
Liu et al. Cybersecurity (2023) 6:45
https://doi.org/10.1186/s42400-023-00164-x

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

A buffer overflow detection and defense
method based on RISC-V instruction set
extension
Chang Liu1,2 , Yan‑Jun Wu1,3*, Jing‑Zheng Wu1,3 and Chen Zhao1,3

Abstract

Buffer overflow poses a serious threat to the memory security of modern operating systems. It overwrites the con‑
tents of other memory areas by breaking through the buffer capacity limit, destroys the system execution environ‑
ment, and provides implementation space for various system attacks such as program control flow hijacking. That
makes it a wide range of harms. A variety of security technologies have been proposed to deal with system security
problems including buffer overflow. For example, No eXecute (NX for short) is a memory management technology
commonly used in Harvard architecture. It can refuse the execution of code which residing in a specific memory,
and can effectively suppress the abnormal impact of buffer overflow on control flow. Therefore, in recent years,
it has also been used in the field of system security, deriving a series of solutions based on NX technology, such
as ExecShield, DEP, StackGuard, etc. However, these security solutions often rely too much on the processor archi‑
tecture so that the protection coverage is insufficient and the accuracy is limited. Especially in the emerging system
architecture field represented by RISC‑V, there is still a lack of effective solutions for buffer overflow vulnerabilities.
With the continuous rapid development of the system architecture, it is urgent to develop defense methods that are
applicable to different system application environments and oriented to all executable memory spaces to meet
the needs of system security development. Therefore, we propose BOP, A new system memory security design
method based on RISC‑V extended instructions, to build a RISC‑V buffer overflow detection and defense system
and deal with the buffer overflow threat in RISC‑V. According to this method, NX technology can be combined
with program control flow analysis, and NX bit mechanism can be used to manage the executability of memory
space, so as to achieve a more granular detection and defense of buffer overflow attacks that may occur in RISC‑V
system environment. In addition, The memory management and control function of BOP is not only very suitable
for solving the security problems in the existing single architecture system, but also widely applicable to the combina‑
tion of multiple heterogeneous systems.

Keywords RISC‑V, Operating system security, Buffer overflow, Control flow hijacking, NX bit, Xibop

*Correspondence:
Yan‑Jun Wu
yanjun@iscas.ac.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00164-x&domain=pdf
http://orcid.org/0000-0002-3439-2167

Page 2 of 16Liu et al. Cybersecurity (2023) 6:45

Graphical abstract

Introduction
Buffer overflow attack (One 1996) is a typical attack
method to threaten the memory security of operating
system. By making use of the loopholes such as bound-
ary check lacking in the source program written by the
memory insecure language, it can break through the
buffer capacity limit, cover the data content in other
memory regions, and then destroy the integrity and cor-
rectness of a program. Due to low implementation diffi-
culty and convenient operation, buffer overflow attacks
have developed rapidly, and their influence and harmful-
ness have become increasingly prominent. According to
the statistics of China National Vulnerability Database
of Information Security (CNNVD for short) (CNNVD
2022), in all the 12 months of 2022, the total number of
security vulnerabilities has exceeded 24,800, including
more than 2600 buffer errors, accounting for more than
10% (Table 1). The buffer overflow attack has the charac-
teristics of rewriting the memory content, which makes
it widely used in attacks such as program control flow
hijacking, and further increases the security threat to the
system. For example, the return oriented programming
(ROP) attack uses the buffer overflow to cover the correct
function return address information, hijacks the con-
trol flow and jumps to the code fragment designated by
the attacker when the program executes function return
codes, thus completing the malicious operation(Wang
et al. 2019). Therefore, academia and industry have been
actively looking for effective methods to deal with buffer
overflow attacks, so as to curb and mitigate the adverse
impact of buffer overflow on system security as much as
possible.

In attack scenarios such as program control flow hijack-
ing, the main goal of buffer overflow attack is to guide the
control flow to the incorrect code for execution. These
codes are located outside the Control Flow Graph (CFG
for short). Some are external malicious codes prepared
by attackers, which will break the system from normal
work flow after execution and act directly according to
the attacker’s intentions, such as code injection attacks
(Pan et al. 2021). Some codes that exist in the system but
should not be executed, they will cause the system to
process program data incorrectly after execution, such

Table 1 CNNVD vulnerability statistics (2022)

a The monthly report of this month has not been published. The data of this
month is the approximate value accumulated from all weekly reports of this
month, and the cumulative range is from January 31, 2022 to February 27, 2022

No Month Collection Buffer Errors Percentage
(%)

Rank in all
Error Types

1 2022.12 2173 248 11.41 2

2 2022.11 1922 167 8.69 2

3 2022.10 2001 265 13.24 1

4 2022.9 2133 325 15.24 1

5 2022.8 2240 291 12.99 1

6 2022.7 1924 215 11.17 1

7 2022.6 2346 197 8.40 3

8 2022.5 2204 195 9.54 2

9 2022.4 2098 190 9.06 3

10 2022.3 2065 208 10.07 2

11 2022.2 1726 105 6.08 a

12 2022.1 2054 210 10.22 3

Total 24,886 2616 10.51

Page 3 of 16Liu et al. Cybersecurity (2023) 6:45

as code reuse attack (Zhao et al. 2021). In this regard,
some defense methods based on non executable mem-
ory have been proposed. For example, OpenBSD imple-
mented the W ^ X mechanism (Wikipedia 2022) in 2003,
so that every page in the address space of a process or
kernel space cannot be writable and executable at the
same time. Red Hat put forward the defense mechanism
Exec Shield (Molnar 2003) for Linux system in 2004 and
it has been used ever since. The Exec Shield divides the
memory space of a process into executable and non exe-
cutable segments. It uses the Segment Limit Approach
to approximately separate the read and execution per-
missions to ensure that the return address only points
to trusted code. Microsoft also designed a "Data Execu-
tion Prevention" (DEP for short) security mechanism for
Windows system (Gao et al. 2013). DEP tracks and moni-
tors the portion of system memory which used to store
instructions, and when an application program attempts
to execute in a memory area which has been designated
as non-executable, closes it and issues a notification.

However, the existing solutions rely heavily on the
hardware environment and system characteristics, which
limits their protection scope. For example, Exec Shield is
designed for × 86 architecture, and the segment restric-
tion method it depends is also a fuzzy feature of Intel
processor; DEP is only applicable to Windows platforms,
and Intel has also developed Execute Disable Bit (EDB
for short) memory protection technology for their pro-
cessors to coordinate and support the implementation of
DEP functions. Without × 86 architecture and Intel pro-
cessors, these security solutions will be powerless. There-
fore, for many non- × 86 operating systems, we still need
to continue to explore new ways to eliminate threats. In
order to achieve this goal, researchers have started some
new attempts, combining other technologies (such as
StackGuard and SSP (Cowan, et al. 1998)) or adopting
new technology application methods (such as CHERI
(Davis et al. 2019)), but there are also problems such as
limited application scenarios or ease of use, and there is
still room for improvement.

RISC-V is a new open source RISC architecture that
conforms to the design requirements and architecture
development trend of modern information systems.
Because of its characteristics of openness, freedom, light
weight, convenience, low cost of learning and promo-
tion, strong portability and customization, it is highly
suitable for emerging intelligent devices and a variety
of intelligent scenarios. In recent years, it has gradually
become a major research hotspot in the field of system
architecture, and is expected to become the mainstream
choice for customizing the next generation operating sys-
tem. However, the operating systems based on RISC-V
architecture also face security challenges such as buffer

overflow and control flow hijacking. Developing the
RISC-V architecture oriented system memory security
defense technology is the inevitable course to promote
the further development of RISC-V architecture.

To this end, we have done the followings:

1. We analyzed the characteristics of existing security
schemes, and summarizes the relevant key points
and basic design ideas of system memory security
defense in RISC-V architecture based on the require-
ments of RISC-V architecture itself.

2. We designed a set of RISC-V memory security
related instructions, which is called the Xibop exten-
sion. Based on this extension, a buffer overflow
detection and defense system for RISC-V architec-
ture is proposed, which is called BOP method.

3. Around BOP method, we also discussed the possibil-
ity of supporting multiple security mechanisms and
establishing RISC-V memory security defense sys-
tem. By using the BOP method, we can fully leverage
the advantages of RISC-V architecture and achieve
better software hardware collaboration when deal
with security problems.

The content of this paper is arranged as follows:
Sect. "Introduction" introduces the buffer overflow secu-
rity challenges faced by RISC-V architecture; "Research
background" analyzes some existing buffer overflow
prevention methods; Sect. "Memory security in RISC-V
architecture" briefly summarizes the basic idea of RISC-
V architecture for memory security defense; Sect. "Xibop
instruction set extension for RISC-V memory secu-
rity" focuses on the Xibop instruction set extension;
Sect. "BOP Method and its Implementation" discusses
the specific implementation of the BOP method in the
system; Sect. "Discussion" discusses the further work
required for BOP method to support multiple security
mechanisms and establish RISC-V memory security sys-
tem; Sect. "Conclusion" summarizes the full text.

Research background
In order to suppress the buffer overflow attacks that sys-
tem may encounters, the academic and industrial circles
have put forward a variety of coping technologies and
measures, including the use of memory non-executable
(NX for short) attribute, Address Space Layout Rand-
omization (ASLR for short), Canary, and Control Flow
Integrity (CFI for short). Among them, using memory
non-executable attribute is a typical technology that
appeared earlier and has been developed and practiced
in a variety of specific systems. The memory security
schemes, including Exec Shield, DEP, etc., all use NX
as their technical basis, but all depend on the specific

Page 4 of 16Liu et al. Cybersecurity (2023) 6:45

hardware environment or system features.In addition,
there are also some efforts (StackGuard, SSP, CHERI,
etc.) to adopt other technologies or technology appli-
cation methods. Although they need to be improved,
they have also played a certain role in the follow-up
exploration.

Exec shield
Exec Shield (Molnar 2003) is a security technology for
Linux x86 kernel, which was disclosed by Red Hat in
2004 to prevent stack, buffer or function pointer over-
flow. In the x86 architecture, there is no difference in the
permissions to read or execute code from a part of mem-
ory, as a result, Exec Shield needs to distinguish between
the two. So Exec Shield tracks the executable mapping
specified by the application, and maintains a "maximum
executable address" value based on this, forming a "seg-
ment limit", thus dividing the memory address into an
executable and a non-executable parts, approximately
separating the read and execute permissions (Fig. 1). By
this setting, ensure that all program codes are on the
low address side of the limit, and all data are on the high
address side; When the program violates the execution
authority and crosses the segment limit, a segmentation
error will be triggered to terminate.

The "one size fits all" approach of Exec Shield makes
its defense effect completely depend on whether the
"segment limit" is properly selected. The memory area
near its boundary may lose protection due to inaccurate
estimation of "segment limit". In addition, this practice
requires that the memory layout must be arranged in
strict accordance with the rule of "executable code at low
address, data and other content at high address", which
has a serious dependency on the system itself, even hard-
ware, and limits the application scope of Exec Shield.

DEP
DEP (Gao et al. 2013) is a data execution protection ser-
vice developed by Microsoft for the Windows platform to
prevent the execution of malicious inserted code. In the
"Help and Support" function of Windows system, we can
find Microsoft’s official description of DEP:

Data Execution Protection (DEP) is a security feature
that helps to protect your computer from viruses and
other security threats. Harmful programs may attack
Windows by attempting to run (also known as "execute")
code reserved in the computer’s memory for Windows
and other authorized programs. These types of attacks
can damage your programs and files.

DEP can help to protect your computer by monitor-
ing programs to ensure that they use computer memory
safely. If DEP notices that a program on your computer
is using incorrect memory, it will close the program and
notify you.

In actual operation, DEP marks the memory location
which only contains data as NX (non-executable); If an
application attempts to execute code from a memory
location marked NX, it will be blocked by DEP to achieve
protection. In terms of implementation, the Windows
system automatically adds a group of special pointers to
the data objects stored in the memory on the software
level, and the EDB memory protection technology devel-
oped by Intel processor is used to cooperate on the hard-
ware level.

DEP has a good defense effect when against code
injection type attacks; However, because only data is
protected, it is easy to be bypassed by code reuse type
attacks. Also, the buffer overflow protection provided by
DEP has some side effects, that is, the affected applica-
tions are often suspended. Frequent triggering may lead
to other types of attacks, such as denial of service attacks.

StackGuard and SSP
StackGuard (Cowan et al. 1998) is a specific memory pro-
tection mechanism provided by GCC compiler, which
uses Canary technology to protect stack security. Canary
is a small special character set between the buffer and
control information such as EBP. When a buffer overflow
occurs, this character will be overwritten and destroyed
first, as shown in Fig. 2. Therefore, it is only necessary to
detect whether the value of Canary has changed before
the jump execution to determine whether an overflow
has occurred.

Fig. 1 Memory layout of exec shield process
Fig. 2 Principle of Canary technology (Cowan et al. 1998)

Page 5 of 16Liu et al. Cybersecurity (2023) 6:45

SSP (Stack Smashing Protection) is a further develop-
ment of StackGuard. It strengthens the storage security
of Canary words and provides a variety of methods to
generate Canary words. But in principle, it is similar to
StackGuard.

As its name describes, StackGuard and SSP only pro-
tect against stack overflow and do not pay special atten-
tion to heap space and other overflow problems. In
addition, if the area where the Canary word is located is
managed to bypass (such as writing out of bounds), or
the Canary value is disclosed, the defense effect of the
application cannot be achieved.

mprotect
mprotect is a system call provided by the Linux operat-
ing system to set the protection properties of a memory
region. When a user wants to modify a protection prop-
erty (readability, writability, executability, etc.) of a mem-
ory region, he can specify the starting address addr of
the corresponding memory page for the region, the total
length len from addr to region ending, and the property
value prot. And then, call mprotect(addr, len, prot) to
complete the modification. The description of the sys-
tem call can be found in the official Linux documenta-
tion through the Linux system command man mprotect
(Fig. 3).

The document states that the starting address of the
region protected by mprotect must be aligned to a certain

page boundary, so it cannot accurately specify a memory
region at any location for protection. In addition, as a sys-
tem call, mprotect can only function on Linux systems,
and cannot be directly used in other non-Linux system
environments.

CHERI
CHERI (Davis et al. 2019) is a system security research
jointly completed by Cambridge University, Stanford
Research Institute and other institutions. It aims to
achieve fine-grained memory protection and highly scal-
able software partitioning, and significantly improve
system security. CHERI proposes a hardware supported
data format "architecture capability" for representing
integers and pointers in memory insecure languages,
and protecting underlying data addresses. "Capability"
consists of an integer address and a same size metadata,
and is associated with a 1-bit validity tag in a register or
memory (Fig. 4). Base on the content of the metadata and
the validity tag, hardware can then control the operations
to the address so that the security can be guaranteed.

However, in order to support its new concept of
abstract capabilities, it involves the adjustment and mod-
ification of a variety of software and hardware, and there
is still much room for improvement in ease of use and
other aspects.

Fig. 3 Extract from the official document of system call mprotect

Page 6 of 16Liu et al. Cybersecurity (2023) 6:45

PMP
Physical Memory Protection (PMP) is a fundamental
security mechanism introduced by the RISC-V Privileged
Instruction Set Specification (Waterman et al. 2023). It is
used to limits the physical addresses which are accessi-
ble by software running in hardware threads (harts). PMP
combines an 8-bit configuration register (pmpcfg) and
an MXLEN bit1 address register (pmpaddr) into a PMP
entry to record and manage the protection properties of a
physical memory region. The A field of the configuration
register (Fig. 5) specifies a method that determines the
physical memory address range to be protected through
the corresponding address register.

PMP is a relatively basic protection measure applied to
physical addresses, so it often requires preparation work
such as address translation and entering the M privilege
level in advance. Moreover, PMP requires that the pro-
tected memory addresses must be physically continuous.
These all imply the feature that PMP may need to be used
in conjunction with other processing logic.

Memory security in RISC‑V architecture
Main features
RISC-V is a new RISC architecture. Compared with other
existing architectures, RISC-V has its unique features in
memory security problems.

First of all, RISC-V, as an emerging architecture, lacks
enough mature hardware and software security solutions

to match it. This shows, on the one hand, that solving the
memory security problem in RISC-V often requires start-
ing from scratch, with considerable space for technology
implementation; On the other hand, it also means that
to solve the RISC-V memory security problem, it is usu-
ally necessary to comprehensively consider the require-
ments and capabilities of both software and hardware,
and realize the defense scheme with software-hardware
collaboration.

Secondly, RISC-V, as a reduced instruction set archi-
tecture, has the advantages of controllable cost, port-
ability and customization, and has good applicability in
heterogeneous, modular, functional specialization and
other application scenarios. Therefore, systems based
on RISC-V architecture may have multiple memory
environments, that are significantly different in address
space size, growth direction, available addressing meth-
ods, segment distribution, address read/write/executable
characteristics, and supported permission modes, and
are prone to expose a larger attack surface. Due to this
reason, the memory security defense scheme of RISC-V
is required to be either universal to a certain extent, or
comprehensive with multiple specific mechanisms for
various memory environments, with sufficient hierarchy
or multi-dimensional property.

In addition, RISC-V, as a reduced instruction set archi-
tecture, has stronger regularity in its instructions. It
has strict specifications in instruction format, instruc-
tion alignment, etc., which greatly reduces the design
complexity of hardware support, improves the decod-
ing efficiency, and reduces the time, space, and energy

Fig. 4 128‑bit capability for 64‑bit address in CHERI (Watson et al. 2019). The permissions(perms), object type(otype), and authorization
bounds(bounds) are jointly formed the metadata part of this capability

Fig. 5 The structure of RISC‑V PMP configuration register (Waterman et al. 2023). The R, W, and X fields indicate the readability, writability,
and executability settings of the target address, respectively. The A field indicates the address matching mode, and the L field indicates
whether the PMP entry is locked and becomes not writable

1 A generic representation of the register bit width under M privilege level.
This can be 32 or 64 bits depending on the actual situation.

Page 7 of 16Liu et al. Cybersecurity (2023) 6:45

costs when completing instruction functions. On the one
hand, it simplifies the specific implementation of RISC-V
defense scheme to a certain extent, while it also implies
a layer of constraint: the implementation of RISC-V
defense scheme should be as consistent as possible with
the original style of the system; On the other hand, when
it is really necessary, RISC-V’s energy efficiency features
can be used to balance the negative impact of inefficient
solutions that other architectures usually can’t bear, mak-
ing the design and implementation of RISC-V defense
solutions more optional.

At the same time, RISC-V will also show some com-
monalities with other architectures in some aspects when
dealing with memory security threats. For example, the
basic principle of buffer overflow attack is to illegally
overwrite other data by breaking the buffer capacity
limit. Therefore, whether in RISC-V or other architec-
tures, buffer boundary must be one of the key points of
defense. This commonality makes the design of RISC-V
memory security defense scheme still able to draw inspi-
ration from similar schemes of existing architectures and
absorb some of their advantages for own use.

Basic ideas
According to the main characteristics of the memory
security issues in RISC-V architecture above, the RISC-V
memory security defense scheme can have the following
basic design ideas:

1. Based on the characteristics of RISC-V architecture
itself, and with RISC-V instruction set as the link, to
design the defense scheme of software-hardware col-
laboration from both the software and the hardware
sides together.

2. The method of combining multiple security mecha-
nisms is adopted to design and implement a multi-
dimensional defense scheme from several different
levels for various memory environments that may
exist in the target system.

3. Prefer the design based on RISC-V’s native character-
istics and keeping the original style of the system, and
use the existing resources and mechanisms of the
system effectively to solve specific security threats.
However, when necessary, different external software
and hardware modules can also be introduced to
support it.

4. On some common problems of memory security,
we can absorb the advantages of similar schemes of
existing architectures and make them fit for RISC-V.

Specifically, the following ideas can be followed
when solving the buffer overflow problem in RISC-V
architecture:

1. According to each time that the threats occur and
develop, deploy targeted defense mechanisms
respectively to form a multi-level comprehensive
software-hardware coordinated defense system. For
example, in the process of program development,
use defensive programming and other means, such as
manually checking the array bounds, to avoid obvi-
ous security risks from the code text level; In the pro-
cess of program compilation and testing, the relevant
tool chain can effectively supervise and control, to
extract the possible overflow threat information and
deal with it; In the program execution phase, RISC-V
security hardware uses a variety of security mecha-
nisms to protect the buffer that may be threatened,
and so on.

2. Based on the RISC-V instruction set specification,
use special custom instructions to constrain the spe-
cific implementation of RISC-V security hardware.
On the one hand, it helps the security defense scheme
to make full use of the native features of RISC-V and
maintain the RISC-V system style. On the other
hand, it provides an unified adaptation method for
different memory environments, which improves the
universality of the security defense scheme. In addi-
tion, the RISC-V tool chain can also be targeted and
optimized accordingly to better achieve software-
hardware collaboration.

Xibop instruction set extension for RISC‑V memory
security
Around the basic ideas proposed in Sect. "Basic ideas",
we hope to build a memory security defense system
based on the RISC-V instruction set, which combines
hardware and software in the RISC-V architecture, to
mitigate the threat of buffer overflow attacks on the
RISC-V architecture. To this end, we designed a set of
RISC-V instructions related to memory security, called
Xibop instruction set extension. The Xibop extension
includes some custom instructions to support various
memory defense methods, such as ALSR (Marco-Gisbert
et al. 2019), Canary (Krerk et al. 2008), O-CFI (Mohan
et al. 2015), etc. In this article, we focus on using the
Xibop extension to implement the defense mechanism of
non-executable memory.

Design overview
Non-executability is a feature of storage media, including
memory, which means that the corresponding content
can only be used for data access, not for code execu-
tion. When existing systems implement this feature, they
often need to maintain special tag data to control the
non-executability of certain memory areas. When a

Page 8 of 16Liu et al. Cybersecurity (2023) 6:45

piece of memory is marked as non-executable, accessing
to any location within the memory range will throw an
exception.

Therefore, the core behavior of the defense mechanism
based on non-executable memory is to mark the non
executable of a specified memory range. To this end, the
Xibop extension introduces the nxset instruction, which
is used to set the non-executability of the target mem-
ory. Depending on the settings, the target memory will
become non-executable or revert to an executable state.

The Xibop extension also introduces the nxcheck
instruction, which is used to detect the executability of
the target memory. This instruction is not necessary, but
it can provide a certain degree of convenience in some
scenarios (such as testing). In addition, in order to facili-
tate application, Xibop also introduces some pseudo
instructions: setnx and clrnx, which are used to turn
on and off the non-executability of the target memory,
respectively, and they will eventually be interpreted as
nxset instructions; setnxr and clrnxr, are respectively
used to enable and clear the non-executability of a con-
tinuous target memory range, and they will eventu-
ally be interpreted as a microprogram containing nxset
instructions.

In the aspect of instruction coding, Xibop extension
uses the R-type encoding format to divide the instruc-
tions into six fields: opcode, rd, funct3, rs1, rs2, and
funct7. The Xibop extension uniformly uses 0101011 as
the opcode (opcode field) of instructions to occupy the
minimum space for custom opcodes; The funct7 field is
used as the instruction identifier to distinguish differ-
ent instruction functions. The rd field, rs1 field and rs2
field represent the parameters of the instruction, which
are respectively the destination register, the first oper-
and register and the second operand register. The funct3

field is used to indicate the type distribution of operands.
However, in the current design, only 32-bit register type
operands are used, so the funct3 field is fixed to 000. As
shown in Fig. 6.

Xibop extension is designed as an XLEN independent
extension, that is, it can work in both RV32 and RV64,
or even RV128 in the future. When it comes to 64-bit
or wider architecture, funct3 field should play a role in
explaining how to use the operands.

For the privilege mode of instructions, Xibop exten-
sion is designed for the non-privilege level use and works
under U mode in principle to achieve the similar effect as
S privilege level. However, when implementation, the M
privilege level can also be used according to actual needs
(for example, in some simple system environments that
do not support the U mode).

Instruction nxset
The nxset instruction of the Xibop extension is used to
set the non-executability of the memory at the specified
address. Its syntax is: nxset rd, rs1, rs2. Among them, rd
is the destination register for storing instruction execu-
tion results, and you can judge whether the non-execut-
able is correctly set according to whether the value of rd
is zero. rs1 is an operand register that stores NX values.
A value of 1 indicates that the target memory is set to be
non-executable, and a value of 0 indicates that the tar-
get memory is set to restore the executability. rs2 is the
operand register that stores the target memory address,
indicating that the corresponding operation will be per-
formed on the address. The encoding format of the nxset
instruction is shown in Fig. 7.

In terms of hardware, the nxset instruction can be
implemented as shown in Fig. 8.

Fig. 6 Encoding format of Xibop extended instructions

Fig. 7 Format of nxset instruction, where opcode is 0101011, indicates that the instruction belongs to Xibop; instruction identify code funct7
is 0000100, means this is a nxset instruction; field funct3 is 000

Page 9 of 16Liu et al. Cybersecurity (2023) 6:45

Instruction nxcheck
The nxcheck instruction provided by Xibop is used to
detect the executability of the target memory. Its syn-
tax is: nxcheck rd, rs1, rs2. Among them, rd is the tar-
get register for storing the target memory’s executability.
We can judge whether the target memory is not execut-
able according to whether the value of rd is 1. rs1 and rs2
are operand registers used to form the target memory
address. Generally, rs1 stores the base address of the tar-
get memory address, while rs2 stores the correspond-
ing address offset. The encoding format of the nxcheck
instruction is shown in Fig. 9.

In terms of hardware, the nxcheck instruction can be
implemented as shown in Fig. 10.

Pseudo instruction setnx and clrnx
The setnx pseudo instruction of the Xibop extension is
used to set the target memory to be non-executable. Its
syntax is: setnx addr. Where addr represents the address

of the target memory. This instruction will be interpreted
as an instruction: nxset rd, 1, addr.

Similarly, the clrnx pseudo instruction of the Xibop
extension is used to set the target memory to be execut-
able. Its syntax is: clrnx addr, and it will be interpreted as
an instruction: nxset rd, 0, addr.

Pseudo instruction setnxr and clrnxr
The setnxr pseudo instruction extended by Xibop
is used to set a continuous target memory range as
non-executable. Its syntax is: setnxr from, to. Where,
from represents the low address boundary of the tar-
get memory range, and to represents the high address
boundary of it. This instruction will be interpreted as a
microprogram in Fig. 11a.

Similarly, the Xibop extended clrnxr pseudo instruc-
tion is used to set a continuous target memory range
as executable. Its syntax is: clrnxr from, to, and will be
interpreted as the microprogram in Fig. 11b.

Fig. 8 An implement method of nxset instruction in RISC‑V security hardware. Left part describes the instruction decoding process. opcode, funct3
and funct7 fields are combined to set the enable signal(en). When enabled, nxval from rs1 will be stored to a place corresponding to the value
of addr‑reg from rs2. res is set according to the execute result and is returned

Fig. 9 Format of nxcheck instruction. similiar with nxset, the opcode is 0101011, which means the instruction belongs to Xibop extended
instruction set; instruction identify code funct7 is 0000101, to tell this is a nxcheck instruction; field funct3 is 000

Page 10 of 16Liu et al. Cybersecurity (2023) 6:45

BOP method and its implementation
Based on the Xibop extension, we propose a buffer
overflow detection and defense system for RISC-V
architecture, called BOP method. This method can be
used to implement specific memory security defense
mechanisms such as those based on No eXecute Bit
(NX bit).

Fig. 10 An implement method of nxcheck instruction in RISC‑V security hardware. Left part describes the instruction decoding process. opcode,
funct3 and funct7 fields are combined to set the enable signal(en). When enabled, read the nxval as result from the store place corresponding
to addr‑reg. If error occurs, nxval will be the error code

Fig. 11 Explanation of setnxr and clrnxr pseudo instructions. Here
". L2" is a jump tag, which may have different names in specific
implementations

Fig. 12 Overall architecture of BOP design

Page 11 of 16Liu et al. Cybersecurity (2023) 6:45

Overall architecture
The BOP method is the synergy of several hardware and
software memory defense mechanisms. Its main idea is
to take targeted defense in turn on multiple links that
may cause memory security threats, and combine all the
memory defense mechanisms to cooperate with each
other. The defense mechanism in each link can not only
complete its own functions, but also provide information
for subsequent links as much as possible to improve the
overall defense capability and efficiency. Figure 12 out-
lines the overall design architecture of the BOP method.

According to actual needs, resource constraints and
other factors, the BOP method can load any security
defense mechanism it supports. As for the defense mech-
anism of non-executable memory, BOP uses NX bit to
control the executability of system memory. NX bit is
a flag bit used to identify the executable permission of
memory space, which is mostly in page table entries. By

manipulating NX bits, program code can be prohibited
or allowed to execute from a specific memory range,
thus constraining the direction of control flow. Figure 13
shows the main workflow of this mechanism.

Support from software side
BOP is a security method based on RISC-V Xibop
extension instruction set. Therefore, compiler, assem-
bler and other tools need to be modified accordingly
so that the method can be correctly recognized and
accepted by the system. A feasible method is to modify
the official tool chain RISCV-GNU-TOOLCHAIN pro-
vided by RISC-V, add the description information of
Xibop extension instructions, and insert BOP related
instructions according to the code characteristics in the
compilation phase, so as to set or clear specific NX bits
as required. Algorithm 1 describes the insertion pro-
cess of the instruction nxset.

Fig. 13 Main workflow of NX bit based non‑executable memory defense mechanism

Page 12 of 16Liu et al. Cybersecurity (2023) 6:45

In this process, the BOP first analyzes the control flow
graph of the program in the compile period, finds out the
code fragments to be protected, such as function jump
(involving the stack space), malloc (involving the heap
space), and determines the memory space associated
with this fragment that should not be executed. BOP will
record the symbols which can describe the boundary of
that memory space first, and update these symbols with
their address value later in the link period. Then, before
entering this segment, insert the nxset instruction to
set the NX bit so that the relevant memory is made not
executable; After exiting the fragment, insert the nxset
instruction to clear the NX bit and restore the executabil-
ity of the relevant memory.

Implement at hardware side
In terms of implementation, the BOP method relies on
an independent security component which contains
BOP modules. The BOP security component is a physi-
cal component used to implement the module, including
related circuit logic such as processing NX mechanisms,
and related parts such as additional registers. This com-
ponent is connected with both the processor and mem-
ory device to detect the memory status and control the
memory access request of the processor at any time. At

the same time, the decoding logic of the processor is
modified to enable it to recognize and execute various
functions of Xibop extended instructions. The specific
transformation method is consistent with the design idea
(Fig. 5, Fig. 7, etc.) mentioned in Chapter 4.

The BOP module is used to implement various BOP
memory security defense mechanisms at the hardware
side. The non-executable memory defense mechanism
mainly involves memory access request filtering, NX bit
management, exception alarm and other functions, as
well as some preprocessing operations. The BOP security
component on which it relies provides the basic isolation
function, and also can be equipped with more self-pro-
tection schemes, like anti-electromagnetic interference
devices, as needed.

During an instruction cycle, the fetching module will
perform a memory access, take the XLEN bit2 length data
from the address pointed to by the PC register, and give it
to the decoding module as an instruction; The decoding
module will decode this instruction, analyze its operation
code, operand, operand type and other information, and
send it to the execution module; The execution module

2 A general representation of the register bit width, which may be 32 or 64
bits depending on the actual situation; This is used to represent fetching
data of the same length as the register bit width at one time.

Page 13 of 16Liu et al. Cybersecurity (2023) 6:45

executes the corresponding operation according to the
operation code, and may access the memory again at
this time. After the introduction of the BOP method, the
memory access requests of the fetching module and the
execution module will first be filtered by the BOP mod-
ule. After confirming that there is no exception in the tar-
get memory address, they will be passed to the memory

access module to complete the normal memory access
process. If the BOP module, by analyzing the mem-
ory access type, querying NX bit and other processing
logic, judges that the program has initiated an incorrect
memory access request and is about to execute the data
content in the non-executable memory, it will block this
memory access request and raise an instruction excep-
tion. This process is shown in Algorithm 2.

In addition, for systems that do not yet support the
NX bit management mechanism, the BOP security com-
ponent will maintain a set of NX registers, simulate the
mapping relationship between memory addresses and
NX bits, and save the values of each NX bit. In this group
of registers, a NX bit can be uniquely identified by its bit
number b and the register number ln where the register
is located; While, there is a specific mapping relation-
ship between (b, ln) and the memory address addr cor-
responding to the NX bit: addr = f (b, ln), so that addr and
(b, ln) pair can convert each other. In the specific imple-
mentation, the conversion process can be quickly com-
pleted by using a simple preprocessing logic. Figure 14
describes the design structure of the NX register group
organized by several 32-bit registers.

For systems that have supported NX bit management
mechanism, BOP can directly connect with the existing
management module in the system, and complete the
setting of NX bit through the interface provided by the
existing module, instead of being responsible for the spe-
cific logic implementation of related management work.
For example, driving PMP entries by doing preparation
works described in Sect. "PMP" may be a lazy approach.

Key to safety assurance
According to the BOP design, the BOP module that
manipulates NX bits and filters memory access requests
should be located in an independent security compo-
nent, with a set of working logic and register groups
that are not subject to external interference. Even if the

Page 14 of 16Liu et al. Cybersecurity (2023) 6:45

instructions or data in the memory have been attacked
and tampered with in advance, the effectiveness and
accuracy of the BOP module itself will not be affected.
At this time, the BOP module will normally detect the
exception in the memory, and when the instruction pipe-
line enters the memory access link, it will stop and cause
the instruction exception in time, and turn to the excep-
tion handling process.

Discussion
Availability experiment
The experiment mainly consists of two parts: software or
toolchain part, and hardware part.

1. Experiments in riscv-gcc v11.1.0, riscv-gas v2.37,
riscv-ld v2.37 and riscv-gdb v10.1 show that the mod-
ified RISC-V toolchain can recognize the category
and boundary of target memory address range cor-
rectly, and generate security information to assembly
file and machine instruction file as expected.

2. Experiments in Xilinx ARTY A7 FPGA show that the
new circuit logic written by verilog can recognize the
BOP instructions and update the NX value success-
fully. As a result, abnormal memory access is stopped
and the illegal control flow transfer is terminated.

Performance evaluation
Basically, each instruction that needs to be protected will
bring at least two Xibop instructions: usually one setnx
instruction, and its corresponding clrnx instruction.

Therefore, the specific impact on performance is related
to the program structure, especially the distribution of
the instructions to be protected. Some of same-type
Xibop instructions which work at a same address can be
merged by toolchain to simplify work flow and improve
performance.

Preliminary measurement and performance experi-
ments show that the proposed method can averagely
cause around 7% additional assembly file size growth and
has a slight impact on the program’s running time. How-
ever, such a result is still unstable according to the above
analysis.

Future works
The BOP method is still being expanded and improved.
This article only focuses on the detection and defense
scheme of buffer overflow in RISC-V system by managing
memory executability. Further work can be done in the
following aspects in the future:

1. Add more sufficient support for RV64. Though our
instruction extension Xibop is designed for all width,
current work focus more on RV32. The instruc-
tion formats and the registers will be changed when
XLEN is extended. More comparative experiments
will be also implemented.

2. Add support for more defense mechanisms. The goal
of BOP is to form a complete set of detection and
defense system against buffer overflow and other
memory security problems. The defense mechanism
based on NX bit management is only one of the func-

Fig. 14 A design structure of NX register group

Page 15 of 16Liu et al. Cybersecurity (2023) 6:45

tions provided by BOP, with limited scope of applica-
tion and single defense effect. In the future, multiple
defense mechanisms based on Canary, O-CFI and
other memory security technologies will be added to
form a complete system as shown in Fig. 1 to jointly
maintain system memory security.

3. Combined with more processor platforms. BOP
is a general security solution for RISC-V archi-
tecture, not just designed around a single proces-
sor type. For example, BOP can first implement
its prototype in simple environments such as
tinyriscv(liangkangnan. tinyriscv. 2022), and then
expect to play a role in multiple processor environ-
ments such as HummingBird(Jayden et al. 2019) and
Rocket (Asanović 2016), explore the general method
of effective combination with RISC-V processor plat-
form, and strengthen the universal adaptability in dif-
ferent environments.

4. Internal optimization and adjustment. The current
version of the BOP design scheme focuses more on
the realization of functionality, while there is still
much room for optimization in terms of perfor-
mance, resource consumption, etc. For example, the
instruction encoding format can be optimized to fur-
ther improve the decoding and execution efficiency;
By optimizing the management logic of NX regis-
ter group, reduce the use of registers or expand the
range of managed address space, etc.

Conclusion
In this paper, we first describe the threat of buffer over-
flow to the operating system, and analyze the features of
several existing security schemes. Then, combined with
the features and requirements of RISC-V architecture, we
analyze the basic idea of implementing memory security
in RISC-V system, and on this basis, propose a RISC-V
memory security defense system based on instruction
set extension BOP method. We purposefully designed a
set of RISC-V instruction set extension Xibop that can
be used to implement the BOP method. Taking buffer
overflow detection and defense as an example, we dis-
cussed the way RISC-V system supports at both the soft-
ware and hardware side. In the future, we will continue to
improve the BOP system, support more memory security
mechanisms, and gradually realize internal optimization
and adjustment. We also plan to carry out research on
more processor platforms, expand the service scope of
BOP method, and explore general implementation solu-
tions for RISC-V architecture as a whole.

Acknowledgements
Here, we would like to express our heartfelt thanks to the review teachers and
colleagues who have given all kinds of support and valuable suggestions to
the work of this paper.

Author contributions
CL: Propose the theory, design the ISA extension method, run the project,
write the paper. Y‑JW: Give advices to ISA extension design, support the
project. J‑ZW: Give advices to the theory and the project, help to improve the
paper. CZ: Support the project.

Funding
Strategic Priority Research Program of CAS (XDC05040000).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Intelligent Software Research Center, Institute of Software, Chinese Academy
of Sciences, Beijing, China. 2 University of Chinese Academy of Sciences, Bei‑
jing, China. 3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China.

Received: 8 February 2023 Accepted: 5 June 2023

References
Asanović K, et al (2016) The rocket chip generator. EECS Department, Univer‑

sity of California, Berkeley Available: https:// www2. eecs. berke ley. edu/
Pubs/ TechR pts/ 2016/ EECS‑ 2016‑ 17. html

CNNVD (2022) Vulnerability report. Available: https:// www. cnnvd. org. cn/
home/ report

Cowan C, et al (1998) StackGuard: automatic adaptive detection and preven‑
tion of buffer‑overflow attacks. In: Proceedings of the 7th USENIX security
symposium

Davis B, et al (2019) CheriABI: enforcing valid pointer provenance and minimiz‑
ing pointer privilege in the POSIX C run‑time environment. In: Proceed‑
ings of ASPLOS’19

Gao Y‑C et al (2013) Research on windows DEP data execution protection
technology. Inform Secur Commun Privacy 7:4

Jayden, et al (2019) The ultra‑low power RISC‑V core. Available: https:// tosco
de. gitee. com/ riscv‑ mcu/ e203_ hbird v2

Krerk P, et al (2008) Secure bit enhanced canary: hardware enhanced buffer‑
overflow protection. In: 2008 IFIP international conference on network
and parallel computing. pp 125–131. https:// doi. org/ 10. 1109/ NPC. 2008.
49

liangkangnan. tinyriscv (2022). Available: https:// gitee. com/ liang kangn an/ tinyr
iscv

Marco‑Gisbert H et al (2019) Address space layout randomization next genera‑
tion. Appl Sci 9(14):2928

Mohan V, et al (2015) Opaque control flow integrity. In: Proceedings of the
22nd annual network and distributed system security symposium

Molnar I (2003) Exec shield, new Linux security feature. Available: https:// lwn.
net/ Artic les/ 31032/

One A (1996) Smashing the stack for fun and Profit. Available: http:// www.
phrack. com/ issues. html? issue= 49& id= 14& mode= txt

Pan C‑X et al (2021) Method against process control‑flow hijacking based on
mimic defense. J Commun 42(1):37–47

Wang F‑F et al (2019) Overview of control‑flow hijacking attack and defense
techniques for process. Chin J Netw Inform Secur 5(6):10–20

Waterman A, et al (2023) The RISC‑V instruction set manual. volume II: privi‑
leged architecture. Available: https:// riscv. org/ techn ical/ speci ficat ions

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www.cnnvd.org.cn/home/report
https://www.cnnvd.org.cn/home/report
https://toscode.gitee.com/riscv-mcu/e203_hbirdv2
https://toscode.gitee.com/riscv-mcu/e203_hbirdv2
https://doi.org/10.1109/NPC.2008.49
https://doi.org/10.1109/NPC.2008.49
https://gitee.com/liangkangnan/tinyriscv
https://gitee.com/liangkangnan/tinyriscv
https://lwn.net/Articles/31032/
https://lwn.net/Articles/31032/
http://www.phrack.com/issues.html?issue=49&id=14&mode=txt
http://www.phrack.com/issues.html?issue=49&id=14&mode=txt
https://riscv.org/technical/specifications

Page 16 of 16Liu et al. Cybersecurity (2023) 6:45

Watson RNM, et al (2019) An introduction to CHERI. Computer Laboratory,
University of Cambridge. ISSN 1476‑2986. Available: https:// www. cl. cam.
ac. uk/ techr eports/ UCAM‑ CL‑ TR‑ 941. pdf

Wikipedia (2022) W%5EX. Available: https:// en. wikip edia. org/ wiki/W% 5EX
Zhao C‑Y, et al (2021) Research and implementation of real‑time detection

method for code reuse attacks. University of Electronic Science and
Technology of China

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://en.wikipedia.org/wiki/W%5EX

	A buffer overflow detection and defense method based on RISC-V instruction set extension
	Abstract
	Introduction
	Research background
	Exec shield
	DEP
	StackGuard and SSP
	mprotect
	CHERI
	PMP

	Memory security in RISC-V architecture
	Main features
	Basic ideas

	Xibop instruction set extension for RISC-V memory security
	Design overview
	Instruction nxset
	Instruction nxcheck
	Pseudo instruction setnx and clrnx
	Pseudo instruction setnxr and clrnxr

	BOP method and its implementation
	Overall architecture
	Support from software side
	Implement at hardware side
	Key to safety assurance

	Discussion
	Availability experiment
	Performance evaluation
	Future works

	Conclusion
	Acknowledgements
	References

