
Muñoz and Valiente ﻿Cybersecurity (2023) 6:33
https://doi.org/10.1186/s42400-023-00169-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Cybersecurity

A novel botnet attack detection for IoT
networks based on communication graphs
David Concejal Muñoz1    and Antonio del‑Corte Valiente2*    

Abstract
Intrusion detection systems have been proposed for the detection of botnet attacks. Various types of centralized or
distributed cloud-based machine learning and deep learning models have been suggested. However, the emergence
of the Internet of Things (IoT) has brought about a huge increase in connected devices, necessitating a different
approach. In this paper, we propose to perform detection on IoT-edge devices. The suggested architecture includes
an anomaly intrusion detection system in the application layer of IoT-edge devices, arranged in software-defined
networks. IoT-edge devices request information from the software-defined networks controller about their own
behaviour in the network. This behaviour is represented by communication graphs and is novel for IoT networks. This
representation better characterizes the behaviour of the device than the traditional analysis of network traffic, with a
lower volume of information. Botnet attack scenarios are simulated with the IoT-23 dataset. Experimental results show
that attacks are detected with high accuracy using a deep learning model with low device memory requirements and
significant storage reduction for training.

Keywords  Autoencoders, Communication graphs, Cyberattacks, Internet of Things

*Correspondence:
Antonio del‑Corte Valiente
antonio.delcorte@uah.es
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00169-6&domain=pdf
https://orcid.org/0000-0001-7366-6370
https://orcid.org/0000-0001-7334-2317

Page 2 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33

Graphical abstract

Introduction
Cybersecurity is considered necessary from a strategic
point of view. Reports from cybersecurity companies
reveal an annual increase in the number of cyberattacks.
Global cyberattacks increased by 38% in 2022 compared
to 2021 (Check Point 2023). Multipurpose malware (a
category for botnets and banking Trojans) accounts for
32% of all attacks.

The ever-increasing interest and continuous develop-
ment of the Internet of Things (IoT) has reinforced the
growth of data and devices. IoT is widely used in both
industrial production and the social domain, offering sig-
nificant advantages in terms of convenience, efficiency, and
accessibility. However, its vulnerabilities have contributed
to serious security and privacy threats (Zhou et al. 2019).

IoT devices collect data for a specific purpose. They are
used for temperature control, home access control, bio-
metric measurements, quality control, industrial process
security, and in many other applications. These data are
usually stored on servers hosted on local networks or in
the cloud. The data may be confidential, and its alteration
could cause damage.

IoT devices generally have weak security, making them
vulnerable to exploitation as a backdoor for intrusion
into the systems to which they connect. This can result in
blocked reception of information, due to altered or miss-
ing data. Additionally, they can be recruited for botnets
and actively participate in cyberattacks.

The current integration of IoT devices in the medical,
industrial, and military fields requires more sophisticated
security mechanisms to prevent information theft and
mitigate material and physical damage.

A current line of defence in IoT networks are intru-
sion detection systems (IDS), based on machine learning
techniques, due to the specific characteristics of these
networks: global connectivity, limited energy and band-
width, and heterogeneity (Thakkar and Lohiya 2019).
IDS classifies network traffic, and identify abnormal pat-
terns. Generally, they analyse the data flow in the net-
work to detect a variety of attacks. However, flow-based
approaches can often lead to computational overhead
and do not fully capture the communication character-
istics (Daya et al. 2019). Communications graphs of net-
works (CGN) overcome these limitations, and they are
an alternative approach to determining the behaviour
of connected devices without compromising data confi-
dentiality because they are drawn from control informa-
tion. For this reason, communication graph analysis has
gained attention. In this line of research, software-defined
networks (SDNs) provide major advantages by separat-
ing communication into a data plane and a control plane.
This improves security and network management (Sarica
and Angin 2020) but also simplifies the representation of
behaviour by communication graphs.

We propose an architecture for an anomaly intru-
sion detection system (AIDS) integrated into a

Page 3 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33 	

software-defined network. It uses stacked autoencod-
ers to categorize the behaviour of IoT-edge devices on
the network. This deep learning technique is suitable for
unbalanced datasets, such as those gathered for botnet
detection. Furthermore, research has shown the feasi-
bility of running autoencoders on IoT-edge devices (Luo
and Nagarajan 2018), despite their limited computational
capabilities.

This deep learning model, hosted in the applica-
tion layer of IoT-edge devices, individually evaluates its
behaviour on the network. Each device periodically scans
its communications graphs of the network, provided by
the SDN controller. The system has a dedicated deci-
sion server that is responsible for taking actions based on
the predictions. Moreover, the server regularly retrains
the model, fitting it to the evolution of normal network
traffic.

A stacked autoencoder-based model, with no supervi-
sion, has been implemented. It has low computational
requirements and is supported by IoT-edge devices.
The results are similar to those commonly reported in
the literature but with reduced usage of computational
resources. As the training and detection dataset have
fewer features and items to represent the behaviour of
the network, the generated CGN files are smaller com-
pared to the original traffic dataset.

Our main contributions are summarized as follows:

•	 We propose a new defence against botnet attacks,
which is trained from the CGN of the IoT device net-
work flow. The attack detection process is performed
by edge devices thereby distributing the computa-
tional cost. Training and detection require only con-
trol information which avoids a breach of confidenti-
ality.

•	 We reveal that CGNs reduce the storage space and
features needed to learn the benign behaviour of a
network from deep learning models with low depth
and parameters and thus obtaining a high accuracy in
the detection of malicious attacks. This optimization
permits detection to be performed on edge devices.

•	 We evaluated the model against six of the prevalent
malware. Our experiments show that its perfor-
mance is consistent with the current state of the art.

The remaining parts of this paper are organized as fol-
lows: In section "State of the art", we present a review
of related work and the state of the art on the subject
of this article; in section "Objectives and methodology",
we describe the research objectives and the methodol-
ogy followed; in section "Contribution", we explain the

proposed architecture and model for detecting botnet
attacks on IoT-edge devices; in section "Evaluation", we
show the results achieved in the experiments; in section
"Discussion", we analyse and discuss the effectiveness of
the models; and in section "Conclusions", we summarize
our conclusions.

State of the art
A communication network is a collection of autono-
mously operating computers with the capability to
exchange information with each other (Tanenbaum
and Wetherall 2011). This definition can be extended to
include IoT-edge devices.

Security paradigms
There are three main security objectives: network avail-
ability, information integrity, and confidentiality (Lu
et al. 2010). Different security paradigms are used for the
detection and mitigation of malicious attacks, such as
IDS and SDN. The latest trends combine both paradigms.

An IDS is an automated detection process that moni-
tors events on a system and looks for signs of intrusion
(Hung-Jen Liao et al. 2013). It analyses traffic differently
from traditional firewalls, seeking out characteristics that
identify the traffic as abnormal. IDSs can be classified
into two main groups (Khraisat et al. 2019): (i) a signa-
ture IDS searches for previously catalogued patterns in
the data transmitted over the network; however, these
systems are becoming less effective. (ii) An AIDS detects
differences in the learned behaviour of the network using
machine learning techniques. Attackers must be aware of
normal behaviour to avoid detection.

An SDN is a paradigm that enables the design, imple-
mentation, and management of communications net-
works in which control and data flow are separated into
two different planes (Benzekki et al. 2016). The control
plane is centralized, making routing decisions and man-
aging the logical topology of the network. The data plane
is responsible for transmitting data, according to the con-
trol plane’s policies.

It has a three-layer architecture (Sarica and Angin
2020) (Fig. 1): (i) Application: hosts applications, such
as the IDS, communicating with the controller; (ii) Con-
trol: contains a controller managing a network overview
and routing policies; (iii) Infrastructure: applies policies
received from the controller to routing devices.

An SDN provides greater protection against some types
of attacks (Shinan et al. 2021), however, the controller is
a vulnerable point for failure due to the centralized net-
work management (Ahmed et al. 2015).

Page 4 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33

IoT network security
IoT networks include components such as sensors, actua-
tors, computation nodes, receivers, and communicators.
There are three different layers in IoT networks (Hor-
row and Sardana 2012; Zhao and Ge 2013): (i) Applica-
tion, providing multiple visible services; (ii) Perception,
collecting and sending information; and (iii) Network
Protocols.

The security requirements for IoT networks are dif-
ferent from those for traditional networks. Alaba et al.
(2017) proposes a specific taxonomy related to secu-
rity for IoT networks, comprising four domains (Fig. 2):
architecture, application, communication, and data.

The presence of attacks on IoT-edge devices has
increased in recent years, with attention focusing on
aspects such as their low security and vulnerabilities
(Mendes et al. 2019). These devices are often recruited

by botnets to participate in distributed denial-of-service
attacks.

Threats in communications networks
Communication networks are exposed to multiple
threats, which can be divided into two main categories
(Pawar and Anuradha 2015): passive and active.

Passive attacks analyse the data flow over the network,
threatening the confidentiality of information. The main
types of passive attacks are traffic analysis, in which sen-
sitive information is inferred (Hafeez et al. 2019), and
eavesdropping or sniffing, in which information is gath-
ered from messages passing through the network.

Active attacks threaten the integrity of information
and the accessibility of network services. The princi-
pal types are: (i) Spoofing: Impersonating an authenti-
cated device to send information on its behalf (Jindal
et al. 2014), (ii) Modification: Changes in the routing of
messages, causing delays in the delivery of messages,
(iii) Wormhole: Packets transmitted over a network are
recorded and sent to a new location (Hu et al. 2003),
(iv) Fabrication: Generation of false routing messages,
(v) Denial-of-Service: Reducing or interrupting access
to services offered by a network, (vi) Sinkhole: a com-
promised device on the network attracting traffic to
remove it (Kibirige and Sanga 2015), (vii) Sybil: a mali-
cious device presenting multiple identities on peer-to-
peer (P2P) networks (Douceur 2002), (viii) Black hole:
interruptions or delays in packet delivery performed by
network routing services, (ix) Rushing: Sending mes-
sage forwarding requests before authenticated devices,
(x) Replay: A legitimate message in one context is
being injected into a different context (Malladi et al.
2002), and (xi) Byzantine: a set of authenticated devices
arbitrarily blocking the services offered (Geetha and
Sreenath 2016).

Botnets
A botnet is a set of compromised devices that are con-
trolled by a botmaster (Choi et al. 2007). They are het-
erogeneous devices connected via a communications
network. A botnet is not inherently malicious and it
allows for the coordinated execution of commands on
multiple devices. These features have been exploited by
cybercriminals for fraudulent purposes. The architecture
has evolved from P2P configurations to hybrid configu-
rations and from internet relay chat protocols to hyper-
text transfer protocols, P2P protocols, or a hybrid model
combining both.

The components of a botnet are (Silva et al. 2013) (i)
vulnerable host: devices that have been infected with a
malicious piece of code; (ii) bots: potentially malicious

Fig. 1  Layers and attack vectors in the SDN architecture

Fig. 2  Domains and features of IoT Network Security Taxonomy

Page 5 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33 	

programs that acquire control of the host and execute
commands received from a third party; (iii) botmaster:
who controls the botnet and is responsible for send-
ing commands to the bots; and (iv) command-and-con-
trol (C2) infrastructure: which allows the botmasters to
communicate with the bots. Limarunothai and Munlin
(2015) decomposes the C2 architecture into servers and
protocols.

Botnets can have different architectures; as described
in Zeidanloo and Manaf (2009), there are three models:
(i) centralized, where all communications go through
a C2 server; (ii) distributed, where hosts can simulta-
neously function as C2 and bot; and (iii) hybrid, which
uses social networks as a means to broadcast commands
(Fig. 3).

The life cycle of a botnet consists of five steps (Lima-
runothai and Munlin 2015): (i) initial infection: devices
are infected to install the code, transforming them into
bots; (ii) secondary injection: the bot code is downloaded
and installed; (iii) Domain Name Server (DNS) lookup:
the internet protocol (IP) address of the C2 server is
located; (iv) rallying: The bot establishes a connection
with the C2 server; and (v) malicious commands: mainte-
nance and updating.

Knowledge of the life cycle of a botnet is important
for the definition of detection methods (Silva et al.
2013). The three principal mechanisms are: (i) DNS-
based: consisting of detecting behavioural patterns of
queries made by bots to DNS services; (ii) HoneyNet
networks: purposely configured with vulnerabilities
with the aim of attracting attacks, although they do
not allow botnet detection by themselves (Karim et al.
2014), and (iii) IDS.

Intrusion detection systems
Multiple studies have been conducted since 2015 (Shi-
nan et al. 2021), proposing an AIDS solution on an
SDN architecture located in the application or control
layer. Khraisat et al. (2019), Shinan et al. (2021) enumer-
ate the most widely used machine learning methods: (i)
supervised: decision trees, Naïves-Bayes, artificial neu-
ral networks, support vector machines, and K-nearest
neighbour; and (ii) unsupervised: K-means (clustering)
and genetic algorithms. These have been used less often
(Murray et al. 2014).

Machine learning models have traditionally been
applied on a set of characteristics of the data flow. Prom-
ising lines of research propose that network behaviour is
similar to the patterns of social networks (Shinan et al.
2021; Chowdhury et al. 2017; Daya et al. 2019). Therefore,
novel machine learning models are trained with CGN.
The nodes represent the devices, and the arcs describe
the data flows, with one arc existing for each port-IP
address tuple (Fig. 4).

CGN avoids comparing data flows (Venkatesh et al.
2015) and is a more efficient method. Chowdhury et al.
(2017) suggests eight features: (i) in degree (IDM): the
number of input flows to a device, which is high on the
C2 server; (ii) out degree (ODM): the number of outgo-
ing flows from a device, which is high on the C2 server
and bots; (iii) in weight degree (IWM): the total number
of incoming packets received by a device from its neigh-
bours, where it is assumed that all bots on a network
will receive the same number of packets from the C2
server; (iv) out weight degree (OWM): the total number
of outgoing packets sent by a device from its neighbours,
where it is assumed that bots will send the same packets

Fig. 3  Hybrid model of botnet architecture. Communication
between C2 and botmaster through social networks

Fig. 4  Relationship between the communication graph and the
physical architecture of a network

Page 6 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33

to the devices that they are going to attack; (v) cluster-
ing coefficient (CCM): evaluates the closeness between
the neighbours of a device, where a high value is assumed
for P2P-type botnets; (vi) node betweenness (BCM):
the number of times a device is in the set composed of
the shortest paths between each pair of devices, where
a high value is assumed in P2P-type botnets; (vii) node
closeness (LCM): the mean of the shortest distance of all
devices that can reach another device, which is relevant
in P2P botnets (Sengupta et al. 2021), and (viii) eigen-
vector centrality (EVM): the weight of the device in the
graph.

Autoencoders for anomaly detection
Autoencoders are a type of machine learning model
introduced by Rumelhart et al. (1986). They are unsu-
pervised neural networks that are trained to extract the
main features of the input so that it can be reconstructed.
The inputs are encoded and then decoded, resulting in a
loss of information. The difference between the input and
output is minimized. Autoencoders are a generalization
of principal component analysis. Instead of finding linear
relationships, they learn the non linear ones (Bank et al.
2020), thus achieving dimensional reduction.

Stacked autoencoders are layer-trained autoencoders.
Each layer of the encoder is the input of another more
internal autoencoder, until it reaches the deepest level
(bottleneck). Similarly, the decoder layers are considered
to be the output of another autoencoder.

Mirsky et al. (2018), Luo and Nagarajan (2018), Zhou
and Paffenroth (2017) presented models for detecting
attacks in the cybersecurity domain. Niyaz et al. (2017)
describes the use of autoencoders for the detection of
distributed denial-of-service attacks in SDN networks,
learning the normal behaviour of the network with a
stacked autoencoder. The model classifies up to eight
different types of attacks with a very low rate of false-
positives. Their experiments achieve 99.82% accuracy in
identifying network attacks.

Autoencoders can be run for anomaly detection on
IoT-edge devices (Luo and Nagarajan 2018). The edge
computing paradigm is applicable when a copy of an
autoencoder is placed on the edge devices. Moreover,
the machine learning model can be periodically retrained
from data traffic. This architecture allows the model to
evolve with the latest network behaviour.

Summary of conclusions
The most recent research tends to integrate AIDS with
SDN networks. Previous papers have proposed this archi-
tecture for IoT networks, dedicating servers to detection.
Other articles propose AIDS in wireless sensor networks

where the detection is carried out by autoencoders in
the IoT-edge devices. All the proposed models examine
the data flow traffic. To the best of our knowledge, AIDS
systems for IoT networks that analyse CGN have not yet
been suggested.

Objectives and methodology
The primary objective is the development of an AIDS
prototype integrated into an SDN, for the detection of
botnet attacks on IoT networks. We represent the net-
work behaviour using CGN. We expect to reduce the
amount of evaluation and training data by at least 30%,
and achieve an accuracy greater than 90%.

This objective has been divided into more specific goals
for IoT networks: (i) determining the components to
integrate an AIDS in an SDN architecture, (ii) identify-
ing at least six characteristics of CGN for botnet attack
detection, (iii) evaluating the accuracy and precision of
the stacked autoencoder in detecting behavioural anoma-
lies, (iv) reducing the required resources, (v) verifying
that the solution is a valid alternative, and (vi) exploring
the use of CGN to increase security.

The life cycle chosen for the prototype is machine learn-
ing model operationalization management (MLOps), with
a focus on the tasks associated with machine learning
engineering. However, deployment and monitoring work
have not been covered.

According to the MLOps methodology, the tasks are
distributed across three preparation pipelines: data,
model, and software.

Training data are acquired, explored, validated,
and prepared for the duration of the data pipeline.
The source of the data required for both model train-
ing and classification of network traffic is the control
flows managed in the SDN controller. First, the benign
behaviour of the network is captured by recording the
number of packets exchanged for each ip and port dur-
ing a time interval. These captures contain the infor-
mation needed to generate the CGNs with the benign
behaviour of the network and is used as a data source
for the preparation of training data. In later steps, the
controller maintains a CGN that it will share with the
devices for classification of device behaviour on the
network. For this experiment, the input data source is
the Aposemat IoT-23 dataset (Garcia et al. 2020), com-
posed of labelled data flows from a real IoT network.
CGNs are calculated from this dataset and versioned in
Data Version Control (DVC).

The machine learning model is prepared, evaluated,
and packaged for deployment throughout the model
pipeline. Even when autoencoders are not supervised,
the original labelling is utilized as ground truth, and

Page 7 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33 	

the training process is cross-validated with supervised
metrics over fivefold. Thus, the total metrics are the
mean accuracy and F1-score. We have sought the best
model configuration. Therefore, a Cartesian hyperpa-
rameter search is used to generate the combinations to
be evaluated. All tested models have been registered on
the mlflow platform, thus guaranteeing traceability and
reproducibility.

Figure 5 shows the model preparation workflow. AI
teams prepare the classification models, and they are
registered in the decision server. The new model is dis-
tributed to the sensors that will be classified with the
updated model. The decision server evaluates whether
there is a model decay based on the classification

results, and upon a possible deviation, alerts are gener-
ated to the AI teams to adjust the current model.

The software pipeline is dedicated to the develop-
ment of prototype programs. There are components for
input data transformation, model training, and AIDS
integration.

Figure 6 shows the data flow of the attack detection
process. The SDN controller generates the CGN from
the control flow. It sends the features to each device
of its traffic to evaluate its own behaviour. The results
obtained are sent to the decision server that can gener-
ate policies to mitigate a detected attack and generate
alerts to security administrators to evaluate and act on
a detected threat.

Finally, Table 1 shows the canvas proposed by MLops
adapted to this prototype.

Contribution
In this section, we detail the IDS prototype that we have
developed for research purposes. We have not fully
implemented all components of the IDS, but a real runt-
ime environment is emulated.

Figure 7 shows the proposed architecture and its fea-
tures. It describes the integration into an SDN network
and also represents the relationship among the different
actors in the MLops life cycle. It is continuous and cycli-
cal; thus, data analysis and modelling tasks alternate with
their deployment in an operational environment.

Model development
The machine learning model development tasks begin
with data preparation. An SDN has monitoring tools that
trace the communication data flows. CGNs are generated
from the collected information to extract model training
data. We chose the IoT-23 dataset as the source of the
data flows. It is publicly and freely available for cyberse-
curity research; it contains different types of attacks and
normal traffic of a real IoT network.

Table 1  MLOps life cycle. Detail of the different blocks and specific objectives of the proposed prototype

Blocks Objectives Project scope

Value proposal Define problem and importance AIDS with lower computational cost

Data sources Identify main sources Network data flow

Prediction task Model type to use Stacked autoencoder

Features How to represent input CGN

Offline evaluation Define methods and metrics Accuracy and F1 score and MSE

Decisions How to use predictions Generate alerts

Making predictions When and how Batch periodically

Collecting data Cost of new data No labeling required

Build models Frequency and cost Periodic re-training

Evaluation and monitoring How to supervise Metrics with human oversight

Fig. 5  Workflow of model preparation by the AI teams and their
broadcast to the system

Fig. 6  Data flow between the different components of the system
for attack detection

Page 8 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33

A subset of data from the available dataset was selected.
We intended to have malicious traffic including differ-
ent communication protocols with the C2 and types of
attacks. In addition, they were selected for the relevance
of the botnet itself. These files contain traffic from Mirai,
Okiru, GagFyt, Hiajime, MushTik, and Hide &Seek mal-
ware. Mirai, and variants such as Okiru, and GagFyt
(also known as Qbot or Bashlite) are still very relevant
and trending botnets today. MushTik and GagFyt use a
lighter IRC protocol. Hide &Seek and Hiajime incorpo-
rate the P2P protocol. Most of them have the capacity to
carry out denial of service attacks, cryptocurrency min-
ing, information theft, and antitampering.

The data preparation process was structured into three
steps: (i) converting the original capture structure to the
standard Comma-Separated Value (CSV) format, (ii) cal-
culating the CGN from the CSV dataset and extracting
the inputs to the model to be trained, and (iii) analysing
and preparing data for training.

The source information was very comprehensive. The
CGN was drawn with the appropriate features to iden-
tify botnets (Chowdhury et al. 2017; Daya et al. 2019;
Venkatesh et al. 2015): IDM, ODM, IWM, OWM, CCM,
BCM, LCM, and EVM. No major modifications were
necessary once the CGNs were available. It was sufficient
to normalize the features.

The second machine learning task consisted of defin-
ing and training the optimal model. We propose fully
connected stacked autoencoders. This type of autoen-
coder tends to converge to a local minimum better than
other deep autoencoders and facilitates the initialization
strategy. The number of neurons in the input and output

layers is equal to the number of features in the training
data. The number of hidden layers, the number of neu-
rons in each of them, and other hyperparameters were
determined through experimentation. The configuration
that achieved the best classification accuracy was con-
sidered optimal. Generally, a rectified linear unit (ReLU)
activation function was used for hidden layers in deep
learning models. We have preferred a Leaky ReLU acti-
vation function. Xu and Szegedy (2015) validated that
leaky ReLU performs better than ReLU on classification
problems. The bottleneck activation function was a tra-
ditional sigmoid. The initial weights were set by random
initialization, and the optimization method was Adam.
It converges quickly when dealing with sparse gradient
problems. Batch normalization was applied to allow for
much higher learning rates, to be less careful with initial-
ization, and even to regularize (Ioffe and Weiqing 2015).
The stacked autoencoder was trained only with normal
behaviour, extracting its principal characteristics. The
aim was to minimize the difference between the input
and reconstruct its output. For this purpose, the mean
squared error (see 1) was employed as a loss function.

This difference will be an outlier when analysing the
abnormal behaviour of a botnet device. The interquartile
range (IQR) rule was applied to determine the outliers
(see 2a). Therefore, the outliers were n times larger than
the upper bound of the IQR (see 2b). We tried several
values of n.

(1)MSE X , X̂ =
1

N

N

i=1

x̂i − xi
2

Fig. 7  Architecture and main characteristics of the proposed prototype for the detection of botnet attacks based on communication graphs

Page 9 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33 	

Training and validation of the models were performed
in batches, recording the experiments on the mlflow
platform.

Operations
Mainly, the operational tasks were performed by the SDN
and the AIDS prototype embedded in the application
layer of edge-devices. The most important components
are the controller, the monitoring sensor, and the deci-
sion server.

An SDN controller directs traffic according to forward-
ing policies; it is the core of an SDN. Any communica-
tion between applications and network devices must go
through the controller, interacting with the devices using
traditional OpenFlow-based protocols.

The monitoring sensor resides on all application layer
edge devices and executes a set of periodic processes:
(i) it invokes a simulated service from an SDN network
controller that delivers behavioural data, transformed
to CGN, to be evaluated. The sensor’s machine learning
model classifies this received input and the results are
stored locally. (ii) The results to be transmitted are sent to
the decision server, which avoids communication over-
head, but is sent immediately when an attack is detected.
This information is no longer retained in the sensor; and
(iii) the most current version of the model is downloaded
from the decision server.

The frequency of these processes depends on the
characteristics of the network. The CGN summarizes
the behaviour of devices on the network. The control-
ler is responsible for creating and updating it. This pro-
cess is not immediate, increasing the time and resources
needed, depending on the number of nodes and the
volume of network traffic. We have not studied the best
strategy to minimize the impact on the controller. We
have assumed a strategy where the controller obtains the
CGN at startup and updates it for each node asynchro-
nously and in parallel. Updating IDM, IWM, ODM and
OWM metrics has no relevant resource requirements.
However, centrality metrics have significant computa-
tional costs, and traffic from one node can affect the cen-
trality of many nodes in the network. Periodic updating
of these indicators reduces the required computational
resources. On the other hand, lazy updating deteriorates
the information available in the CGN. It should also be

(2a)IQR = Q3 − Q1

(2b)Outlier(x) =







1, if x > Q3 + (n ∗ IQR)or
x < Q1 − (n ∗ IQR)

0, otherwise.

considered that edge devices do not require this informa-
tion in real time to avoid network overload and exces-
sive power consumption on the device itself. This same
principle is also applicable to the communications that
the devices carry out with the decision server. It is well
known and empirically proven that it is more efficient
to send a single message containing a set of information
than to send it in different messages, even if the amount
of data is larger. Finally, it is necessary to consider how
the behaviour of the network evolves over time to deter-
mine the periodicity of the retraining of the model.

The IoT devices included in the dataset under study
generated very low traffic when they were not infected.
The Amazon Echo device generated more packets than
the other devices, with an average of 229 flows per hour.
However, it could reach 158 flows per minute when
the network was affected by an Okiru attack. To detect
attacks with the shortest delay, a frequency of two min-
utes was set to request its behaviour on the network
from the controller. Therefore, thirty additional flows
per hour were generated. The device sent the collected
traffic information every hour. This limited the storage
space required by the IoT device to 6 Kb. Finally, a weekly
update of the model was planned for networks with little
variation in their behaviour, considering the system alerts
of model decay. Luo and Nagarajan (2018) proposes two-
minute frequencies for traffic classification, with daily
sending of results and model adjustment.

The decision server collects the results sent by the
monitoring sensors and performs actions based on them.
The server has the following features: (i) It receives pre-
dictions from sensors and forwards information about
detected attacks to a dedicated service to mitigate or
intercept them. Currently, only alerts are appended to
the console of security administrators. However, dynamic
security policies, written in the Pyretic language, could
be automatically issued to the controller. (ii) Two types
of alerts are emitted from the server to security adminis-
trators and the artificial intelligence (AI) teams. First, an
alert is generated when an excessive number of attacks
can be detected, which simply is caused by an intense
attack or indicates that the model is decaying. Second,
there is a low attack detection rate over a long period of
time. It could be related to a low sensitivity of the model;
(iii) randomly, it selects part of the normal behaviour of
the network, which is combined with the learned dataset,
discarding older content. The resulting file is the input
to a new training cycle; thus, the model is fitted weekly
to changes in the normal behaviour of the network. (iv)
The new model is disseminated to the sensors when an
accuracy of more than 90% is achieved. The AI teams are
alerted when the model has not been updated.

Page 10 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33

Evaluation
In this section, we report the results of simulating the
proposed architecture using the IoT-23 dataset. This is a
collection of different network traffic from IoT devices,
consisting of twenty-three scenarios. These are captures
(pcap files) from infected IoT-edge devices. The final
dataset was acquired by running the Zeek network ana-
lyser on the original pcap files and adding two new col-
umns for traffic classification labels. The files contained
twenty-three feature columns. The list and description of
columns can be found in Garcia et al. (2020).

Table 2 describes the files selected for the experiments
performed. The files were transformed into CGN using
a process that generates the files with a row for each IP
address and port, along with the features calculated in
the CGN. The six files contain the prevalent IoT device-
specific malware: Hide& Seek, Mushtik, linux-hiajime,
Mirai, Okiru, and GagFyt. They contain flows produced
over 24 hours, except for Hide& Seek and Mushtik,
where traffic was tracked over a longer period. Mirai and
GagFyt contain the highest number of packets, requir-
ing 3.86 and 21.5 Gbytes of storage space, respectively.
GafFyt is the most significant case, where the network
flow is represented with 3.5 million records from the 271
million packets captured, and the storage space falls to
411 Mbytes.

Table 3 shows the time required for generating each of
the CGNs. The total time is the sum of the time taken to
render the graph, calculate each of the metrics associated

with the nodes, and save the results in the output file.
The table contains one column for each calculated met-
ric. Rendering time depends on the number of Zeek
flows and the number of devices and ports. Therefore,
the minimum time is obtained in file 09_ 01.IoTMal-
ware (156,104 flows in 3.76 s) and maximum time in
36_ 01.IoTMalware (13,645,107 flows in 2,171.02 s). The
generation time, and the IDM, ODM, IWM and OWM
metrics, are directly related to the number of devices and
ports. The 36_ 01.IoTMalware file requires the maximum
time in all these measurements (1,437.12 s, 62.14 s, 63.04
s, 62.16 s, and 64.02 s), while the minimum time is con-
sumed in 60_ 01.IoTMalware file (0.58 s, 0.02 s, 0.02 s,
0.02 s, 0.02 s, 0.02 s). Centrality metrics depend not only
on the number of devices and ports but also on the topol-
ogy of the CGN. The 36_ 01.IoTMalware file requires
the maximum time in all these metrics (261,550.12 s,
32,646.82 s, and 2,436.50 s), while the minimum time
is spent in 60_ 01.IoTMalware file (4.05 s, 3.18 s, 2.01
s). The maximum total time is required to obtain 36_
01.IoTMalware file (300,492.94 s) and minimum time is
required for 60_ 01.IoTMalware file (87.16 s).

The generation of some centrality metrics has a high
computational cost, such as BCM and CCM (Brandes
2001; Kang et al. 2011).The calculation of betweenness
has been approximated (Brandes and Pich 2007). We
used 1500 node samples (pivots) to estimate the between-
ness values. Even so, the time required may not be afford-
able for the controller when the number of nodes is high

Table 2  Dataset used for experiments. Flows and packets captured during the trace time and storage space required

Dataset Malware Duration (hrs) Packets Pcap files (Mb) Zeek flows Zeek files (Mb)

01-01_IoTMaleware Hide &Seek 112 1,686,000 140 1,008,749 126

03-01_IoTMaleware Mushtik 36 496,000 56 156,104 21

09-01_IoTMaleware linux-hiajime 24 6,437,000 472 6,378.294 849

35-01_IoTMaleware Mirai 24 46,000,000 3686 10,447,796 1186

36-01_IoTMaleware Okiru 24 13,000,000 992 13,645,107 1573

60-01_IoTMaleware GagFyt 24 271,000,000 21,504 3,581,029 411

Table 3  Time (s) to generate the CGN, and metrics, related to the network flows described in the experiment dataset

Dataset Malware Render IDM ODM IWM OWM CCM BCM EVM Generate

01-01_IoTMaleware Hide &Seek 27.37 0.11 0.12 0.17 0.17 12304.63 1535.87 9.72 15.27

03-01_IoTMaleware Mushtik 3.76 0.02 0.02 0.02 0.02 39.97 220.47 2.41 3.13

09-01_IoTMaleware linux-hiajime 240.89 2.01 1.60 1.98 1.59 101656.02 12688.70 232.42 306.34

35-01_IoTMaleware Mirai 326.80 1.67 2.15 1.66 2.17 78904.09 9848.85 98.84 161.27

36-01_IoTMaleware Okiru 2,171.02 62.14 63.04 62.16 64.02 261550.12 32646.82 2436.50 1437.12

60-01_IoTMaleware GagFyt 77.26 0.02 0.02 0.02 0.02 4.05 3.18 2.01 0.58

Page 11 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33 	

(see Figs. 8 and 9). Growth is exponential as a function
of the number of edges and arcs of the CGN. Both allow
capturing the behaviour of P2P botnets, so a group of
experiments was performed without them to evaluate the
impact on classification accuracy.

Storage evaluation
We converted the original dataset in Zeek format to the
CSV standard. Furthermore, we kept only normal traf-
fic because the anomaly detection machine learning
models are trained only on these flows. Next, we repre-
sented these flows as a CGN. The graph contains a node
for each different combination of IP address and port
that participates in a flow. Centrality features were calcu-
lated for each node, examining the relationships between
them. The result were stored in a new CSV file, insert-
ing a row for each node and a column for each feature.
Therefore, the files contain a column for the IP address
and another for the port, nine columns with normal-
ized centrality metrics (IDM, ODM, IWM, OWM, CCM,
BCM, LCM, in-EVM and out-EVM) and, finally, a label

column. Due to the fact the PCAP captures included in
the IoT-23 dataset, CCM was not finaly considered in
this work because the same value is always obtained. It
was calculated from the fraction of possible triangles that
pass through that node and is zero for all the nodes of the
graph.

We compared both groups of files to evaluate if the
number of records needed to represent the behaviour
of the devices, and the storage in bytes, has decreased.
Table 4 shows the details of the comparison for each file.
The best reduction ratios are obtained for files 08-01-
01_ IoTMalware (99.54% of rows and 99.70% of bytes),
60-01_ IoTMalware (97.46% of rows and 98.39% of bytes),
and 44-01_ IoTMalware (95.73% of rows and 97.53% of
bytes). However, rows increase in 4 files, with 07-01_
IoTMalware (−49.48%) achieving the worst ratio. The
results reveal that storage space is saved in all cases, and
in general, the number of rows decreases (see Fig. 10).
Seventy-five percent of the files reduce the quantity of
elements by more than 29.89%. However, it increases
when the devices and ports involved in the communica-
tions are greater than the captured flows. This scenario
occur in four of the twenty-three files evaluated (17%).
On average, 59.75% of storage space is saved, and there
are 33.19% fewer rows. (see Fig. 11).

We evaluated the storage space that the controller
would need to store information on the behaviour of
the network in the form of a communications graph.
Table 5 details the storage space used for the experi-
mental scenarios and the characteristics of the gener-
ated graphs. The highest space reduction is obtained in
file 60_ 01.IoTMalware (from 411 to 7 Mbytes) because
the generated graph is denser than in the rest of the
files. However, almost no reduction is achieved in file
36_ 01.IoTMalware (from 1573 to 1512 Mbytes), as the
network is very sparse.

Only one record is generated for each IP address-
port, so the size of the file remains constant when the
interaction between the same network devices grows
thus increasing the percentage reduction of the output
information with respect to the input flows.

Similar results to those previously achieved for nor-
mal traffic are obtained. The storage space reduction is
49%, and 46% in the rows of the CGN file. The number
of nodes and arcs of the graphs confirms that they are
sparse graphs and, in some cases, unconnected.

Classification experiments
A single input data scenario for the experiments was
prepared from a selection of the IoT-23 dataset. This
scenario contains traffic from different types of attacks
produced by malware prevalent on IoT devices. Table 6
shows the selected files, the types of malware contained,

Fig. 8  Evolution of the elapsed time (s) to obtain the CCM metric in
relation to the number of IP-ports in each IoT-23 dataset

Fig. 9  Evolution of the elapsed time (s) to obtain the BCM metric in
relation to the number of IP-ports in each IoT-23 dataset

Page 12 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33

and the quantity of devices and ports included in the
CGNs. Most of the communications captured between
devices and ports are in files 09_ 01.IoTMalware, 36_
01.IoTMalware and 60_ 01.IoTMalware are malicious.
However, benign communication is predominant in the
remaining files.

We experimented with a machine learning model
based on stacked autoencoders. Although it was an unsu-
pervised model, we benefited from the fact that the input

dataset was labelled, which allow us to use specific met-
rics from the supervised machine learning models. Clas-
sification performance was evaluated based on accuracy,
precision, recall, and F1 score:

(3a)Accuracy =
TP + TN

TP + FP + TN + FN

Table 4  Reduction (%) of rows, and storage bytes. Comparison between the original IoT-23 dataset and the generated CGNs

Dataset Data flows CGN % Reduction

Rows Bytes Rows Bytes Rows Bytes

44-01_IoTMalware 211 24,978 9 616 95.73% 97.53%

04-01_Honeypot 452 57,855 454 32,349 − 0.44% 44.09%

05-01_Honeypot 1374 170,507 944 66,922 31.30% 60.75%

20-01_IoTMalware 3193 388,802 628 45,833 80.33% 88.21%

21-01_IoTMalware 3272 398,067 1924 142,330 41.20% 64.24%

42-01_IoTMalware 4420 546,951 3099 226,308 29.89% 58.62%

08-01_IoTMalware 2181 271,260 10 824 99.54% 99.70%

34-01_IoTMalware 1923 223,957 293 20,869 84.76% 90.68%

03-01_IoTMalware 4536 534,951 5609 390,963 − 23.66% 26.92%

01-01_IoTMalware 469,275 53,974,498 441,334 32,239,514 5.95% 40.27%

60-01_IoTMalware 2476 284,405 63 4579 97.46% 98.39%

48-01_IoTMalware 3734 445,406 2319 159,938 37.90% 64.09%

49-01_IoTMalware 3665 443,332 3116 222,321 14.98% 49.85%

09-01_IoTMalware 22,548 2,787,317 18,639 1,333,986 17.34% 52.14%

35-01_IoTMalware 8,262,389 958,410,934 4,120,109 456,537,432 50.13% 52.37%

07-01_IoTMalware 75,955 9,676,495 113,538 7,911,788 − 49.48% 18.24%

36-01_IoTMalware 2663 306,067 1170 81,773 56.06% 73.28%

52-01_IoTMalware 1794 210,160 1369 94,072 23.69% 55.24%

33-01_IoTMalware 1,380,791 154,919,240 1,362,849 97,414,905 1.30% 37.12%

17-01_IoTMalware 31,438 3,933,107 25,206 1,834,122 19.82% 53.37%

39-01_IoTMalware 7337 870,739 8,534 613,082 − 16.72% 29.59%

Fig. 10  Detail of the storage reduction for each file of the
experiment. Comparison of rows and storage bytes between the
original and the generated file

Fig. 11  Total storage reduction for the experiment dataset.
Comparison of rows and storage bytes between the original and the
generated dataset

Page 13 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33 	

 where true positives (TP) are the normal behaviour items
correctly classified as normal; false-positives (FP) are the
malicious behaviour samples that are misclassified as

(3b)Precision =
TP

TP + FP

(3c)Recall =
TP

TP + FN

(3d)F1score =
2 ∗ TP

(2 ∗ TP)+ FP + FN

benign; true negatives (TN) are the malicious behaviour
elements that are correctly classified as attacks; and false-
negatives (FN) are the abnormal behaviour items that are
misclassified as normal.

We followed three different lines of research, all con-
sisting of 360 test cases with different combinations of
hyperparameters. A Cartesian search was used to find
the best one. Table 7 shows the combined hyperparam-
eters. Tests were performed with topologies with differ-
ent depths and numbers of units per layer. Additionally,
we evaluated the impact on the results of the number of
bottleneck units and variations in the magnitude of the
IQR. Moreover, different numbers of epochs and batch
sizes were used.

First, we trained the model with all the features
obtained from the CGN. We discarded the CCM feature
during the preparation of data before training. In the
following, we repeated the training without those met-
rics, omitting CCM and BCM to estimate their impact
on classification. Finally, we trained the model with the
input dataset based on network flows. The best results
are shown in Table 8. The best results have been achieved
with a 2-layer topology (7 and 5 units) with a bottleneck
of 3 units. The IQR factor chosen has very little effect on
the result, and other metrics will be explored in future
studies.

Discussion
The discussion of our findings in this article is presented
in this section.

The stacked autoencoder-based model trained with
CGN detects botnet attacks with high accuracy.

It requires less storage for training than a traditional
flows-based model. The maximum space required is
determined by the number of devices in the network,
regardless of how connections are made between them.
Therefore, the maximum space can be easily calculated
and helps to manage the controller’s storage resources,
avoiding problems of lack of space and mitigating the

Table 5  Properties of the CGNs (nodes, arcs, and rows needed to represent them) compared with the flows contained in the files used
for the experiments

Dataset Malware ZeekFlows Zeek Files CGN Files Rows IP addresses IP addresses-ports

(Mb) (Mb) CGN file Nodes Arcs Nodes Arcs

01_01_IoTMaleware Hide &Seek 1008749 126 70 640194 602833 620842 640194 620842

03_01_IoTMaleware Mushtik 156104 21 10 91897 65010 65153 91897 81406

09_01_IoTMaleware linux-hiajime 6378294 849 578 5289007 5220276 5221075 5289007 6369855

35_01_IoTMaleware Mirai 10447796 1186 439 4170803 4104749 4170803 4105278 4375867

36_01_IoTMaleware Okiru 13645107 1573 1512 13608115 13599603 13599713 13608115 13608335

60_01_IoTMaleware GagFyt 3581029 411 7 65569 31 33 65569 65671

Table 6  Malware detected in each of the experiment files. Ports
per device involved in the attacks

Dataset Malware Devices & ports

Benign Malicious

01-01_IoTMaleware Hide &Seek 441,334 210,748

03-01_IoTMaleware Mushtik 534,951 88,586

09-01_IoTMaleware linux-hiajime 18,639 5,276,049

35-01_IoTMaleware Mirai 4,120,109 65,546

36-01_IoTMaleware Okiru 1170 13,607,153

60-01_IoTMaleware GagFyt 63 65,515

Table 7  Hyperparameters and combined values for the
Cartesian search of the best configuration of the trained ML
model

Topology Bottleneck IQR
factor

Epochs Batch
size

Units L1: 7 L2: 5 1 0.01 10 32

Units L1: 8 L2: 7 L3: 6 L4: 5 2 0.1 20 64

Units L1: 15 L2: 10 L3: 7
L4: 5

3 0.5 128

4 1.5

3

Page 14 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33

negative impact of increasing the density of connections
in the network.

The volume of data that the controller sends to the
devices is small, consisting only of control plane infor-
mation. The information that the edge-IoT devices share
with the decision server is also related to the control
plane, so the IDS does not affect the confidentiality of the
data plane.

The model has a high classification performance with
a simple topology consisting of few hidden layers and
neurons in each layer. The model requires low memory
due to the small number of parameters (255). Metrics are
effective in representing the behaviour of network traffic.
A few features are sufficient to represent it. Therefore, a
deep topology is not necessary to obtain high accuracy.
Additionally, since autoencoders tend to overfit, better
results are achieved with shallow networks and fewer
epochs.

The main drawback is the cost of computing some cen-
trality metrics, which can be mitigated by omitting them
from the model. The BCM, CCM and LCM centrality
metrics, which are intended to capture the behaviour of
P2P attacks, have been excluded due to their computing
overhead which makes their calculation unaffordable in
a real-world controller. The accuracy and precision of
the classification were slightly reduced when evaluating
samples not previously seen by the model. We have not
studied in depth the impact of discarding metrics. Gen-
eral comparative experiments have been conducted. A

specific experimentation plan is required to determine
the impact and explore other centrality metrics.

Topologies used on data flows show very low preci-
sion in classifying normal traffic. Deeper topologies are
required to improve the results.

Finally, the proposed IDS was compared with other
state-of-the-art works (Saba et al. 2021; Babu and Reddy
2020; Tian et al. 2021; Lin and Huang 2020; Nguyen
et al. 2019; Liu et al. 2021; Shafee et al. 2020; Anthi et al.
2019; Huong et al. 2021; Zhao et al. 2020). The particu-
lar reason for choosing them for comparison is that they
perform traffic classification of edge-IoT devices with dif-
ferent classifiers, and in general, it is performed on the
device itself. Therefore, the effectiveness of the proposed
IDS is compared to the state of the art considering accu-
racy and F1 score.

Figure 12 presents the comparison of the accuracy of
the three proposed models with the works (Saba et al.
2021; Babu and Reddy 2020; Tian et al. 2021; Lin and
Huang 2020; Nguyen et al. 2019; Liu et al. 2021; Shafee
et al. 2020). Saba et al. (2021) details a model that com-
bines genetic algorithms, support vector machines and
decision trees, obtaining an accuracy of 99.80%. Tian
et al. (2021) used a denoising autoencoder, achieving an
accuracy of 92.92%. Lin and Huang (2020), Nguyen et al.
(2019), Liu et al. (2021) utilized various types of recurrent
neural networks with results of 91.67%, 95.6% and 92%,
respectively. Finally, Shafee et al. (2020) proposes several
models, where 98.11% is the highest accuracy.

Table 8  Configuration and evaluation metrics of the best results obtained for the three lines tested in the experiments

Test Hyperparameters Accuracy Precision Recall F1-score

CGN Units L1: 7 L2: 5 Train: 94.29%

Bottleneck: 3 Test Benign: 98.09% 94.81% 96,42%

IQR factor: 0.01 Test Malicious: 98.16% 99.59% 98.87%

Epochs: 10 Test: 98.16% 98.13% 97.20% 97.65%

Batch size: 32

CGN
w/o BCM, LCM, CCM

Units L1: 7 L2: 5 Train: 92.8%

Bottleneck: 3 Test Benign: 99.76% 89.05% 94.10%

IQR factor: 0.01 Test Malicious: 95.52% 99.86% 97.64%

Epochs: 20 Test: 96.7% 97.64% 94.46% 95.87%

Batch size: 32

Flows Units L1: 8 L2: 7 L3: 6 L4: 5 Train: 73.50%

Bottleneck: 3 Test Benign: 27.76% 66.09% 39.24%

IQR factor: 0.01 Test Malicious: 97.52% 88.02% 92.53%

Epochs: 20 Test: 86.73% 62.64% 77.46% 65.88%

Batch size: 32

Page 15 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33 	

Figure 13 shows the comparison of the F1-score of our
models with the works (Anthi et al. 2019; Huong et al.
2021; Zhao et al. 2020). Anthi et al. (2019) described a
decision tree, reaching an F1-score of 96.9%. Huong et al.
(2021) proposed a model that combines a variational
autoencoder, and a recurrent neural network, achieving
an F1-score of 97.9%. Zhao et al. (2020) used a recurrent
neural network with results of 99.21%.

Our work obtains similar results to current state-of-
the-art works with storage in reduction space.

Conclusions
In this article, we propose to represent the behaviour of
IoT devices in an SDN using CGNs. It has been shown
that CGNs, compared to traditional data, reduce the
required amount of storage. Furthermore, CGNs sim-
plify the typification of device-to-device traffic, and an
implementation with few hidden layers and neurons
can identify devices with anomalous behaviour. We
have taken advantage of the low memory and reduction

in computing resources to train a stacked autoencoder-
based machine learning model that learns the normal
communication pattern of network devices. This ena-
bles behaviour analysis to be conducted at the edge
thereby distributing the computational effort associated
with detecting botnet attacks. Experiments demonstrate
that the accuracy and precision are comparable to those
currently achieved in the literature. The next step is to
execute an experimentation plan oriented toward explor-
ing centrality metrics and their effects on classification
accuracy with the focus on integrating them into an SDN
controller.

In the future, we plan to integrate the AIDS proto-
type into a real SDN to explore how to minimize the
time elapsed from the start of an attack until actions
are applied to intercept it. Decreasing this delay to
move closer to a real-time response would improve the
network security and the ability to mitigate the conse-
quences of attacks. Furthermore, we hope to assign a dif-
ferent class to each type of attack and thus automatically
generate type-specific dynamic security policies.

Abbreviations
AIDS	� Anomaly IDS
BCM	� Node betweenness
C2	� Command and control
CCM	� Clustering coefficient
CGN	� Communications graphs of network
CSV	� Comma-separated value
DNS	� Domain name server
DVC	� Data version control
EVM	� Eigenvector centrality
FN	� False negative
FP	� False positive
IDM	� In degree
IDS	� Intrusion detection systems
IoT	� Internet of Things
IP	� Internet protocol
IQR	� Interquartile range
IWM	� In weight degree
LCM	� Node closeness
MLOps:	� Operationalization management
ODM	� Out degree
OWM	� Out weight degree
P2P	� Peer to peer
ReLU	� Rectified linear unit
SDN	� Software-defined network
TN	� True negative
TP	� True positive

Acknowledgements
Not applicable.

Author contributions
All authors read and approved the final manuscript.

Funding
Not applicable. This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

Availability of data and materials
Dataset used in paper is publicly available in Garcia et al. (2020).

Fig. 12  Comparison of the accuracy obtained in the experiments
with the state of the art

Fig. 13  Comparison of the F1-score obtained in the experiments
with the state of the art

Page 16 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Inetum España S.A., C/ María de Portugal, 9 ‑ 11, Building 1, 28050 Madrid,
Spain. 2 Department of Computer Engineering, Polytechnic School, University
of Alcala, Madrid‑Barcelona Road Km 33.6. Alcala de Henares, 28871 Madrid,
Spain.

Received: 7 March 2023 Accepted: 14 June 2023

References
Ahmed U, Raza I, Hussain SA, Syed A, Amjad A, Muddesar I (2015) Modelling

cyber security for software-defined networks those grow strong when
exposed to threats. J Reliable Intell Environ 1:123–146

Alaba FA, Othman M, Hashem IAT, Alotaibi F (2017) Internet of things security:
a survey. J Netw Comput Appl 88:10–28

Anthi E, Williams L, Słowińska M, Theodorakopoulos G, Burnap P (2019) A
supervised intrusion detection system for smart home iot devices. IEEE
Internet Things J 6(5):9042–9053

Babu MJ, Reddy AR (2020) Sh-ids: specification heuristics based intrusion
detection system for iot networks. Wireless Pers Commun 112:2023–2045

Bank D, Koenigstein N, Giryes R (2020) Autoencoders. arXiv:​2003.​05991
Benzekki K, El Fergougui A, Elbelrhiti Elalaoui A (2016) Software-defined net‑

working (sdn): a survey. Secur Comm Netw 9:5803–5833
Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol

25:163–177
Brandes U, Pich C (2007) Centrality estimation in large networks. Int J Bifurc

Chaos 17(7):2303–2318
Check Point: Check Point Software’s 2023 Cyber Security Report (2023).

https://​pages.​check​point.​com/​cyber-​secur​ity-​report-​2023.​html Accessed
20 Feb 2023

Choi H, Lee H, Lee H, Kim H(2007) Botnet detection by monitoring group
activities in dns traffic. In: 7th IEEE international conference on computer
and information technology (CIT 2007), pp 715–720

Chowdhury S, Khanzadeh M, Akula R (2017) Botnet detection using graph-
based feature clustering. J Big Data 4:14

Daya AA, Salahuddin M, Limam N, Boutaba R (2019) A graph-based machine
learning approach for bot detection. arXiv

Douceur JR (2002) The sybil attack. In: Springer (ed.) International workshop
on peer-to-peer systems. Lecture notes in computer science: 2002;
Heidelberg, vol 2429

Garcia S, Parmisano A, Erquiaga MJ (2020) IoT-23: A labeled dataset with mali‑
cious and benign IoT network traffic (Version 1.0.0) . https://​www.​strat​
osphe​reips.​org/​datas​ets-​iot23 Accessed 10 Feb 2022

Geetha A, Sreenath N (2016) Byzantine attacks and its security measures in
mobile adhoc networks. Int J Comput Commun Instrum Eng (IJCCIE)
3(1):42–47

Hafeez I, Antikainen M, Tarkoma S (2019) Protecting iot-environments against
traffic analysis attacks with traffic morphing. In: 2019 IEEE international
conference on pervasive computing and communications workshops
(PerCom Workshops), pp 196– 201

Horrow S, Sardana A (2012) Identity management framework for cloud based
internet of things. In: Proceedings of the first international conference on
security of internet of things (SecurIT ’12), pp 200– 203

Hu YC, Perrig A, Johnson DB (2003) Packet leashes: a defense against worm‑
hole attacks in wireless networks. In: IEEE INFOCOM 2003. Twenty-second
annual joint conference of the IEEE computer and communications
societies (IEEE Cat. No.03CH37428), vol 3, pp 1976– 1986

Hung-Jen Liao L, Chun-Hung RL, Ying-Chih L, Kuang-Yuan T (2013) Intru‑
sion detection system: a comprehensive review. J Netw Comput Appl
36(1):16–24

Huong T, Bac T, Long D, Luong T, Dan N, Quang L, Cong L, Thang B, Tran K
(2021) Detecting cyberattacks using anomaly detection in industrial
control systems: a federated learning approach. Comput Ind 132:103509

Ioffe S, Weiqing S(2015) Batch normalization: accelerating deep network train‑
ing by reducing internal covariate shift. arXiv

Jindal K, Dalal S, Sharma KK(2014) Analyzing spoofing attacks in wireless net‑
works. In: 2014 fourth international conference on advanced computing
& communication technologies, pp 398– 402

Kang U, Papadimitriou S, Sun J, Tong H (2011) Centralities in large networks:
Algorithms and observations, pp 119– 130

Karim A, Salleh R, Shiraz M, Shah S, Awan I, Anuar N (2014) Botnet detec‑
tion techniques: review, future trends, and issues. J Zhejiang Univ Sci C
15:943–983

Khraisat A, Gondal I, Vamplew P, Kamruzzaman J (2019) Survey of intrusion
detection systems: techniques, datasets and challenges. Cybersecurity
2(1):1–22

Kibirige G, Sanga C (2015) A survey on detection of sinkhole attack in wireless
sensor network. Int J Comput Sci Inf Secur 13:1–9

Limarunothai R, Munlin MA (2015) Trends and challenges of botnet architec‑
tures and detection techniques. J Inf Syst Telecommun 5(1):51–57

Lin K, Huang W(2020) Using federated learning on malware classification.
In: 2020 22nd international conference on advanced communication
technology (ICACT), pp 585– 589

Liu Y, Garg S, Nie J, Zhang Y, Xiong Z, Kang J, Hossain M (2021) Deep anomaly
detection for time-series data in industrial iot: a communication-
efficient on-device federated learning approach. IEEE Internet Things J
8(8):6348–6358

Lu Z, Lu X, Wang W, Wang C (2010) eview and evaluation of security threats on
the communication networks in the smart grid. In: 2010 Military Com‑
munications Conference, pp. 1830– 1835

Luo T, Nagarajan SG (2018) Distributed anomaly detection using autoencoder
neural networks in wsn for iot. In: 2018 IEEE International Conference on
Communications (ICC), pp. 1– 6

Malladi S, Alves-Foss J, Heckendorn RB (2002) On preventing replay attacks on
security protocols. Department of Computer Science University of Idaho

Mendes LDP, Aloi J, Pimenta TC(2019) Analysis of iot botnet architectures
and recent defense proposals. In: 2019 31st international conference on
microelectronics (ICM), pp 186– 189

Mirsky Y, Doitshman T, Elovici Y, Shabtai A (2018) Kitsune: an ensemble of
autoencoders for online network intrusion detection. arXiv:​1802.​09089,
pp 665–674

Murray SN, Walsh BP, Kelliher D, O’Sullivan DTJ (2014) Multi-variable optimiza‑
tion of thermal energy efficiency retrofitting of buildings using static
modelling and genetic algorithms–a case study. Build Environ 75:98–107

Nguyen TD, Marchal S, Miettinen H M andFereidooni Asokan N, Sadeghi AR
(2019) DÏot: A federated self-learning anomaly detection system for
iot. In: International conference on distributed computing systems, pp
756– 767

Niyaz Q, Weiqing S, Javaid AY (2017) A deep learning based ddos detection
system in software-defined networking (sdn). EAI Endorsed Trans Secur
Saf 4:2

Pawar MV, Anuradha J (2015) Network security and types of attacks in net‑
work. Procedia Comput Sci 48:503–506

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations
by error propagation. In: Parallel distributed processing: explorations in
the microstructure of cognition pp 318–362

Saba T, Sadad T, Rehman A, Mehmood Z, Javaid Q (2021) Intrusion detection
system through advance machine learning for the internet of things
networks. IT Prof 23(2):58–64

Sarica AK, Angin P (2020) Explainable security in sdn-based iot networks. Sen‑
sors 20(24):7326

Sengupta T, De, S, Banerjee I (2021) A closeness centrality based p2p botnet
detection approach using deep learning. In: 12th international confer‑
ence on computing communication and networking technologies
(ICCCNT), pp 1– 7

Shafee A, Baza M, Talbert DA, Fouda MM, Nabil M, Mahmoud M (2020) Mimic
learning to generate a shareable network intrusion detection model. In:
2020 IEEE 17th annual consumer communications networking confer‑
ence (CCNC), pp 1– 6

Shinan K, Alsubhi K, Alzahrani A, Ashraf MU (2021) Machine learning-based
botnet detection in software-defined network: A systematic review.
Symmetry 13(5):866

http://arxiv.org/abs/2003.05991
https://pages.checkpoint.com/cyber-security-report-2023.html
https://www.stratosphereips.org/datasets-iot23
https://www.stratosphereips.org/datasets-iot23
http://arxiv.org/abs/1802.09089

Page 17 of 17Muñoz and Valiente ﻿Cybersecurity (2023) 6:33 	

Silva S, Silva R, Pinto R, Salles R (2013) Botnets: a survey. Comput Netw
57:378–403

Tanenbaum A, Wetherall D (2011) Computer Networks, 5th edn. Pearson,
Boston

Thakkar A, Lohiya R (2019) Review on machine learning and deep learning
perspectives of ids for iot: recent updates, security issues, and challenges.
Arch Computat Methods Eng 28:3211–3243

Tian P, Chen Z, Yu W, Liao W (2021) Towards asynchronous federated learning
based threat detection: a dc-adam approach. Comput Secur 108:102344

Venkatesh B, Choudhury SH, Nagaraja S (2015) Botspot: fast graph based iden‑
tification of structured p2p bots. J Comput Virol Hack Tech 11:247–261

Xu B, Szegedy C (2015) Empirical evaluation of rectified activations in convolu‑
tion network. arXiv:​1505.​00853

Zeidanloo HR, Manaf AA (2009) Botnet command and control mechanisms.
In: 2009 second international conference on computer and electrical
engineering, pp 564– 568

Zhao R, Yin Y, Shi Y, Xue Z (2020) Intelligent intrusion detection based on feder‑
ated learning aided long short-term memory. Phys Commun 42:101157

Zhao K, Ge L(2013) A survey on the internet of things security. In: 2013 ninth
international conference on computational intelligence and security, pp
663– 667

Zhou W, Jia Y, Peng A, Zhang Y, Liu P (2019) The effect of iot new features on
security and privacy: new threats, existing solutions, and challenges yet
to be solved. IEEE Internet Things J 6(2):1606–1616

Zhou C, Paffenroth R(2017) Anomaly detection with robust deep autoencod‑
ers. In: Proceedings of the 23rd ACM SIGKDD international conference,
pp 665– 674

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://arxiv.org/abs/1505.00853

	A novel botnet attack detection for IoT networks based on communication graphs
	Abstract
	Introduction
	State of the art
	Security paradigms
	IoT network security
	Threats in communications networks
	Botnets
	Intrusion detection systems
	Autoencoders for anomaly detection
	Summary of conclusions

	Objectives and methodology
	Contribution
	Model development
	Operations

	Evaluation
	Storage evaluation
	Classification experiments

	Discussion
	Conclusions
	Acknowledgements
	References

