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Abstract
Intrusion detection systems have been proposed for the detection of botnet attacks. Various types of centralized or 
distributed cloud-based machine learning and deep learning models have been suggested. However, the emergence 
of the Internet of Things (IoT) has brought about a huge increase in connected devices, necessitating a different 
approach. In this paper, we propose to perform detection on IoT-edge devices. The suggested architecture includes 
an anomaly intrusion detection system in the application layer of IoT-edge devices, arranged in software-defined 
networks. IoT-edge devices request information from the software-defined networks controller about their own 
behaviour in the network. This behaviour is represented by communication graphs and is novel for IoT networks. This 
representation better characterizes the behaviour of the device than the traditional analysis of network traffic, with a 
lower volume of information. Botnet attack scenarios are simulated with the IoT-23 dataset. Experimental results show 
that attacks are detected with high accuracy using a deep learning model with low device memory requirements and 
significant storage reduction for training.
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Graphical abstract

Introduction
Cybersecurity is considered necessary from a strategic 
point of view. Reports from cybersecurity companies 
reveal an annual increase in the number of cyberattacks. 
Global cyberattacks increased by 38% in 2022 compared 
to 2021  (Check Point 2023). Multipurpose malware (a 
category for botnets and banking Trojans) accounts for 
32% of all attacks.

The ever-increasing interest and continuous develop-
ment of the Internet of Things (IoT) has reinforced the 
growth of data and devices. IoT is widely used in both 
industrial production and the social domain, offering sig-
nificant advantages in terms of convenience, efficiency, and 
accessibility. However, its vulnerabilities have contributed 
to serious security and privacy threats (Zhou et al. 2019).

IoT devices collect data for a specific purpose. They are 
used for temperature control, home access control, bio-
metric measurements, quality control, industrial process 
security, and in many other applications. These data are 
usually stored on servers hosted on local networks or in 
the cloud. The data may be confidential, and its alteration 
could cause damage.

IoT devices generally have weak security, making them 
vulnerable to exploitation as a backdoor for intrusion 
into the systems to which they connect. This can result in 
blocked reception of information, due to altered or miss-
ing data. Additionally, they can be recruited for botnets 
and actively participate in cyberattacks.

The current integration of IoT devices in the medical, 
industrial, and military fields requires more sophisticated 
security mechanisms to prevent information theft and 
mitigate material and physical damage.

A current line of defence in IoT networks are intru-
sion detection systems (IDS), based on machine learning 
techniques, due to the specific characteristics of these 
networks: global connectivity, limited energy and band-
width, and heterogeneity  (Thakkar and Lohiya 2019). 
IDS classifies network traffic, and identify abnormal pat-
terns. Generally, they analyse the data flow in the net-
work to detect a variety of attacks. However, flow-based 
approaches can often lead to computational overhead 
and do not fully capture the communication character-
istics (Daya et al. 2019). Communications graphs of net-
works (CGN) overcome these limitations, and they are 
an alternative approach to determining the behaviour 
of connected devices without compromising data confi-
dentiality because they are drawn from control informa-
tion. For this reason, communication graph analysis has 
gained attention. In this line of research, software-defined 
networks (SDNs) provide major advantages by separat-
ing communication into a data plane and a control plane. 
This improves security and network management (Sarica 
and Angin 2020) but also simplifies the representation of 
behaviour by communication graphs.

We propose an architecture for an anomaly intru-
sion detection system (AIDS) integrated into a 
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software-defined network. It uses stacked autoencod-
ers to categorize the behaviour of IoT-edge devices on 
the network. This deep learning technique is suitable for 
unbalanced datasets, such as those gathered for botnet 
detection. Furthermore, research has shown the feasi-
bility of running autoencoders on IoT-edge devices (Luo 
and Nagarajan 2018), despite their limited computational 
capabilities.

This deep learning model, hosted in the applica-
tion layer of IoT-edge devices, individually evaluates its 
behaviour on the network. Each device periodically scans 
its communications graphs of the network, provided by 
the SDN controller. The system has a dedicated deci-
sion server that is responsible for taking actions based on 
the predictions. Moreover, the server regularly retrains 
the model, fitting it to the evolution of normal network 
traffic.

A stacked autoencoder-based model, with no supervi-
sion, has been implemented. It has low computational 
requirements and is supported by IoT-edge devices. 
The results are similar to those commonly reported in 
the literature but with reduced usage of computational 
resources. As the training and detection dataset have 
fewer features and items to represent the behaviour of 
the network, the generated CGN files are smaller com-
pared to the original traffic dataset.

Our main contributions are summarized as follows:

•	 We propose a new defence against botnet attacks, 
which is trained from the CGN of the IoT device net-
work flow. The attack detection process is performed 
by edge devices thereby distributing the computa-
tional cost. Training and detection require only con-
trol information which avoids a breach of confidenti-
ality.

•	 We reveal that CGNs reduce the storage space and 
features needed to learn the benign behaviour of a 
network from deep learning models with low depth 
and parameters and thus obtaining a high accuracy in 
the detection of malicious attacks. This optimization 
permits detection to be performed on edge devices.

•	 We evaluated the model against six of the prevalent 
malware. Our experiments show that its perfor-
mance is consistent with the current state of the art.

The remaining parts of this paper are organized as fol-
lows: In section "State of the art", we present a review 
of related work and the state of the art on the subject 
of this article; in section "Objectives and methodology", 
we describe the research objectives and the methodol-
ogy followed; in section "Contribution", we explain the 

proposed architecture and model for detecting botnet 
attacks on IoT-edge devices; in section "Evaluation", we 
show the results achieved in the experiments; in section 
"Discussion", we analyse and discuss the effectiveness of 
the models; and in section "Conclusions", we summarize 
our conclusions.

State of the art
A communication network is a collection of autono-
mously operating computers with the capability to 
exchange information with each other  (Tanenbaum 
and Wetherall 2011). This definition can be extended to 
include IoT-edge devices.

Security paradigms
There are three main security objectives: network avail-
ability, information integrity, and confidentiality (Lu 
et al. 2010). Different security paradigms are used for the 
detection and mitigation of malicious attacks, such as 
IDS and SDN. The latest trends combine both paradigms.

An IDS is an automated detection process that moni-
tors events on a system and looks for signs of intrusion 
(Hung-Jen Liao et al. 2013). It analyses traffic differently 
from traditional firewalls, seeking out characteristics that 
identify the traffic as abnormal. IDSs can be classified 
into two main groups (Khraisat et  al. 2019): (i) a signa-
ture IDS searches for previously catalogued patterns in 
the data transmitted over the network; however, these 
systems are becoming less effective. (ii) An AIDS detects 
differences in the learned behaviour of the network using 
machine learning techniques. Attackers must be aware of 
normal behaviour to avoid detection.

An SDN is a paradigm that enables the design, imple-
mentation, and management of communications net-
works in which control and data flow are separated into 
two different planes (Benzekki et  al. 2016). The control 
plane is centralized, making routing decisions and man-
aging the logical topology of the network. The data plane 
is responsible for transmitting data, according to the con-
trol plane’s policies.

It has a three-layer architecture (Sarica and Angin 
2020) (Fig.  1): (i) Application: hosts applications, such 
as the IDS, communicating with the controller; (ii) Con-
trol: contains a controller managing a network overview 
and routing policies; (iii) Infrastructure: applies policies 
received from the controller to routing devices.

An SDN provides greater protection against some types 
of attacks (Shinan et al. 2021), however, the controller is 
a vulnerable point for failure due to the centralized net-
work management (Ahmed et al. 2015).
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IoT network security
IoT networks include components such as sensors, actua-
tors, computation nodes, receivers, and communicators. 
There are three different layers in IoT networks (Hor-
row and Sardana 2012; Zhao and Ge 2013): (i) Applica-
tion, providing multiple visible services; (ii) Perception, 
collecting and sending information; and (iii) Network 
Protocols.

The security requirements for IoT networks are dif-
ferent from those for traditional networks. Alaba et  al. 
(2017) proposes a specific taxonomy related to secu-
rity for IoT networks, comprising four domains (Fig. 2): 
architecture, application, communication, and data.

The presence of attacks on IoT-edge devices has 
increased in recent years, with attention focusing on 
aspects such as their low security and vulnerabilities 
(Mendes et  al. 2019). These devices are often recruited 

by botnets to participate in distributed denial-of-service 
attacks.

Threats in communications networks
Communication networks are exposed to multiple 
threats, which can be divided into two main categories 
(Pawar and Anuradha 2015): passive and active.

Passive attacks analyse the data flow over the network, 
threatening the confidentiality of information. The main 
types of passive attacks are traffic analysis, in which sen-
sitive information is inferred (Hafeez et  al. 2019), and 
eavesdropping or sniffing, in which information is gath-
ered from messages passing through the network.

Active attacks threaten the integrity of information 
and the accessibility of network services. The princi-
pal types are: (i) Spoofing: Impersonating an authenti-
cated device to send information on its behalf (Jindal 
et al. 2014), (ii) Modification: Changes in the routing of 
messages, causing delays in the delivery of messages, 
(iii) Wormhole: Packets transmitted over a network are 
recorded and sent to a new location (Hu et  al. 2003), 
(iv) Fabrication: Generation of false routing messages, 
(v) Denial-of-Service: Reducing or interrupting access 
to services offered by a network, (vi) Sinkhole: a com-
promised device on the network attracting traffic to 
remove it (Kibirige and Sanga 2015), (vii) Sybil: a mali-
cious device presenting multiple identities on peer-to-
peer (P2P) networks (Douceur  2002), (viii) Black hole: 
interruptions or delays in packet delivery performed by 
network routing services, (ix) Rushing: Sending mes-
sage forwarding requests before authenticated devices, 
(x) Replay: A legitimate message in one context is 
being injected into a different context (Malladi et  al. 
2002), and (xi) Byzantine: a set of authenticated devices 
arbitrarily blocking the services offered (Geetha and 
Sreenath 2016).

Botnets
A botnet is a set of compromised devices that are con-
trolled by a botmaster (Choi et  al. 2007). They are het-
erogeneous devices connected via a communications 
network. A botnet is not inherently malicious and it 
allows for the coordinated execution of commands on 
multiple devices. These features have been exploited by 
cybercriminals for fraudulent purposes. The architecture 
has evolved from P2P configurations to hybrid configu-
rations and from internet relay chat protocols to hyper-
text transfer protocols, P2P protocols, or a hybrid model 
combining both.

The components of a botnet are (Silva et  al. 2013) (i) 
vulnerable host: devices that have been infected with a 
malicious piece of code; (ii) bots: potentially malicious 

Fig. 1  Layers and attack vectors in the SDN architecture

Fig. 2  Domains and features of IoT Network Security Taxonomy
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programs that acquire control of the host and execute 
commands received from a third party; (iii) botmaster: 
who controls the botnet and is responsible for send-
ing commands to the bots; and (iv) command-and-con-
trol (C2) infrastructure: which allows the botmasters to 
communicate with the bots. Limarunothai and Munlin 
(2015) decomposes the C2 architecture into servers and 
protocols.

Botnets can have different architectures; as described 
in Zeidanloo and Manaf (2009), there are three models: 
(i) centralized, where all communications go through 
a C2 server; (ii) distributed, where hosts can simulta-
neously function as C2 and bot; and (iii) hybrid, which 
uses social networks as a means to broadcast commands 
(Fig. 3).

The life cycle of a botnet consists of five steps (Lima-
runothai and Munlin 2015): (i) initial infection: devices 
are infected to install the code, transforming them into 
bots; (ii) secondary injection: the bot code is downloaded 
and installed; (iii) Domain Name Server (DNS) lookup: 
the internet protocol (IP) address of the C2 server is 
located; (iv) rallying: The bot establishes a connection 
with the C2 server; and (v) malicious commands: mainte-
nance and updating.

Knowledge of the life cycle of a botnet is important 
for the definition of detection methods (Silva et  al. 
2013). The three principal mechanisms are: (i) DNS-
based: consisting of detecting behavioural patterns of 
queries made by bots to DNS services; (ii) HoneyNet 
networks: purposely configured with vulnerabilities 
with the aim of attracting attacks, although they do 
not allow botnet detection by themselves (Karim et al. 
2014), and (iii) IDS.

Intrusion detection systems
Multiple studies have been conducted since 2015 (Shi-
nan et  al. 2021), proposing an AIDS solution on an 
SDN architecture located in the application or control 
layer. Khraisat et al. (2019), Shinan et al. (2021) enumer-
ate the most widely used machine learning methods: (i) 
supervised: decision trees, Naïves-Bayes, artificial neu-
ral networks, support vector machines, and K-nearest 
neighbour; and (ii) unsupervised: K-means (clustering) 
and genetic algorithms. These have been used less often 
(Murray et al. 2014).

Machine learning models have traditionally been 
applied on a set of characteristics of the data flow. Prom-
ising lines of research propose that network behaviour is 
similar to the patterns of social networks (Shinan et  al. 
2021; Chowdhury et al. 2017; Daya et al. 2019). Therefore, 
novel machine learning models are trained with CGN. 
The nodes represent the devices, and the arcs describe 
the data flows, with one arc existing for each port-IP 
address tuple (Fig. 4).

CGN avoids comparing data flows (Venkatesh et  al. 
2015) and is a more efficient method. Chowdhury et al. 
(2017) suggests eight features: (i) in degree (IDM): the 
number of input flows to a device, which is high on the 
C2 server; (ii) out degree (ODM): the number of outgo-
ing flows from a device, which is high on the C2 server 
and bots; (iii) in weight degree (IWM): the total number 
of incoming packets received by a device from its neigh-
bours, where it is assumed that all bots on a network 
will receive the same number of packets from the C2 
server; (iv) out weight degree (OWM): the total number 
of outgoing packets sent by a device from its neighbours, 
where it is assumed that bots will send the same packets 

Fig. 3  Hybrid model of botnet architecture. Communication 
between C2 and botmaster through social networks

Fig. 4  Relationship between the communication graph and the 
physical architecture of a network
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to the devices that they are going to attack; (v) cluster-
ing coefficient (CCM): evaluates the closeness between 
the neighbours of a device, where a high value is assumed 
for P2P-type botnets; (vi) node betweenness (BCM): 
the number of times a device is in the set composed of 
the shortest paths between each pair of devices, where 
a high value is assumed in P2P-type botnets; (vii) node 
closeness (LCM): the mean of the shortest distance of all 
devices that can reach another device, which is relevant 
in P2P botnets (Sengupta et  al. 2021), and (viii) eigen-
vector centrality (EVM): the weight of the device in the 
graph.

Autoencoders for anomaly detection
Autoencoders are a type of machine learning model 
introduced by Rumelhart et  al. (1986). They are unsu-
pervised neural networks that are trained to extract the 
main features of the input so that it can be reconstructed. 
The inputs are encoded and then decoded, resulting in a 
loss of information. The difference between the input and 
output is minimized. Autoencoders are a generalization 
of principal component analysis. Instead of finding linear 
relationships, they learn the non linear ones (Bank et al. 
2020), thus achieving dimensional reduction.

Stacked autoencoders are layer-trained autoencoders. 
Each layer of the encoder is the input of another more 
internal autoencoder, until it reaches the deepest level 
(bottleneck). Similarly, the decoder layers are considered 
to be the output of another autoencoder.

Mirsky et  al. (2018), Luo and Nagarajan (2018), Zhou 
and Paffenroth (2017) presented models for detecting 
attacks in the cybersecurity domain. Niyaz et  al. (2017) 
describes the use of autoencoders for the detection of 
distributed denial-of-service attacks in SDN networks, 
learning the normal behaviour of the network with a 
stacked autoencoder. The model classifies up to eight 
different types of attacks with a very low rate of false-
positives. Their experiments achieve 99.82% accuracy in 
identifying network attacks.

Autoencoders can be run for anomaly detection on 
IoT-edge devices (Luo and Nagarajan 2018). The edge 
computing paradigm is applicable when a copy of an 
autoencoder is placed on the edge devices. Moreover, 
the machine learning model can be periodically retrained 
from data traffic. This architecture allows the model to 
evolve with the latest network behaviour.

Summary of conclusions
The most recent research tends to integrate AIDS with 
SDN networks. Previous papers have proposed this archi-
tecture for IoT networks, dedicating servers to detection. 
Other articles propose AIDS in wireless sensor networks 

where the detection is carried out by autoencoders in 
the IoT-edge devices. All the proposed models examine 
the data flow traffic. To the best of our knowledge, AIDS 
systems for IoT networks that analyse CGN have not yet 
been suggested.

Objectives and methodology
The primary objective is the development of an AIDS 
prototype integrated into an SDN, for the detection of 
botnet attacks on IoT networks. We represent the net-
work behaviour using CGN. We expect to reduce the 
amount of evaluation and training data by at least 30%, 
and achieve an accuracy greater than 90%.

This objective has been divided into more specific goals 
for IoT networks: (i) determining the components to 
integrate an AIDS in an SDN architecture, (ii) identify-
ing at least six characteristics of CGN for botnet attack 
detection, (iii) evaluating the accuracy and precision of 
the stacked autoencoder in detecting behavioural anoma-
lies, (iv) reducing the required resources, (v) verifying 
that the solution is a valid alternative, and (vi) exploring 
the use of CGN to increase security.

The life cycle chosen for the prototype is machine learn-
ing model operationalization management (MLOps), with 
a focus on the tasks associated with machine learning 
engineering. However, deployment and monitoring work 
have not been covered.

According to the MLOps methodology, the tasks are 
distributed across three preparation pipelines: data, 
model, and software.

Training data are acquired, explored, validated, 
and prepared for the duration of the data pipeline. 
The source of the data required for both model train-
ing and classification of network traffic is the control 
flows managed in the SDN controller. First, the benign 
behaviour of the network is captured by recording the 
number of packets exchanged for each ip and port dur-
ing a time interval. These captures contain the infor-
mation needed to generate the CGNs with the benign 
behaviour of the network and is used as a data source 
for the preparation of training data. In later steps, the 
controller maintains a CGN that it will share with the 
devices for classification of device behaviour on the 
network. For this experiment, the input data source is 
the Aposemat IoT-23 dataset (Garcia et al. 2020), com-
posed of labelled data flows from a real IoT network. 
CGNs are calculated from this dataset and versioned in 
Data Version Control (DVC).

The machine learning model is prepared, evaluated, 
and packaged for deployment throughout the model 
pipeline. Even when autoencoders are not supervised, 
the original labelling is utilized as ground truth, and 
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the training process is cross-validated with supervised 
metrics over fivefold. Thus, the total metrics are the 
mean accuracy and F1-score. We have sought the best 
model configuration. Therefore, a Cartesian hyperpa-
rameter search is used to generate the combinations to 
be evaluated. All tested models have been registered on 
the mlflow platform, thus guaranteeing traceability and 
reproducibility.

Figure  5 shows the model preparation workflow. AI 
teams prepare the classification models, and they are 
registered in the decision server. The new model is dis-
tributed to the sensors that will be classified with the 
updated model. The decision server evaluates whether 
there is a model decay based on the classification 

results, and upon a possible deviation, alerts are gener-
ated to the AI teams to adjust the current model.

The software pipeline is dedicated to the develop-
ment of prototype programs. There are components for 
input data transformation, model training, and AIDS 
integration.

Figure 6 shows the data flow of the attack detection 
process. The SDN controller generates the CGN from 
the control flow. It sends the features to each device 
of its traffic to evaluate its own behaviour. The results 
obtained are sent to the decision server that can gener-
ate policies to mitigate a detected attack and generate 
alerts to security administrators to evaluate and act on 
a detected threat.

Finally, Table 1 shows the canvas proposed by MLops 
adapted to this prototype.

Contribution
In this section, we detail the IDS prototype that we have 
developed for research purposes. We have not fully 
implemented all components of the IDS, but a real runt-
ime environment is emulated.

Figure  7 shows the proposed architecture and its fea-
tures. It describes the integration into an SDN network 
and also represents the relationship among the different 
actors in the MLops life cycle. It is continuous and cycli-
cal; thus, data analysis and modelling tasks alternate with 
their deployment in an operational environment.

Model development
The machine learning model development tasks begin 
with data preparation. An SDN has monitoring tools that 
trace the communication data flows. CGNs are generated 
from the collected information to extract model training 
data. We chose the IoT-23 dataset as the source of the 
data flows. It is publicly and freely available for cyberse-
curity research; it contains different types of attacks and 
normal traffic of a real IoT network.

Table 1  MLOps life cycle. Detail of the different blocks and specific objectives of the proposed prototype

Blocks Objectives Project scope

Value proposal Define problem and importance AIDS with lower computational cost

Data sources Identify main sources Network data flow

Prediction task Model type to use Stacked autoencoder

Features How to represent input CGN

Offline evaluation Define methods and metrics Accuracy and F1 score and MSE

Decisions How to use predictions Generate alerts

Making predictions When and how Batch periodically

Collecting data Cost of new data No labeling required

Build models Frequency and cost Periodic re-training

Evaluation and monitoring How to supervise Metrics with human oversight

Fig. 5  Workflow of model preparation by the AI teams and their 
broadcast to the system

Fig. 6  Data flow between the different components of the system 
for attack detection
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A subset of data from the available dataset was selected. 
We intended to have malicious traffic including differ-
ent communication protocols with the C2 and types of 
attacks. In addition, they were selected for the relevance 
of the botnet itself. These files contain traffic from Mirai, 
Okiru, GagFyt, Hiajime, MushTik, and Hide &Seek mal-
ware. Mirai, and variants such as Okiru, and GagFyt 
(also known as Qbot or Bashlite) are still very relevant 
and trending botnets today. MushTik and GagFyt use a 
lighter IRC protocol. Hide &Seek and Hiajime incorpo-
rate the P2P protocol. Most of them have the capacity to 
carry out denial of service attacks, cryptocurrency min-
ing, information theft, and antitampering.

The data preparation process was structured into three 
steps: (i) converting the original capture structure to the 
standard Comma-Separated Value (CSV) format, (ii) cal-
culating the CGN from the CSV dataset and extracting 
the inputs to the model to be trained, and (iii) analysing 
and preparing data for training.

The source information was very comprehensive. The 
CGN was drawn with the appropriate features to iden-
tify botnets (Chowdhury et  al. 2017; Daya et  al. 2019; 
Venkatesh et al. 2015): IDM, ODM, IWM, OWM, CCM, 
BCM, LCM, and EVM. No major modifications were 
necessary once the CGNs were available. It was sufficient 
to normalize the features.

The second machine learning task consisted of defin-
ing and training the optimal model. We propose fully 
connected stacked autoencoders. This type of autoen-
coder tends to converge to a local minimum better than 
other deep autoencoders and facilitates the initialization 
strategy. The number of neurons in the input and output 

layers is equal to the number of features in the training 
data. The number of hidden layers, the number of neu-
rons in each of them, and other hyperparameters were 
determined through experimentation. The configuration 
that achieved the best classification accuracy was con-
sidered optimal. Generally, a rectified linear unit (ReLU) 
activation function was used for hidden layers in deep 
learning models. We have preferred a Leaky ReLU acti-
vation function. Xu and Szegedy (2015) validated that 
leaky ReLU performs better than ReLU on classification 
problems. The bottleneck activation function was a tra-
ditional sigmoid. The initial weights were set by random 
initialization, and the optimization method was Adam. 
It converges quickly when dealing with sparse gradient 
problems. Batch normalization was applied to allow for 
much higher learning rates, to be less careful with initial-
ization, and even to regularize (Ioffe and Weiqing 2015). 
The stacked autoencoder was trained only with normal 
behaviour, extracting its principal characteristics. The 
aim was to minimize the difference between the input 
and reconstruct its output. For this purpose, the mean 
squared error (see 1) was employed as a loss function.

This difference will be an outlier when analysing the 
abnormal behaviour of a botnet device. The interquartile 
range (IQR) rule was applied to determine the outliers 
(see 2a). Therefore, the outliers were n times larger than 
the upper bound of the IQR (see 2b). We tried several 
values of n. 

(1)MSE X , X̂ =
1

N

N

i=1

x̂i − xi
2

Fig. 7  Architecture and main characteristics of the proposed prototype for the detection of botnet attacks based on communication graphs
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Training and validation of the models were performed 
in batches, recording the experiments on the mlflow 
platform.

Operations
Mainly, the operational tasks were performed by the SDN 
and the AIDS prototype embedded in the application 
layer of edge-devices. The most important components 
are the controller, the monitoring sensor, and the deci-
sion server.

An SDN controller directs traffic according to forward-
ing policies; it is the core of an SDN. Any communica-
tion between applications and network devices must go 
through the controller, interacting with the devices using 
traditional OpenFlow-based protocols.

The monitoring sensor resides on all application layer 
edge devices and executes a set of periodic processes: 
(i) it invokes a simulated service from an SDN network 
controller that delivers behavioural data, transformed 
to CGN, to be evaluated. The sensor’s machine learning 
model classifies this received input and the results are 
stored locally. (ii) The results to be transmitted are sent to 
the decision server, which avoids communication over-
head, but is sent immediately when an attack is detected. 
This information is no longer retained in the sensor; and 
(iii) the most current version of the model is downloaded 
from the decision server.

The frequency of these processes depends on the 
characteristics of the network. The CGN summarizes 
the behaviour of devices on the network. The control-
ler is responsible for creating and updating it. This pro-
cess is not immediate, increasing the time and resources 
needed, depending on the number of nodes and the 
volume of network traffic. We have not studied the best 
strategy to minimize the impact on the controller. We 
have assumed a strategy where the controller obtains the 
CGN at startup and updates it for each node asynchro-
nously and in parallel. Updating IDM, IWM, ODM and 
OWM metrics has no relevant resource requirements. 
However, centrality metrics have significant computa-
tional costs, and traffic from one node can affect the cen-
trality of many nodes in the network. Periodic updating 
of these indicators reduces the required computational 
resources. On the other hand, lazy updating deteriorates 
the information available in the CGN. It should also be 

(2a)IQR = Q3 − Q1

(2b)Outlier(x) =







1, if x > Q3 + (n ∗ IQR)or
x < Q1 − (n ∗ IQR)

0, otherwise.

considered that edge devices do not require this informa-
tion in real time to avoid network overload and exces-
sive power consumption on the device itself. This same 
principle is also applicable to the communications that 
the devices carry out with the decision server. It is well 
known and empirically proven that it is more efficient 
to send a single message containing a set of information 
than to send it in different messages, even if the amount 
of data is larger. Finally, it is necessary to consider how 
the behaviour of the network evolves over time to deter-
mine the periodicity of the retraining of the model.

The IoT devices included in the dataset under study 
generated very low traffic when they were not infected. 
The Amazon Echo device generated more packets than 
the other devices, with an average of 229 flows per hour. 
However, it could reach 158 flows per minute when 
the network was affected by an Okiru attack. To detect 
attacks with the shortest delay, a frequency of two min-
utes was set to request its behaviour on the network 
from the controller. Therefore, thirty additional flows 
per hour were generated. The device sent the collected 
traffic information every hour. This limited the storage 
space required by the IoT device to 6 Kb. Finally, a weekly 
update of the model was planned for networks with little 
variation in their behaviour, considering the system alerts 
of model decay. Luo and Nagarajan (2018) proposes two-
minute frequencies for traffic classification, with daily 
sending of results and model adjustment.

The decision server collects the results sent by the 
monitoring sensors and performs actions based on them. 
The server has the following features: (i) It receives pre-
dictions from sensors and forwards information about 
detected attacks to a dedicated service to mitigate or 
intercept them. Currently, only alerts are appended to 
the console of security administrators. However, dynamic 
security policies, written in the Pyretic language, could 
be automatically issued to the controller. (ii) Two types 
of alerts are emitted from the server to security adminis-
trators and the artificial intelligence (AI) teams. First, an 
alert is generated when an excessive number of attacks 
can be detected, which simply is caused by an intense 
attack or indicates that the model is decaying. Second, 
there is a low attack detection rate over a long period of 
time. It could be related to a low sensitivity of the model; 
(iii) randomly, it selects part of the normal behaviour of 
the network, which is combined with the learned dataset, 
discarding older content. The resulting file is the input 
to a new training cycle; thus, the model is fitted weekly 
to changes in the normal behaviour of the network. (iv) 
The new model is disseminated to the sensors when an 
accuracy of more than 90% is achieved. The AI teams are 
alerted when the model has not been updated.
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Evaluation
In this section, we report the results of simulating the 
proposed architecture using the IoT-23 dataset. This is a 
collection of different network traffic from IoT devices, 
consisting of twenty-three scenarios. These are captures 
(pcap files) from infected IoT-edge devices. The final 
dataset was acquired by running the Zeek network ana-
lyser on the original pcap files and adding two new col-
umns for traffic classification labels. The files contained 
twenty-three feature columns. The list and description of 
columns can be found in Garcia et al. (2020).

Table 2  describes the files selected for the experiments 
performed. The files were transformed into CGN using 
a process that generates the files with a row for each IP 
address and port, along with the features calculated in 
the CGN. The six files contain the prevalent IoT device-
specific malware: Hide& Seek, Mushtik, linux-hiajime, 
Mirai, Okiru, and GagFyt. They contain flows produced 
over 24 hours, except for Hide& Seek and Mushtik, 
where traffic was tracked over a longer period. Mirai and 
GagFyt contain the highest number of packets, requir-
ing 3.86 and 21.5 Gbytes of storage space, respectively. 
GafFyt is the most significant case, where the network 
flow is represented with 3.5 million records from the 271 
million packets captured, and the storage space falls to 
411 Mbytes.

Table 3  shows the time required for generating each of 
the CGNs. The total time is the sum of the time taken to 
render the graph, calculate each of the metrics associated 

with the nodes, and save the results in the output file. 
The table contains one column for each calculated met-
ric. Rendering time depends on the number of Zeek 
flows and the number of devices and ports. Therefore, 
the minimum time is obtained in file 09_ 01.IoTMal-
ware (156,104 flows in 3.76 s) and maximum time in 
36_ 01.IoTMalware (13,645,107 flows in 2,171.02 s). The 
generation time, and the IDM, ODM, IWM and OWM 
metrics, are directly related to the number of devices and 
ports. The 36_ 01.IoTMalware file requires the maximum 
time in all these measurements (1,437.12 s, 62.14 s, 63.04 
s, 62.16 s, and 64.02 s), while the minimum time is con-
sumed in 60_ 01.IoTMalware file (0.58 s, 0.02 s, 0.02 s, 
0.02 s, 0.02 s, 0.02 s). Centrality metrics depend not only 
on the number of devices and ports but also on the topol-
ogy of the CGN. The 36_ 01.IoTMalware file requires 
the maximum time in all these metrics (261,550.12 s, 
32,646.82 s, and 2,436.50 s), while the minimum time 
is spent in 60_ 01.IoTMalware file (4.05 s, 3.18 s, 2.01 
s). The maximum total time is required to obtain 36_ 
01.IoTMalware file (300,492.94 s) and minimum time is 
required for 60_ 01.IoTMalware file (87.16 s).

The generation of some centrality metrics has a high 
computational cost, such as BCM and CCM (Brandes 
2001; Kang et  al. 2011).The calculation of betweenness 
has been approximated (Brandes and Pich 2007). We 
used 1500 node samples (pivots) to estimate the between-
ness values. Even so, the time required may not be afford-
able for the controller when the number of nodes is high 

Table 2  Dataset used for experiments. Flows and packets captured during the trace time and storage space required

Dataset Malware Duration (hrs) Packets Pcap files (Mb) Zeek flows Zeek files (Mb)

01-01_IoTMaleware Hide &Seek 112 1,686,000 140 1,008,749 126

03-01_IoTMaleware Mushtik 36 496,000 56 156,104 21

09-01_IoTMaleware linux-hiajime 24 6,437,000 472 6,378.294 849

35-01_IoTMaleware Mirai 24 46,000,000 3686 10,447,796 1186

36-01_IoTMaleware Okiru 24 13,000,000 992 13,645,107 1573

60-01_IoTMaleware GagFyt 24 271,000,000 21,504 3,581,029 411

Table 3  Time (s) to generate the CGN, and metrics, related to the network flows described in the experiment dataset

Dataset Malware Render IDM ODM IWM OWM CCM BCM EVM Generate

01-01_IoTMaleware Hide &Seek 27.37 0.11 0.12 0.17 0.17 12304.63 1535.87 9.72 15.27

03-01_IoTMaleware Mushtik 3.76 0.02 0.02 0.02 0.02 39.97 220.47 2.41 3.13

09-01_IoTMaleware linux-hiajime 240.89 2.01 1.60 1.98 1.59 101656.02 12688.70 232.42 306.34

35-01_IoTMaleware Mirai 326.80 1.67 2.15 1.66 2.17 78904.09 9848.85 98.84 161.27

36-01_IoTMaleware Okiru 2,171.02 62.14 63.04 62.16 64.02 261550.12 32646.82 2436.50 1437.12

60-01_IoTMaleware GagFyt 77.26 0.02 0.02 0.02 0.02 4.05 3.18 2.01 0.58
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(see Figs. 8 and 9 ). Growth is exponential as a function 
of the number of edges and arcs of the CGN. Both allow 
capturing the behaviour of P2P botnets, so a group of 
experiments was performed without them to evaluate the 
impact on classification accuracy.

Storage evaluation
We converted the original dataset in Zeek format to the 
CSV standard. Furthermore, we kept only normal traf-
fic because the anomaly detection machine learning 
models are trained only on these flows. Next, we repre-
sented these flows as a CGN. The graph contains a node 
for each different combination of IP address and port 
that participates in a flow. Centrality features were calcu-
lated for each node, examining the relationships between 
them. The result were stored in a new CSV file, insert-
ing a row for each node and a column for each feature. 
Therefore, the files contain a column for the IP address 
and another for the port, nine columns with normal-
ized centrality metrics (IDM, ODM, IWM, OWM, CCM, 
BCM, LCM, in-EVM and out-EVM) and, finally, a label 

column. Due to the fact the PCAP captures included in 
the IoT-23 dataset, CCM was not finaly considered in 
this work because the same value is always obtained. It 
was calculated from the fraction of possible triangles that 
pass through that node and is zero for all the nodes of the 
graph.

We compared both groups of files to evaluate if the 
number of records needed to represent the behaviour 
of the devices, and the storage in bytes, has decreased. 
Table 4 shows the details of the comparison for each file. 
The best reduction ratios are obtained for files 08-01-
01_ IoTMalware (99.54% of rows and 99.70% of bytes), 
60-01_ IoTMalware (97.46% of rows and 98.39% of bytes), 
and 44-01_ IoTMalware (95.73% of rows and 97.53% of 
bytes). However, rows increase in 4 files, with 07-01_ 
IoTMalware (−49.48% ) achieving the worst ratio. The 
results reveal that storage space is saved in all cases, and 
in general, the number of rows decreases (see Fig.  10). 
Seventy-five percent of the files reduce the quantity of 
elements by more than 29.89%. However, it increases 
when the devices and ports involved in the communica-
tions are greater than the captured flows. This scenario 
occur in four of the twenty-three files evaluated (17%). 
On average, 59.75% of storage space is saved, and there 
are 33.19% fewer rows. (see Fig. 11).

We evaluated the storage space that the controller 
would need to store information on the behaviour of 
the network in the form of a communications graph. 
Table  5 details the storage space used for the experi-
mental scenarios and the characteristics of the gener-
ated graphs. The highest space reduction is obtained in 
file 60_ 01.IoTMalware (from 411 to 7 Mbytes) because 
the generated graph is denser than in the rest of the 
files. However, almost no reduction is achieved in file 
36_ 01.IoTMalware (from 1573 to 1512 Mbytes), as the 
network is very sparse.

Only one record is generated for each IP address-
port, so the size of the file remains constant when the 
interaction between the same network devices grows 
thus increasing the percentage reduction of the output 
information with respect to the input flows.

Similar results to those previously achieved for nor-
mal traffic are obtained. The storage space reduction is 
49%, and 46% in the rows of the CGN file. The number 
of nodes and arcs of the graphs confirms that they are 
sparse graphs and, in some cases, unconnected.

Classification experiments
A single input data scenario for the experiments was 
prepared from a selection of the IoT-23 dataset. This 
scenario contains traffic from different types of attacks 
produced by malware prevalent on IoT devices. Table  6 
shows the selected files, the types of malware contained, 

Fig. 8  Evolution of the elapsed time (s) to obtain the CCM metric in 
relation to the number of IP-ports in each IoT-23 dataset

Fig. 9  Evolution of the elapsed time (s) to obtain the BCM metric in 
relation to the number of IP-ports in each IoT-23 dataset
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and the quantity of devices and ports included in the 
CGNs. Most of the communications captured between 
devices and ports are in files 09_ 01.IoTMalware, 36_ 
01.IoTMalware and 60_ 01.IoTMalware are malicious. 
However, benign communication is predominant in the 
remaining files.

We experimented with a machine learning model 
based on stacked autoencoders. Although it was an unsu-
pervised model, we benefited from the fact that the input 

dataset was labelled, which allow us to use specific met-
rics from the supervised machine learning models. Clas-
sification performance was evaluated based on accuracy, 
precision, recall, and F1 score:

(3a)Accuracy =
TP + TN

TP + FP + TN + FN

Table 4  Reduction (%) of rows, and storage bytes. Comparison between the original IoT-23 dataset and the generated CGNs

Dataset Data flows CGN % Reduction

Rows Bytes Rows Bytes Rows Bytes

44-01_IoTMalware 211 24,978 9 616 95.73% 97.53%

04-01_Honeypot 452 57,855 454 32,349 − 0.44% 44.09%

05-01_Honeypot 1374 170,507 944 66,922 31.30% 60.75%

20-01_IoTMalware 3193 388,802 628 45,833 80.33% 88.21%

21-01_IoTMalware 3272 398,067 1924 142,330 41.20% 64.24%

42-01_IoTMalware 4420 546,951 3099 226,308 29.89% 58.62%

08-01_IoTMalware 2181 271,260 10 824 99.54% 99.70%

34-01_IoTMalware 1923 223,957 293 20,869 84.76% 90.68%

03-01_IoTMalware 4536 534,951 5609 390,963 − 23.66% 26.92%

01-01_IoTMalware 469,275 53,974,498 441,334 32,239,514 5.95% 40.27%

60-01_IoTMalware 2476 284,405 63 4579 97.46% 98.39%

48-01_IoTMalware 3734 445,406 2319 159,938 37.90% 64.09%

49-01_IoTMalware 3665 443,332 3116 222,321 14.98% 49.85%

09-01_IoTMalware 22,548 2,787,317 18,639 1,333,986 17.34% 52.14%

35-01_IoTMalware 8,262,389 958,410,934 4,120,109 456,537,432 50.13% 52.37%

07-01_IoTMalware 75,955 9,676,495 113,538 7,911,788 − 49.48% 18.24%

36-01_IoTMalware 2663 306,067 1170 81,773 56.06% 73.28%

52-01_IoTMalware 1794 210,160 1369 94,072 23.69% 55.24%

33-01_IoTMalware 1,380,791 154,919,240 1,362,849 97,414,905 1.30% 37.12%

17-01_IoTMalware 31,438 3,933,107 25,206 1,834,122 19.82% 53.37%

39-01_IoTMalware 7337 870,739 8,534 613,082 − 16.72% 29.59%

Fig. 10  Detail of the storage reduction for each file of the 
experiment. Comparison of rows and storage bytes between the 
original and the generated file

Fig. 11  Total storage reduction for the experiment dataset. 
Comparison of rows and storage bytes between the original and the 
generated dataset
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 where true positives (TP) are the normal behaviour items 
correctly classified as normal; false-positives (FP) are the 
malicious behaviour samples that are misclassified as 

(3b)Precision =
TP

TP + FP

(3c)Recall =
TP

TP + FN

(3d)F1score =
2 ∗ TP

(2 ∗ TP)+ FP + FN

benign; true negatives (TN) are the malicious behaviour 
elements that are correctly classified as attacks; and false-
negatives (FN) are the abnormal behaviour items that are 
misclassified as normal.

We followed three different lines of research, all con-
sisting of 360 test cases with different combinations of 
hyperparameters. A Cartesian search was used to find 
the best one. Table 7 shows the combined hyperparam-
eters. Tests were performed with topologies with differ-
ent depths and numbers of units per layer. Additionally, 
we evaluated the impact on the results of the number of 
bottleneck units and variations in the magnitude of the 
IQR. Moreover, different numbers of epochs and batch 
sizes were used.

First, we trained the model with all the features 
obtained from the CGN. We discarded the CCM feature 
during the preparation of data before training. In the 
following, we repeated the training without those met-
rics, omitting CCM and BCM to estimate their impact 
on classification. Finally, we trained the model with the 
input dataset based on network flows. The best results 
are shown in Table 8. The best results have been achieved 
with a 2-layer topology (7 and 5 units) with a bottleneck 
of 3 units. The IQR factor chosen has very little effect on 
the result, and other metrics will be explored in future 
studies.

Discussion
The discussion of our findings in this article is presented 
in this section.

The stacked autoencoder-based model trained with 
CGN detects botnet attacks with high accuracy.

It requires less storage for training than a traditional 
flows-based model. The maximum space required is 
determined by the number of devices in the network, 
regardless of how connections are made between them. 
Therefore, the maximum space can be easily calculated 
and helps to manage the controller’s storage resources, 
avoiding problems of lack of space and mitigating the 

Table 5  Properties of the CGNs (nodes, arcs, and rows needed to represent them) compared with the flows contained in the files used 
for the experiments

Dataset Malware ZeekFlows Zeek Files CGN Files Rows IP addresses IP addresses-ports

(Mb) (Mb) CGN file Nodes Arcs Nodes Arcs

01_01_IoTMaleware Hide &Seek 1008749 126 70 640194 602833 620842 640194 620842

03_01_IoTMaleware Mushtik 156104 21 10 91897 65010 65153 91897 81406

09_01_IoTMaleware linux-hiajime 6378294 849 578 5289007 5220276 5221075 5289007 6369855

35_01_IoTMaleware Mirai 10447796 1186 439 4170803 4104749 4170803 4105278 4375867

36_01_IoTMaleware Okiru 13645107 1573 1512 13608115 13599603 13599713 13608115 13608335

60_01_IoTMaleware GagFyt 3581029 411 7 65569 31 33 65569 65671

Table 6  Malware detected in each of the experiment files. Ports 
per device involved in the attacks

Dataset Malware Devices & ports

Benign Malicious

01-01_IoTMaleware Hide &Seek 441,334 210,748

03-01_IoTMaleware Mushtik 534,951 88,586

09-01_IoTMaleware linux-hiajime 18,639 5,276,049

35-01_IoTMaleware Mirai 4,120,109 65,546

36-01_IoTMaleware Okiru 1170 13,607,153

60-01_IoTMaleware GagFyt 63 65,515

Table 7  Hyperparameters and combined values for the 
Cartesian search of the best configuration of the trained ML 
model

Topology Bottleneck IQR  
factor

Epochs Batch  
size

Units L1: 7 L2: 5 1 0.01 10 32

Units L1: 8 L2: 7 L3: 6 L4: 5 2 0.1 20 64

Units L1: 15 L2: 10 L3: 7 
L4: 5

3 0.5 128

4 1.5

3
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negative impact of increasing the density of connections 
in the network.

The volume of data that the controller sends to the 
devices is small, consisting only of control plane infor-
mation. The information that the edge-IoT devices share 
with the decision server is also related to the control 
plane, so the IDS does not affect the confidentiality of the 
data plane.

The model has a high classification performance with 
a simple topology consisting of few hidden layers and 
neurons in each layer. The model requires low memory 
due to the small number of parameters (255). Metrics are 
effective in representing the behaviour of network traffic. 
A few features are sufficient to represent it. Therefore, a 
deep topology is not necessary to obtain high accuracy. 
Additionally, since autoencoders tend to overfit, better 
results are achieved with shallow networks and fewer 
epochs.

The main drawback is the cost of computing some cen-
trality metrics, which can be mitigated by omitting them 
from the model. The BCM, CCM and LCM centrality 
metrics, which are intended to capture the behaviour of 
P2P attacks, have been excluded due to their computing 
overhead which makes their calculation unaffordable in 
a real-world controller. The accuracy and precision of 
the classification were slightly reduced when evaluating 
samples not previously seen by the model. We have not 
studied in depth the impact of discarding metrics. Gen-
eral comparative experiments have been conducted. A 

specific experimentation plan is required to determine 
the impact and explore other centrality metrics.

Topologies used on data flows show very low preci-
sion in classifying normal traffic. Deeper topologies are 
required to improve the results.

Finally, the proposed IDS was compared with other 
state-of-the-art works (Saba et al. 2021; Babu and Reddy 
2020; Tian et  al. 2021; Lin and Huang 2020; Nguyen 
et al. 2019; Liu et al. 2021; Shafee et al. 2020; Anthi et al. 
2019; Huong et al. 2021; Zhao et al. 2020). The particu-
lar reason for choosing them for comparison is that they 
perform traffic classification of edge-IoT devices with dif-
ferent classifiers, and in general, it is performed on the 
device itself. Therefore, the effectiveness of the proposed 
IDS is compared to the state of the art considering accu-
racy and F1 score.

Figure  12 presents the comparison of the accuracy of 
the three proposed models with the works (Saba et  al. 
2021; Babu and Reddy 2020; Tian et  al. 2021; Lin and 
Huang 2020; Nguyen et  al. 2019; Liu et  al. 2021; Shafee 
et al. 2020). Saba et al. (2021) details a model that com-
bines genetic algorithms, support vector machines and 
decision trees, obtaining an accuracy of 99.80%. Tian 
et al. (2021) used a denoising autoencoder, achieving an 
accuracy of 92.92%. Lin and Huang (2020), Nguyen et al. 
(2019), Liu et al. (2021) utilized various types of recurrent 
neural networks with results of 91.67%, 95.6% and 92%, 
respectively. Finally, Shafee et al. (2020) proposes several 
models, where 98.11% is the highest accuracy.

Table 8  Configuration and evaluation metrics of the best results obtained for the three lines tested in the experiments

Test Hyperparameters Accuracy Precision Recall F1-score

CGN Units L1: 7 L2: 5 Train: 94.29%

Bottleneck: 3 Test Benign: 98.09% 94.81% 96,42%

IQR factor: 0.01 Test Malicious: 98.16% 99.59% 98.87%

Epochs: 10 Test: 98.16% 98.13% 97.20% 97.65%

Batch size: 32

CGN
w/o BCM, LCM, CCM

Units L1: 7 L2: 5 Train: 92.8%

Bottleneck: 3 Test Benign: 99.76% 89.05% 94.10%

IQR factor: 0.01 Test Malicious: 95.52% 99.86% 97.64%

Epochs: 20 Test: 96.7% 97.64% 94.46% 95.87%

Batch size: 32

Flows Units L1: 8 L2: 7 L3: 6 L4: 5 Train: 73.50%

Bottleneck: 3 Test Benign: 27.76% 66.09% 39.24%

IQR factor: 0.01 Test Malicious: 97.52% 88.02% 92.53%

Epochs: 20 Test: 86.73% 62.64% 77.46% 65.88%

Batch size: 32



Page 15 of 17Muñoz and Valiente ﻿Cybersecurity            (2023) 6:33 	

Figure 13 shows the comparison of the F1-score of our 
models with the works (Anthi et  al. 2019; Huong et  al. 
2021; Zhao et  al. 2020). Anthi et  al. (2019) described a 
decision tree, reaching an F1-score of 96.9%. Huong et al. 
(2021) proposed a model that combines a variational 
autoencoder, and a recurrent neural network, achieving 
an F1-score of 97.9%. Zhao et al. (2020) used a recurrent 
neural network with results of 99.21%.

Our work obtains similar results to current state-of-
the-art works with storage in reduction space.

Conclusions
In this article, we propose to represent the behaviour of 
IoT devices in an SDN using CGNs. It has been shown 
that CGNs, compared to traditional data, reduce the 
required amount of storage. Furthermore, CGNs sim-
plify the typification of device-to-device traffic, and an 
implementation with few hidden layers and neurons 
can identify devices with anomalous behaviour. We 
have taken advantage of the low memory and reduction 

in computing resources to train a stacked autoencoder-
based machine learning model that learns the normal 
communication pattern of network devices. This ena-
bles behaviour analysis to be conducted at the edge 
thereby distributing the computational effort associated 
with detecting botnet attacks. Experiments demonstrate 
that the accuracy and precision are comparable to those 
currently achieved in the literature. The next step is to 
execute an experimentation plan oriented toward explor-
ing centrality metrics and their effects on classification 
accuracy with the focus on integrating them into an SDN 
controller.

In the future, we plan to integrate the AIDS proto-
type into a real SDN to explore how to minimize the 
time elapsed from the start of an attack until actions 
are applied to intercept it. Decreasing this delay to 
move closer to a real-time response would improve the 
network security and the ability to mitigate the conse-
quences of attacks. Furthermore, we hope to assign a dif-
ferent class to each type of attack and thus automatically 
generate type-specific dynamic security policies.
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