Hub on CyberSecurity and
Cyber Security for Cyber-Physical Systems) at IIT Kanpur for partially support-
ingthis research project.

Author contributions
Every author has contributed to the manuscript. All authors readand approved
the final manuscript.

Availability of data and materials
The data and material of this study are partially available public dataset and
partially generated by authors. They are available from the corresponding
author upon reasonable request.

Declarations

Competing interests
All the authors declare that they have no competing interests.

Received: 5 December 2022 Accepted: 3 May 2023

References
Aoudi W, Almgren M (2020) A scalable specification-agnostic multi-sensor

anomaly detection system for IIoT environments. Int J Crit Infrastruct Prot
30(1–8):100377

Aoudi W, Almgren M (2021) A framework for determining robust context-
aware attack-detection thresholds for cyber-physical systems. In: 2021
Australasian computer science week multiconference. ACM, Dunedin,
New Zealand, pp 1–6

Aoudi W, Iturbe M, Almgren M (2018) Truth will out: departure-based process-
level detection of stealthy attacks on control systems. In: ACM SIGSAC
conference on computer and communications security. ACM, Toronto,
Canada, pp 817–831

Biggio B, Roli F (2018) Wild patterns: ten years after the rise of adversarial
machine learning. Pattern Recogn 84:317–331

Broomhead D, King G (1986) Extracting qualitative dynamics from experimen-
tal data. Phys D 20(2–3):217–236

Cardenas A, Amin S, Lin Z, Huang Y, Huang C, Sastry S (2011) Attacks against
process control systems: risk assessment, detection, and response. In:
6th ACM symposium on information, computer and communications
security. ACM, Hong Kong, pp 355–366

CSIS: Significant cyber incidents (2022), https:// www. csis. org/ progr ams/
strat egic- techn ologi es- progr am/ signi ficant- cyber- incid ents, accessed:
03/04/2022

Di Pinto A, Dragoni Y, Carcano A (2018) Triton: the first ICS cyber attack on
safety instrument systems. In: Proc. Black Hat USA, vol. 2018. Black Hat,
USA, pp 1–26

Dong Q, Yang Z, Chen Y, Li X, Zeng K (2017) Anomaly detection in cognitive
radio networks exploiting singular spectrum analysis. In: International
conference on mathematical methods, models, and architectures for
computer network security. Springer, Springer, Warsaw, Poland, pp
247–259

Downs J, Vogel E (1993) A plant-wide industrial process control problem.
Comput Chem Eng 17(3):245–255

Dutta A.K, Mukhoty B, Shukla S.K (2021) Catchall: a robust multivariate intru-
sion detection system for cyber-physical systems using low rank matrix.
In: Proceedings of the 2th Workshop on CPS &IoT security and privacy,
pp 47–56

Elsner J, Tsonis A (2013) Singular spectrum analysis: a new tool in time series
analysis. Springer Science & Business Media, New York USA

Erba A et al (2020) Constrained concealment attacks against reconstruction-
based anomaly detectors in industrial control systems. In: Annual com-
puter security applications conference. ACM, Austin, USA, pp 480–495

Falliere N, Murchu L, Chien E (2010) W32.Stuxnet dossier. Tech. rep., White
paper, Symantec Corp., Security Response

Feng C, Li T, Chana D (2017) Multi-level anomaly detection in industrial control
systems via package signatures and LSTM networks. In: 47th Annual
IEEE/IFIP international conference on dependable systems and networks
(DSN). IEEE, Denver, US, pp 261–272

Gao X, Hou J (2016) An improved SVM integrated GS-PCA fault diagnosis
approach of Tennessee Eastman process. Neurocomputing 174(Part
B):906–911

Garcia L, Brasser F, Cintuglu M, Sadeghi A, Mohammed O, Zonouz S (2017) Hey,
my malware knows physics! attacking PLCs with physical model aware
rootkit. In: NDSS. NDSS, San Diego, USA, pp 1–15

Goh J, Adepu S, Tan M, Lee Z (2017) Anomaly detection in cyber physical sys-
tems using recurrent neural networks. In: 18th international symposium
on high assurance systems engineering. IEEE, Singapore, pp 140–145

Golyandina N, Korobeynikov A (2014) Basic singular spectrum analysis and
forecasting with R. Comput Stat Data Anal 71:934–954

Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series struc-
ture: SSA and related techniques. CRC Press, Boca Raton, Florida

Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series.
Springer Science & Business Media, Berlin, Germany

Guan Y, Ghorbani A, Belacel N (2003) Y-Means: a clustering method for intru-
sion detection. In: Canadian conference on electrical and computer
engineering. IEEE, Montreal, Canada, pp 1083–1086

Hadžiosmanović D, Sommer R, Zambon E, Hartel P (2014) Through the eye of
the PLC: semantic security monitoring for industrial processes. In: 30th
annual computer security applications conference. ACM, New Orleans,
USA, pp 126–135

Hansen P, Mladenović N (2001) J-Means: a new local search heuristic for mini-
mum sum of squares clustering. Pattern Recogn 34(2):405–413

Hassani H (2010) A brief introduction to singular spectrum analysis. Tech. rep,
Cardiff School of Mathematics

Hu W, Hu W, Maybank S (2008) Adaboost-based algorithm for network intru-
sion detection. IEEE Trans Syst Man Cybern Part B (Cybern) 38(2):577–583

Jeon H, Eun Y (2019) A stealthy sensor attack for uncertain cyber-physical
systems. IEEE Internet Things J 6(4):6345–6352

Kiss I, Genge B, Haller P (2015) A clustering-based approach to detect cyber
attacks in process control systems. In: 13th international conference on
industrial informatics. IEEE, Cambridge, UK, pp 142–148

Kovacevic A, Nikolic D (2015) Cyber attacks on critical infrastructure: review
and challenges. In: Handbook of research on digital crime, cyberspace
security, and information assurance, pp 1–18

Lee R, Assante M, Conway T (2016) Analysis of the cyber attack on the Ukrain-
ian power grid. Electr Inf Sharing Anal Center (E-ISAC) Defense Use Case
388:1–29

Lee RM, Assante MJ, Conway T (2014) German steel mill cyber attack. Ind
Control Syst 30(62):1–15

Liang G, Zhao J, Luo F, Weller SR, Dong ZY (2016) A review of false data
injection attacks against modern power systems. IEEE Trans Smart Grid
8(4):1630–1638

Lichman M et al (2013) UCI machine learning repository. http:// archi ve. ics. uci.
edu/ ml

Mathur A, Tippenhauer N (2016) SWaT: a water treatment testbed for research
and training on ICS security. In: International workshop on cyber-physical
systems for smart water networks (CySWater). IEEE, Vienna, Austria, pp
31–36

Mo Y, Sinopoli B (2015) On the performance degradation of cyber-physical
systems under stealthy integrity attacks. IEEE Trans Autom Control
61(9):2618–2624

Mohammad Y, Nishida T (2011) On comparing SSA-based change point
discovery algorithms. In: IEEE/SICE international symposium on system
integration (SII). IEEE, Kyoto, Japan, pp 938–945

Moskvina V, Zhigljavsky A (2003) Change-point detection algorithm based on
the singular-spectrum analysis. Commun Stat Simul Comput 32:319–352

Nader P, Honeine P, Beauseroy P (2014) lp-norms in one-class classification for
intrusion detection in SCADA systems. IEEE Trans Ind Inf 10(4):2308–2317

Shoukry Y, Martin P, Yona Y, Diggavi S, Srivastava M (2015) PyCRA: physical
challenge-response authentication for active sensors under spoofing
attacks. In: 22nd ACM SIGSAC conference on computer and communica-
tions security. ACM, Denver, USA, pp 1004–1015

Smith RS (2015) Covert misappropriation of networked control systems: pre-
senting a feedback structure. IEEE Control Syst Mag 35(1):82–92

https://www.csis.org/programs/strategic-technologies-program/significant-cyber-incidents
https://www.csis.org/programs/strategic-technologies-program/significant-cyber-incidents
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Page 17 of 17Maurya et al. Cybersecurity (2023) 6:28

Stouffer K, Pillitteri V, Lightman S, Abrams M, Hahn A (2015) Guide to indus-
trial control systems (ICS) security–Rev. 2. Tech. Rep. 82, NIST Special
Publication

Taormina R, Galelli S (2018) Deep-learning approach to the detection and
localization of cyber-physical attacks on water distribution systems. J
Water Resour Plan Manag 144(10):04018065 (1–15)

Taormina R, Galelli S, Tippenhauer N, Salomons E, Ostfeld A (2017) Character-
izing cyber-physical attacks on water distribution systems. J Water Resour
Plan Manag 143(5):04017009 (1–12)

Taormina R et al (2018) Battle of the attack detection algorithms: disclos-
ing cyber attacks on water distribution networks. J Water Resour Plann
Manag 144(8):04018048 (1–11)

Teixeira A, Shames I, Sandberg H, Johansson KH (2012) Revealing stealthy
attacks in control systems. In: 2012 50th Annual Allerton conference on
communication, control, and computing (Allerton). IEEE, pp 1806–1813

Terai A, Chiba T, Shintani H, Kojima S, Abe S, Koshijima I (2018) Intrusion
detection method for industrial control systems using singular spectrum
analysis. WIT Trans Eng Sci 121:197–208

Urbina D, Giraldo J, Cardenas A, Valente J, Faisal M, Tippenhauer N, Ruths J,
Candell R, Sandberg H (2016) Survey and new directions for physics-
based attack detection in control systems. Tech. rep., National Institute of
Standards and Technology

Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics,
with applications to paleoclimatic time series. Phys D 35(3):395–424

Zheng X, Julien C, Kim M, Khurshid S (2015) Perceptions on the state of the
art in verification and validation in cyber-physical systems. IEEE Syst J
11(4):2614–2627

Zhu J, Ge Z, Song Z (2017) Distributed parallel PCA for modeling and monitor-
ing of large-scale plant-wide processes with big data. IEEE Trans Industr
Inf 13(4):1877–1885

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	EPASAD: ellipsoid decision boundary based Process-Aware Stealthy Attack Detector
	Abstract
	Introduction
	Background
	Singular spectral analysis (SSA)
	PASAD

	Attack model
	Direct damage attack (DDA)
	Stealthy attack (SA)
	Micro stealthy attack (MSA)

	Proposed framework: EPASAD
	Training of EPASAD framework
	Assumptions
	Step 1: generate normal cluster
	Step 2: finding centroid
	Step 3: learning ellipsoid decision boundary
	Step 4: set threshold

	Testing EPASAD framework
	Computation cost

	Validation datasets
	The Tennessee-Eastman process dataset (TE-dataset)
	Micro-stealthy attack (MSA)
	Stealthy attack (SA)
	Direct damage attack (DDA)

	C-town dataset

	Experiments and results
	Experiment on TE-dataset
	Experiment on C-town dataset
	Parameter selection

	Related works
	Discussion and conclusion
	Acknowledgements
	References

